All Courses This is a comprehensive list of courses offered by the Computer Science Deparment since approximatly 2011. Courses & Curriculum Related Resources CSD Current Courses | Full Schedule of Classes | Undergraduate Curriculum Requirements Bachelor's — additional information is available in the Undergraduate Catalog Graduate Curriculum Information MSCS Handbook | Fifth Year Master's Handbook | Ph.D. Handbook Back to Academics | Student Resources Course Level - Any -UndergradMastersDoctoral When Offered - Any -All semestersFall and SpringFall onlyIntermittentSpring onlySummer onlyUnknown Search for... 15362 Computer Graphics 12 This course provides a comprehensive introduction to computer graphics modeling, animation, and rendering. Topics covered include basic image processing, geometric transformations, geometric modeling of curves and surfaces, animation, 3-D viewing, visibility algorithms, shading, and ray tracing. Instructor(s) Oscar Dadfar Click to read more... 15367 Algorithmic Textiles Design 12 Textile artifacts are -- quite literally -- all around us; from clothing to carpets to car seats. These items are often produced by sophisticated, computer-controlled fabrication machinery. In this course we will discuss everywhere code touches textiles fabrication, including design tools, simulators, and machine control languages. Students will work on a series of multi-week, open-ended projects, where they use code to create patterns for modern sewing/embroidery, weaving, and knitting machines; and then fabricate these patterns in the textiles lab. Students in the 800-level version of the course will additionally be required to create a final project that develops a new algorithm, device, or technique in textiles fabrication. Instructor(s) James McCann Click to read more... 15367 Algorithmic Textiles Design 12 Textile artifacts are -- quite literally -- all around us; from clothing to carpets to car seats. These items are often produced by sophisticated, computer-controlled fabrication machinery. In this course we will discuss everywhere code touches textiles fabrication, including design tools, simulators, and machine control languages. Students will work on a series of multi-week, open-ended projects, where they use code to create patterns for modern sewing/embroidery, weaving, and knitting machines; and then fabricate these patterns in the textiles lab. Students in the 800-level version of the course will additionally be required to create a final project that develops a new algorithm, device, or technique in textiles fabrication. Click to read more... 15369 Numerical Computing 9 Many problems in science, engineering, and computer graphics cannot be solved exactly. Numerical computing provides methods to approximate these solutions using computational techniques. It combines mathematics and programming to solve real-world problems such as simulations, optimization, and data analysis. The course begins with a review of key mathematical concepts like vector spaces, matrices, and calculus. We then explore how numbers are represented on computers, the types of errors that can occur, and strategies to handle them. Core topics include solving linear and nonlinear systems, eigenvalue problems, optimization, and techniques such as LU decomposition, QR factorization, and singular value decomposition (SVD). We will also cover iterative methods for large systems, interpolation, numerical differentiation, integration, and both ordinary and partial differential equations. Students will gain hands-on experience implementing algorithms and learn to balance accuracy, stability, and efficiency in computational solutions. Instructor(s) Minchen Li Click to read more... 15386 Neural Computation 9 Computational neuroscience is an interdisciplinary science that seeks to understand how the brain computes to achieve natural intelligence. It seeks to understand the computational principles and mechanisms of intelligent behaviors and mental abilities -- such as perception, language, motor control, and learning -- by building artificial systems and computational models with the same capabilities. This course explores how neurons encode and process information, adapt and learn, communicate, cooperate, compete and compute at the individual level as well as at the levels of networks and systems. It will introduce basic concepts in computational modeling, information theory, signal processing, system analysis, statistical and probabilistic inference. Concrete examples will be drawn from the visual system and the motor systems, and studied from computational, psychological and biological perspectives. Students will learn to perform computational experiments using Matlab and quantitative studies of neurons and neuronal networks. Instructor(s) Tai-Sing Lee Click to read more... 15386 Neural Computation 9 Computational neuroscience is an interdisciplinary science that seeks to understand how the brain computes to achieve natural intelligence. It seeks to understand the computational principles and mechanisms of intelligent behaviors and mental abilities -- such as perception, language, motor control, and learning -- by building artificial systems and computational models with the same capabilities. This course explores how neurons encode and process information, adapt and learn, communicate, cooperate, compete and compute at the individual level as well as at the levels of networks and systems. It will introduce basic concepts in computational modeling, information theory, signal processing, system analysis, statistical and probabilistic inference. Concrete examples will be drawn from the visual system and the motor systems, and studied from computational, psychological