Whiteboard

All Courses

This is a comprehensive list of courses offered by the Computer Science Deparment since approximatly 2011.

Courses & Curriculum Related Resources

CSD Current Courses |  Full Schedule of Classes | Undergraduate Curriculum Requirements

Bachelor's — additional information is available in the Undergraduate Catalog

Graduate Curriculum Information MSCS Handbook | Fifth Year Master's Handbook | Ph.D. Handbook

Back to Academics | Student Resources

15445
Database Systems
12
This course is on the design and implementation of database management systems. Topics include data models (relational, document, key/value), storage models (n-ary, decomposition), query languages (SQL, stored procedures), storage architectures (heaps, log-structured), indexing (order preserving trees, hash tables), transaction processing (ACID, concurrency control), recovery (logging, checkpoints), query processing (joins, sorting, aggregation, optimization), and parallel architectures (multi-core, distributed). Case studies on open-source and commercial database systems will be used to illustrate these techniques and trade-offs. The course is appropriate for students with strong systems programming skills.

Instructor(s)

Jignesh Patel

Click to read more...

15451
Algorithm Design and Analysis
12
This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols.

Instructor(s)

Jason Li
Daniel Anderson

Click to read more...

15451
Algorithm Design and Analysis
12
This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols.

Instructor(s)

Daniel Anderson
David Woodruff

Click to read more...

15451
Algorithm Design and Analysis
12
This course is about the design and analysis of algorithms. We study specific algorithms for a variety of problems, as well as general design and analysis techniques. Specific topics include searching, sorting, algorithms for graph problems, efficient data structures, lower bounds and NP-completeness. A variety of other topics may be covered at the discretion of the instructor. These include parallel algorithms, randomized algorithms, geometric algorithms, low level techniques for efficient programming, cryptography, and cryptographic protocols.

Instructor(s)

Daniel Anderson
David Woodruff

Click to read more...

15455
Undergraduate Complexity Theory
9
Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven!) picture of how by using limited amounts of various resources, we limit our computational power.

Instructor(s)

Klaus Sutner

Click to read more...

15455
Undergraduate Complexity Theory
9
Complexity theory is the study of how much of a resource (such as time, space, parallelism, or randomness) is required to perform some of the computations that interest us the most. In a standard algorithms course, one concentrates on giving resource efficient methods to solve interesting problems. In this course, we concentrate on techniques that prove or suggest that there are no efficient methods to solve many important problems. We will develop the theory of various complexity classes, such as P, NP, co-NP, PH, #P, PSPACE, NC, AC, L, NL, UP, RP, BPP, IP, and PCP. We will study techniques to classify problems according to our available taxonomy. By developing a subtle pattern of reductions between classes we will suggest an (as yet unproven!) picture of how by using limited amounts of various resources, we limit our computational power.

Instructor(s)

Klaus Sutner

Click to read more...

15458
Discrete Differential Geometry
12
This course focuses on three-dimensional geometry processing, while simultaneously providing a first course in traditional differential geometry. Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as a large array of real-world examples and applications. It also provides a short survey of recent developments in digital geometry processing and discrete differential geometry. Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes' theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods, and numerical linear algebra. Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance.

Instructor(s)

Keenan Crane

Click to read more...

15458
Discrete Differential Geometry
12
This course focuses on three-dimensional geometry processing, while simultaneously providing a first course in traditional differential geometry. Our main goal is to show how fundamental geometric concepts (like curvature) can be understood from complementary computational and mathematical points of view. This dual perspective enriches understanding on both sides, and leads to the development of practical algorithms for working with real-world geometric data. Along the way we will revisit important ideas from calculus and linear algebra, putting a strong emphasis on intuitive, visual understanding that complements the more traditional formal, algebraic treatment. The course provides essential mathematical background as well as a large array of real-world examples and applications. It also provides a short survey of recent developments in digital geometry processing and discrete differential geometry. Topics include: curves and surfaces, curvature, connections and parallel transport, exterior algebra, exterior calculus, Stokes' theorem, simplicial homology, de Rham cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods, and numerical linear algebra. Applications include: approximation of curvature, curve and surface smoothing, surface parameterization, vector field design, and computation of geodesic distance.

Instructor(s)

Keenan Crane

Click to read more...

