All Courses This is a comprehensive list of courses offered by the Computer Science Deparment since approximatly 2011. Courses & Curriculum Related Resources CSD Current Courses | Full Schedule of Classes | Undergraduate Curriculum Requirements Bachelor's — additional information is available in the Undergraduate Catalog Graduate Curriculum Information MSCS Handbook | Fifth Year Master's Handbook | Ph.D. Handbook Back to Academics | Student Resources Course Level - Any -UndergradMastersDoctoral When Offered - Any -All semestersFall and SpringFall onlyIntermittentSpring onlySummer onlyUnknown Search for... 15417 HOT Compilation 12 The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language. Instructor(s) Frank Pfenning Click to read more... 15417 HOT Compilation 12 The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language. Instructor(s) Karl Crary Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Todd MowryBrian Railing Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Brian RailingTodd Mowry Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Brian RailingTodd Mowry Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Zhihao JiaDimitrios Skarlatos Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Zhihao JiaDimitrios Skarlatos Click to read more... 15435 Foundations of Blockchains 12 In this course, students will learn the mathematical foundations of blockchains, including how to construct distributed consensus protocols and prove them secure, cryptography for blockchains, and mechanism design for blockchains. This course will take a mathematically rigorous approach. Students are expected to have mathematical maturity and be able to write formal mathematical proofs. Students may also be expected to implement some consensus or cryptographic algorithms. This course is cross-listed with 15-635. Undergraduates should enroll in 15-435. Graduates students should enroll in 15-635. Instructor(s) Elaine Shi Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Mahadev SatyanarayananBabu Pillai Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Babu PillaiMahadev Satyanarayanan Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Babu PillaiRashmi Korlakai VinayakMahadev Satyanarayanan Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Heather MillerWenting Zheng Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Heather MillerWenting Zheng Click to read more... 15441 Networking and the Internet 12 The emphasis in this course will be on the basic performance and engineering trade-offs in the design and implementation of computer networks. To make the issues more concrete, the class includes several multi-week projects requiring significant design and implementation. The goal is for students to learn not only what computer networks are and how they work today, but also why they are designed the way they are and how they are likely to evolve in the future. We will draw examples primarily from the Internet. Topics to be covered include: network architecture, routing, congestion/flow/error control, naming and addressing, peer-to-peer and the web, internetworking, and network security. Instructor(s) Peter Steenkiste Click to read more... 15441 Networking and the Internet 12 The emphasis in this course will be on the basic performance and engineering trade-offs in the design and implementation of computer networks. To make the issues more concrete, the class includes several multi-week projects requiring significant design and implementation. The goal is for students to learn not only what computer networks are and how they work today, but also why they are designed the way they are and how they are likely to evolve in the future. We will draw examples primarily from the Internet. Topics to be covered include: network architecture, routing, congestion/flow/error control, naming and addressing, peer-to-peer and the web, internetworking, and network security. Instructor(s) Justine Sherry Click to read more... 15442 Machine Learning Systems 12 The goal of this course is to provide students an understanding and overview of elements in modern machine learning systems. Throughout the course, the students will learn about the design rationale behind the state-of-the-art machine learning frameworks and advanced system techniques to scale, reduce memory, and offload heterogeneous compute resources. We will also run case studies of large-scale training and serving systems used in practice today. This course offers the necessary background for students who would like to pursue research in the area of machine learning systems or continue to work in machine learning engineering. Instructor(s) Tianqi ChenZhihao Jia Click to read more... 15442 Machine Learning Systems 12 The goal of this course is to provide students an understanding and overview of elements in modern machine learning systems. Throughout the course, the students will learn about the design rationale behind the state-of-the-art machine learning frameworks and advanced system techniques to scale, reduce memory, and offload heterogeneous compute resources. We will also run case studies of large-scale training and serving systems used in practice today. This course offers the necessary background for students who would like to pursue research in the area of machine learning systems or continue to work in machine learning engineering. Instructor(s) Tianqi Chen Click to read more... 15442 Machine Learning Systems 12 The goal of this course is to provide students an understanding and overview of elements in modern machine learning systems. Throughout the course, the students will learn about the design rationale behind the state-of-the-art machine learning frameworks and advanced system techniques to scale, reduce memory, and offload heterogeneous compute resources. We will also run case studies of large-scale training and serving systems used in practice today. This course offers the necessary background for students who would like to pursue research in the area of machine learning systems or continue to work in machine learning engineering. Instructor(s) Tianqi ChenZhihao Jia Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Andrew Pavlo Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Jignesh Patel Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Jignesh Patel Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Jignesh Patel Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Andrew Pavlo Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Danny SleatorDaniel