Whiteboard

All Courses

This is a comprehensive list of courses offered by the Computer Science Deparment since approximatly 2011.

Courses & Curriculum Related Resources

CSD Current Courses |  Full Schedule of Classes | Undergraduate Curriculum Requirements

Bachelor's — additional information is available in the Undergraduate Catalog

Graduate Curriculum Information MSCS Handbook | Fifth Year Master's Handbook | Ph.D. Handbook

Back to Academics | Student Resources

15311
Logic and Mechanized Reasoning
9
Symbolic logic is fundamental to computer science, providing a foundation for the theory of programming languages, database theory, AI, knowledge representation, automated reasoning, interactive theorem proving, and formal verification. Formal methods based on logic complement statistical methods and machine learning by providing rules of inference and means of representation with precise semantics. These methods are central to hardware and software verification, and have also been used to solve open problems in mathematics. This course will introduce students to logic on three levels: theory, implementation, and application. It will focus specifically on applications to automated reasoning and interactive theorem proving. We will present the underlying mathematical theory, and students will develop the mathematical skills that are needed to design and reason about logical systems in a rigorous way. We will also show students how to represent logical objects in a functional programming language, Lean, and how to implement fundamental logical algorithms. We will show students how to use contemporary automated reasoning tools, including SAT solvers, SMT solvers, and first-order theorem provers to solve challenging problems. Finally, we will show students how to use Lean as an interactive theorem prover.

Instructor(s)

Marijn Heule

Click to read more...

15312
Foundations of Programming Languages
12
This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Stephanie Balzer

Click to read more...

15312
Foundations of Programming Languages
12
This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Stephanie Balzer

Click to read more...

15312
Foundations of Programming Languages
12
This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Robert Harper

Click to read more...

15314
Programming Language Semantics
12
This lecture course introduces the foundational concepts and techniques of programming language semantics. The aim is to demonstrate the utility of a scientific approach, based on mathematics and logic, with applications to program analysis, language design, and compiler correctness. We focus on the most widely applicable frameworks for semantic description: denotational, operational, and axiomatic semantics. We use semantics to analyze program behavior, guide the development of correct programs, prove correctness of a compiler, validate logics for program correctness, and derive general laws of program equivalence. We will discuss imperative and functional languages, sequential and parallel, as time permits.

Instructor(s)

Stephen Brookes

Click to read more...

15316
Software Foundations of Security and Privacy
9
Security and privacy issues in computer systems continue to be a pervasive issue in technology and society. Understanding the security and privacy needs of software, and being able to rigorously demonstrate that those needs are met, is key to eliminating vulnerabilities that cause these issues. Students who take this course will learn the principles needed to make these assurances about software, and some of the key strategies used to make sure that they are correctly implemented in practice. Topics include: policy models and mechanisms for confidentiality, integrity, and availability, language-based techniques for detecting and preventing security threats, mechanisms for enforcing privacy guarantees, and the interaction between software and underlying systems that can give rise to practical security threats. Students will also gain experience applying many of these techniques to write code that is secure by construction.

Instructor(s)

Frank Pfenning

Click to read more...

15317
Constructive Logic
9
This multidisciplinary junior-level course is designed to provide a thorough introduction to modern constructive logic, its roots in philosophy, its numerous applications in computer science, and its mathematical properties. Some of the topics to be covered are intuitionistic logic, inductive definitions, functional programming, type theory, realizability, connections between classical and constructive logic, decidable classes. This course 15-317 is for undergraduates. Graduate students should enroll in 15-657.

Click to read more...

15317
Constructive Logic
9
This multidisciplinary junior-level course is designed to provide a thorough introduction to modern constructive logic, its roots in philosophy, its numerous applications in computer science, and its mathematical properties. Some of the topics to be covered are intuitionistic logic, inductive definitions, functional programming, type theory, realizability, connections between classical and constructive logic, decidable classes.

Instructor(s)

Karl Crary

Click to read more...

15319
Cloud Computing
12
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15-619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr

Click to read more...

15319
Cloud Computing
12
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr
Seth Goldstein

Click to read more...

15319
Cloud Computing
12
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr

Click to read more...

15322
Introduction to Computer Music
9
Computers are used to synthesize sound, process signals, and compose music. Personal computers have replaced studios full of sound recording and processing equipment, completing a revolution that began with recording and electronics. In this course, students will learn the fundamentals of digital audio, basic sound synthesis algorithms, and techniques for digital audio effects and processing. Students will apply their knowledge in programming assignments using a very high-level programming language for sound synthesis and composition. In a final project, students will demonstrate their mastery of tools and techniques through music composition or by the implementation of a significant sound-processing technique.