and biological perspectives. Students will learn to perform computational experiments using Matlab and quantitative studies of neurons and neuronal networks. Instructor(s) Tai-Sing Lee Click to read more... 15387 Computational Perception 9 In this course, we will first cover the biological and psychological foundational knowledge of biological perceptual systems, and then apply computational thinking to investigate the principles and mechanisms underlying natural perception. The course will focus on vision this year, but will also touch upon other sensory modalities. You will learn how to reason scientifically and computationally about problems and issues in perception, how to extract the essential computational properties of those abstract ideas, and finally how to convert these into explicit mathematical models and computational algorithms. Topics include perceptual representation and inference, perceptual organization, perceptual constancy, object recognition, learning and scene analysis. Prerequisites: First year college calculus, some basic knowledge of linear algebra and probability and some programming experience are desirable. Instructor(s) Tai-Sing Lee Click to read more... 15387 Computational Perception 9 In this course, we will first cover the biological and psychological foundational knowledge of biological perceptual systems, and then apply computational thinking to investigate the principles and mechanisms underlying natural perception. The course will focus on vision this year, but will also touch upon other sensory modalities. You will learn how to reason scientifically and computationally about problems and issues in perception, how to extract the essential computational properties of those abstract ideas, and finally how to convert these into explicit mathematical models and computational algorithms. Topics include perceptual representation and inference, perceptual organization, perceptual constancy, object recognition, learning and scene analysis. Prerequisites: First year college calculus, some basic knowledge of linear algebra and probability and some programming experience are desirable. Instructor(s) Tai-Sing Lee Click to read more... 15394 Intermediate Rapid Prototyping 5 This course covers additional topics in rapid prototyping beyond the content of 15-294. Example topics include mechanism design, procedural shape generation using Grasshopper, 3D scanning and mesh manipulation, and advanced SolidWorks concepts. The only prerequisite is basic familiarity with SolidWorks, which can be obtained via 15-294, from other CMU courses, or from online tutorials. Instructor(s) David Touretzky Click to read more... 15394 Intermediate Rapid Prototyping 5 This course covers additional topics in rapid prototyping beyond the content of 15-294. Example topics include mechanism design, procedural shape generation using Grasshopper, 3D scanning and mesh manipulation, and advanced SolidWorks concepts. The only prerequisite is basic familiarity with SolidWorks, which can be obtained via 15-294, from other CMU courses, or from online tutorials. Instructor(s) David Touretzky Click to read more... 15394 Intermediate Rapid Prototyping 5 This course covers additional topics in rapid prototyping beyond the content of 15-294. Example topics include mechanism design, procedural shape generation using Grasshopper, 3D scanning and mesh manipulation, and advanced SolidWorks concepts. The only prerequisite is basic familiarity with SolidWorks, which can be obtained via 15-294, from other CMU courses, or from online tutorials. Instructor(s) David Touretzky Click to read more... 15410 Operating System Design and Implementation 15 Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals. Instructor(s) Dave Eckhardt Click to read more... 15410 Operating System Design and Implementation 15 Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals. Instructor(s) Dave Eckhardt Click to read more... 15410 Operating System Design and Implementation 15 Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals. Instructor(s) Dave Eckhardt Click to read more... 15410 Operating System Design and Implementation 15 Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals. Instructor(s) Dave EckhardtBabu Pillai Click to read more... 15411 Compiler Design 15 This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization. Instructor(s) Seth GoldsteinBenjamin Titzer Click to read more... 15411 Compiler Design 15 This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization. Instructor(s) Jan Hoffmann Click to read more... 15412 Operating System Practicum varies The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc. Instructor(s) Dave Eckhardt Click to read more... 15412 Operating System Practicum varies The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc. Instructor(s) Dave Eckhardt Click to read more... 15412 Operating System Practicum varies The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc. Instructor(s) Dave Eckhardt Click to read more... 15413 Advanced Foundations of Programming Languages 12 An advanced follow-on to 15-312 developing further ideas and results in the theory of programming languages. Instructor(s) Robert Harper Click to read more... 15414 Bug Catching: Automated Program Verification 9 Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major. Instructor(s) Matt Fredrikson Click to read more... 15414 Bug Catching: Automated Program Verification 9 Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major. Instructor(s) Matt Fredrikson Click to read more... 15414 Bug Catching: Automated Program Verification 9 Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major. Instructor(s) Ruben Martins Click to read more... 