Whiteboard

All Courses

This is a comprehensive list of courses offered by the Computer Science Deparment since approximatly 2011.

Courses & Curriculum Related Resources

CSD Current Courses |  Full Schedule of Classes | Undergraduate Curriculum Requirements

Bachelor's — additional information is available in the Undergraduate Catalog

Graduate Curriculum Information MSCS Handbook | Fifth Year Master's Handbook | Ph.D. Handbook

Back to Academics | Student Resources

15210
Parallel and Sequential Data Structures and Algorithms
12

Teaches students about how to design, analyze, and program algorithms and data structures. The course emphasizes parallel algorithms and analysis, and how sequential algorithms can be considered a special case. The course goes into more theoretical content on algorithm analysis than 15-122 and 15-150 while still including a significant programming component and covering a variety of practical applications such as problems in data analysis, graphics, text processing, and the computational sciences. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course. Register for Lecture 1. All students will be waitlisted for Lecture 2 until Lecture 1 is full.

Instructor(s)

Charlie Garrod
Guy Blelloch

Click to read more...

15210
Parallel and Sequential Data Structures and Algorithms
12

Teaches students about how to design, analyze, and program algorithms and data structures. The course emphasizes parallel algorithms and analysis, and how sequential algorithms can be considered a special case. The course goes into more theoretical content on algorithm analysis than 15-122 and 15-150 while still including a significant programming component and covering a variety of practical applications such as problems in data analysis, graphics, text processing, and the computational sciences. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course. Register for Lecture 1. All students will be waitlisted for Lecture 2 until Lecture 1 is full.

Instructor(s)

Charlie Garrod
Guy Blelloch

Click to read more...

15210
Parallel and Sequential Data Structures and Algorithms
12

Teaches students about how to design, analyze, and program algorithms and data structures. The course emphasizes parallel algorithms and analysis, and how sequential algorithms can be considered a special case. The course goes into more theoretical content on algorithm analysis than 15-122 and 15-150 while still including a significant programming component and covering a variety of practical applications such as problems in data analysis, graphics, text processing, and the computational sciences. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Danny Sleator
Umut Acar

Click to read more...

15210
Parallel and Sequential Data Structures and Algorithms
12

Teaches students about how to design, analyze, and program algorithms and data structures. The course emphasizes parallel algorithms and analysis, and how sequential algorithms can be considered a special case. The course goes into more theoretical content on algorithm analysis than 15-122 and 15-150 while still including a significant programming component and covering a variety of practical applications such as problems in data analysis, graphics, text processing, and the computational sciences. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Umut Acar
Danny Sleator

Click to read more...

15210
Parallel and Sequential Data Structures and Algorithms
12

Teaches students about how to design, analyze, and program algorithms and data structures. The course emphasizes parallel algorithms and analysis, and how sequential algorithms can be considered a special case. The course goes into more theoretical content on algorithm analysis than 15-122 and 15-150 while still including a significant programming component and covering a variety of practical applications such as problems in data analysis, graphics, text processing, and the computational sciences. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Danny Sleator
Daniel Anderson

Click to read more...

15213
Introduction to Computer Systems
12

This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. NOTE FOR GRADUATE STUDENTS: This course is not open to graduate students beginning Spring 2015. Graduate students must register for 15-513 instead.

Instructor(s)

Brian Railing
Phillip Gibbons

Click to read more...

15213
Introduction to Computer Systems
12

This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. NOTE FOR GRADUATE STUDENTS: This course is not open to graduate students beginning Spring 2015. Graduate students must register for 15-513 instead.

Instructor(s)

Nathan Beckmann
Brian Railing
David Andersen

Click to read more...

15213
Introduction to Computer Systems
12

This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. NOTE FOR GRADUATE STUDENTS: This course is not open to graduate students beginning Spring 2015. Graduate students must register for 15-513 instead.

Instructor(s)

Brian Railing
Phillip Gibbons

Click to read more...

15213
Introduction to Computer Systems
12

This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. NOTE FOR GRADUATE STUDENTS: This course is not open to graduate students beginning Spring 2015. Graduate students must register for 15-513 instead.

Instructor(s)

Brian Railing

Click to read more...

