All Courses
This is a comprehensive list of courses offered by the Computer Science Deparment since approximatly 2011.
Courses & Curriculum Related Resources
CSD Current Courses | Full Schedule of Classes | Undergraduate Curriculum Requirements
Bachelor's — additional information is available in the Undergraduate Catalog
Graduate Curriculum Information MSCS Handbook | Fifth Year Master's Handbook | Ph.D. Handbook
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation.
Instructor(s)
Nathan Beckmann
Brian Railing
David Andersen
Click to read more...
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required.
Instructor(s)
Brian Railing
Phillip Gibbons
Click to read more...
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. **This course is not available to undergraduates.**
Click to read more...
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation.
Instructor(s)
Nathan Beckmann
David Andersen
Brian Railing
Click to read more...
Probability theory is indispensable in computer science. It is at the core of artificial intelligence and machine learning, which require decision making under uncertainty. It is integral to computer science theory, where probabilistic analysis and ideas based on randomization form the basis of many important algorithms. It is a central part of performance modeling in computer networks and systems, where probability is used to predict delays, schedule resources, and provision capacity. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation and context.
Instructor(s)
Mor Harchol-Balter
Click to read more...
Probability theory is indispensable in computer science. It is at the core of artificial intelligence and machine learning, which require decision making under uncertainty. It is integral to computer science theory, where probabilistic analysis and ideas based on randomization form the basis of many important algorithms. It is a central part of performance modeling in computer networks and systems, where probability is used to predict delays, schedule resources, and provision capacity. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation and context.
Instructor(s)
Feras Saad
Weina Wang
Click to read more...
Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth.
Instructor(s)
Feras Saad
Mor Harchol-Balter
Click to read more...
Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth.
Instructor(s)
Mor Harchol-Balter
Weina Wang
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Charlie Garrod
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Charlie Garrod
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Charlie Garrod
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Click to read more...
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.
Instructor(s)
Mark Stehlik
Charlie Garrod
Click to read more...
This is a discussion course with enrollment limited to MS in CS students during their first semester in the program. Students explore the scope of graduate education in computer science, the tools and techniques for success, and the resources available to MS in CS students. Students also explore life after graduation, including careers in academia, industry, and other organizations, and plan an academic program that supports their individual goals.
Instructor(s)
Dave Eckhardt
Ruben Martins
Click to read more...
This is a discussion course with enrollment limited to MS in CS students during their first semester in the program. Students explore the scope of graduate education in computer science, the tools and techniques for success, and the resources available to MS in CS students. Students also explore life after graduation, including careers in academia, industry, and other organizations, and plan an academic program that supports their individual goals.
Instructor(s)
Dave Eckhardt
Ruben Martins
David O'Hallaron
Click to read more...
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.
Instructor(s)
Dave Eckhardt
Click to read more...
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.
Instructor(s)
Dave Eckhardt
Babu Pillai
Click to read more...
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.
Instructor(s)
Dave Eckhardt
Click to read more...
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.
Instructor(s)
Dave Eckhardt
Babu Pillai
Click to read more...
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.
Instructor(s)
Dave Eckhardt
Click to read more...
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.
Instructor(s)
Benjamin Titzer
Seth Goldstein
Click to read more...
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.
Instructor(s)
Seth Goldstein
Click to read more...
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.
Instructor(s)
Jan Hoffmann
Click to read more...
Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.
Instructor(s)
Dave Eckhardt
Click to read more...
The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.
Instructor(s)
Dave Eckhardt
Click to read more...
Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.
Instructor(s)
Dave Eckhardt
Click to read more...
The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.
Instructor(s)
Dave Eckhardt
Click to read more...
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.
Instructor(s)
Matt Fredrikson
Click to read more...
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.
Instructor(s)
Ruben Martins
Click to read more...
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Ariane 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.
Instructor(s)
Matt Fredrikson
Click to read more...
The course covers the implementation of compilers for higher-order typed languages such as ML and Haskell and gives an introduction to type-preserving compilation. Core topics include type checking and inference, elaboration, closure conversion, garbage collection, and translation to a low-level imperative language. Other topics may vary from year to year and include phase splitting, CPS conversion, typed assembly language, substructural and adjoint type systems, intersection types, and variable lifetimes.
Instructor(s)
Frank Pfenning
Click to read more...
The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language.
Instructor(s)
Karl Crary
Click to read more...
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.
Instructor(s)
Todd Mowry
Brian Railing
Click to read more...
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.
Instructor(s)
Todd Mowry
Brian Railing
Click to read more...
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.
Instructor(s)
Brian Railing
Todd Mowry
Click to read more...
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.
Instructor(s)
Zhihao Jia
Dimitrios Skarlatos
Click to read more...
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.
Instructor(s)
Zhihao Jia
Dimitrios Skarlatos
Click to read more...
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.
Instructor(s)
Majd Sakr
Click to read more...
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.
Instructor(s)
Majd Sakr
Seth Goldstein
Click to read more...
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.
Instructor(s)
Majd Sakr
Seth Goldstein
Click to read more...
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the cloud¿s motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.
Instructor(s)
Seth Goldstein
Majd Sakr
Click to read more...
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the cloud¿s motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.
Instructor(s)
Majd Sakr
Click to read more...
While the course will not be overly technical on any specific dimension, it will be hands on and you will need to be creative. Therefore, while there are no formal prerequisites, we expect students to have a background in economics, cryptography, or computer science and all students should have some basic comfortability with programming. We will do our best to create groups that feature a mix of existing knowledge. The overall goal is to deliver enough knowledge about the potential and capabilities of blockchain technologies to enable students interested in this space to develop their own uses cases or applications.
Instructor(s)
Elaine Shi
Ariel Zetlin-Jones
Michael J Mccarthy
Click to read more...
While the course will not be overly technical on any specific dimension, it will be hands on and you will need to be creative. Therefore, while there are no formal prerequisites, we expect students to have a background in economics, cryptography, or computer science and all students should have some basic comfortability with programming. We will do our best to create groups that feature a mix of existing knowledge. The overall goal is to deliver enough knowledge about the potential and capabilities of blockchain technologies to enable students interested in this space to develop their own uses cases or applications.
Instructor(s)
Michael J Mccarthy
Ariel Zetlin-Jones
Click to read more...
While the course will not be overly technical on any specific dimension, it will be hands on and you will need to be creative. Therefore, while there are no formal prerequisites, we expect students to have a background in economics, cryptography, or computer science and all students should have some basic comfortability with programming. We will do our best to create groups that feature a mix of existing knowledge. The overall goal is to deliver enough knowledge about the potential and capabilities of blockchain technologies to enable students interested in this space to develop their own uses cases or applications.
Instructor(s)
Elaine Shi
Click to read more...
Computers are used to synthesize sound, process signals, and compose music. Personal computers have replaced studios full of sound recording and processing equipment, completing a revolution that began with recording and electronics. In this course, students will learn the fundamentals of digital audio, basic sound synthesis algorithms, and techniques for digital audio effects and processing. Students will apply their knowledge in programming assignments using a very high-level programming language for sound synthesis and composition. In a final project, students will demonstrate their mastery of tools and techniques through music composition or by the implementation of a significant sound-processing technique.
Instructor(s)
Chris Donahue
Click to read more...