15459
Undergraduate Quantum Computation
9
This undergraduate course will be an introduction to quantum computation and quantum information theory, from the perspective of theoretical computer science. Topics include: Qubit operations, multi-qubit systems, p=artial measurements, entanglement, quantum teleportation and quantum money, quantum circuit model, Deutsch-Jozsa and Simon's algorithm, number theory and Shor's Algorithm, Grover's Algorithm, quantum complexity theory, limitations and current practical developments.

Instructor(s)

Ryan O'Donnell

Click to read more...

15462
Computer Graphics
12
This course provides a comprehensive introduction to computer graphics. It focuses on fundamental concepts and techniques, and their cross-cutting relationship to multiple problem domains in graphics (rendering, animation, geometry, imaging). Topics include: sampling, aliasing, interpolation, rasterization, geometric transformations, parameterization, visibility, compositing, filtering, convolution, curves & surfaces, geometric data structures, subdivision, meshing, spatial hierarchies, ray tracing, radiometry, reflectance, light fields, geometric optics, Monte Carlo rendering, importance sampling, camera models, high-performance ray tracing, differential equations, time integration, numerical differentiation, physically-based animation, optimization, numerical linear algebra, inverse kinematics, Fourier methods, data fitting, example-based synthesis. Students will learn through lectures, exercises, and through hands-on programming experience as they build a 3D modeling, rasterization, path-tracing, and animation utility, Scotty3D, in C++.

Instructor(s)

Nancy Pollard

Click to read more...

15463
Computational Photography
12
Computational photography is the convergence of computer graphics, computer vision and imaging. Its role is to overcome the limitations of the traditional camera, by combining imaging and computation to enable new and enhanced ways of capturing, representing, and interacting with the physical world. This advanced undergraduate course provides a comprehensive overview of the state of the art in computational photography. At the start of the course, we will study modern image processing pipelines, including those encountered on mobile phone and DSLR cameras, and advanced image and video editing algorithms. Then we will proceed to learn about the physical and computational aspects of tasks such as 3D scanning, coded photography, lightfield imaging, time-of-flight imaging, VR/AR displays, and computational light transport. Near the end of the course, we will discuss active research topics, such as creating cameras that capture video at the speed of light, cameras that look around walls, or cameras that can see through tissue. The course has a strong hands-on component, in the form of seven homework assignments and a final project. In the homework assignments, students will have the opportunity to implement many of the techniques covered in the class, by both acquiring their own images of indoor and outdoor scenes and developing the computational tools needed to extract information from them. For their final projects, students will have the choice to use modern sensors provided by the instructors (lightfield cameras, time-of-flight cameras, depth sensors, structured light systems, etc.). This course requires familarity with linear algebra, calculus, programming, and doing computations with images. The course does not require prior experience with photography or imaging.

Instructor(s)

Ioannis Gkioulekas

Click to read more...

15466
Computer Game Programming
12
The goal of this course is to acquaint students with the code required to turn ideas into games. This includes both runtime systems -- e.g., AI, sound, physics, rendering, and networking -- and the asset pipelines and creative tools that make it possible to author content that uses these systems. In the first part of the course, students will implement small games that focus on specific runtime systems, along with appropriate asset editors or exporters. In the second part, students will work in groups to build a larger, polished, open-ended game project. Students who have completed the course will have the skills required to extend -- or build from scratch -- a modern computer game. Students wishing to take this class should be familiar with the C++ language and have a basic understanding of the OpenGL API. If you meet these requirements but have not taken Computer Graphics (the formal prerequisite), please contact the instructor.

Instructor(s)

James McCann

Click to read more...

15468
Physics-Based Rendering
12
This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, during which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The project also includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes. Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-468 (for undergraduate students), 15-668 (for Master's students), and 15-868 (for PhD students). Please make sure to register for the section of the class that matches your current enrollment status.

Instructor(s)

Ioannis Gkioulekas

Click to read more...