15213
Introduction to Computer Systems
12

This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. NOTE FOR GRADUATE STUDENTS: This course is not open to graduate students beginning Spring 2015. Graduate students must register for 15-513 instead.

Click to read more...

15213
Introduction to Computer Systems
12

This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required.

Instructor(s)

Ranysha Ware
David Andersen
Nathan Beckmann

Click to read more...

15213
Introduction to Computer Systems
12

This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required.

Instructor(s)

Nathan Beckmann
David Andersen
Brian Railing

Click to read more...

15251
Great Ideas in Theoretical Computer Science
12

This course is about how to use theoretical ideas to formulate and solve problems in computer science. It integrates mathematical material with general problem solving techniques and computer science applications. Examples are drawn from algorithms, complexity theory, game theory, probability theory, graph theory, automata theory, algebra, cryptography, and combinatorics. Assignments involve both mathematical proofs and programming. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Ryan O'Donnell
Anil Ada

Click to read more...

15251
Great Ideas in Theoretical Computer Science
12

This course is about how to use theoretical ideas to formulate and solve problems in computer science. It integrates mathematical material with general problem solving techniques and computer science applications. Examples are drawn from algorithms, complexity theory, game theory, probability theory, graph theory, automata theory, algebra, cryptography, and combinatorics. Assignments involve both mathematical proofs and programming. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Anil Ada
Feras Saad

Click to read more...

15251
Great Ideas in Theoretical Computer Science
12

This course is about how to use theoretical ideas to formulate and solve problems in computer science. It integrates mathematical material with general problem solving techniques and computer science applications. Examples are drawn from algorithms, complexity theory, game theory, probability theory, graph theory, automata theory, algebra, cryptography, and combinatorics. Assignments involve both mathematical proofs and programming. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Anil Ada

Click to read more...

15251
Great Ideas in Theoretical Computer Science
12

This course is about how to use theoretical ideas to formulate and solve problems in computer science. It integrates mathematical material with general problem solving techniques and computer science applications. Examples are drawn from algorithms, complexity theory, game theory, probability theory, graph theory, automata theory, algebra, cryptography, and combinatorics. Assignments involve both mathematical proofs and programming. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Feras Saad
Anil Ada

Click to read more...

15251
Great Ideas in Theoretical Computer Science
12

This course is about how to use theoretical ideas to formulate and solve problems in computer science. It integrates mathematical material with general problem solving techniques and computer science applications. Examples are drawn from algorithms, complexity theory, game theory, probability theory, graph theory, automata theory, algebra, cryptography, and combinatorics. Assignments involve both mathematical proofs and programming. NOTE: students must achieve a C or better in order to use this course to satisfy the pre-requisite for any subsequent Computer Science course.

Instructor(s)

Klaus Sutner
David Woodruff

Click to read more...

15252
More Great Ideas in Theoretical Computer Science
5

This course is intended for students who are taking 15-251 and would like more intensive exposure to theoretical computer science. The goal is to bring interested students closer to the research frontier. The class meets once a week for a lecture and the students are expected to solve a number of homework problems during the course of the semester. The work done in 15-252 does not replace any of the requirements of 15-251. Having achieved a grade of A in 15-151/21-127 is recommended.

Click to read more...

15252
More Great Ideas in Theoretical Computer Science
5

This course is intended for students who are taking 15-251 and would like more intensive exposure to theoretical computer science. The goal is to bring interested students closer to the research frontier. The class meets once a week for a lecture and the students are expected to solve a number of homework problems during the course of the semester. The work done in 15-252 does not replace any of the requirements of 15-251. Having achieved a grade of A in 15-151/21-127 is recommended.

Instructor(s)

Klaus Sutner

Click to read more...

15259
Probability and Computing
12

Probability theory is indispensable in computer science. It is at the core of artificial intelligence and machine learning, which require decision making under uncertainty. It is integral to computer science theory, where probabilistic analysis and ideas based on randomization form the basis of many important algorithms. It is a central part of performance modeling in computer networks and systems, where probability is used to predict delays, schedule resources, and provision capacity. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation and context.

Instructor(s)

Mor Harchol-Balter

Click to read more...

15259
Probability and Computing
9

Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth.