15417 HOT Compilation 12 The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language. Instructor(s) Frank Pfenning Click to read more... 15417 HOT Compilation 12 The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language. Instructor(s) Karl Crary Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Zhihao JiaDimitrios Skarlatos Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Brian RailingTodd Mowry Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Zhihao JiaDimitrios Skarlatos Click to read more... 15418 Parallel Computer Architecture and Programming 12 The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project. Instructor(s) Brian RailingTodd Mowry Click to read more... 15435 Foundations of Blockchains 12 In this course, students will learn the mathematical foundations of blockchains, including how to construct distributed consensus protocols and prove them secure, cryptography for blockchains, and mechanism design for blockchains. This course will take a mathematically rigorous approach. Students are expected to have mathematical maturity and be able to write formal mathematical proofs. Students may also be expected to implement some consensus or cryptographic algorithms. This course is cross-listed with 15-635. Undergraduates should enroll in 15-435. Graduates students should enroll in 15-635. Instructor(s) Elaine Shi Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Babu PillaiRashmi Korlakai VinayakMahadev Satyanarayanan Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Heather MillerWenting ZhengPeter Steenkiste Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Babu PillaiMahadev Satyanarayanan Click to read more... 15440 Distributed Systems 12 The goals of this course are twofold: First, for students to gain an understanding of the principles and techniques behind the design of distributed systems, such as locking, concurrency, scheduling, and communication across the network. Second, for students to gain practical experience designing, implementing, and debugging real distributed systems. The major themes this course will teach include scarcity, scheduling, concurrency and concurrent programming, naming, abstraction and modularity, imperfect communication and other types of failure, protection from accidental and malicious harm, optimism, and the use of instrumentation and monitoring and debugging tools in problem solving. As the creation and management of software systems is a fundamental goal of any undergraduate systems course, students will design, implement, and debug large programming projects. As a consequence, competency in both the C and Java programming languages is required. Instructor(s) Heather MillerWenting Zheng Click to read more... 15441 Networking and the Internet 12 The emphasis in this course will be on the basic performance and engineering trade-offs in the design and implementation of computer networks. To make the issues more concrete, the class includes several multi-week projects requiring significant design and implementation. The goal is for students to learn not only what computer networks are and how they work today, but also why they are designed the way they are and how they are likely to evolve in the future. We will draw examples primarily from the Internet. Topics to be covered include: network architecture, routing, congestion/flow/error control, naming and addressing, peer-to-peer and the web, internetworking, and network security. Instructor(s) Justine Sherry Click to read more... 15441 Networking and the Internet 12 The emphasis in this course will be on the basic performance and engineering trade-offs in the design and implementation of computer networks. To make the issues more concrete, the class includes several multi-week projects requiring significant design and implementation. The goal is for students to learn not only what computer networks are and how they work today, but also why they are designed the way they are and how they are likely to evolve in the future. We will draw examples primarily from the Internet. Topics to be covered include: network architecture, routing, congestion/flow/error control, naming and addressing, peer-to-peer and the web, internetworking, and network security. Instructor(s) Peter Steenkiste Click to read more... 15442 Machine Learning Systems 12 The goal of this course is to provide students an understanding and overview of elements in modern machine learning systems. Throughout the course, the students will learn about the design rationale behind the state-of-the-art machine learning frameworks and advanced system techniques to scale, reduce memory, and offload heterogeneous compute resources. We will also run case studies of large-scale training and serving systems used in practice today. This course offers the necessary background for students who would like to pursue research in the area of machine learning systems or continue to work in machine learning engineering. Instructor(s) Tianqi Chen Click to read more... 15442 Machine Learning Systems 12 The goal of this course is to provide students an understanding and overview of elements in modern machine learning systems. Throughout the course, the students will learn about the design rationale behind the state-of-the-art machine learning frameworks and advanced system techniques to scale, reduce memory, and offload heterogeneous compute resources. We will also run case studies of large-scale training and serving systems used in practice today. This course offers the necessary background for students who would like to pursue research in the area of machine learning systems or continue to work in machine learning engineering. Instructor(s) Tianqi ChenZhihao