15468
Physics-Based Rendering
12
This course is an introduction to physics-based rendering at the advanced undergraduate and introductory graduate level. During the course, we will cover fundamentals of light transport, including topics such as the rendering and radiative transfer equation, light transport operators, path integral formulations, and approximations such as diffusion and single scattering. Additionally, we will discuss state-of-the-art models for illumination, surface and volumetric scattering, and sensors. Finally, we will use these theoretical foundations to develop Monte Carlo algorithms and sampling techniques for efficiently simulating physically-accurate images. Towards the end of the course, we will look at advanced topics such as rendering wave optics, neural rendering, and differentiable rendering. The course has a strong programming component, during which students will develop their own working implementation of a physics-based renderer, including support for a variety of rendering algorithms, materials, illumination sources, and sensors. The project also includes a final project, during which students will select and implement some advanced rendering technique, and use their implementation to produce an image that is both technically and artistically compelling. The course will conclude with a rendering competition, where students submit their rendered images to win prizes. Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-468 (for undergraduate students), 15-668 (for Master's students), and 15-868 (for PhD students). Please make sure to register for the section of the class that matches your current enrollment status.

Instructor(s)

Ioannis Gkioulekas

Click to read more...

15472
Real-Time Graphics
12
Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms.

Instructor(s)

James McCann

Click to read more...

15472
Real-Time Graphics
12
Real-time computer graphics is about building systems that leverage modern CPUs and GPUs to produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient data handling strategies; culling and scene traversal; multi-threaded rendering; post-processing, depth of field, screen-space reflections; volumetric rendering; sample distribution, spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and collision detection; dynamic lights and shadows; global illumination, accelerated raytracing; dynamic resolution, "AI" upsampling; compute shaders; parallax occlusion mapping; tessellation, displacement; skinning, transform feedback; debugging, profiling, and accelerating graphics algorithms.

Instructor(s)

James McCann

Click to read more...

15473
Visual Computing Systems
12
Visual computing tasks such as computational imaging, image/video understanding, and real-time graphics are key responsibilities of modern computer systems ranging from sensor-rich smart phones to large datacenters. These workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel, heterogeneous systems that accelerate visual computing applications. This course is intended for graduate and advanced undergraduate-level students interested in architecting efficient graphics, image processing, and computer vision platforms.

Instructor(s)

Oscar Dadfar

Click to read more...

15482
Autonomous Agents
12
Autonomous agents use perception, cognition, actuation, and learning to reliably achieve desired goals, where the agents can be smart homes, mobile robots, intelligent factories, self-driving cars, etc. The goal of this course is to introduce students to techniques needed for developing complete, integrated AI-based autonomous agents. Topics include architectures for intelligent agents; autonomous behaviors, perception, and execution; reasoning under uncertainty; optimization; execution monitoring; machine learning; scheduling; and explanation. A focus of the course will be on the integration and testing of autonomous systems to achieve reliable and robust behavior in the face of sensor noise and uncertainty. The course is project-oriented where small teams of students will design, implement, and evaluate agents that can grow plants autonomously, without human intervention.

Instructor(s)

Reid Simmons

Click to read more...

15494
Cognitive Robotics: The Future of Robot Toys
12
This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children's toy, Cozmo's open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills.

Instructor(s)

David Touretzky

Click to read more...

15494
Cognitive Robotics: The Future of Robot Toys
12
This course will explore the future of robot toys by analyzing and programming Anki Cozmo, a new robot with built-in artificial intelligence algorithms. Como is distinguished from earlier consumer robots by its reliance on vision as the primary sensing mode and its sophisticated use of A.I. Its capabilities include face and object recognition, map building, path planning, and object pushing and stacking. Although marketed as a pre-programmed children's toy, Cozmo's open source Python SDK allows anyone to develop new software for it, which means it can also be used for robotics education and research. The course will cover robot software architecture, human-robot interaction, perception, and planning algorithms for navigation and manipulation. Prior robotics experience is not required, just strong programming skills.

Instructor(s)

David Touretzky

Click to read more...

15495
Topics of Algorithmic Problem Solving
12
This course aims to give implementation motivated perspectives on some algorithmic ideas that fall outside of the scopes of most courses. It is intended for graduate students, as well as undergraduate students who have high grades in 15-210, 15-251, 15-259 (and preferably 15-451). Evaluation will consist of about 30 auto-graded coding tasks, plus either participation in the East Central NA ICPC Regional Contest, or presentations of problem-solving reports from the Chinese IOI Team Selection Camp. The first half of the course will discuss floating point precision, numerical approximation schemes, heuristic search, usage of optimization packages, and vectorization. The second half will provide high-level surveys of 2-D range update & query data structures, proactive propagation, palindromic automata, automated recurrence finding, and maximum adjacency search.

