Design and Implementation of Code
Optimizations for a Type-Directed
Compiler for Standard ML

David Tarditi
Carnegie Mellon University
December, 1996
CMU-CS-97-108

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Peter Lee, Chair
Steven Lucco
Nevin Heintze
Simon Peyton-Jones, Glasgow University

Copyright ©1996 David Tarditi

This research was sponsored by the Advanced Research Projects Agency CSTO under the title “The Fox
Project: Advanced Languages for Systems Software”, ARPA Order No. C533, issued by ESC/ENS under

Contract No. F19628-95-C-0050.

The views and conclusions contained in this document are those of the author and should not be in-
terpreted as representing official policies, either expressed or implied, of the Advanced Research Projects

Agency or the U.S. Government.

Keywords: Standard ML, optimization, compilation, functional programming, garbage
collection, automatic storage management

Abstract

The trends in software development are towards larger programs, more complex programs,
and more use of programs as “component software.” These trends mean that the features of
modern programming languages are becoming more important than ever before. Program-
ming languages need to have features such as strong typing, a module system, polymorphism,
automatic storage management, and higher-order functions. In short, modern programming
languages are becoming more important than ever before.

Even though modern programming languages are becoming more important than ever
before, programmers have traditionally faced a dilemma: programs written in these languages
traditionally have had lower performance than programs written in more conventional, but
error-prone languages.

In this thesis, I study this problem in the context of one particular modern programming
language, Standard ML. Standard ML contains all the language features mentioned previ-
ously and more. I use an empirical approach to understand where Standard ML programs
spend their time and how to improve the performance of Standard ML programs though
better optimization.

The thesis contains two main results. First, I find that a “pay-as-you-go” compilation
strategy, where programmers pay for advanced language features only when they use them,
is a practical strategy for compiling Standard ML. In fact, this strategy produces better code
overall than a strategy that makes advanced language features run fast at the expense of
slowing down programs that do not use those language features. Second, I find that compilers
for Standard ML should focus on generating good code for the frequently-executed parts of
programs. Specifically, just as compilers for conventional languages such as C focus on
generating good code for loops, compilers for languages such as Standard ML should focus
on generating good code for recursive functions.

These results suggest that compilation of modern programming languages such as Stan-
dard ML should have a great deal in common with compilation of more conventional lan-
guages such as C. First, Standard ML programs that do not use higher-order functions or
polymorphism should run just as fast as comparable C programs. Second, Standard ML
compilers should apply the same sets of optimizations to recursive functions that more con-
ventional compilers apply to loops.

These results also suggest that programmers should be able to avoid the dilemma men-
tioned earlier: they should be able to write their programs in modern languages such as
Standard ML, confident that they can rewrite parts of the programs in a subset of Standard
ML if necessary for efficiency.

To my wife Liz

Contents

1 Introduction
1.1 The problem e
1.2 Summary of results o
1.3 Examples
1.3.1 Example I: Memory system performance
1.3.2 Example II: “Pay-as-you-go” compilation
1.3.3 Example III: Comparison to SML/NJ
1.4 Related work
1.5 Organization e
I Measurement
2 Memory-system performance of SML programs
2.1 Backgroundo
2.1.1 Memory systems
2.1.2 Memory system performance
2.1.3 Copying garbage collection L.
2.1.4 Garbage collection in SML/NJ
2.1.5 Standard ML
2.1.6 SML/NJ compiler. L
2.2 Methodology
221 Tools e e
2.2.2 Simplifications and Assumptionso L
2.2.3 Benchmarks
2.2.4 Metrics e
2.3 Results and Analysis L o
2.3.1 Qualitative Analysis oo
2.3.2 Cache and TLB configurations simulated
2.3.3 Memory-System Performance L.
2.3.4 Write-buffer depth oo oo
2.3.5 TLB Performance
2.3.6 Validation
2.3.7 Extending theresults o oo

N RENREN I SIS S NI

—_

I1

4

5

2.4 Related Work

2.5 Conclusions

Cost of automatic storage management

3.1 Background Lo
3.1.1 Terminology L
3.1.2 Storage management in the SML/NJ compiler
3.2 Methodology
3.2.1 Measurement methodology for each component
3.2.2 Memory system simulationo
3.2.3 Benchmark Programs L oL
3.2.4 Garbage collection sizing parameters
3.3 Results o oL
3.3.1 The cost of storage management Lo
3.3.2 Most costs are incurred during mutationo
3.3.3 The memory-system cost of storage management
3.4 Related work L Lo
3.5 Conclusion oo L e
Optimization

The Typed Intermediate Language (TIL) Framework

4.1 LMLIL . . e
4.1.1 Overview of MM 0 0
4.1.2 Overviewof LMLI
4.1.3 Anexample L

4.2 Anoverviewof TIL
421 Frontend
4.2.2 Translation to LMLI
4.2.3 Optimizationso
4.2.4 Closure conversion v v v v v v e e e
4.2.5 Conversion to an untyped language
426 Conversion to RTL
4.2.7 Register allocation and assembly o0
4.2.8 Nearly Tag-Free Garbage Collection

4.3 Anexample

4.4 Conclusion e e

The TIL optimizer

5.1 B-form intermediate language oL
5.1.1 Typed versus untyped
5.1.2 Direct-style versus continuation-passing style
5.1.3 Practical engineering issues Lo L Lo

5.1.4 B-form

i

45
46
46
46
48
48
50
50
52
52
52
54
35
59
60

61

65
66
66
67
73
74
74
76
77
77
78
78
78
79
79
86

5.2 Notation o e 90
5.3 Assumptions 93
5.3.1 Effects analysis o 93
5.4 Inliningo 98
5.4.1 Algorithms for inlining oL o 99
5.4.2 Related work oo 104
5.5 Uncurrying 105
5.5.1 An algorithm for uncurrying L Lo 105
5.5.2 Asymptotic complexity oL 108
5.5.3 Related work 109
5.6 Other optimizationso 111
5.7 Conclusion L e 112
Loop optimizations 113
6.1 Common-subexpression elimination 114
6.1.1 An algorithm for eliminating common subexpressions 115
6.1.2 Correctness 118
6.1.3 Asymptotic complexity oL 121
6.2 Redundant switch eliminationo 121
6.3 Hoisting constant expressions L. 123
6.3.1 An algorithm for hoisting 0., 124
6.3.2 Correctness 125
6.3.3 Asymptotic complexity oL 129
6.4 Invariant removal Lo 130
6.4.1 An algorithm for invariant removal 130
6.4.2 Deciding which expressions and constructors to move 137
6.4.3 Correctness 143
6.4.4 Asymptotic complexityo oL 143
6.4.5 Converging in one Pass« v v vt e b e e e 144
6.5 Eliminating redundant comparisonso 145
6.5.1 Inferring propositions from switches 146
6.5.2 Rule-of-signs abstract interpretation. o0 147
6.5.3 Eliminating comparisons L L oL 150
6.5.4 Correctness 154
6.5.5 Overall asymptotic complexity 154
6.6 Ordering the optimizations Lo 154
6.7 Related work 158
6.8 Conclusions L 159
Compilation to machine code 161
7.1 Typereificationo 163
7.2 Closure conversion v it 165
7.3 Translation to U-Bform oo 167
7.4 Conversion to RTL 172

il

7.4.1 Representation of U-Bform variables 172

7.4.2 Recognition of constant expressions L. 174

7.4.3 Translation to machinecode00 176

7.5 Register allocation and assembly 0oL 180
7.6 Conclusion L. 180
IIT Evaluation 183
8 Comparison against the SML/NJ compiler 187
8.1 Benchmarks 187
8.2 Comparison against SML/NJ oo oL 188
8.3 Further comparison 191
84 Conclusion 192

9 Effect of loop optimizations 193
9.1 Combined effect of loop optimizations 193
9.2 Effects of individual optimizations 197
9.2.1 Effect on execution time oL 197

9.2.2 Effect on heap allocation L. 197

9.2.3 Effect on GC copying 198

9.2.4 Effect on physical memory usage 198

9.2.5 Effect on program executablesize 198

9.3 Intensional Polymorphism 0oL 212
9.4 Conclusions L 213

10 Other measurements 215
10.1 Optimization and the numbers of polymorphic or higher-order functions. . . 215
10.2 Type information and intermediate program size 217

11 Future work 221
11.1 Comparative studies of language implementation techniques 221
11.2 Optimization e 222
11.2.1 Correctness of programs produced by the optimizer 222

11.2.2 Improving current optimizations 222

11.2.3 Additional optimizations L oL 223

11.2.4 Effect of separate compilation on optimization 223

12 Conclusion 225
12.1 Summary of contributions oo 225
12.2 Lessons for compiler writers oo L 226
12.3 The big picture e 227

A Memory-System Performance Summary Tables 229

v

B Performance numbers 233

B.1 Comparison of TIL against SML/NJ 233
B.2 Effects of loop optimizations o oL 236
B.3 Effects of loop optimizations on constructor computations 249

vi

List of Figures

1.1 Breakdown of memory system performance for VLIW benchmark, with a

memory-system with write allocation, subblock placement, and a cache block

of 16 . . o L
1.2 Original SML codeo o
1.3 Built-in 2-d array subscripto oo oo
1.4 After conversion to a typed intermediate language
1.5 After optimization L
1.6 Actual DEC ALPHA assembly language
1.7 TIL Execution Time Relative to SML/NJ

2.1 Pseudo-assembly code for allocating a list cell
2.2 VLIW summary oL e e e e
2.3 VLIW breakdown, write no alloc, no subblk, block size=16
2.4 VLIW breakdown, write alloc, subblk, block size=16
2.5 VLIW breakdown, write alloc, no subblk, block size=16
2.6 Write buffer CPI contribution for VLIW, With page-mode writes
2.7 Write buffer CPI contribution for VLIW, Without page-mode writes
2.8 TLB contribution to CPI

3.1 Breakdowns of storage management cost for benchmark programs.
3.2 Comparison of garbage collection and mutation storage-management costs
3.3 Breakdown of memory-system cost during collection and mutation.