Instructor(s)

Mor Harchol-Balter
Weina Wang

Click to read more...

15259
Probability and Computing
12

Probability theory is indispensable in computer science. It is at the core of artificial intelligence and machine learning, which require decision making under uncertainty. It is integral to computer science theory, where probabilistic analysis and ideas based on randomization form the basis of many important algorithms. It is a central part of performance modeling in computer networks and systems, where probability is used to predict delays, schedule resources, and provision capacity. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation and context.

Instructor(s)

Feras Saad
Weina Wang

Click to read more...

15259
Probability and Computing
12

Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth.

Instructor(s)

Mor Harchol-Balter
Feras Saad

Click to read more...

15259
Probability and Computing
12

Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth.

Instructor(s)

Weina Wang
Mor Harchol-Balter

Click to read more...

15260
Statistics and Computing
3

Statistics is essential for a wide range of fields including machine learning, artificial intelligence, bioinformatics, and finance. This mini course presents the fundamental concepts and methods in statistics in six lectures. The course covers key topics in statistical estimation, inference, and prediction. This course is only open to students enrolled in 15-259. Enrollment for 15-260, mini 4, starts around mid semester.

Click to read more...

15281
Artificial Intelligence: Representation and Problem Solving
12

This course is about the theory and practice of Artificial Intelligence. We will study modern techniques for computers to represent task-relevant information and make intelligent (i.e. satisficing or optimal) decisions towards the achievement of goals. The search and problem solving methods are applicable throughout a large range of industrial, civil, medical, financial, robotic, and information systems. We will investigate questions about AI systems such as: how to represent knowledge, how to effectively generate appropriate sequences of actions and how to search among alternatives to find optimal or near-optimal solutions. We will also explore how to deal with uncertainty in the world, how to learn from experience, and how to learn decision rules from data.

Instructor(s)

Tuomas Sandholm
Vincent Conitzer

Click to read more...

15281
Artificial Intelligence: Representation and Problem Solving
12

This course is about the theory and practice of Artificial Intelligence. We will study modern techniques for computers to represent task-relevant information and make intelligent (i.e. satisficing or optimal) decisions towards the achievement of goals. The search and problem solving methods are applicable throughout a large range of industrial, civil, medical, financial, robotic, and information systems. We will investigate questions about AI systems such as: how to represent knowledge, how to effectively generate appropriate sequences of actions and how to search among alternatives to find optimal or near-optimal solutions. We will also explore how to deal with uncertainty in the world, how to learn from experience, and how to learn decision rules from data. ***Starting Spring 2026, most students should enroll in 07-280 rather than 15-281. Enrollment in 15-281 is by special permission only, for students who have already completed 10-315 (or a similar ML course) and specifically need 10-315 + 15-281 to complete a degree requirement.***

Instructor(s)

Tuomas Sandholm

Click to read more...

15281
Artificial Intelligence: Representation and Problem Solving
12

This course is about the theory and practice of Artificial Intelligence. We will study modern techniques for computers to represent task-relevant information and make intelligent (i.e. satisficing or optimal) decisions towards the achievement of goals. The search and problem solving methods are applicable throughout a large range of industrial, civil, medical, financial, robotic, and information systems. We will investigate questions about AI systems such as: how to represent knowledge, how to effectively generate appropriate sequences of actions and how to search among alternatives to find optimal or near-optimal solutions. We will also explore how to deal with uncertainty in the world, how to learn from experience, and how to learn decision rules from data. We expect that by the end of the course students will have a thorough understanding of the algorithmic foundations of AI, how probability and AI are closely interrelated, and how automated agents learn. We also expect students to acquire a strong appreciation of the big-picture aspects of developing fully autonomous intelligent agents. Other lectures will introduce additional aspects of AI, including natural language processing, web-based search engines, industrial applications, autonomous robotics, and economic/game-theoretic decision making.

Instructor(s)

Patrick Virtue

Click to read more...