Instructor(s)

Richard Peng

Click to read more...

15513
Introduction to Computer Systems
varies
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation.

Instructor(s)

Nathan Beckmann
Brian Railing
David Andersen

Click to read more...

15513
Introduction to Computer Systems
varies
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required.

Instructor(s)

Brian Railing
Phillip Gibbons

Click to read more...

15513
Introduction to Computer Systems
varies
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation. **This course is not available to undergraduates.**

Click to read more...

15513
Introduction to Computer Systems
varies
This course provides a programmer's view of how computer systems execute programs, store information, and communicate. It enables students to become more effective programmers, especially in dealing with issues of performance, portability and robustness. It also serves as a foundation for courses on compilers, networks, operating systems, and computer architecture, where a deeper understanding of systems-level issues is required. Topics covered include: machine-level code and its generation by optimizing compilers, performance evaluation and optimization, computer arithmetic, memory organization and management, networking technology and protocols, and supporting concurrent computation.

Instructor(s)

Nathan Beckmann
David Andersen
Brian Railing

Click to read more...

15559
Probability and Computing
varies
Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth.

Instructor(s)

Feras Saad
Mor Harchol-Balter

Click to read more...

15559
Probability and Computing
varies
Probability theory is indispensable in computer science today. In areas such as artificial intelligence and computer science theory, probabilistic reasoning and randomization are central. Within networks and systems, probability is used to model uncertainty and queuing latency. This course gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation. The course has 3 parts: Part I is an introduction to probability, including discrete and continuous random variables, heavy tails, simulation, Laplace transforms, z-transforms, and applications of generating functions. Part II is an in-depth coverage of concentration inequalities, like the Chernoff bound and SLLN bounds, as well as their use in randomized algorithms. Part III covers Markov chains (both discrete-time and continuous-time) and stochastic processes and their application to queuing systems performance modeling. This is a fast-paced class which will cover more material than the other probability options and will cover it in greater depth.

Instructor(s)

Mor Harchol-Balter
Weina Wang

Click to read more...

15591
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15591
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Click to read more...

15591
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15591
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15592
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15592
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15592
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15593
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15593
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15593
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15594
Independent Study in Computer Science
varies
The School of Computer Science offers Independent Study courses, which allow motivated students to work on projects under the supervision of a faculty advisor while receiving academic credit. Independent studies are usually one semester in duration and require prior approval from the faculty member and the School of Computer Science.

Instructor(s)

Mark Stehlik

Click to read more...

15604
Immigration Course
3
This is a discussion course with enrollment limited to MS in CS students during their first semester in the program. Students explore the scope of graduate education in computer science, the tools and techniques for success, and the resources available to MS in CS students. Students also explore life after graduation, including careers in academia, industry, and other organizations, and plan an academic program that supports their individual goals.

Instructor(s)

Dave Eckhardt
Ruben Martins
David O'Hallaron

Click to read more...

15605
Operating System Design and Implementation
15
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.

Instructor(s)

Dave Eckhardt

Click to read more...

15605
Operating System Design and Implementation
15
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.

Instructor(s)

Dave Eckhardt

Click to read more...

15605
Operating System Design and Implementation
15
Operating System Design and Implementation is a rigorous hands-on introduction to the principles and practice of operating systems. The core experience is writing a small Unix-inspired OS kernel, in C with some x86 assembly language, which runs on a PC hardware simulator (and on actual PC hardware if you wish). Work is done in two-person teams, and "team programming" skills (source control, modularity, documentation) are emphasized. The size and scope of the programming assignments typically result in students significantly developing their design, implementation, and debugging abilities. Core concepts include the process model, virtual memory, threads, synchronization, and deadlock; the course also surveys higher-level OS topics including file systems, interprocess communication, networking, and security. Students, especially graduate students, who have not satisfied the prerequisite at Carnegie Mellon are strongly cautioned - to enter the class you must be able to write a storage allocator in C, use a debugger, understand 2's-complement arithmetic, and translate between C and x86 assembly language. The instructor may require you to complete a skills assessment exercise before the first week of the semester in order to remain registered in the class. Auditing: this course is usually full, and we generally receive many more requests to audit than we can accept. If you wish to audit, please have your advisor contact us before the semester begins to discuss your educational goals.