4.1 Abstract syntax of AME L
4.2 Abstract syntax for kinds and typesof LMLI
4.3 Abstract syntax for term-level expressions and declarations of LMLI
4.4 Primitive term-level operations for LMLI
4.5 Application of the polymorphic function map illustrates passing and construc-

tion of constructors at run time 0oL
4.6 Phases of the TIL compiler.
4.7 After conversion to Lmli oo
4.8 B-form before optimization oo
4.9 Bform after optimization oo
4.10 After conversion to U-Bform
4.11 After conversionto RTL 0
4.12 Actual DEC ALPHA assembly language

Vil

il e INeREo s IR B e

5.1
5.2
5.3
5.4
3.5

6.1

6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18
6.19
6.20
6.21
6.22

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

8.1
8.2

Abstract syntax for constructors of B-form
Abstract syntax for term-level expressions and declarations of B-form
Algorithm 1: compute effects of B-form declarations and expressions
Changes needed to memoize Algorithm 1
Functions to calculate the sizes of functions, type functions, expressions, and
declarations L Lo

Algorithm 6: functions to decide which expressions and constructors can be
eliminated. L L
Algorithm 6, part 1: traversing expressions and declarations
Algorithm 6, part 2: traversing expressions and declarations.
Algorithm 6, part 3: traversing constructors and types.
Algorithm 8: identify constant expressions and constructors
Algorithm 8, part 1: move constant expressions and constructors
Algorithm 8, continued: move constant expressions and constructors
A call graph for a program fragment with a nested function. The function h
is nested within f, but the call from h to j does not result in an edge from f
70 2
Algorithm 9: calculate the known fragment of the call graph
Algorithm 11: calculate properties of bound variables
Algorithm 12, part 1: decide which expressions to move.
Algorithm 12, continued: decide which expressions to move.
Algorithm 13: move expressions. L Lo
Axioms used by redundant comparison elimination
Algorithm 14, part 1: infer truth or falsity of comparisons from switches. . .

Algorithm 14, continued: infer truth or falsity of comparisons from switches.

Rule-of-signs abstract interpretation, part 1: the function ag is repeatedly
applied to a program until the sets F' and M do not change.
Rule-of-signs abstract interpretation, continued.
Definitions of abstract operators for rule-of-signs abstract interpretation.

Algorithm 15: traversing expressions and declarations.
Algorithm 15, continued: traversing expressions and declarations.
Order in which optimizations are applied..

Original SML source code Lo
Simplified B-form source code after optimization
Syntax of additional declarations for closure conversion
Syntax of additional expressions for closure conversion
B-form code after closure conversion L.
Abstract syntax for expressions and declarations of U-Bform
Map function after conversion to U-Bform
Code for the function m after conversion to RTL

TIL Execution Time Relative to SML/NJ
TIL Heap Allocation Relative to SML/NJ

viii

8.3
8.4

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36

9.37

10.1

TIL Physical Memory Used Relative to SML/NJ 190

TIL Executable Size Relative to SML/NJ 190
Effect of loop optimizations on total time 195
Effect of loop optimizations on heap allocation 195
Effect of loop optimizations on data copied by the garbage collector 195
Effect of loop optimizations on physical memory 196
Effect of loop optimizations on codesize 196
Relative execution time (geo. mean) 199
Effect of comparison elimination on total time 199
Effect of CSE on total timeo oo 199
Effect of hoisting on total time. o000 200
Effect of invariant removal on total time o000 200
Effect of switch on total timeo 200
Relative heap allocation (geo. mean) 201
Effect of comparison elimination on heap allocation 201
Effect of CSE on heap allocation., 201
Effect of hoisting on heap allocation 202
Effect of invariant removal on heap allocation 202
Effect of switch on heap allocation, 203
Relative GC copying (geo. mean) 204
Effect of comparison elimination on GC copying 204
Effect of CSE on GC copying 205
Effect of hoisting on GC copying 205
Effect of invariant removal on GC copying 205
Effect of switch on GC copying oL 206
Relative phsyical memory usage (geo. mean) 206
Effect of comparison elimination on physical memory usage 206
Effect of CSE on physical memory usage 207
Effect of hoisting on physical memory usage 207
Effect of invariant removal on physical memory usage 207
Effect of switch on physical memory usage 208
Relative executable program size (geo. mean) 209
Effect of comparison elimination on executable program size 209
Effect of CSE on executable program size 210
Effect of hoisting on executable program size 210
Effect of invariant removal on executable program size 210
Effect of switch on executable program size 211

Execution time with code motion of constructors compared to execution time
with code motion of constructors and expressions. 213
Heap allocation with code motion of constructors compared to heap allocation
with code motion of constructors and expressions. 214

Percentage of functions which are polymorphic before and after optimization 216

X

10.2

10.3

10.4

10.5

Percentage of functions that are higher-order but not polymorphic before and

after optimization Lo 216
Code size (in thousands of bytes) versus size parameter controlling inline ex-
PANSION « o v v v bt e e e e e e e e e 217
Ratios of total program size to term-level size, without careful treatment of
Types. . . e e e e 218

Ratios of total program size to term-level size, with careful treatment of types 219

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

6.1
8.1
9.1

Al
A2

B.1
B.2
B.3
B.4
B.5

Benchmark Programs oo
Sizes of Benchmark Programso oL
Characteristics of benchmark programs
Allocation characteristics of benchmark programs
Timings of memory operations Lo
Memory-system organizations studied00
Memory-system organization of some popular machines
Measured versus Simulated00
Percent difference between analytical model and simulations
Assuming procedure activation records are stack allocated in SML/NJ, this
table presents the expected memory system cost of heap allocation for caches
without subblock placement L.

Measurements for each component of the cost of storage management
Summary of the DECstation 5000/200 memory system
Penalties of memory operations L.
Breakdowns of storage management costs for benchmark programs. All num-
bers are fractions of total execution timeo,
Data-cache miss rates before and after garbage collections
Upper bound on disruption of spatial locality by storage management
Upper bound on data cache costs due to smaller effective cache size
Estimate of instruction cache costs due to storage management instructions .

Asymptotic running times of optimizations
Benchmark Programs oo
Tabular comparison of performance with and without loop optimizations

Cycles per useful instructions, part 1.
Cycles per useful instructions, continued.

Comparison of running times Lo Lo
Comparison of heap allocation
Comparison of maximum physical memory used
Comparison of stand-alone executablesizes
Comparison of compilation times oo

xi

xii

Preface

Writing this thesis was a long but exciting process. I was privileged to be able to build a
sophisticated compiler from scratch — not many people have the luxury of being given the
time and resources needed to do this.

There are many people that I would like to thank for their help. The TIL compiler was
primarily joint work with Greg Morrisett. I would like to thank Greg for his hard work and
enthusiasm. Without him, the compiler would not exist. Perry Cheng, Chris Stone, Robert
Harper, and Peter Lee also worked on TIL. I would like particularly like to thank Perry for
his work on the run-time system. The LMLI language that I describe in Chapter 4 of this
thesis was designed by Greg Morrisett and Robert Harper.

The memory-system performance study of SML programs in Chapter 2 is joint work with
Amer Diwan and Eliot Moss. The study of the cost of automatic storage management in
Chapter 3 is also joint work with Amer Diwan. I would like to thank Amer for his work on
these studies.

I would like to thank my advisor, Peter Lee, for his many years of encouragement and
support of this work. Peter is a dedicated teacher and scholar, and 1 was privileged to be
his student. Peter strongly encouraged me to work with Greg on the TIL compiler, on the
belief that the whole would be more than the sum of the parts. The TIL compiler would not
have come into existence without Peter’s encouragement.

I would also like to thank the other members of my thesis committee: Steve Lucco, Nevin
Heintze, and Simon Peyton-Jones. They made many excellent suggestions that improved the
content of the thesis, and helped me to keep the larger picture in mind while conducting this
work. I would especially like to thank them for promptly reading the thesis on relatively
short notice and making many excellent comments.

[would like to thank AT&T and the Advanced Research Projects Agency (and thus the
U.S. taxpapers) for their financial support of this work.

I would like to thank my parents and family for their many years of support and encour-
agement while I was in graduate school.

Last, and most importantly, I would like to think my wife Liz for her loving support,
encouragement, and great patience while I worked on this thesis. This thesis took me longer
to write than I expected: it was originally supposed to be finished while we were engaged,
and we have now been married for over six months.

David Tarditi
Kirkland, Washington
December, 1996

x1il

X1V

Chapter 1

Introduction

1.1 The problem

The trends in software development are towards larger programs, more complex programs,

7 These trends have some important

and more use of programs as “component software.
practical implications: programs are more likely to fail somewhere because bigger programs
mean more chances for programmers to make mistakes, software is being developed by large
teams, and software development and maintenance costs are increasing.

These implications mean that the features of modern programming languages are more
important than ever before. Programming languages need to have features such as strong
typing, a module system, polymorphism, automatic storage management, and higher-order

functions:
e Strong typing reduces the chance of program failures.

¢ A module system is crucial for developing large software and reusable libraries of
software.

e Polymorphism helps build reusable software.

o Automatic storage management reduces the chance of program failures. It eliminates
a whole group of memory-management related programmer errors, such as “dangling
pointers.”

e Higher-order functions support code reuse and provide a natural way to implement

callbacks.

In short, modern programming languages are becoming more important than ever before.

Even though modern programming languages are becoming more important than ever
before, programmers have traditionally faced a dilemma: programs written in these languages
traditionally have had lower performance than programs written in more conventional, but
error-prone languages.

In this thesis, I study this problem in the context of one particular modern programming
language, Standard ML [61] (SML). SML contains all the language features mentioned previ-
ously and more. I use an empirical approach to understand where SML programs spend their
time and how to improve the performance of SML programs through better optimization.

1.2 Summary of results

This thesis contains two main results:

o First, I find that a “pay-as-you-go” compilation strategy, where programmers pay
for advanced language features only when they use them, is a practical strategy for
compiling SML. In fact, this strategy produces better code overall than a strategy that
makes advanced language features run fast at the expense of slowing down programs
that do not use those language features.

e Second, I find that compilers for SML should focus on generating good code for the
frequently-executed parts of programs. Specifically, just as compilers for conventional
languages such as C focus on generating good code for loops, compilers for languages
such as SML should focus on generating good code for recursive functions.