15281
Artificial Intelligence: Representation and Problem Solving
12

This course is about the theory and practice of Artificial Intelligence. We will study modern techniques for computers to represent task-relevant information and make intelligent (i.e. satisficing or optimal) decisions towards the achievement of goals. The search and problem solving methods are applicable throughout a large range of industrial, civil, medical, financial, robotic, and information systems. We will investigate questions about AI systems such as: how to represent knowledge, how to effectively generate appropriate sequences of actions and how to search among alternatives to find optimal or near-optimal solutions. We will also explore how to deal with uncertainty in the world, how to learn from experience, and how to learn decision rules from data. We expect that by the end of the course students will have a thorough understanding of the algorithmic foundations of AI, how probability and AI are closely interrelated, and how automated agents learn. We also expect students to acquire a strong appreciation of the big-picture aspects of developing fully autonomous intelligent agents. Other lectures will introduce additional aspects of AI, including natural language processing, web-based search engines, industrial applications, autonomous robotics, and economic/game-theoretic decision making.

Instructor(s)

Nihar Shah
Tuomas Sandholm

Click to read more...

15281
Artificial Intelligence: Representation and Problem Solving
12

This course is about the theory and practice of Artificial Intelligence. We will study modern techniques for computers to represent task-relevant information and make intelligent (i.e. satisficing or optimal) decisions towards the achievement of goals. The search and problem solving methods are applicable throughout a large range of industrial, civil, medical, financial, robotic, and information systems. We will investigate questions about AI systems such as: how to represent knowledge, how to effectively generate appropriate sequences of actions and how to search among alternatives to find optimal or near-optimal solutions. We will also explore how to deal with uncertainty in the world, how to learn from experience, and how to learn decision rules from data. We expect that by the end of the course students will have a thorough understanding of the algorithmic foundations of AI, how probability and AI are closely interrelated, and how automated agents learn. We also expect students to acquire a strong appreciation of the big-picture aspects of developing fully autonomous intelligent agents. Other lectures will introduce additional aspects of AI, including natural language processing, web-based search engines, industrial applications, autonomous robotics, and economic/game-theoretic decision making.

Instructor(s)

Patrick Virtue

Click to read more...

15292
History of Computing
5

This course traces the history of computational devices, pioneers and principles from the early ages through the present. Topics include early computational devices, mechanical computation in the 19th century, events that led to electronic computing advances in the 20th century, the advent of personal computing and the Internet, and the social, legal and ethical impact of modern computational artifacts. This course also includes a history of programming languages, operating systems, processors and computing platforms. Students should have an introductory exposure to programming prior to taking this course.

Instructor(s)

Thomas Cortina

Click to read more...

15294
Special Topic: Rapid Prototyping Technologies
5

This mini-course introduces students to rapid prototyping technologies with a focus on laser cutting and 3D printing. The course has three components: 1) A survey of rapid prototyping and additive manufacturing technologies, the maker and open source movements, and societal impacts of these technologies; 2) An introduction to the computer science behind these technologies: CAD tools, file formats, slicing algorithms; 3) Hands-on experience with SolidWorks, laser cutting, and 3D printing, culminating in student projects (e.g. artistic creations, functional objects, replicas of famous calculating machines, etc.).

Instructor(s)

David Touretzky

Click to read more...

15294
Rapid Prototyping Technologies
5

This mini-course introduces students to rapid prototyping technologies with a focus on laser cutting and 3D printing. The course has three components: 1) A survey of rapid prototyping and additive manufacturing technologies, the maker and open source movements, and societal impacts of these technologies; 2) An introduction to the computer science behind these technologies: CAD tools, file formats, slicing algorithms; 3) Hands-on experience with SolidWorks, laser cutting, and 3D printing, culminating in student projects (e.g. artistic creations, functional objects, replicas of famous calculating machines, etc.).

Instructor(s)

David Touretzky

Click to read more...

15294
Special Topic: Rapid Prototyping Technologies
5

This mini-course introduces students to rapid prototyping technologies with a focus on laser cutting and 3D printing. The course has three components: 1) A survey of rapid prototyping and additive manufacturing technologies, the maker and open source movements, and societal impacts of these technologies; 2) An introduction to the computer science behind these technologies: CAD tools, file formats, slicing algorithms; 3) Hands-on experience with SolidWorks, laser cutting, and 3D printing, culminating in student projects (e.g. artistic creations, functional objects, replicas of famous calculating machines, etc.).

Instructor(s)

David Touretzky

Click to read more...