Instructor(s)

Dave Eckhardt

Click to read more...

15611
Compiler Design
15
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.

Instructor(s)

Jan Hoffmann

Click to read more...

15611
Compiler Design
15
This course covers the design and implementation of compiler and run-time systems for high-level languages, and examines the interaction between language design, compiler design, and run-time organization. Topics covered include syntactic and lexical analysis, handling of user-defined types and type-checking, context analysis, code generation and optimization, and memory management and run-time organization.

Instructor(s)

Benjamin Titzer
Seth Goldstein

Click to read more...

15612
Operating System Practicum
varies
The goal of this class is for students to acquire hands-on experience with operating-system code as it is developed and deployed in the real world. Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.

Instructor(s)

Dave Eckhardt

Click to read more...

15612
Operating System Practicum
varies
Groups of two to four students will select, build, install, and become familiar with an open-source operating system project; propose a significant extension or upgrade to that project; and develop a production-quality implementation meeting the coding standards of that project. Unless infeasible, the results will be submitted to the project for inclusion in the code base. Variations on this theme are possible at the discretion of the instructor. For example, it may be possible to work within the context of a non-operating-system software infrastructure project (window system, web server, or embedded network device kernel) or to extend a 15-410 student kernel. In some situations students may work alone. Group membership and unit count (9 units versus 12) will be decided by the third week of the semester. Contributing to a real-world project will involve engaging in some mixture of messy, potentially open-ended activities such as: learning a revision control system, writing a short design document, creating and updating a simple project plan, participating in an informal code review, synthesizing scattered information about hardware and software, classifying and/or reading large amounts of code written by various people over a long period of time, etc.

Instructor(s)

Dave Eckhardt

Click to read more...

15614
Bug Catching: Automated Program Verification
9
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.

Instructor(s)

Ruben Martins

Click to read more...

15614
Bug Catching: Automated Program Verification
9
Many CS and ECE students will be developing software and hardware that must be ultra reliable at some point in their careers. Logical errors in such designs can be costly, even life threatening. There have already been a number of well publicized errors like the Intel Pentium floating point error and the Arian 5 crash. In this course we will study tools for finding and preventing logical errors. Three types of tools will be studied: automated theorem proving, state exploration techniques like model checking and tools based on static program analysis. Although students will learn the theoretical basis for such tools, the emphasis will be on actually using them on real examples. This course can be used to satisfy the Logic & Languages requirement for the Computer Science major.

Instructor(s)

Matt Fredrikson

Click to read more...

15617
HOT Compilation
12
The course covers the implementation of compilers for higher-order, typed languages such as ML and Haskell, and gives an introduction to type-preserving compilation. Topics covered include type inference, elaboration, CPS conversion, closure conversion, garbage collection, phase splitting, and typed assembly language.

Instructor(s)

Karl Crary

Click to read more...

15617
HOT Compilation
12
The course covers the implementation of compilers for higher-order typed languages such as ML and Haskell and gives an introduction to type-preserving compilation. Core topics include type checking and inference, elaboration, closure conversion, garbage collection, and translation to a low-level imperative language. Other topics may vary from year to year and include phase splitting, CPS conversion, typed assembly language, substructural and adjoint type systems, intersection types, and variable lifetimes.

Instructor(s)

Frank Pfenning

Click to read more...

15618
Parallel Computer Architecture and Programming
12
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.

Instructor(s)

Brian Railing
Todd Mowry

Click to read more...

15618
Parallel Computer Architecture and Programming
12
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.

Instructor(s)

Zhihao Jia
Dimitrios Skarlatos

Click to read more...

15618
Parallel Computer Architecture and Programming
12
The fundamental principles and engineering tradeoffs involved in designing modern parallel computers, as well as the programming techniques to effectively utilize these machines. Topics include naming shared data, synchronizing threads, and the latency and bandwidth associated with communication. Case studies on shared-memory, message-passing, data-parallel and dataflow machines will be used to illustrate these techniques and tradeoffs. Programming assignments will be performed on one or more commercial multiprocessors, and there will be a significant course project.