Instructor(s)

Chris Donahue

Click to read more...

15322
Introduction to Computer Music
9
Computers are used to synthesize sound, process signals, and compose music. Personal computers have replaced studios full of sound recording and processing equipment, completing a revolution that began with recording and electronics. In this course, students will learn the fundamentals of digital audio, basic sound synthesis algorithms, and techniques for digital audio effects and processing. Students will apply their knowledge in programming assignments using a very high-level programming language for sound synthesis and composition. In a final project, students will demonstrate their mastery of tools and techniques through music composition or by the implementation of a significant sound-processing technique.

Instructor(s)

Chris Donahue
Thomas Cortina

Click to read more...

15326
Computational Microeconomics
9
Use of computational techniques to operationalize basic concepts from economics. Expressive marketplaces: combinatorial auctions and exchanges, winner determination problem. Game theory: normal and extensive-form games, equilibrium notions, computing equilibria. Mechanism design: auction theory, automated mechanism design.

Instructor(s)

Vincent Conitzer

Click to read more...

15327
Monte Carlo Methods and Applications
9
The Monte Carlo method uses random sampling to solve computational problems that would otherwise be intractable, and enables computers to model complex systems in nature that are otherwise too difficult to simulate. This course provides a first introduction to Monte Carlo methods from complementary theoretical and applied points of view, and will include implementation of practical algorithms. Topics include random number generation, sampling, Markov chains, Monte Carlo integration, stochastic processes, and applications in computational science. Students need a basic background in probability, multivariable calculus, and some coding experience in any language.

Instructor(s)

Gautam Iyer
Keenan Crane

Click to read more...

15330
Introduction to Computer Security
12
Security is becoming one of the core requirements in the design of critical systems. This course will introduce students to the intro-level fundamental knowledge of computer security and applied cryptography. Students will learn the basic concepts in computer security including software vulnerability analysis and defense, networking and wireless security, and applied cryptography. Students will also learn the fundamental methodology for how to design and analyze security critical systems.

Instructor(s)

Riccardo Paccagnella
Riad Wahby

Click to read more...

15330
Introduction to Computer Security
12
Security is becoming one of the core requirements in the design of critical systems. This course will introduce students to the intro-level fundamental knowledge of computer security and applied cryptography. Students will learn the basic concepts in computer security including software vulnerability analysis and defense, networking and wireless security, and applied cryptography. Students will also learn the fundamental methodology for how to design and analyze security critical systems.

Instructor(s)

David Brumley
Riad Wahby

Click to read more...

15330
Introduction to Computer Security
12
Security is becoming one of the core requirements in the design of critical systems. This course will introduce students to the intro-level fundamental knowledge of computer security and applied cryptography. Students will learn the basic concepts in computer security including software vulnerability analysis and defense, networking and wireless security, and applied cryptography. Students will also learn the fundamental methodology for how to design and analyze security critical systems.

Instructor(s)

Bryan Parno
Riad Wahby

Click to read more...

15346
Computer Architecture: Design and Simulation
12
This course will help students develop an understanding of basic microarchitectural principles and designs. Starting with creating benchmarks and simulators, students will learn the practice of computer architecture design. The emphasis will be on how processors exploit instruction-level parallelism for performance, as well as the supporting technologies such as caches and branch prediction that are required. Several frontiers of current research will be explored in energy efficiency and security threats.

Instructor(s)

Brian Railing

Click to read more...

15351
Algorithms and Advanced Data Structures
12
The objective of this course is to study algorithms for general computational problems, with a focus on the principles used to design those algorithms. Efficient data structures will be discussed to support these algorithmic concepts. Topics include: Run time analysis, divide-and-conquer algorithms, dynamic programming algorithms, network flow algorithms, linear and integer programming, large-scale search algorithms and heuristics, efficient data storage and query, and NP-completeness. Although this course may have a few programming assignments, it is primarily not a programming course. Instead, it will focus on the design and analysis of algorithms for general classes of problems. This course is not open to CS graduate students who should consider taking 15-651 instead. THIS COURSE IS NOT OPEN TO COMPUTER SCIENCE MAJORS OR MINORS.

Instructor(s)

Yun Yu

Click to read more...

15351
Algorithms and Advanced Data Structures
12
The objective of this course is to study algorithms for general computational problems, with a focus on the principles used to design those algorithms. Efficient data structures will be discussed to support these algorithmic concepts. Topics include: Run time analysis, divide-and-conquer algorithms, dynamic programming algorithms, network flow algorithms, linear and integer programming, large-scale search algorithms and heuristics, efficient data storage and query, and NP-completeness. Although this course may have a few programming assignments, it is primarily not a programming course. Instead, it will focus on the design and analysis of algorithms for general classes of problems. This course is not open to CS graduate students who should consider taking 15-651 instead. THIS COURSE IS NOT OPEN TO COMPUTER SCIENCE MAJORS OR MINORS.