15295
Competition Programming and Problem Solving
5

Each year, Carnegie Mellon fields two teams for participation in the ACM-ICPC Regional Programming Contest. During many recent years, one of those teams has earned the right to represent Carnegie Mellon at the ACM-ICPC World Finals. This course is a vehicle for those who consistently and rigorously train in preparation for the contests to earn course credit for their effort and achievement. Preparation involves the study of algorithms, the practice of programming and debugging, the development of test sets, and the growth of team, communication, and problem solving skills. Neither the course grade nor the number of units earned are dependent on ranking in any contest. Students are not required to earn course credit to participate in practices or to compete in ACM-ICPC events.

Instructor(s)

Danny Sleator

Click to read more...

15295
Competition Programming and Problem Solving
5

Each year, Carnegie Mellon fields two teams for participation in the ACM-ICPC Regional Programming Contest. During many recent years, one of those teams has earned the right to represent Carnegie Mellon at the ACM-ICPC World Finals. This course is a vehicle for those who consistently and rigorously train in preparation for the contests to earn course credit for their effort and achievement. Preparation involves the study of algorithms, the practice of programming and debugging, the development of test sets, and the growth of team, communication, and problem solving skills. Neither the course grade nor the number of units earned are dependent on ranking in any contest. Students are not required to earn course credit to participate in practices or to compete in ACM-ICPC events.

Instructor(s)

Danny Sleator

Click to read more...

15295
Competition Programming II
5

Each year, Carnegie Mellon fields several teams for participation in the ICPC Regional Programming Contest. During many recent years, one of those teams has earned the right to represent Carnegie Mellon at the ICPC World Finals. This course is a vehicle for those who consistently and rigorously train in preparation for the contests to earn course credit for their effort and achievement. Preparation involves the study of algorithms, the practice of programming and debugging, the development of test sets, and the growth of team, communication, and problem solving skills. Neither the course grade nor the number of units earned are dependent on ranking in any contest. Students are not required to earn course credit to participate in practices or to compete in ACM-ICPC events. Students who have not yet taken 15-295 should register for 15-195; only students who have already taken 15-295 should register for 15-295 again.

Instructor(s)

Danny Sleator

Click to read more...

15295
Competition Programming and Problem Solving
5

Each year, Carnegie Mellon fields two teams for participation in the ACM-ICPC Regional Programming Contest. During many recent years, one of those teams has earned the right to represent Carnegie Mellon at the ACM-ICPC World Finals. This course is a vehicle for those who consistently and rigorously train in preparation for the contests to earn course credit for their effort and achievement. Preparation involves the study of algorithms, the practice of programming and debugging, the development of test sets, and the growth of team, communication, and problem solving skills. Neither the course grade nor the number of units earned are dependent on ranking in any contest. Students are not required to earn course credit to participate in practices or to compete in ACM-ICPC events.

Instructor(s)

Danny Sleator

Click to read more...

15295
Competition Programming II
5

Each year, Carnegie Mellon fields several teams for participation in the ICPC Regional Programming Contest. During many recent years, one of those teams has earned the right to represent Carnegie Mellon at the ICPC World Finals. This course is a vehicle for those who consistently and rigorously train in preparation for the contests to earn course credit for their effort and achievement. Preparation involves the study of algorithms, the practice of programming and debugging, the development of test sets, and the growth of team, communication, and problem solving skills. Neither the course grade nor the number of units earned are dependent on ranking in any contest. Students are not required to earn course credit to participate in practices or to compete in ACM-ICPC events. Students who have not yet taken 15-295 should register for 15-195; only students who have already taken 15-295 should register for 15-295 again.

Instructor(s)

Danny Sleator

Click to read more...

15311
Logic and Mechanized Reasoning
9

Symbolic logic is fundamental to computer science, providing a foundation for the theory of programming languages, database theory, AI, knowledge representation, automated reasoning, interactive theorem proving, and formal verification. Formal methods based on logic complement statistical methods and machine learning by providing rules of inference and means of representation with precise semantics. These methods are central to hardware and software verification, and have also been used to solve open problems in mathematics. This course will introduce students to logic on three levels: theory, implementation, and application. It will focus specifically on applications to automated reasoning and interactive theorem proving. We will present the underlying mathematical theory, and students will develop the mathematical skills that are needed to design and reason about logical systems in a rigorous way. We will also show students how to represent logical objects in a functional programming language, Lean, and how to implement fundamental logical algorithms. We will show students how to use contemporary automated reasoning tools, including SAT solvers, SMT solvers, and first-order theorem provers to solve challenging problems. Finally, we will show students how to use Lean as an interactive theorem prover.