Anderson Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Jason LiDaniel Anderson Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Yang LiuRichard Peng Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Daniel AndersonDavid Woodruff Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Daniel AndersonDavid Woodruff Click to read more... 15455 Undergraduate Complexity Theory 9 Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven!) picture of how by using limited amounts of various resources, we limit our computational power. Instructor(s) Anil Ada Click to read more... 15455 Undergraduate Complexity Theory 9 Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven!) picture of how by using limited amounts of various resources, we limit our computational power. Instructor(s) Klaus Sutner Click to read more... 15455 Undergraduate Complexity Theory 9 Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven!) picture of how by using limited amounts of various resources, we limit our computational power. Instructor(s) Klaus Sutner Click to read more... 15458 Discrete Differential Geometry 12 This course focuses on three-dimensional geometry processing, while simultaneously providing a first course in traditional differential geometry. Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as a large array of real-world examples and applications. It also provides a short survey of recent developments in digital geometry processing and discrete differential geometry. Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes' theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods, and numerical linear algebra. Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance. Instructor(s) Keenan Crane Click to read more... 15458 Discrete Differential Geometry 12 This course focuses on three-dimensional geometry processing, while simultaneously providing a first course in traditional differential geometry. Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as a large array of real-world examples and applications. It also provides a short survey of recent developments in digital geometry processing and discrete differential geometry. Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes' theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods, and numerical linear algebra. Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance. Instructor(s) Keenan Crane Click to read more... 15459 Undergraduate Quantum Computation 9 This undergraduate course will be an introduction to quantum computation and quantum information theory, from the perspective of theoretical computer science. Topics include: Qubit operations, multi-qubit systems, p=artial measurements, entanglement, quantum teleportation and quantum money, quantum circuit model, Deutsch-Jozsa and Simon's algorithm, number theory and Shor's Algorithm, Grover's Algorithm, quantum complexity theory, limitations and current practical developments. Instructor(s) Ryan O'Donnell Click to read more... 15459 Undergraduate Quantum Computation 9 This undergraduate course will be an introduction to quantum computation and quantum information theory, from the perspective of theoretical computer science. Topics include: Qubit operations, multi-qubit systems, p=artial measurements, entanglement, quantum teleportation and quantum money, quantum circuit model, Deutsch-Jozsa and Simon's algorithm, number theory and Shor's Algorithm, Grover's Algorithm, quantum complexity theory, limitations and current practical developments. Click to read more... 15459 Undergraduate Quantum Computation 9 This undergraduate course will be an introduction to quantum computation and quantum information theory, from the perspective of theoretical computer science. Topics include: Qubit operations, multi-qubit systems, p=artial measurements, entanglement, quantum teleportation and quantum money, quantum circuit model, Deutsch-Jozsa and Simon's algorithm, number theory and Shor's Algorithm, Grover's Algorithm, quantum complexity theory, limitations and current practical developments. Instructor(s) Ryan O'Donnell Click to read more... 15462 Computer Graphics 12 This course provides a comprehensive introduction to computer graphics. It focuses on fundamental concepts and techniques, and their cross-cutting relationship to multiple problem domains in graphics (rendering, animation, geometry, imaging). Topics include: sampling, aliasing, interpolation, rasterization, geometric transformations, parameterization, visibility, compositing, filtering, convolution, curves & surfaces, geometric data structures, subdivision, meshing, spatial hierarchies, ray tracing, radiometry, reflectance, light fields, geometric optics, Monte Carlo rendering, importance sampling, camera models, high-performance ray tracing, differential equations, time integration, numerical differentiation, physically-based animation, optimization, numerical linear algebra, inverse kinematics, Fourier methods, data fitting, example-based synthesis. Students will learn through lectures, exercises, and through hands-on programming experience as they build a 3D modeling, rasterization, path-tracing, and animation utility, Scotty3D, in C++. Instructor(s) Nancy Pollard Click to read more... 15463 Computational Photography 12 Computational photography is the convergence of computer graphics, computer vision and imaging. Its role is to overcome the limitations of the traditional camera, by combining imaging and computation to enable new and enhanced ways of capturing, representing, and interacting with the physical world. This advanced undergraduate course provides a comprehensive overview of the state of the art in computational photography. At the start of the course, we will study modern image processing pipelines, including those encountered on mobile phone and DSLR cameras, and advanced image and video editing algorithms. Then we will proceed to learn about the physical and computational aspects of tasks such as 3D scanning, coded photography, lightfield imaging, time-of-flight imaging, VR/AR displays, and computational light transport. Near the end of the course, we will discuss active research topics, such as creating cameras that capture video at the speed of light, cameras that look around walls, or cameras that can see through tissue. The course has a strong hands-on component, in the form of seven homework assignments and a final project. In the homework assignments, students will have the opportunity to implement many of the techniques covered in the class, by both acquiring their own images of