Instructor(s)

Seyed Hosein Mohimani
Dan DeBlasio

Click to read more...

15351
Algorithms and Advanced Data Structures
12
The objective of this course is to study algorithms for general computational problems, with a focus on the principles used to design those algorithms. Efficient data structures will be discussed to support these algorithmic concepts. Topics include: Run time analysis, divide-and-conquer algorithms, dynamic programming algorithms, network flow algorithms, linear and integer programming, large-scale search algorithms and heuristics, efficient data storage and query, and NP-completeness. Although this course may have a few programming assignments, it is primarily not a programming course. Instead, it will focus on the design and analysis of algorithms for general classes of problems. This course is not open to CS graduate students who should consider taking 15-651 instead. THIS COURSE IS NOT OPEN TO COMPUTER SCIENCE MAJORS OR MINORS.

Instructor(s)

Seyed Hosein Mohimani

Click to read more...

15354
Computational Discrete Mathematics
12
This course is about the computational aspects of some of the standard concepts of discrete mathematics (relations, functions, logic, graphs, algebra, automata), with emphasis on efficient algorithms. We begin with a brief introduction to computability and computational complexity. Other topics include: iteration, orbits and fixed points, order and equivalence relations, propositional logic and satisfiability testing, finite fields and shift register sequences, finite state machines, and cellular automata. Computational support for some of the material is available in the form of a Mathematica package.

Instructor(s)

Klaus Sutner

Click to read more...

15355
Modern Computer Algebra
9
The goal of this course is to investigate the relationship between algebra and computation. The course is designed to expose students to algorithms used for symbolic computation, as well as to the concepts from modern algebra which are applied to the development of these algorithms. This course provides a hands-on introduction to many of the most important ideas used in symbolic mathematical computation, which involves solving system of polynomial equations (via Groebner bases), analytic integration, and solving linear difference equations. Throughout the course the computer algebra system Mathematica will be used for computation.

Instructor(s)

Klaus Sutner

Click to read more...

15355
Modern Computer Algebra
9
The goal of this course is to investigate the relationship between algebra and computation. The course is designed to expose students to algorithms used for symbolic computation, as well as to the concepts from modern algebra which are applied to the development of these algorithms. This course provides a hands-on introduction to many of the most important ideas used in symbolic mathematical computation, which involves solving system of polynomial equations (via Groebner bases), analytic integration, and solving linear difference equations. Throughout the course the computer algebra system Mathematica will be used for computation.

Instructor(s)

Klaus Sutner

Click to read more...

15356
Introduction to Cryptography
12
This course is aimed as an introduction to modern cryptography. This course will be a mix of applied and theoretical cryptography. We will cover popular primitives such as: pseudorandom functions, encryption, signatures, zero-knowledge proofs, multi-party computation, and Blockchains. In addition, we will cover the necessary number-theoretic background. We will cover formal definitions of security, as well as constructions based on well established assumptions like factoring. Please see the course webpage for a detailed list of topics.

Instructor(s)

Aayush Jain

Click to read more...

15359
Probability & Computing: Randomized Algs and Markov Chains
12
Probability theory has become indispensable in computer science. In areas such as artificial intelligence and computer science theory, probabilistic methods and ideas based on randomization are central. In other areas such as networks and systems, probability is becoming an increasingly useful framework for handling uncertainty and modeling the patterns of data that occur in complex systems. This course is a follow-up course to 15-259, Probability and Computing. It will cover Chapters 18-27 of the same textbook, "Introduction to Probability for Computing", by Prof. Harchol-Balter. Topics include concentration inequalities, various randomized algorithms including number theoretic routines, Markov chains and their many applications, and queuing theory. The course will assume familiarity with multivariate calculus and linear algebra.

Instructor(s)

Weina Wang
Richard Peng

Click to read more...

15362
Computer Graphics
12
This course provides a comprehensive introduction to computer graphics modeling, animation, and rendering. Topics covered include basic image processing, geometric transformations, geometric modeling of curves and surfaces, animation, 3-D viewing, visibility algorithms, shading, and ray tracing.

Instructor(s)

Oscar Dadfar
Minchen Li

Click to read more...

15362
Computer Graphics
12
This course provides a comprehensive introduction to computer graphics modeling, animation, and rendering. Topics covered include basic image processing, geometric transformations, geometric modeling of curves and surfaces, animation, 3-D viewing, visibility algorithms, shading, and ray tracing.