These results suggest that compilation of modern programming languages such as SML
should have a great deal in common with compilation of more conventional languages such

as C:

e SML programs that do not use higher-order functions or polymorphism should run just
as fast as comparable C programs.

e SML compilers should apply the same sets of optimizations to recursive functions that
more conventional compilers apply to loops.

In short, these results suggest that programmers should be able to avoid the dilemma men-
tioned earlier: they should be able to write their programs in modern languages such as
SML, confident that they can rewrite parts of the programs in a subset of SML if necessary
for efficiency.

This thesis is divided into three parts. In the first part of the thesis, I study the perfor-
mance of SML programs. I focus on two widely-held conjectures about where SML programs
spend their time. First, I study the memory-system performance of SML programs, which is
believed to be poor [7]. I also study the cost of automatic storage management. I find that
the problem is neither memory-system performance nor the cost of automatic storage man-
agement. On the basis of these studies, and in particular the memory-system performance
study, I conclude that SML programs are executing too many instructions and that we need
better optimization of SML programs.

Before I began the work that I describe in the second part of the thesis, I profiled SML
benchmark programs and identified the most frequently-executed parts of those programs. |
then examined the machine code generated for the most frequently-executed parts of the pro-
grams, so that I could understand why SML programs are executing too many instructions.
I noticed two things:

e Even though these parts of the programs were almost always monomorphic because
of optimization, these parts still incurred many costs to support polymorphism. This
suggested that instead of making polymorphic code fast at the expense of monomorphic
code, we should make monomorphic code fast at the expense of polymorphic code. That
is, this suggested that I should pursue a “pay-as-you-go” compilation strategy.

e There are many optimizations that are known to improve loops in conventional lan-
guages. Applying these optimizations to recursive functions in SML would improve
the code generated for the most-frequently executed parts of the programs.

In the second part of the thesis, I describe a new approach to compiling SML programs
based on these observations. First, I describe new algorithms that show how to apply several
“loop” optimizations to SML programs. I focus on two sets of optimizations: code motion
optimizations, such as common-subexpression elimination and invariant removal, and array-
bounds checking optimizations.

It is important to emphasize that my algorithms are new, even though most of the opti-
mizations are well-known. I designed new algorithms because I use a A-calculus based inter-
mediate language for optimization. This makes it impossible to apply the textbook versions
of optimizations: the languages used in the textbooks differ too much from the A-calculus.
Those languages have only first-order functions, have a flat name space, are imperative and
have looping constructs. In contrast, the intermediate language that I use has higher-order
functions, has lexical scoping, emphasizes variable binding instead of assignment, and uses
recursion instead of looping.

Because my algorithms work on programs in a A-calculus based intermediate language,
the techniques that [use in my algorithms are quite different from conventional optimization
techniques [3]. Conventional techniques, for example, use control-flow graphs. In contrast,
because there is only recursion in SML I use call graphs instead of control-flow graphs. Con-
ventional techniques also use dataflow analysis. Because SML emphasizes binding instead
of assignment, I use a simple side-effects analysis instead of dataflow analysis. Conventional
techniques ignore lexical scoping, whereas I must spend a great deal of effort to preserve it.

In addition to describing new optimization algorithms in the second part of the thesis, [
describe the TIL compiler, which is joint work primarily with Greg Morrisett. Perry Cheng,
Chris Stone, Robert Harper, and Peter Lee also helped in the construction of TIL. The TIL
compiler is organized around the idea of typed intermediate languages: we propagate type
information through all phases of the compiler to machine code generation, and if necessary
pass type information around at run time. The TIL framework, which is the subject of
Morrisett’s PhD thesis [63], allows us to implement two key parts of a “pay-as-you-go”
compilation strategy:

o tag-free garbage collection,

e and compiling polymorphic functions to support native machine representations for
data.

Conventional implementation approachs for languages such as SML have used a universal
representation for data. All data is represented as machine word where part of the word is

dedicated to a tag that is used by the garbage collector. Data that is naturally smaller than
a machine word, such as characters, are padded to be the size as a machine word. Data
that is naturally the same size as a machine word or larger than a machine word, such as
a floating point numbers, are represented as pointers to the actual data. In other words,
monomorphic programs that do not use garbage collection pay a price for polymorphism
and garbage collection. This is not the case with TIL. TIL uses a specialized representation,
where SML integers are represented as machine integers and SML floating point numbers
are represented as machine floating point numbers, even when they are stored in arrays that
are manipulated using polymorphic array operations.

In the TIL compiler, I take an approach to compiling languages with higher-order func-
tions such as SML that is quite different from the approach suggested in the literature. Many
researchers who have implemented languages with higher-order functions such as SML have
stated the importance of compiling functions well [52, 7, 81] — they have focused on strate-
gies for representing environments for first-class functions. I believe that this is not the
central problem for compiling languages such as SML, because optimization is so effective
at eliminating higher-order functions. I show the effectiveness of optimization at eliminating
higher-order functions when SML programs are compiled as a whole in Chapter 10.1. In
contrast to the approaches suggested in the literature, I take conventional compiler technol-
ogy and adapt it to compile SML programs to machine code. Thus, I use a simple closure
conversion strategy, but combine it with a conventional graph-coloring register allocator that
uses callee and caller-save registers. To support the register allocator, I use a sophisticated
garbage collector. I make certain that TIL converts constant expressions, such as constant
records, to data at compile time. I use the standard system assembler to do instruction
scheduling. The result is that TIL’s translation to machine code is similar to the approach
used in more conventional compilers.

In the third part of the thesis, I provide evidence to support my claims about how to
compile SML. First, I establish that a “pay-as-you-go” compilation strategy is a practical
strategy for compiling SML by comparing TIL to the SML/NJ compiler [7], a widely used
reference compiler for SML. I find that TIL produces good code compared to the SML/NJ
compiler. Indeed, TIL often produces code that is much better than that produced by
the SML/NJ compiler. On DEC ALPHA workstations, programs compiled by TIL are
roughly three times faster, do one-fifth the total heap allocation, and use one-half the physical
memory of programs compiled by SML/NJ.

Second, I show that compilers for SML should focus on generating good code for recursive
functions. First, even though I only implemented several of the many optimizations known to
improve loops, I find that for my benchmarks these optimizations reduce execution time 8 to
87%, with a geometric mean reduction of 51%. I also measure the effect of the optimizations
on the total amount of data heap allocated, the total amount of data copied by the garbage
collector, maximum physical memory used by a program while it runs, and on program
executable size. Second, I measure which of the new optimizations are most important
to improving performance. Finally, I measure how specific these results are to the TIL
framework.

I conclude this part of the thesis by measuring some other important aspects of TIL.
First, I demonstrate that when SML programs are compiled as a whole, optimization is of-

4

ten highly effective at eliminating higher-order and polymorphic functions. Second, I study
the effect of types on intermediate program size. The concern is that types could make inter-
mediate programs much larger than their untyped versions, which could in turn slow down
compilation and increase memory usage of a compiler. I find that with proper management
of type information, typed intermediate programs are on average two times bigger than their
untyped counterparts before optimization and only 15% bigger after optimization.

1.3 Examples

In this section, I present several examples taken from the body of the thesis that illustrate
the main results of the thesis. The first example is about memory system performance. The
second example illustrates the “pay-as-you-go” compilation strategy. The third example
compares the performance of programs compiled by TIL to programs compiled by SML/N.J.

1.3.1 Example I: Memory system performance

In the first part of the thesis, one of the things that I study is the memory-system performance
of SML programs. To study memory-system performance, I use trace-driven simulation of
programs compiled by the SML/NJ compiler [7]. I instrument programs to produce a trace of
the memory references made by programs, and use those traces to simulate various memory
systems. This allows me to study memory-system performance across a variety of memory
system architectures.

Figure 1.1 shows a breakdown of the memory system performance of one particular
benchmark program, a program that does scheduling for a VLIW machine. The graph plots
cycles per useful instruction versus cache size for memory systems with a particular set of
characteristics (details are given in Chapter 2). Cycles per useful instruction is a measure of
how well the memory system is being utilized. A lower number is better.

The memory system for the 64K point corresponds closely to the memory system for an
actual machine, the DECStation 5000/200 [28]. At this point, the memory system perfor-
mance is quite good (the cycles per useful instruction is about 1.4). Most cache misses are
due to the instruction cache. This is not surprising, because VLIW is substantially larger
than the cache (its executable size is about 500K). The cost of cache read misses is small.
With this particular memory system, there is no cost for cache write misses.

This example illustrates an important finding of the memory system performance study:
the memory-system performance of SML programs is good for some memory system configu-
rations corresponding to actual machines. Specifically, for the memory-system configuration
corresponding to the DECStation 5000/200, the memory-system performance of the SML
benchmarks that [measure is comparable to that of C and Fortran programs [19]: programs
run only 3 to 13% slower due to data-cache misses than they would run with a zero-latency
memory. This has an important implication: SML programs are executing too many in-
struction.

| M nop O read miss M inst fetch miss [J write buffer M partial word

35

3 (a) Assoc =1

25

Cycles/Useful Instruction

MM M M M M M
co e} o <t o0 O q\!
— on O N I'e) —

— (@])

Split I and D cache sizes

Figure 1.1: Breakdown of memory system performance for VLIW benchmark, with a
memory-system with write allocation, subblock placement, and a cache block of 16

1.3.2 Example II: “Pay-as-you-go” compilation

In this section, to illustrate the “pay-as-you-go” compilation strategy, I show a dot product
function as 1t passes through some of the stages of TIL. The dot product function is the inner
loop of an integer matrix multiply benchmark. I give the complete version of this example,
showing code as it passes through all of the stages of TIL, in Chapter 4 .

Figure 1.2 shows the original SML code for the dot product function, which uses sub2,
a built-in 2-d array subscript operation. The front-end expands sub2 to the code shown in

Figure 1.3.

val sub2 : ’a array2 * int * int -> ’a

fun dot(cnt,sum) =
if cnt<bound then
let val sum’=sum+sub2(A,i,cnt)*sub2(B,cnt,j)
in dot(cnt+1,sum’)
end
else sum

Figure 1.2: Original SML code

fun sub2 ({columns,rows,v}, s :int, t:int) =
if s <0 orelse s>=rows orelse t<0 orelse
t>=columns then raise Subscript
else unsafe subl(v,s * columns + t)

Figure 1.3: Built-in 2-d array subscript

Figure 1.4 shows the functions after they have been converted to a typed intermediate
language and before TIL has done any optimization. Readers should feel free to skip this
particular figure because it is difficult to read; I explain the details of the intermediate
language in Chapter 4. The point of this figure is that the quality of code at this stage in
compilation is poor: executing the body of dot results in eight function applications, four
record constructions, and numerous checks for array bounds.