Instructor(s)

Marijn Heule

Click to read more...

15311
Logic and Mechanized Reasoning
9

Symbolic logic is fundamental to computer science, providing a foundation for the theory of programming languages, database theory, AI, knowledge representation, automated reasoning, interactive theorem proving, and formal verification. Formal methods based on logic complement statistical methods and machine learning by providing rules of inference and means of representation with precise semantics. These methods are central to hardware and software verification, and have also been used to solve open problems in mathematics. This course will introduce students to logic on three levels: theory, implementation, and application. It will focus specifically on applications to automated reasoning and interactive theorem proving. We will present the underlying mathematical theory, and students will develop the mathematical skills that are needed to design and reason about logical systems in a rigorous way. We will also show students how to represent logical objects in a functional programming language, Lean, and how to implement fundamental logical algorithms. We will show students how to use contemporary automated reasoning tools, including SAT solvers, SMT solvers, and first-order theorem provers to solve challenging problems. Finally, we will show students how to use Lean as an interactive theorem prover.

Instructor(s)

Marijn Heule

Click to read more...

15311
Logic and Mechanized Reasoning
9

Symbolic logic is fundamental to computer science, providing a foundation for the theory of programming languages, database theory, AI, knowledge representation, automated reasoning, interactive theorem proving, and formal verification. Formal methods based on logic complement statistical methods and machine learning by providing rules of inference and means of representation with precise semantics. These methods are central to hardware and software verification, and have also been used to solve open problems in mathematics. This course will introduce students to logic on three levels: theory, implementation, and application. It will focus specifically on applications to automated reasoning and interactive theorem proving. We will present the underlying mathematical theory, and students will develop the mathematical skills that are needed to design and reason about logical systems in a rigorous way. We will also show students how to represent logical objects in a functional programming language, Lean, and how to implement fundamental logical algorithms. We will show students how to use contemporary automated reasoning tools, including SAT solvers, SMT solvers, and first-order theorem provers to solve challenging problems. Finally, we will show students how to use Lean as an interactive theorem prover.

Instructor(s)

Marijn Heule

Click to read more...

15312
Foundations of Programming Languages
12

This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Stephanie Balzer

Click to read more...

15312
Foundations of Programming Languages
12

This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Stephanie Balzer

Click to read more...

15312
Foundations of Programming Languages
12

This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Robert Harper

Click to read more...

15312
Foundations of Programming Languages
12

This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Stephanie Balzer

Click to read more...

15312
Foundations of Programming Languages
12

This course discusses in depth many of the concepts underlying the design, definition, implementation, and use of modern programming languages. Formal approaches to defining the syntax and semantics are used to describe the fundamental concepts underlying programming languages. A variety of programming paradigms are covered such as imperative, functional, logic, and concurrent programming. In addition to the formal studies, experience with programming in the languages is used to illustrate how different design goals can lead to radically different languages and models of computation.

Instructor(s)

Robert Harper

Click to read more...

15314
Programming Language Semantics
12

This lecture course introduces the foundational concepts and techniques of programming language semantics. The aim is to demonstrate the utility of a scientific approach, based on mathematics and logic, with applications to program analysis, language design, and compiler correctness. We focus on the most widely applicable frameworks for semantic description: denotational, operational, and axiomatic semantics. We use semantics to analyze program behavior, guide the development of correct programs, prove correctness of a compiler, validate logics for program correctness, and derive general laws of program equivalence. We will discuss imperative and functional languages, sequential and parallel, as time permits.

Instructor(s)

Stephen Brookes

Click to read more...