Instructor(s)

Nancy Pollard

Click to read more...

15367
Algorithmic Textiles Design
12
Textile artifacts are -- quite literally -- all around us; from clothing to carpets to car seats. These items are often produced by sophisticated, computer-controlled fabrication machinery. In this course we will discuss everywhere code touches textiles fabrication, including design tools, simulators, and machine control languages. Students will work on a series of multi-week, open-ended projects, where they use code to create patterns for modern sewing/embroidery, weaving, and knitting machines; and then fabricate these patterns in the textiles lab. Students in the 800-level version of the course will additionally be required to create a final project that develops a new algorithm, device, or technique in textiles fabrication.

Instructor(s)

James McCann

Click to read more...

15367
Algorithmic Textiles Design
12
Textile artifacts are -- quite literally -- all around us; from clothing to carpets to car seats. These items are often produced by sophisticated, computer-controlled fabrication machinery. In this course we will discuss everywhere code touches textiles fabrication, including design tools, simulators, and machine control languages. Students will work on a series of multi-week, open-ended projects, where they use code to create patterns for modern sewing/embroidery, weaving, and knitting machines; and then fabricate these patterns in the textiles lab. Students in the 800-level version of the course will additionally be required to create a final project that develops a new algorithm, device, or technique in textiles fabrication.

Click to read more...

15386
Neural Computation
9
Computational neuroscience is an interdisciplinary science that seeks to understand how the brain computes to achieve natural intelligence. It seeks to understand the computational principles and mechanisms of intelligent behaviors and mental abilities -- such as perception, language, motor control, and learning -- by building artificial systems and computational models with the same capabilities. This course explores how neurons encode and process information, adapt and learn, communicate, cooperate, compete and compute at the individual level as well as at the levels of networks and systems. It will introduce basic concepts in computational modeling, information theory, signal processing, system analysis, statistical and probabilistic inference. Concrete examples will be drawn from the visual system and the motor systems, and studied from computational, psychological and biological perspectives. Students will learn to perform computational experiments using Matlab and quantitative studies of neurons and neuronal networks.

Instructor(s)

Tai-Sing Lee

Click to read more...

15386
Neural Computation
9
Computational neuroscience is an interdisciplinary science that seeks to understand how the brain computes to achieve natural intelligence. It seeks to understand the computational principles and mechanisms of intelligent behaviors and mental abilities -- such as perception, language, motor control, and learning -- by building artificial systems and computational models with the same capabilities. This course explores how neurons encode and process information, adapt and learn, communicate, cooperate, compete and compute at the individual level as well as at the levels of networks and systems. It will introduce basic concepts in computational modeling, information theory, signal processing, system analysis, statistical and probabilistic inference. Concrete examples will be drawn from the visual system and the motor systems, and studied from computational, psychological and biological perspectives. Students will learn to perform computational experiments using Matlab and quantitative studies of neurons and neuronal networks.

Instructor(s)

Tai-Sing Lee

Click to read more...

15387
Computational Perception
9
In this course, we will first cover the biological and psychological foundational knowledge of biological perceptual systems, and then apply computational thinking to investigate the principles and mechanisms underlying natural perception. The course will focus on vision this year, but will also touch upon other sensory modalities. You will learn how to reason scientifically and computationally about problems and issues in perception, how to extract the essential computational properties of those abstract ideas, and finally how to convert these into explicit mathematical models and computational algorithms. Topics include perceptual representation and inference, perceptual organization, perceptual constancy, object recognition, learning and scene analysis. Prerequisites: First year college calculus, some basic knowledge of linear algebra and probability and some programming experience are desirable.

Instructor(s)

Tai-Sing Lee

Click to read more...

15394
Intermediate Rapid Prototyping
5
This course covers additional topics in rapid prototyping beyond the content of 15-294. Example topics include mechanism design, procedural shape generation using Grasshopper, 3D scanning and mesh manipulation, and advanced SolidWorks concepts. The only prerequisite is basic familiarity with SolidWorks, which can be obtained via 15-294, from other CMU courses, or from online tutorials.

Instructor(s)

David Touretzky

Click to read more...

15394
Intermediate Rapid Prototyping
5
This course covers additional topics in rapid prototyping beyond the content of 15-294. Example topics include mechanism design, procedural shape generation using Grasshopper, 3D scanning and mesh manipulation, and advanced SolidWorks concepts. The only prerequisite is basic familiarity with SolidWorks, which can be obtained via 15-294, from other CMU courses, or from online tutorials.

Instructor(s)

David Touretzky

Click to read more...