Jia Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Jignesh Patel Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Andrew Pavlo Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Jignesh Patel Click to read more... 15445 Database Systems 12 This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills. Instructor(s) Andrew Pavlo Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Daniel AndersonDavid Woodruff Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Danny SleatorDaniel Anderson Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Daniel AndersonDavid Woodruff Click to read more... 15451 Algorithm Design and Analysis 12 This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols. Instructor(s) Jason LiDaniel Anderson Click to read more... 15455 Undergraduate Complexity Theory 9 Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven!) picture of how by using limited amounts of various resources, we limit our computational power. Instructor(s) Klaus Sutner Click to read more... 15455 Undergraduate Complexity Theory 9 Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven!) picture of how by using limited amounts of various resources, we limit our computational power. Instructor(s) Klaus Sutner Click to read more... 15458 Discrete Differential Geometry 12 This course focuses on three-dimensional geometry processing, while simultaneously providing a first course in traditional differential geometry. Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as a large array of real-world examples and applications. It also provides a short survey of recent developments in digital geometry processing and discrete differential geometry. Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes' theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods, and numerical linear algebra. Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance. Instructor(s) Keenan Crane Click to read more... 15458 Discrete Differential Geometry 12 This course focuses on three-dimensional geometry processing, while simultaneously providing a first course in traditional differential geometry. Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as a large array of real-world examples and applications. It also provides a short survey of recent developments in digital geometry processing and discrete differential geometry. Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes' theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods, and numerical linear algebra. Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance. Instructor(s) Keenan Crane Click to read more... 15459 Undergraduate Quantum Computation 9 This undergraduate course will be an introduction to quantum computation and quantum information theory, from the perspective of theoretical computer science. Topics include: Qubit operations, multi-qubit systems, p=artial measurements, entanglement, quantum teleportation and quantum money, quantum circuit model, Deutsch-Jozsa and Simon's algorithm, number theory and Shor's Algorithm, Grover's Algorithm, quantum complexity theory, limitations and current practical developments. Instructor(s) Ryan O'Donnell Click to read more... 15462 Computer Graphics 12 This course provides a comprehensive introduction to computer graphics. It focuses on fundamental concepts and techniques, and their cross-cutting relationship to multiple problem domains in graphics (rendering, animation, geometry, imaging). Topics include: sampling, aliasing, interpolation, rasterization, geometric transformations, parameterization, visibility, compositing, filtering, convolution, curves & surfaces, geometric data structures, subdivision, meshing, spatial hierarchies, ray tracing, radiometry, reflectance, light fields, geometric optics, Monte Carlo rendering, importance sampling, camera models, high-performance ray tracing, differential equations, time integration, numerical differentiation, physically-based animation, optimization, numerical linear algebra, inverse kinematics, Fourier methods, data fitting, example-based synthesis. Students will learn through lectures, exercises, and through hands-on programming experience as they build a 3D modeling, rasterization, path-tracing, and animation utility, Scotty3D, in C++. Instructor(s) Nancy Pollard Click to read more... 15463 Computational Photography 12 Computational photography is the convergence of computer graphics, computer vision and imaging. Its role is to overcome the limitations of the traditional camera, by combining imaging and computation to enable new and enhanced ways of capturing, representing, and interacting with the physical world. This advanced undergraduate course provides a comprehensive overview of the state of the art in computational photography. At the start of the course, we will study modern image processing pipelines, including those encountered on mobile phone and DSLR cameras, and advanced image and video editing algorithms. Then we will proceed to learn about the physical and computational aspects of tasks such as 3D scanning, coded photography, lightfield imaging, time-of-flight imaging, VR/AR displays, and computational light transport. Near the end of the course, we will discuss active research topics, such as creating cameras that capture video at the speed of light, cameras that look around walls, or cameras that can see through tissue. The course has a strong hands-on component, in the form of seven homework assignments and a final project. In the homework assignments, students will have the opportunity to implement many of the techniques covered in the class, by both acquiring their own images of indoor and outdoor scenes and developing the computational tools needed to extract information from them. For their final