Figure 1.5 shows the code for the dot function after it has been optimized. The body of
the loop consists of 9 expressions: the optimizer has eliminated all of the function applications
and also safely eliminated the comparisons for array bounds checking. sub_ai(av,a) is an
application of the (unsafe) integer array subscript primitive. This function could be improved
even further by applying two more “loop” optimizations (strength reduction and induction
variable elimination).

Figure 1.6 shows the actual DEC ALPHA assembly language that TIL generates for the
dot function. The code between L1 and L3 corresponds to the body of dot. The other code

sub2 =
let fix £ = Aty.
let fix g =)arg.
let a = (#0 arg)
s = (#1 arg)
t = (#2 arg)
columns = (#0 a)
rows = (#1 a)
v = (#2 a)
check =
let testl = 1ti(s,0)
in Switch_enum test of
1 => A.enum(1)
| 0 => A,
let test2 = gti(s,rows)
in Switch_enum test2 of
1 => A.enum(1)
| 0 => A,
let test3 = 1ti(t,0)
in Switch_enum test3 of
1 => A.enum(1)
| 0 => A.gti(t,columns)
end

end
end
in Switch_enum check of
1 => A.raise Subscript
| 0 => A.unsafe_subl [ty] {v,t + s * columns}

end
in g
in f
end
fix dot=
Ai.let cnt = (#0 i)
sum = (#1 i)

d = 1ti(cnt,bound)
in Switch_enum d
of 1 => A.let sum’ = sum +
((sub2 [Int]) {A,i,cnt}) *
((sub2 [Int]) {B,cnt,j})
in dot{cnt+1,sum’}
end
| 0 => A.sum
end

Figure 1.4: After conversion to a typed intermediate language

8

fix dot =
Acnt,sum.
let test = 1ti(cnt,bound)
r = Switch_enum test of
1=
Al
tl + cnt
= sub_ai(av,a)
= columns * cnt

'_I
o®
ot
1Y)
"

=j+C

= sub_ai(bv,d)
b*e

= sum+f

= 1+cnt

= dot(h,g)

R B0 DO Q0 T
]

(@]
U
A\
>

.sum
in r
end

Figure 1.5: After optimization

is epilogue and prologue code for entering and exiting the function. Note that no tagging
operations or garbage-collection related operations occur anywhere in this code.

1.3.3 Example III: Comparison to SML/NJ

Figure 1.7 compares the execution time of programs compiled by TIL to the execution time
of programs compiled by SML/NJ on a DEC ALPHA AXP 3000/250 workstation. This
workstation uses an Alpha processor with a clock speed of 250 Mhz that issues up to 4
instructions per clock cycle. In this measurement, whole programs were compiled. 1 describe
the benchmark programs and details of the measurements in Chapter 8.

The 100% mark on the graph represents the execution time of programs compiled by
SML/NJ. The bars show the relative execution time of programs compiled by TIL.

1.4 Related work

Kranz et al. [52, 51] show that Scheme versions of Pascal programs can be compiled to be
as efficient as the original Pascal programs. I extend this result by showing that it is often
possible to compile programs that use higher-order functions and polymorphism, language
features not found in Pascal, to machine code that is similar to that produced for Pascal or
C programs.

.ent Lv2851_dot_ 205955

arguments : [$bound,$0] [$columns,$1] [$bv,$2]
[$av,$3] [$t1,$4]1 [$j,$5]

[$cnt,$6] [$sum,$7]

results : [$result,$0]

return addr : [$retreg,$26]

destroys : $0 $1 $2 $3 $4 $5 $6 $7 $27

Lv2851_dot_205955:
.mask (1 << 28), -32
.frame $sp, 32, $26

.prologue 1
ldgp $gp, ($27)
lda $sp, -32($sp)
stq $26, ($sp)
stq $8, 8($sp)
stq $9, 16($sp)
mov $26, $27

Li:
cmplt $6, $0, $8
bne $8, L2
mov $7, $1
br $31, L3

L2:
addl $4, $6, $8
s4addl $8, $3, $8
1d1 $8, ($8)
mull $1, $6, $9
addl $5, $9, $9
s4addl $9, $2, $9
1d1 $9, ($9)
mullv $8, $9, $8
addlv $7, $8, $7
addlv $6, 1, $6
trapb
br $31, L1

L3:
mov $1, $0
mov $27, $26
1dg $8, 8($sp)
1dg $9, 16($sp)
lda $sp, 32($sp)
ret $31, ($26), 1

.end Lv2851_dot_ 205955

Figure 1.6: Actual DEC ALPHA assembly language

10

125%t

100%

5%

50% 1

25% 1

cksum FFT KB lexgen life Mmult PIA SIMPLE

Figure 1.7: TIL Execution Time Relative to SML/N.J

Shivers [82, 83] argues for the importance of loop optimizations when compiling lan-
guages with higher-order functions, but proposes an approach based on control-flow analysis
of higher-order functions. I show that control-flow analysis of higher-order functions is not
needed to apply these optimizations to A-calculus based programs. Inlining suffices to elimi-
nate many higher-order functions and make most of the control-flow graph known at compile
time. Furthermore, I show that simple local transformations suffice to produce good code
for recursive functions.

Appel [7] shows that optimizations, especially inlining and uncurrying, are important
to compiling SML programs. However, he does not argue for the importance of applying
optimizations known to improve loops in conventional language to recursive functions in
SML.

Leroy [56] shows that using untagged integers significantly increases performance. How-
ever, in his approach integers must still be boxed when stored in arrays or recursive data
structures. With the TIL approach, integers are always unboxed and untagged. His approach
also slows down programs that use polymorphic functions. I show that inlining polymorphic
functions avoids this problem for a range of SML programs.

1.5 Organization
The rest of the thesis is organized into the following chapters:
o Chapter 2 studies the memory-system performance of SML programs.

o Chapter 3 studies the cost of automatic storage management.

Chapter 4 describes the TIL framework.

Chapter 5 describes the TIL optimizer.

Chapter 6 describes new algorithms that show how to apply several “loop” optimiza-
tions to SML programs.

11

Chapter 7 discusses how TIL compiles the intermediate programs produced by opti-
mization to machine code.

Chapter 8 compares the performance of TIL and the SML/NJ compiler to establish
that TIL produces good code.

Chapter 9 explores the effect on performance of the several “loop” optimizations that
I describe in Chapter 6.

Chapter 10 measures the effect of optimization on the number of higher-order and
polymorphic functions when programs are compiled as a whole. It also measures the
effect of types on intermediate program size.

Chapter 11 discusses future directions.

Chapter 12 concludes.

12

Part 1

Measurement

13

In this part of the thesis, I examine two conjectures about where SML programs spend
their time. The first conjecture is that processors executing SML programs spend much of
their time waiting for the memory system. There are two reasons to believe that this may
be true. First, Appel conjectures in his book on SML compilation [7] that SML programs
spend up to two-thirds of their time waiting for the memory system. Second, Appel also
shows that SML programs make intensive use of heap allocation — allocating roughly one
word every five instructions. Many researchers have claimed that heap allocation leads to
poor memory-system performance [50, 68, 96, 97, 99]. Together, these results indicate that
memory-system performance of SML programs may be problem.

The second conjecture is that SML programs spend a lot of time doing automatic storage
management. The cost of automatic storage management is important because automatic
storage management is crucial for SML; it is needed for type safety.

These conjectures are difficult to examine carefully because they are indirect conjectures
about program performance. Running SML programs and measuring execution times gives
us little insight into whether these conjectures are true. It is, however, important to check
them, because they could account for well over half the execution time of SML programs.

To examine these conjectures, I use trace-driven simulation of SML programs compiled
by the SML/NJ compiler. In trace-driven simulation, you instrument programs to produce
a trace of the instruction and data memory references made by the programs. You can then
use these traces to simulate various memory systems. You can also analyze the traces on
an instruction-by-instruction basis to determine precisely how many instructions programs
execute on behalf of automatic storage management. Essentially, trace-driven simulation
provides us with an idealized world in which we can control and measure all aspects of
program execution.

I chose to use the SML/NJ compiler because it was the only full implementation of SML
whose source code was available to researchers. I needed a full implementation of SML so
that I could use reasonably large SML programs as benchmarks. I needed access to the
compiler source code so that I could modify the compiler to produce traces of instruction
and data references.

I have organized this part of the thesis in the following manner. In Chapter 2, I examine
the memory-system performance of SML programs. I examine memory-system performance
first because it appears to account for a larger part of execution time than automatic storage
management. In Chapter 3, I examine the cost of automatic storage management for SML
programs.

15

16

Chapter 2

Memory-system performance of SML
programs

In this chapter, I study the conjecture that processors executing SML programs spend much
of their time waiting for the memory system. This is joint work with Amer Diwan and Eliot
Moss: Amer, Eliot, and I designed the experiment. I conducted many of the measurements
and Amer modified the SML/NJ compiler [7], QPT [12, 53, 54], and Tycho [42] so that
we could instrument SML programs and simulate memory-system performance. Amer also
conducted some of the measurements.

As I mentioned earlier, I use trace-driven simulation to study performance: I instrument
SML programs to produce traces of all memory references and feed the references into a
memory-system simulator that calculates a performance penalty due to the memory system.
To understand the memory-system performance of SML programs in general, I fix the archi-
tecture to be a prototypical RISC — the MIPS R3000 [47] — and vary the memory-system
configurations to cover the design space typical of workstations of the late 1980’s, such as

DECStations, SPARCStations, and HP 9000 series 700. I study eight substantial programs.

[vary the following memory-system parameters: cache size (8K to 512K), cache-block size
(16 or 32 bytes), write-miss policy (write allocate or write no-allocate), subblock placement
(with and without), associativity (1 and 2 way), TLB sizes (1 to 64 entries), write-buffer
depth (1 to 6 deep), and page-mode writes (with and without). I simulate only split instruc-
tion and data caches, i.e., no unified caches. I report data only for write-through caches but
it is easy to to extend the results to write-back caches.