15316
Software Foundations of Security and Privacy
9

Security and privacy issues in computer systems continue to be a pervasive issue in technology and society. Understanding the security and privacy needs of software, and being able to rigorously demonstrate that those needs are met, is key to eliminating vulnerabilities that cause these issues. Students who take this course will learn the principles needed to make these assurances about software, and some of the key strategies used to make sure that they are correctly implemented in practice. Topics include: policy models and mechanisms for confidentiality, integrity, and availability, language-based techniques for detecting and preventing security threats, mechanisms for enforcing privacy guarantees, and the interaction between software and underlying systems that can give rise to practical security threats. Students will also gain experience applying many of these techniques to write code that is secure by construction.

Instructor(s)

Matt Fredrikson

Click to read more...

15316
Software Foundations of Security and Privacy
9

Security and privacy issues in computer systems continue to be a pervasive issue in technology and society. Understanding the security and privacy needs of software, and being able to rigorously demonstrate that those needs are met, is key to eliminating vulnerabilities that cause these issues. Students who take this course will learn the principles needed to make these assurances about software, and some of the key strategies used to make sure that they are correctly implemented in practice. Topics include: policy models and mechanisms for confidentiality, integrity, and availability, language-based techniques for detecting and preventing security threats, mechanisms for enforcing privacy guarantees, and the interaction between software and underlying systems that can give rise to practical security threats. Students will also gain experience applying many of these techniques to write code that is secure by construction.

Click to read more...

15316
Software Foundations of Security and Privacy
9

Security and privacy issues in computer systems continue to be a pervasive issue in technology and society. Understanding the security and privacy needs of software, and being able to rigorously demonstrate that those needs are met, is key to eliminating vulnerabilities that cause these issues. Students who take this course will learn the principles needed to make these assurances about software, and some of the key strategies used to make sure that they are correctly implemented in practice. Topics include: policy models and mechanisms for confidentiality, integrity, and availability, language-based techniques for detecting and preventing security threats, mechanisms for enforcing privacy guarantees, and the interaction between software and underlying systems that can give rise to practical security threats. Students will also gain experience applying many of these techniques to write code that is secure by construction.

Instructor(s)

Frank Pfenning

Click to read more...

15317
Constructive Logic
9

This multidisciplinary junior-level course is designed to provide a thorough introduction to modern constructive logic, its roots in philosophy, its numerous applications in computer science, and its mathematical properties. Some of the topics to be covered are intuitionistic logic, inductive definitions, functional programming, type theory, realizability, connections between classical and constructive logic, decidable classes.

Instructor(s)

Karl Crary

Click to read more...

15317
Constructive Logic
9

This multidisciplinary junior-level course is designed to provide a thorough introduction to modern constructive logic, its roots in philosophy, its numerous applications in computer science, and its mathematical properties. Some of the topics to be covered are intuitionistic logic, inductive definitions, functional programming, type theory, realizability, connections between classical and constructive logic, decidable classes. This course 15-317 is for undergraduates. Graduate students should enroll in 15-657.

Click to read more...

15317
Constructive Logic
9

This multidisciplinary junior-level course is designed to provide a thorough introduction to modern constructive logic, its roots in philosophy, its numerous applications in computer science, and its mathematical properties. Some of the topics to be covered are intuitionistic logic, inductive definitions, functional programming, type theory, realizability, connections between classical and constructive logic, decidable classes.

Instructor(s)

Karl Crary

Click to read more...

15319
Cloud Computing
12

This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15-619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr

Click to read more...

15319
Cloud Computing
12

This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15-619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Seth Goldstein
Majd Sakr

Click to read more...

15319
Cloud Computing
12

This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr
Seth Goldstein

Click to read more...

15319
Cloud Computing
12

This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr
Seth Goldstein

Click to read more...

15319
Cloud Computing
12

This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr

Click to read more...

15322
Introduction to Computer Music
9

Computers are used to synthesize sound, process signals, and compose music. Personal computers have replaced studios full of sound recording and processing equipment, completing a revolution that began with recording and electronics. In this course, students will learn the fundamentals of digital audio, basic sound synthesis algorithms, and techniques for digital audio effects and processing. Students will apply their knowledge in programming assignments using a very high-level programming language for sound synthesis and composition. In a final project, students will demonstrate their mastery of tools and techniques through music composition or by the implementation of a significant sound-processing technique.

Instructor(s)

Chris Donahue

Click to read more...