Instructor(s)

Todd Mowry
Brian Railing

Click to read more...

15619
Cloud Computing
15
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr
Seth Goldstein

Click to read more...

15619
Cloud Computing
15
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the cloud¿s motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr

Click to read more...

15619
Cloud Computing
15
This course gives students an overview of Cloud Computing, which is the delivery of computing as a service over a network, whereby distributed resources are rented, rather than owned, by an end user as a utility. Students will study its enabling technologies, building blocks, and gain hands-on experience through projects utilizing public cloud infrastructures. Cloud computing services are widely adopted by many organizations across domains. The course will introduce the cloud and cover the topics of data centers, software stack, virtualization, software defined networks and storage, cloud storage, and programming models. We will start by discussing the clouds motivating factors, benefits, challenges, service models, SLAs and security. We will describe several concepts behind data center design and management, which enable the economic and technological benefits of the cloud paradigm. Next, we will study how CPU, memory and I/O resources, network (SDN) and storage (SDS) are virtualized, and the key role of virtualization to enable the cloud. Subsequently, students will study cloud storage concepts like data distribution, durability, consistency and redundancy. We will discuss distributed file systems, NoSQL databases and object storage using HDFS, CephFS, HBASE, MongoDB, Cassandra, DynamoDB, S3, and Swift as case studies. Finally, students will study the MapReduce, Spark and GraphLab programming models. Students will work with Amazon Web Services and Microsoft Azure, to rent and provision compute resources and then program and deploy applications using these resources. Students will develop and evaluate scaling and load balancing solutions, work with cloud storage systems, and develop applications in several programming paradigms. 15619 students must complete an extra team project which entails designing and implementing a cost- and performance-sensitive web-service for querying big data.

Instructor(s)

Majd Sakr

Click to read more...

15621
ST: Developing Blockchain Use Cases
6
While the course will not be overly technical on any specific dimension, it will be hands on and you will need to be creative. Therefore, while there are no formal prerequisites, we expect students to have a background in economics, cryptography, or computer science and all students should have some basic comfortability with programming. We will do our best to create groups that feature a mix of existing knowledge. The overall goal is to deliver enough knowledge about the potential and capabilities of blockchain technologies to enable students interested in this space to develop their own uses cases or applications.

Instructor(s)

Elaine Shi
Ariel Zetlin-Jones
Michael J Mccarthy

Click to read more...

15621
ST: Developing Blockchain Use Cases
6
While the course will not be overly technical on any specific dimension, it will be hands on and you will need to be creative. Therefore, while there are no formal prerequisites, we expect students to have a background in economics, cryptography, or computer science and all students should have some basic comfortability with programming. We will do our best to create groups that feature a mix of existing knowledge. The overall goal is to deliver enough knowledge about the potential and capabilities of blockchain technologies to enable students interested in this space to develop their own uses cases or applications.

Instructor(s)

Elaine Shi

Click to read more...

15622
Introduction to Computer Music
12
Computers are used to synthesize sound, process signals, and compose music. Personal computers have replaced studios full of sound recording and processing equipment, completing a revolution that began with recording and electronics. In this course, students will learn the fundamentals of digital audio, basic sound synthesis algorithms, and techniques for digital audio effects and processing. Students will apply their knowledge in programming assignments using a very high-level programming language for sound synthesis and composition. In a final project, students will demonstrate their mastery of tools and techniques through music composition or by the implementation of a significant sound-processing technique.

Instructor(s)

Chris Donahue

Click to read more...

15622
Introduction to Computer Music
12
Computers are used to synthesize sound, process signals, and compose music. Personal computers have replaced studios full of sound recording and processing equipment, completing a revolution that began with recording and electronics. In this course, students will learn the fundamentals of digital audio, basic sound synthesis algorithms, and techniques for digital audio effects and processing. Students will apply their knowledge in programming assignments using a very high-level programming language for sound synthesis and composition. In a final project, students will demonstrate their mastery of tools and techniques through music composition or by the implementation of a significant sound-processing technique.

Instructor(s)

Chris Donahue
Thomas Cortina

Click to read more...