I find two main results about the memory-system performance of SML programs. First,
surprisingly, the memory-system performance of SML programs is good for some memory sys-
tem configurations corresponding to actual machines. For example, for the memory-system
configuration corresponding to the DECStation 5000/200, the memory-system performance
of SML programs is comparable to that of C and Fortran programs [19]: programs run only
3 to 13% slower due to data-cache misses than they would run with a zero-latency memory.
Second, heap allocation has a dominant effect on the memory-system performance of SML
programs. For memory-system configurations that do not support heap allocation well, the
slowdown due to data-cache misses is often higher than 50%. I discuss the implications of
these results for compiling SML programs in the conclusion of this chapter.

17

I organize this chapter in the following manner: Section 2.1 gives background informa-
tion, Section 2.4 describes related work, Section 2.2 describes the simulation methods, the
benchmarks, and the memory-system performance metrics that I used, Section 2.3 presents
the simulation results, analyses them, validates them, and gives an analytical model that
extends them to programs that do less heap allocation, Section 2.4 describes related work,
and Section 2.5 concludes.

2.1 Background

The following sections describe memory systems, garbage collection in SML/NJ, SML, and
the SML/NJ compiler.

2.1.1 Memory systems

This section describes cache organization for a single level of caching. A cache is divided into
blocks that are grouped into sets. Main memory is also divided into blocks, which typically
have the same size as cache blocks. A main memory block may reside in the cache in exactly
one set, but may reside in any block within the set. A cache with sets of size n is said to
be n-way associative. If n=1, the cache is called direct-mapped. Some caches have valid bits
that indicate what sections of a block hold valid data. Each section that has a valid bit
associated with it is called a subblock. In this thesis, subblock placement implies a subblock
of one word, i.e., each word has a valid bit. Moreover, on a read miss, the whole block is
brought into the cache, not just the missing word. Przybylski [71] notes that this is a good
choice.

A memory access to a location that is resident in the cache is a hit. Otherwise, the
memory access is a miss. A miss is a compulsory miss if it is due to a memory block being
accessed for the first time. A miss is a capacity miss if it results from the cache not being
large enough to hold all the memory blocks used by a program. It is a conflict miss if it
results from two memory blocks mapping to the same set [41].

A read miss is handled by copying the missing block from main memory to the cache. A
write hit is always written to the cache. There are several policies for handling a write miss,
which differ in their performance penalties. For each of the policies, the actions taken on a
write miss are:

1. write-no-allocate:

e Do not allocate a block in the cache

e Send the write to main memory without putting the write in the cache.
2. write-allocate, no-subblock placement:

e Allocate a block in the cache.
e Fetch the corresponding memory block from main memory.

e Write the word to the cache (and to memory if write through).

18

3. write-allocate, subblock placement:
If the tag matches and the block is in the cache, but the valid bit for the particular
word in the block is off:

e Write the word to the cache (and to memory if write through).
If the tag does not match:

e Allocate a block in the cache.
e Write the word to the cache (and to memory if write through).

e Invalidate the remaining words in the block.

Write allocate/subblock placement has a lower write-miss penalty than write-allocate/no sub-
block placement because it avoids fetching a memory block from main memory. In addition,
it has a lower penalty than write no-allocate if the written word is read before being evicted
from the cache. See Jouppi [45] for more information on write-miss policies.

A write buffer reduces the cost of writes to main memory. A write buffer is a queue
containing writes that are to be sent to main memory. When the CPU does a write, it
places the write in the write buffer and it continues without waiting for the write to finish.
The write buffer retires entries to main memory using free memory cycles. The write buffer
cannot always prevent stalls on writes to main memory. First, if the CPU writes to a full
write buffer, the CPU must wait for an entry to become available in the write buffer. Second,
if the CPU reads a location that is queued in the write buffer, the CPU may need to wait
until the write buffer is empty. Third, if the CPU issues a read to main memory while a
write is in progress, the CPU must wait for the write to finish.

Main memory is divided into DRAM pages. Page-mode writes reduce the latency of
writes to the same DRAM page when there are no intervening memory accesses to another
DRAM page [66]. For example, on a DECStation 5000/200, a non-page-mode write takes
5 cycles and a page-mode write takes 1 cycle. Page-mode writes are especially effective at
handling writes with high spatial locality, such as writes that initialize consecutive memory
locations.

2.1.2 Memory system performance

This section describes two metrics for measuring the performance of memory systems. One
metric is the cache miss ratio. The cache miss ratio is the number of memory accesses that
miss divided by the total number of memory accesses. Because different kinds of memory
accesses usually have different miss costs, it is useful to have miss ratios for each kind of
access.

Cache miss ratios alone do not measure the effect of the memory system on overall system
performance. A metric that measures this better is the contribution of the memory system to
cycles per useful instruction (CPI); all instructions besides nops (software-controlled pipeline
stalls) are considered useful. CPI is calculated for a program as number of CPU cycles
to complete the program / total number of useful instructions executed. It measures how
efficiently the CPU is being utilized. The contribution of the memory system to CPI is

19

cmp alloc+12,top ; Check for heap overflow
branch-if-gt call-gc

store tag, (alloc) ; Store tag

store ra,4(alloc) ; Store value

store rd,8(alloc) ; Store pointer to next cell
move alloc+4,result ; Save pointer to cell

add alloc,12 ; Increment allocation pointer

Figure 2.1: Pseudo-assembly code for allocating a list cell

calculated as number of CPU cycles spent waiting for the memory system / total number
of useful instructions executed. As an example, on a DECStation 5000/200, the lowest CPI
possible is 1, completing one instruction per cycle. If the CPI for a program is 1.50, and the
memory contribution to CPIis 0.3, 20% (0.3/1.5) of the CPU cycles are spent waiting for the
memory system (the rest may be due to other causes such as nops, multi-cycle instructions
such as integer division, etc.). CPIis machine dependent because it is calculated using actual
penalties.

2.1.3 Copying garbage collection

A copying garbage collector [32, 20] reclaims an area of memory by copying all the live (non-
garbage) data to another area of memory. The area can then be re-used. Because copying
garbage collection reclaims memory in large contiguous areas, programs can allocate objects
sequentially from such areas in a few instructions. Figure 2.1 gives an example of pseudo-
assembly code for allocating a list cell. ra contains the value to be stored in the list cell, rd
contains the pointer to the next list cell, alloc is the address of the next free word in the
allocation area, and top contains the end of the allocation area.

2.1.4 Garbage collection in SML/NJ

[use version 0.91 of the SML/NJ compiler, which uses a simple generational copying garbage
collector [5]. Memory is divided into an old generation and an allocation area. New objects
are created in the allocation area; garbage collection copies the live objects in the allocation
area to the old generation, freeing the allocation area. Generational garbage collection relies
on the fact that most allocated objects die young. Thus, most objects (about 99% [7, p.
206]) are not copied from the allocation area. This makes the garbage collector efficient
because it works mostly on an area of memory where it is very effective at reclaiming space.

The most important property of a copying collector with respect to memory system
behavior is that allocation sequentially initializes memory that has not been touched in a
long time and is unlikely to be in the cache. This is especially true if the allocation area
is large relative to the size of the cache because allocation cycles through the cache and
eventually knocks everything out of the cache. This means that there will be a large number
of write misses when the allocation area is larger than the cache.

20

For example, consider the code in Figure 2.1 for allocating a list cell. Assume that a
cache write miss costs 16 CPU cycles and that the block size is 4 words. On average, every
fourth write causes a write miss. Thus, the average memory system cost of allocating a word
on the heap is 4 cycles. The average cost for allocating a list cell is seven cycles (at one cycle
per instruction) plus 12 cycles for the memory system overhead. Thus, although allocation
is cheap in terms of instruction counts, it may be expensive in terms of machine cycle counts.

2.1.5 Standard ML
Standard ML (SML) [61] is a call-by-value, lexically scoped language with higher-order

functions. SML encourages a non-imperative programming style. Variables cannot be altered
once they are bound and by default data structures cannot be altered once they are created.
The only kinds of assignable data structures are ref cells and arrays, which must be declared
explicitly. The implications of this non-imperative programming style for compilation are
clear: SML programs tend to do more allocation and copying than programs written in
imperative languages.

2.1.6 SML/NJ compiler

The SML/NJ compiler [7] is a publicly available compiler for SML. As I mention earlier, |
use version 0.91 of the compiler. The compilation strategy focuses on making memory allo-
cation inexpensive and making function calls fast. Allocation is done in-line, except for the
allocation of arrays. Optimizations done by the compiler include inlining, passing function
arguments in registers, register targeting, constant folding, code hoisting, uncurrying, and
instruction scheduling.

The most controversial design decision in the compiler is to allocate procedure activation
records on the heap instead of the stack [4, 10]. In principle, the presence of higher-order
functions means that procedure activation records must be allocated on the heap. With a
suitable analysis, a stack can be used to store most activation records [52]. However, using
only a heap simplifies the compiler, the run-time system [6], and the implementation of first-
class continuations [40]. The decision to use only a heap is controversial because it greatly
increases the amount of heap allocation, which is believed to cause poor memory system
performance.

2.2 Methodology

I use trace-driven simulation to evaluate the memory-system performance of programs. For
this technique to be useful, there must be an accurate simulation model and a good selection
of benchmarks. Simulations that make simplifying assumptions about important aspects of
the system being modeled can yield misleading results. Toy or unrepresentative benchmarks
can be equally misleading. In this work, I devote much effort to addressing these issues.
Section 2.2.1 describes the trace generation and simulation tools. Section 2.2.2 states my
assumptions and argues that they are reasonable. Section 2.2.3 describes and characterizes

21

the benchmark programs that [use. Section 2.2.4 describes the metrics that I use to measure
memory-system performance.

2.2.1 Tools
Amer Diwan extended QPT (Quick Program Profiler and Tracer) [54, 12, 53] to produce

memory traces for SML/NJ programs. QPT rewrites an executable program to produce
compressed trace information; QPT also produces a program-specific regeneration program
that expands the compressed trace into a full trace. Because QPT operates on the executable
program, it can trace the SML code and the garbage collector (which is written in C).