indoor and outdoor scenes and developing the computational tools needed to extract information from them. For their final projects, students will have the choice to use modern sensors provided by the instructors (lightfield cameras, time-of-flight cameras, depth sensors, structured light systems, etc.). This course requires familiarity with linear algebra, calculus, programming, and doing computations with images. The course does not require prior experience with photography or imaging. Instructor(s) Ioannis Gkioulekas Click to read more... 15463 Computational Photography 12 Computational photography is the convergence of computer graphics, computer vision and imaging. Its role is to overcome the limitations of the traditional camera, by combining imaging and computation to enable new and enhanced ways of capturing, representing, and interacting with the physical world. This advanced undergraduate course provides a comprehensive overview of the state of the art in computational photography. At the start of the course, we will study modern image processing pipelines, including those encountered on mobile phone and DSLR cameras, and advanced image and video editing algorithms. Then we will proceed to learn about the physical and computational aspects of tasks such as 3D scanning, coded photography, lightfield imaging, time-of-flight imaging, VR/AR displays, and computational light transport. Near the end of the course, we will discuss active research topics, such as creating cameras that capture video at the speed of light, cameras that look around walls, or cameras that can see through tissue. The course has a strong hands-on component, in the form of seven homework assignments and a final project. In the homework assignments, students will have the opportunity to implement many of the techniques covered in the class, by both acquiring their own images of indoor and outdoor scenes and developing the computational tools needed to extract information from them. For their final projects, students will have the choice to use modern sensors provided by the instructors (lightfield cameras, time-of-flight cameras, depth sensors, structured light systems, etc.). Instructor(s) Ioannis Gkioulekas Click to read more... 15466 Computer Game Programming 12 The goal of this course is to acquaint students with the code required to turn ideas into games. This includes both runtime systems -- e.g., AI, sound, physics, rendering, and networking -- and the asset pipelines and creative tools that make it possible to author content that uses these systems. In the first part of the course, students will implement small games that focus on specific runtime systems, along with appropriate asset editors or exporters. In the second part, students will work in groups to build a larger, polished, open-ended game project. Students who have completed the course will have the skills required to extend -- or build from scratch -- a modern computer game. Students wishing to take this class should be familiar with the C++ language and have a basic understanding of the OpenGL API. If you meet these requirements but have not taken Computer Graphics (the formal prerequisite), please contact the instructor. Instructor(s) James McCann Click to read more... 15466 Computer Game Programming 12 The goal of this course is to acquaint students with the code required to turn ideas into games. This includes both runtime systems -- e.g., AI, sound, physics, rendering, and networking -- and the asset pipelines and creative tools that make it possible to author content that uses these systems. In the first part of the course, students will implement small games that focus on specific runtime systems, along with appropriate asset editors or exporters. In the second part, students will work in groups to build a larger, polished, open-ended game project. Students who have completed the course will have the skills required to extend -- or build from scratch -- a modern computer game. Students wishing to take this class should be familiar with the C++ language and have a basic understanding of the OpenGL API. If you meet these requirements but have not taken Computer Graphics (the formal prerequisite), please contact the instructor. Instructor(s) James McCann Click to read more... 15468 Physics-Based Rendering 12 This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, during which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The project also includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes. Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-468 (for undergraduate students), 15-668 (for Master's students), and 15-868 (for PhD students). Please make sure to register for the section of the class that matches your current enrollment status. Instructor(s) Ioannis Gkioulekas Click to read more... 15468 Physics-Based Rendering 12 This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, during which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The project also includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes. Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-468 (for undergraduate students), 15-668 (for Master's students), and 15-868 (for PhD students). Please make sure to register for the section of the class that matches your current enrollment status. Instructor(s) Ioannis Gkioulekas Click to read more... 15468 Physics-Based Rendering 12 This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, during which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The project also includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes. Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-468 (for undergraduate students), 15-668 (for Master's students), and 15-868 (for PhD students). Please make sure to register for the section of the class that matches your current enrollment status. Instructor(s) Ioannis Gkioulekas Click to read more... 15472 Real-Time Graphics 12 Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms. Instructor(s) James McCann Click to read more... 15472 Real-Time Graphics 12 Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms. Click to read more... 15472 Real-Time Graphics 12 Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms. Instructor(s) James McCann Click to read more... 15472 Real-Time Graphics 12 Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms. Instructor(s) James McCann Click to read more... 15473 Visual Computing Systems 12 Visual computing tasks such as computational imaging, image/video understanding, and real-time graphics are key responsibilities of modern computer systems ranging from sensor-rich smart phones to large datacenters. These workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel, heterogeneous systems that accelerate visual computing applications. This course is intended for graduate and advanced undergraduate-level students interested in architecting efficient graphics, image processing, and computer vision platforms. Instructor(s) Click to read more... 15473 Visual Computing Systems 12 Visual computing tasks such as computational imaging, image/video understanding, and real-time graphics are key responsibilities of modern computer systems ranging from sensor-rich smart phones to large datacenters. These workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel, heterogeneous systems that accelerate visual computing applications. This course is intended for graduate and advanced undergraduate-level students interested in architecting efficient graphics, image processing, and computer vision platforms. Instructor(s) Oscar Dadfar Click to read more... 15482 Autonomous Agents 12 Autonomous agents use perception, cognition, actuation, and learning to reliably achieve desired goals, where the agents can be smart homes, mobile robots, intelligent factories, self-driving cars, etc. The goal of this course is to introduce students to techniques needed for developing complete, integrated AI-based autonomous agents. Topics include architectures for intelligent agents; autonomous behaviors, perception, and execution; reasoning under uncertainty; optimization; execution monitoring; machine learning; scheduling; and explanation. A focus of the course will be on the integration and testing of autonomous systems to achieve reliable and robust behavior in the face of sensor noise and uncertainty. The course is project-oriented where small teams of students will design, implement, and evaluate agents that can grow plants autonomously, without human intervention. Instructor(s) Reid Simmons Click to read more... 15482 Autonomous Agents 12 Autonomous agents use perception, cognition, actuation, and learning to reliably achieve desired goals, where the agents can be smart homes, mobile robots, intelligent factories, self-driving cars, etc. The goal of this course is to introduce students to techniques needed for developing complete, integrated AI-based autonomous agents. Topics include architectures for intelligent agents; autonomous behaviors, perception, and execution; reasoning under uncertainty; optimization; execution monitoring; machine learning; scheduling; and explanation. A focus of the course will be on the integration and testing of autonomous systems to achieve reliable and robust behavior in the face of sensor noise and uncertainty. The course is project-oriented where small teams of students will design, implement, and evaluate agents that can grow plants autonomously, without human intervention. Instructor(s) Reid Simmons Click to read more... 15494 Cognitive Robotics: The Future of Robot Toys 12 This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children's toy, Cozmo's open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills. Instructor(s) David Touretzky Click to read more... 15494 Cognitive Robotics: The Future of Robot Toys 12 This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children's toy, Cozmo's open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills. Instructor(s) David Touretzky Click to read more... 15494 Cognitive Robotics: The Future of Robot Toys 12 This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children's toy, Cozmo's open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills. Instructor(s) David Touretzky Click to read more... 15495 Topics of Algorithmic Problem Solving 12 This course aims to give implementation motivated perspectives on some algorithmic ideas that fall outside of the scopes of most courses. It is intended for graduate students, as well as undergraduate students who have high grades in 15-210, 15-251, 15-259 (and preferably 15-451). Evaluation will consist of about 30 auto-graded coding tasks, plus either participation in the East Central NA ICPC Regional Contest, or presentations of problem-solving reports from the Chinese IOI Team Selection Camp. The first half of the course will discuss floating point precision, numerical approximation schemes, heuristic search, usage of optimization packages, and vectorization. The second half will provide high-level surveys of 2-D range update & query data structures, proactive propagation, palindromic automata, automated recurrence finding, and maximum adjacency search. Instructor(s) Richard Peng Click to read more... 15495 Algebraic and Numerical Algorithms 12 This course will provide some implementation motivated perspectives on algebraic and numerical algorithms, and will somewhat follow the Complexity and Linear Algebra semester program at the Simons Institute in Fall 2025 (https://simons.berkeley.edu/programs/complexity-linear-algebra). It will normally meet on Wednesdays and Fridays, with some Monday meetings to fit the schedule of the program. Topics covered include polynomials, bit complexity, and numerical approximation/perturbation schemes. Evaluations is by written problem sets, and either compilation and presentation of research, or performances in the UCup/AtCoder series of weekly programming contests. Presentation will assume some proficiency with algebra, number theory, and problem solving. An ideal background is mastery of either: Putnam A1~A3/B1~B3 (minus geometry); or IMO Shortlist C1~C4/N1~N2/A1~A2; or AtCoder ~1000-rated problems (minus data structures). Instructor(s) Richard Peng Click to read more... 15503 Introduction to Computer Systems 6 This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. **This online course is only available to incoming master's students who need a refresher course on computer systems. Not open to undergraduates.** Instructor(s) Brian Railing Click to read more... 15513 Introduction to Computer Systems varies This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. Instructor(s) Nathan BeckmannBrian RailingDavid Andersen Click to read more... 15513 Introduction to Computer Systems varies This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Instructor(s) Brian RailingPhillip Gibbons Click to read more... Pagination First page « First Previous page ‹‹ Page 1 Page 2 Page 3 Current page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Next page ›› Last page Last »