15410
Operating System Design and Implementation
15
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.

Instructor(s)

Dave Eckhardt

Click to read more...

15410
Operating System Design and Implementation
15
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.

Instructor(s)

Dave Eckhardt

Click to read more...

15410
Operating System Design and Implementation
15
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.

Instructor(s)

Dave Eckhardt

Click to read more...

15411
Compiler Design
15
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.

Instructor(s)

Jan Hoffmann

Click to read more...

15411
Compiler Design
15
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.

Instructor(s)

Seth Goldstein
Benjamin Titzer

Click to read more...

15412
Operating System Practicum
varies
The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.

Instructor(s)

Dave Eckhardt

Click to read more...

15412
Operating System Practicum
varies
The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.

Instructor(s)

Dave Eckhardt

Click to read more...

15413
Advanced Foundations of Programming Languages
12
An advanced follow-on to 15-312 developing further ideas and results in the theory of programming languages.

Instructor(s)

Robert Harper

Click to read more...

15414
Bug Catching: Automated Program Verification
9
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.

Instructor(s)

Ruben Martins

Click to read more...

15414
Bug Catching: Automated Program Verification
9
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.

Instructor(s)

Matt Fredrikson

Click to read more...

15417
HOT Compilation
12
The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language.

Instructor(s)

Karl Crary

Click to read more...

15417
HOT Compilation
12
The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language.

Instructor(s)

Frank Pfenning

Click to read more...

15418
Parallel Computer Architecture and Programming
12
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.

Instructor(s)

Brian Railing
Todd Mowry

Click to read more...

15418
Parallel Computer Architecture and Programming
12
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.

Instructor(s)

Zhihao Jia
Dimitrios Skarlatos

Click to read more...

15418
Parallel Computer Architecture and Programming
12
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.

Instructor(s)

Brian Railing
Todd Mowry

Click to read more...

15435
Foundations of Blockchains
12
In this course, students will learn the mathematical foundations of blockchains, including how to construct distributed consensus protocols and prove them secure, cryptography for blockchains, and mechanism design for blockchains. This course will take a mathematically rigorous approach. Students are expected to have mathematical maturity and be able to write formal mathematical proofs. Students may also be expected to implement some consensus or cryptographic algorithms. This course is cross-listed with 15-635. Undergraduates should enroll in 15-435. Graduates students should enroll in 15-635.

Instructor(s)

Elaine Shi

Click to read more...

15440
Distributed Systems
12
The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required.

Instructor(s)

Babu Pillai
Rashmi Korlakai Vinayak
Mahadev Satyanarayanan

Click to read more...

15440
Distributed Systems
12
The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required.

Instructor(s)

Heather Miller
Wenting Zheng

Click to read more...

15440
Distributed Systems
12
The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required.

Instructor(s)

Babu Pillai
Mahadev Satyanarayanan

Click to read more...

15441
Networking and the Internet
12
The emphasis in this course will be on the basic performance and engineering trade-offs in the design and implementation of computer networks. To make the issues more concrete, the class includes several multi-week projects requiring significant design and implementation. The goal is for students to learn not only what computer networks are and how they work today, but also why they are designed the way they are and how they are likely to evolve in the future. We will draw examples primarily from the Internet. Topics to be covered include: network architecture, routing, congestion/flow/error control, naming and addressing, peer-to-peer and the web, internetworking, and network security.

Instructor(s)

Peter Steenkiste

Click to read more...

15442
Machine Learning Systems
12
The goal of this course is to provide students an understanding and overview of elements in modern machine learning systems. Throughout the course, the students will learn about the design rationale behind the state-of-the-art machine learning frameworks and advanced system techniques to scale, reduce memory, and offload heterogeneous compute resources. We will also run case studies of large-scale training and serving systems used in practice today. This course offers the necessary background for students who would like to pursue research in the area of machine learning systems or continue to work in machine learning engineering.

Instructor(s)

Tianqi Chen

Click to read more...

15442
Machine Learning Systems
12
The goal of this course is to provide students an understanding and overview of elements in modern machine learning systems. Throughout the course, the students will learn about the design rationale behind the state-of-the-art machine learning frameworks and advanced system techniques to scale, reduce memory, and offload heterogeneous compute resources. We will also run case studies of large-scale training and serving systems used in practice today. This course offers the necessary background for students who would like to pursue research in the area of machine learning systems or continue to work in machine learning engineering.

Instructor(s)

Tianqi Chen
Zhihao Jia

Click to read more...

15445
Database Systems
12
This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills.

Instructor(s)

Jignesh Patel

Click to read more...

15445
Database Systems
12
This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills.

Instructor(s)

Andrew Pavlo

Click to read more...