Amer Diwan also extended Tycho [42] for the memory system simulations. His extensions
to Tycho include a write-buffer simulator.

[obtain allocation statistics by using an allocation profiler built into SML/NJ. The
profiler instruments intermediate code to increment appropriate elements of a count array
on every allocation. I extended this profiler to count the number of assignments.

2.2.2 Simplifications and Assumptions

[try to minimize assumptions that might reduce the validity of my simulations. This section
describes the important assumptions that I make.

L. Simulating write allocate/subblock placement with write allocate/no subblock placement.
Tycho does not simulate subblock placement so I approximate it by simulating write
allocate/no subblock and ignoring the reads from memory that occur on a write miss.
This can cause a small inaccuracy in the CPI numbers, as the following example illus-
trates.

Suppose the cache-block size is 2 words, the subblock size is 1 word, that a program
writes the first word in a memory block, and that the write misses. In subblock
placement, the word will be written to the cache and the second word in the cache block
will be invalidated. However, the simplified model will mark both words as valid after
the write. If the program subsequently reads the second word, the read will incorrectly
hit. Thus the CPI reported for caches with subblock placement can be less than the
actual CPI. These incorrect hits, however, occur rarely because SML programs tend
to do few assignments (see Section 2.2.3) and most writes are to sequential memory
locations.

2. Ignoring the effect of context switches and the effect of system calls
Context switches and system calls cause instructions and data from the SML programs

to be evicted from the cache. 1 do not attempt to measure this effect.

3. The simulations are driven by virtual addresses. Some machines such as the SPARC-
Station IT have physically indexed caches, and will have different conflict misses than
those reported here.

22

4. Placing code in the text segment instead of the heap. This improves performance over
the unmodified SML/NJ system. It reduces garbage-collection costs by never copying
code and by avoiding the need for instruction-cache flushes after garbage collections.

5. Used default compilation settings for SML/NJ. Default compilation settings enable
extensive optimization (Section 2.1.6). Evaluating the impact of these optimizations
on cache behavior is beyond the scope of this thesis.

6. Used default garbage-collection settings.

The preferred ratio of heap size to live data is set to 5 [5]. The softmax, which is the
desired upper limit on the heap size, is set to 20MB; the benchmark programs never
reach this limit. The initial heap size is IMB.

I do not investigate the interaction of the sizing strategy and cache size. Understanding
these tradeoffs is beyond the scope of this thesis.

7. All the traces are for the DECStation 5000/200, which uses a MIPS R3000 CPU [7].

8. All instructions take one cycle with a perfect memory system.

This affects only write buffer costs because multi-cycle instructions give the write buffer
more time to retire writes. The effect of this assumption is negligible; Section 2.3.4
shows that write-buffer costs are already small.

9. CPU cycle time does not vary with memory organization. This may not be true because
the CPU cycle time depends on the cache access time, which may differ across cache
organizations. For example, a 128K cache may take longer to access than an 8K cache.

2.2.3 Benchmarks

Table 2.1 describes the benchmark programs. Knuth-Bendiz, Lexgen, Life, Simple, VLIW,
and YACC are identical to the benchmarks that Appel [7] measures. The description of
these benchmarks is taken from [7]. Table 2.2 gives the following for each benchmark: lines
of SML code excluding comments and empty lines, maximum heap size, compiled code size,
and user-mode CPU time on a DECStation 5000/200. The code size includes 207 Kbytes
for standard libraries, but does not include the garbage collector and other run-time support
code, which is about 60 Kbytes. The run times are the minimum of five runs.

Table 2.3 characterizes the memory references of each program. For each program, it
reports all numbers as a percentage of the total number of instructions executed by the
program. The Reads, Writes, and Partial writes columns list the reads, full-word writes, and
partial-word writes done by the program and the garbage collector; the assignments column
lists the non-initializing writes done by the program only. The Nops column lists the nops
executed by the program and the garbage collector. All the benchmarks have long traces;
most related works (described in Section 2.4) use traces that are an order of magnitude
smaller. Also, the benchmark programs do few assignments; the majority of the writes are
initializing writes.

23

Program |

Description

CW

The Concurrency Workbench [22] is a tool for analyzing networks of finite
state processes expressed in Milner’s Calculus of Communicating Systems.
The input is the sample session from Section 7.5 of [22].

Knuth-Bendix

An implementation of the Knuth-Bendix completion algorithm, imple-
mented by Gerard Huet, processing some axioms of geometry.

Lexgen A lexical-analyzer generator, implemented by James S. Mattson and David
R. Tarditi [11], processing the lexical description of Standard ML.
Life The game of Life, written by Chris Reade [72], running 50 generations of a
glider gun. It is implemented using lists.
PIA The Perspective Inversion Algorithm [94] decides the location of an object
in a perspective video image.
Simple A spherical fluid-dynamics program, developed as a “realistic” FORTRAN
benchmark [23], translated into ID [31], and then translated into Standard
ML by Lal George.
VLIW A Very-Long-Instruction-Word instruction scheduler written by John Dan-
YACC SAklilALR(l) parser generator, implemented by David R. Tarditi [89], pro-
cessing the grammar of Standard ML.
Table 2.1: Benchmark Programs
Size Run time
Program Lines | Heap size (Kbytes) | Code size (Kbytes) | Non-gc (sec) | Ge (sec)
CW 5728 1107 894 22.74 3.09
Knuth-Bendix 491 2768 251 13.47 1.48
Lexgen 1224 2162 305 15.07 1.06
Life 111 1026 221 16.97 0.19
PIA 1454 1025 291 6.07 0.34
Simple 999 11571 314 25.58 4.23
VLIW 3207 1088 486 23.70 1.91
YACC 5751 1632 580 4.60 1.98

Table 2.2: Sizes of Benchmark Programs

24

Program | Inst Fetches | Reads (%) | Writes (%) | Partial Writes (%) | Assignments (%) | Nops (%) |

CW 523,245,987 17.61 11.61 0.01 0.41 13.24
Knuth-Bendix | 312,086,438 19.66 22.31 0.00 0.00 5.92
Lexgen 328,422,283 16.08 10.44 0.20 0.21 12.33
Life 413,536,662 12.18 9.26 0.00 0.00 15.45
PIA 122,215,151 25.27 16.50 0.00 0.00 8.39
Simple 604,611,016 23.86 14.06 0.00 0.05 7.58
VLIW 399,812,033 17.89 15.99 0.10 0.77 9.04
YACC 133,043,324 18.49 14.66 0.32 0.38 11.14

Table 2.3: Characteristics of benchmark programs

Allocation | Escaping Known Callee Saved | Records Other
Program (words) % | Size % | Size % | Size % | Size % | Size
CW 56,467,440 | 4.0 | 4.12| 3.3|15.39|67.2 6.20 195 |3.01| 6.0 | 4.00
Knuth-Bendix | 67,733,930 | 37.6 | 6.60 | 0.1 | 15.22 | 49.5 490 |12.7 (3.00| 0.1|15.05
Lexgen 33,046,349 | 3.416.20| 5.4]12.96 | 72.7 6.40 | 15.1 | 3.00 | 3.7| 6.97
Life 37,840,681 | 0.2 3.45| 0.0]15.00 |77.8 5.52 (22.2|3.00| 0.0]10.29
PIA 18,841,256 | 0.4 | 5.56 | 28.0 | 11.99 | 25.0 4.69 | 12.7 | 3.41 | 33.9 | 3.22
Simple 80,761,644 | 4.0 | 5.70 | 1.1]15.33 |68.1 6.43 | 83|3.00|185| 3.41
VLIW 59,497,132 | 9.9|5.22| 6.0 26.62|61.8 7.671203|3.01] 21| 2.60
YACC 17,015,250 | 2.3 | 4.83 | 15.3 | 15.35 | 54.8 7.44|23.7|3.04| 4.0|10.22

Table 2.4: Allocation characteristics of benchmark programs

Table 2.4 gives the allocation statistics for each benchmark program. All allocation and
sizes are in words. The Allocation column lists the total allocation done by the benchmark.
The remaining columns break down the allocation by kind: closures for escaping functions,
closures for known functions, closures for callee-save continuations, records, and others (in-
cludes spill records, arrays, strings, vectors, ref cells, store list records, and floating-point
numbers). Closures for callee-save continuations correspond roughly to procedure-activation
records. They can be trivially allocated on a stack in the absence of first-class continuations.
A function is a known function if all of its call sites are known. Otherwise, it is an escaping
function. For each kind of allocated object, the % column gives the total words allocated for
objects of that kind as a percentage of total allocation and the Size column gives the average
size in words, including the 1 word tag, of an object of that kind.

2.2.4 Metrics

[state cache performance numbers in cycles per useful instruction (CPI). 1 consider all in-
structions except for null operations to be useful. Null operations provide software-controlled
pipeline stalls on the MIPS R3000.

Table 2.5 lists the timings for memory operations that I use in the simulations. I derive
these numbers from the penalties for the DECStation 5000/200; these penalties are similar

25

| Task Timings (cycles) |

Non-page-mode write 5
Page-mode write 1
Partial-word write 11
Page-mode flush 4
Read 16 bytes from memory 15
Read 32 bytes from memory 19
Refresh period 195
Refresh time 5
Write hit or miss (subblocks) 0
Write hit (16 bytes, no subblocks) 0
Write hit (32 bytes, no subblocks) 0
Write miss (16 bytes, no subblocks) 15
Write miss (32 bytes, no subblocks) 19
TLB miss 28

Table 2.5: Timings of memory operations

to those of other machines of the same class. In addition to the times in Table 2.5, all reads
and writes may also incur write-buffer penalties. In an actual implementation, there may
be a one cycle penalty for write misses in caches with subblock placement. This is because
a tag needs to be written to the cache after the miss is detected. This does not change my
results, because it adds at most 0.02-0.05 to the CPI that I report for caches with subblock
placement.

I use a DRAM page size of 4K in the simulation of page-mode writes. Page-mode flush
is the number of cycles needed to flush the write pipeline after a series of page-mode writes.

I report TLB data as the TLB miss contribution to the CPI. I use a virtual memory
page size of 4K in my simulations.