projects, students will have the choice to use modern sensors provided by the instructors (lightfield cameras, time-of-flight cameras, depth sensors, structured light systems, etc.). This course requires familarity with linear algebra, calculus, programming, and doing computations with images. The course does not require prior experience with photography or imaging. Instructor(s) Ioannis Gkioulekas Click to read more... 15463 Computational Photography 12 Computational photography is the convergence of computer graphics, computer vision and imaging. Its role is to overcome the limitations of the traditional camera, by combining imaging and computation to enable new and enhanced ways of capturing, representing, and interacting with the physical world. This advanced undergraduate course provides a comprehensive overview of the state of the art in computational photography. At the start of the course, we will study modern image processing pipelines, including those encountered on mobile phone and DSLR cameras, and advanced image and video editing algorithms. Then we will proceed to learn about the physical and computational aspects of tasks such as 3D scanning, coded photography, lightfield imaging, time-of-flight imaging, VR/AR displays, and computational light transport. Near the end of the course, we will discuss active research topics, such as creating cameras that capture video at the speed of light, cameras that look around walls, or cameras that can see through tissue. The course has a strong hands-on component, in the form of seven homework assignments and a final project. In the homework assignments, students will have the opportunity to implement many of the techniques covered in the class, by both acquiring their own images of indoor and outdoor scenes and developing the computational tools needed to extract information from them. For their final projects, students will have the choice to use modern sensors provided by the instructors (lightfield cameras, time-of-flight cameras, depth sensors, structured light systems, etc.). This course requires familarity with linear algebra, calculus, programming, and doing computations with images. The course does not require prior experience with photography or imaging. Instructor(s) Ioannis Gkioulekas Click to read more... 15466 Computer Game Programming 12 The goal of this course is to acquaint students with the code required to turn ideas into games. This includes both runtime systems -- e.g., AI, sound, physics, rendering, and networking -- and the asset pipelines and creative tools that make it possible to author content that uses these systems. In the first part of the course, students will implement small games that focus on specific runtime systems, along with appropriate asset editors or exporters. In the second part, students will work in groups to build a larger, polished, open-ended game project. Students who have completed the course will have the skills required to extend -- or build from scratch -- a modern computer game. Students wishing to take this class should be familiar with the C++ language and have a basic understanding of the OpenGL API. If you meet these requirements but have not taken Computer Graphics (the formal prerequisite), please contact the instructor. Instructor(s) James McCann Click to read more... 15466 Computer Game Programming 12 The goal of this course is to acquaint students with the code required to turn ideas into games. This includes both runtime systems -- e.g., AI, sound, physics, rendering, and networking -- and the asset pipelines and creative tools that make it possible to author content that uses these systems. In the first part of the course, students will implement small games that focus on specific runtime systems, along with appropriate asset editors or exporters. In the second part, students will work in groups to build a larger, polished, open-ended game project. Students who have completed the course will have the skills required to extend -- or build from scratch -- a modern computer game. Students wishing to take this class should be familiar with the C++ language and have a basic understanding of the OpenGL API. If you meet these requirements but have not taken Computer Graphics (the formal prerequisite), please contact the instructor. Instructor(s) James McCann Click to read more... 15468 Physics-Based Rendering 12 This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, during which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The project also includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes. Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-468 (for undergraduate students), 15-668 (for Master's students), and 15-868 (for PhD students). Please make sure to register for the section of the class that matches your current enrollment status. Instructor(s) Ioannis Gkioulekas Click to read more... 15468 Physics-Based Rendering 12 This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, during which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The project also includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes. Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-468 (for undergraduate students), 15-668 (for Master's students), and 15-868 (for PhD students). Please make sure to register for the section of the class that matches your current enrollment status. Instructor(s) Ioannis Gkioulekas Click to read more... 15472 Real-Time Graphics 12 Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms. Instructor(s) James McCann Click to read more... Pagination First page « First Previous page ‹‹ Page 1 Page 2 Current page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Next page ›› Last page Last »