2.3 Results and Analysis

Section 2.3.1 presents a qualitative analysis of the memory behavior of programs compiled
with SML/NJ. Section 2.3.2 lists the cache and TLB configurations that I simulate and
explains why I selected them. Sections 2.3.3, 2.3.4, and 2.3.5 present data for memory-system
performance, write-buffer performance, and TLB performance. Section 2.3.6 validates the
simulations. Section 2.3.7 presents an analytical model that extends these results to programs
with different allocation behavior.

26

|Write Policy | Write Miss Policy | Subblocks | Assoc |Block Size |Cache Sizes |Write Buffer |Page mode|

through allocate yes 1,2 |16, 32 bytes |8K-512K |1-6 deep yes
through allocate no 1,2 |16, 32 bytes |8K-512K |6 deep no
through no allocate no 1,2 |16, 32 bytes |8K-512K |6 deep no

Table 2.6: Memory-system organizations studied

2.3.1 Qualitative Analysis

Recall from Section 2.1 that SML/NJ uses a copying collector. The most important property
of a copying collector with respect to memory-system behavior is that allocation initializes
memory in an area that has not been touched since the last garbage collection. This means
that for caches that are not large enough to contain the allocation area there will be many
write misses. The slowdown that these write misses translate to depends on the memory-
system organization.

Recall from Section 2.2.3 that SML/NJ programs have the following important properties.
First, they do few assignments: the majority of the writes are initializing writes. Second,
programs do heap allocation at a furious rate: 0.1 to 0.22 words per instruction. Third,
writes come in bunches because they correspond to initialization of a newly-allocated area.

The burstiness of writes combined with the property of copying collectors mentioned
above suggests that an aggressive write policy is needed to achieve good performance. In
particular, writes should not stall the CPU. Memory-system organizations where the CPU
has to wait for a write to be written through (or back) to memory will perform poorly. Even
memory systems where the CPU does not need to wait for writes if they are issued far apart
(e.g., 2 cycles apart in the HP 9000 series 700) may perform poorly due to the bunching of
writes. The means that the memory system needs two features. First, a write buffer or fast
page-mode writes are essential to avoid waiting for writes to memory. Second, on a write
miss, the memory system must avoid reading a cache block from memory if it will be written
before being read. Of course, this requirement only holds for caches with a write-allocate
policy. Subblock placement [50], a block size of 1 word, and the ALLOCATE instruction [68]
can all achieve this. Because the effects on cache performance of these features are similar, I
discuss only subblock placement. Note that large caches will reduce the benefit of subblock
placement: the allocation area will fit in the cache and thus there will be few write misses.

2.3.2 Cache and TLB configurations simulated

The design space for memory systems is enormous. There are many variables involved
and the dependencies between the variables are complex. Therefore I can study only a
subset of the memory-system design space. I restrict this study to features found in RISC
workstations of the late 1980°s [29, 28, 84, 24]. Table 2.6 summarizes the cache organizations
that I simulated. Table 2.7 lists the memory-system organizations of some popular machines.

[simulate only separate instruction and data caches (i.e., no unified caches). Many ma-
chines have separate caches (e.g., DECStations, HP 700 series), but there are some exceptions

27

|Architecture |Write Policy|Write Miss Policy|Write Buﬂer|Subblocks|Assoc|Block Size|Cache Size|

DS3100 through allocate 4 deep — 1 4 bytes 64K

DS5000/200 through allocate 6 deep yes 1 16 bytes [64K

HP 9000 back allocate none no 1 32 bytes |64K-2M

SPARCStation II{through no allocate 4 deep no 1 32 bytes [64K
Note:

o SPARCStations have unified caches.

e Most HP 9000 series 700 caches are much smaller than 2M: 128K instruction cache and 256K data cache for models
720 and 730, and 256K instruction cache and 256K data cache for model 750.

¢ The DS5000/200 actually has a block size of four bytes with a fetch size of sixteen bytes. This is stronger than subblock
placement because every “subblock” has a full tag.

Table 2.7: Memory-system organization of some popular machines

(notably SPARCStations).

I report data only for write-through caches. It is easy to approximate the CPI for write-
back caches from that data. Write-through and write-back caches have identical misses,
but have different contributions to CPI for two reasons. First, their write-buffer costs differ
because they write to main memory with different frequencies and at different points during
program execution. Second, they have different costs for write hits and write misses. Write
hits and write misses for a write-back cache may cost one cycle more than they do for a
write-through cache. A write-back cache must probe the tag before writing to the cache [45],
unlike a write-through cache.

The different write-buffer costs can be ignored. The write-buffer costs for a write-through
cache are usually an upper bound on the costs for a comparable write-back cache because
write-through caches write to main memory more often than write-back caches do. The write-
buffer costs for the write-through caches that I measure are already small, so the difference
between the write-buffer costs for comparable write-back and write-through caches is likely
to be negligible.

Thus, to obtain the CPI for write-back caches from the CPI for write-through caches, we
need to account only for the extra cycle required to probe the tag. This is easy to do: if a
program does w writes and n useful instructions, the extra cycle adds w/n to the CPI. For
the VLIW program, for example, w/n is 0.18.

I simulate fully associative, unified TLBs from 1 to 64 entries with an LRU replacement
policy. Some machines, such as the HP 9000 series, have separate instruction and data TLBs.
From Section 2.3.5 it is clear that for the benchmarks even small unified TLBs perform well.

Two of the most important cache parameters are write allocate versus write no allocate
and subblock placement versus no subblock placement. Of these, the combination write no al-
locate/subblock placement placement offer no improvement over write no allocate/no subblock
placement for cache performance. Thus, I present data for the write no allocate/subblock
placement configuration.

28

2.3.3 Memory-System Performance

I present memory-system performance in summary graphs and breakdown graphs. FEach
summary graph shows the performance of one benchmark program for a range of cache sizes
(8K to 512K), write-miss policies (write allocate or write no allocate), subblock placement
(with or without), and associativity (1 or 2). Each curve in a summary graph corresponds to
a different memory-system organization. There are two summary graphs for each program,
one for a block size of 16 bytes and another for a block size of 32 bytes. Each breakdown
graph breaks down the memory-system overhead into its components for one configuration
in a summary graph. The write-buffer depth in these graphs is fixed at 6 entries.

In this section I present only the summary graphs for VLIW (Figure 2.2). The data
for other programs is similar and I give it in Appendix A. Figures 2.3, 2.4, and 2.5 are
the breakdown graphs for VLIW for the 16 byte block size configurations; the remaining
breakdown graphs for VLIW are similar and I omit them for conciseness. The breakdown
graphs for the other benchmarks are similar (and predictable from the summary graphs)
and I omit them for the same reason.

In the summary graphs, the nops curve is the base CPI: the total number of instructions
executed divided by the number of useful (not nop) instructions executed. This corresponds
to the CPI for a perfect memory system. For the breakdown graphs, the nop area is the CPI
contribution of nops; read miss is the CPI contribution of read misses; write miss is the CPI
contribution of write misses (if any), inst fetch miss is the CPI contribution of instruction
fetch misses; write buffer is the CPI contribution of the write buffer; partial word is the CPI
contribution of partial-word writes.

The 64K point on the write alloc, subblock, assoc=1 curves corresponds closely to the
DECStation 5000/200 memory system.

In the following subsections I describe the effect of write-miss policy and subblock place-
ment, associativity, block size, cache size, write buffer depth, and partial-word writes on the
memory system performance of the benchmark programs. Even though CPI is a ratio, I sum-
marize CPI improvements across the benchmarks using arithmetic means. The geometric
means are similar (and in some cases identical) to the arithmetic means.

Write Miss Policy and Subblock Placement

From the summary graphs, it is clear that the best cache organization of the ones that I study
is write allocate/subblock placement; it outperforms all other configurations substantially. For
a memory system with a 64K direct-mapped write-allocate cache and 4 word blocks, subblock
placement reduces the CPI by 0.35 to 0.88, with an arithmetic mean improvement of 0.55.
Surprisingly, for sufficiently large caches with the write allocate/subblock placement organiza-
tion, the memory system performance of SML/NJ programs is acceptable; the overhead due
to data-cache misses ranges from 3% to 13% (arithmetic mean 9%) for 64K direct-mapped
caches and 1% to 13% (arithmetic mean 9%) for 32K two-way associative caches. Recall
that the 64K direct-mapped configuration corresponds to the DECStation 5000/200 memory
system. The memory system overhead of SML/NJ programs on the DECStation 5000/200
is similar to that of C and Fortran programs [19]. It is worth emphasizing that the memory
system performance of SML/NJ programs is good on some current machines despite the very

29

high miss rates; for a 64K cache with a block size of 16 bytes, the write miss and read miss
ratios for VLIW are 0.23 and 0.02 respectively.

Recall that in Section 2.3.1 I argue that the benefit of subblock placement will be sub-
stantial, but that the benefit will decrease for larger caches. The summary graphs indicate
that the reduction in benefit is not substantial even for 128K cache sizes. The benefit of
subblock placement, however, decreases sharply for larger caches for six of the benchmark
programs. This suggests that the allocation area size of six of the benchmark programs is
between 256K and 512K.

The performance of write allocate/no subblock is almost identical to that of write no allo-
cate/no subblock (Knuth-Bendix is an exception). The difference between write allocate/no
subblock and write no allocate/no subblock is so small in most graphs that the two curves
overlap. This suggests that memory addresses are being read soon after being written. Even
in an 8K cache, a memory address is read after being written before it is evicted from the
cache (if it was evicted from the cache before being read, then write allocate/no subblock
would have inferior performance). The only difference between these two policies is when
a cache block is read from main memory. In one case, it is brought in on a write miss; in
the other, it is brought in on a read miss. Because SML/NJ programs allocate sequentially
and do few assignments, a newly allocated object remains in the cache until the program
has allocated another C bytes, where C is the size of the cache. Because the programs al-
locate 0.4-0.9 bytes per instruction, my results suggest that a cache block is read within
9,000-20,000 instructions after it is written.

The benefit of subblock placement is not limited to functional languages such as Standard
ML. Jouppi [45] reports that subblock placement combined with an 8K data cache and a 16
byte cache block size eliminates 31% of the cost of cache misses for C programs. Reinhold
[73] finds that the memory performance of Scheme is good with subblock placement.

Changing Associativity

From Figure 2.2 we see that increasing associativity improves all organizations. The im-
provement in going from one-way to two-way set associativity is much smaller than the
improvement obtained from subblock placement. For a memory system with a 64K write-
allocate cache and 4 word blocks, increasing associativity reduces the CPI by 0.01 to 0.09,
with an arithmetic mean improvement of 0.06. The maximum benefit from higher associa-
tivity is obtained for small cache sizes less than 16IK. However, increasing associativity may
increase CPU cycle time and thus the improvements may not be realized in practice [41].
From Figures 2.3, 2.4, and 2.5 we see that higher associativity improves the instruction-
cache performance but has little or no effect on data-cache performance. Surprisingly, for
direct-mapped caches (Figures 2.3 (a), 2.4 (a), and 2.5 (a)) the instruction-cache penalty is
substantial for 128K or smaller caches. For caches with subblock placement, the instruction-
cache penalty can dominate the penalty for the memory system. The improvement observed
in going to a two-way associative cache suggests that a lot of the penalty from the instruction
cache is due to conflict misses and that from the data cache is due to capacity misses. The
data cache is simply not large enough to hold the working set. The performance of the
instruction cache is not surprising given the benchmark programs. The programs use small

30

functions and make frequent function calls, which lowers spatial locality. Thus, the chances
of conflicts are greater than if the instructions had strong spatial locality.

Changing Block Size

From Figure 2.2 we see that increasing the block size from 16 to 32 bytes also improves per-
formance. For a memory system with a 641 direct-mapped write-allocate cache, increasing
the block size reduces the CPI by 0.14 to 0.35, with an arithmetic mean improvement of
0.22. For the write allocate organizations, doubling the block size can halve the write-miss
rate. Thus, larger block sizes improve performance when there is a penalty for a write miss
[50]. In contrast, for caches with write allocate/subblock placement, where there is no write
miss penalty, increasing the block size improves performance only a little.

From Figure 2.2 we see that caches with write no allocate benefit just as much from larger
block size as caches with write allocate/no subblock placement. This suggests that the spatial
locality of reads is comparable to that of writes.

Note that subblock placement improves performance more than even two-way associa-
tivity and 32 byte blocks combined.

Changing Cache Size

There are three distinct regions of performance as the cache size varies. The first region
corresponds to the range of cache sizes where the allocation area does not fit in the cache
(i.e., allocation happens in an area of memory that is not cache resident). For most of
the benchmarks, this region corresponds to cache sizes of less than 256K (for Simple and
Knuth-Bendix this region extends beyond 512K). In this region, increasing the cache size uni-
formly improves performance for all configurations. However, the performance improvement
from doubling the cache size is small.

From the breakdown graphs in Figures 2.3 through 2.4 we see that in the first region
the cache size has little effect on the data-cache miss contribution to CPI. Most of the im-
provement in CPI that comes from increasing the cache size is due to improved performance
of the instruction cache. As with associativity, cache sizes have interactions with the cycle
time of the CPU: larger caches can take longer to access. Thus, small improvements due to
increasing the cache size may not be achieved in practice.

The second region ranges from when the allocation area begins to fit in the cache until
the allocation area fits in the cache. For most of the benchmarks (once again excepting
Simple and Knuth-Bendix), this region corresponds to cache sizes in the range 256K to
512K, In this region, increasing the cache size sharply improves the data-cache performance
for memory organizations without subblock placement. However, increasing the cache size
in this region has little effect on instruction-cache performance because the instruction-cache
miss costs are already low at this point.

The third region corresponds to cache sizes where the allocation area fits in the cache.
For five of the benchmarks, this region corresponds to caches larger than 512K (for Lexgen,
Knuth-Bendix, and Simple this region starts at larger cache sizes). In this range, increasing

!For Lexgen this region extends a little beyond 512K.

31

the cache size has little or no effect on memory-system performance because everything
remains cache resident and thus there are no capacity misses to eliminate.

Write Buffer and Partial-Word Write Overheads

From the breakdown graphs we see that the write buffer and partial-word write contributions
to CPI are negligible. A six-deep write buffer coupled with page-mode writes is sufficient
to absorb the bursty writes. As expected, memory-system features that reduce the number
of misses (such as higher associativity and larger cache sizes) also reduce the write buffer

overhead.

write-no-alloc, no-subblk, assoc=1 ----®--- write-no-alloc, no-subblk, assoc=2
—LO—— write-alloc, subblk, assoc=1 ----0--- write-alloc, subblk, assoc=2

*

write-alloc, no-subblk, assoc=1 ----*--- write-alloc, no-subblk, assoc=2
nops

35 35
[]

3.

(a) Block size = 16 bytes 3 (b) Block size = 32 bytes

|

2.5 O 2.5 []}

Cycles/Useful instruction
[\
mlm
oo »
0o (33
| 4 4
Cycles/Useful instruction
)
m
oo
00 me
[{ g

ol Im

]
[J

16K
2
4

16K
2
4
512K e

256K o1 m
512K ew
8K

K

K
128K &0
256K

N
o0
N
—

Split I and D Cache sizes Split I and D Cache sizes

Figure 2.2: VLIW summary

2.3.4 Write-buffer depth

In Section 2.3.3 I showed that a six-deep write buffer coupled with page-mode writes is able
to absorb the bursty writes of SML/NJ programs. In this section I explore the effect of
write-buffer depth on the write-buffer stall contribution to CPI. Because the speed at which
the write buffer can retire writes depends on whether or not the memory system has page-
mode writes, | conduct two sets of experiments, one with and the other without page-mode
writes. | vary the write-buffer depth from 1 to 6. I conduct this study for two of the larger

32

M nop O read miss @ inst fetch miss [write buffer M partial word

35 35

g 3 (a) Assoc = 1 g 3 (b) Assoc =2
g 2
g g
é 2.5 é 25
= =
&z 3
o 2 o 2
S S
Q 3)
> >
© 15 O 15
1 1
MOoOM X M M M M MOoOM X M M M M
¥ © o ¥ ® Y o ® © o ¥ ® © o
— o O N 'e) — — o O N 'e) —
— o - o
Split I and D cache sizes Split I and D cache sizes

Figure 2.3: VLIW breakdown, write no alloc, no subblk, block size=16

33

M nop O read miss @ inst fetch miss [write buffer M partial word

35 35
3 (a) Assoc =1 3 (b) Assoc =2

25 25

Cycles/Useful Instruction
Cycles/Useful Instruction

15

1 1 ——
MM M M M M M MM M M M M M
e e} \O [o\ <t o0 O (q\l o0 \O [o\ <t o0 O @\l

— (ep) O N 'e) — — o O [g\] vy —
— (q\] w — (@] v
Split I and D cache sizes Split I and D cache sizes

Figure 2.4: VLIW breakdown, write alloc, subblk, block size=16

34

B nop [read miss [write miss M inst fetch miss [write buffer WM partial word

35 35

g 3 (a) Assoc =1 g 3 (b) Assoc =2
= =
g g
g 25 g 25
2 2
2 2
o 2 o 2
8 8
O O
> >
O 15 O 15
1 1 ——
MooM M M M M M MooM M M M M M
® © o ¥ ® © o ® © o ¥ ® © o
— o O (@] 'e) — — o O N 'e) —
— & W — & N
Split I and D cache sizes Split I and D cache sizes

Figure 2.5: VLIW breakdown, write alloc, no subblk, block size=16

35

benchmarks: CW and VLIW. I fix the block size at 16 bytes and the write miss policy at write
allocate /subblock placement.

Figure 2.6 gives the write-buffer costs for VLIW with caches of associativity one and two
and in a memory system with page-mode writes; Figure 2.7 does the same in a memory
system without page-mode writes. The graphs plot the CPI contribution of the write buffer
against cache size; there is one curve for each write-buffer depth. Increasing the cache size or
associativity reduces the number of read and instruction-fetch misses, and thus reduces the
number of main-memory transactions. Reducing the number of main-memory transactions
increases the effectiveness of the write buffer because the write buffer fills up less frequently
and also has more cycles in which to retire writes (Section 2.1.1).

In memory systems with page-mode writes (Figure 2.6), the difference between the CPI
contribution of a one-deep write buffer and a six-deep write buffer is less than 0.05. This is
surprisingly small considering the burstiness of the writes and is due to the effectiveness of
page-mode writes, as the following example illustrates.

Suppose that a program is allocating and initializing a 4-word object and that the write
buffer is one-deep. Further, suppose that the write buffer is empty and that the instructions
doing the allocation all hit in the instruction cache. The first write does not stall the CPU
because the write buffer is empty. At the next write one cycle later, the write buffer is full
and the CPU stalls. After 4 cycles (see Table 2.5), the write is placed in the write buffer.
This write, however, is likely to be on the same DRAM page as the previous write because
it is to the next address. It will therefore complete in one cycle. All subsequent writes to
initialize this object find an empty write buffer because they also complete in one cycle due
to page-mode writes.

Due to sequential allocation, it is likely that writes to initialize objects allocated one
after another will also be on the same DRAM page. In the best case, with no read misses
and refreshes, a write buffer full delay will happen only once per N words of allocation,
where N is the size of the DRAM page. Thus, the write buffer depth has little effect on the
performance of SML/NJ programs if the memory system has page-mode writes. To confirm
this explanation, I measured the probability of two consecutive writes being on the same
DRAM page. This probability averaged over the benchmarks is 96%.

The small effect of write-buffer depth on performance does not imply that a write buffer
is useless if the memory system has page-mode writes. Instead, it says that a deep write
buffer offers little performance improvement in a memory system with page-mode writes if
the programs have strong spatial locality in their writes, and the majority of the reads and
instruction fetches hit in the cache. Strong spatial locality means that the probability that
two consecutive writes are to the same DRAM page is high.

Write-buffer depth is important, however, if the memory system does not have page-
mode writes (Figure 2.7). In this case, a six-deep write buffer performs much better than a
one-deep write buffer. Note that Figures 2.6 and 2.7 have different scales.

2.3.5 TLB Performance

Figure 2.8 gives the TLB miss contribution to the CPI for each benchmark program. We
see that the CPI contribution of TLB misses falls below 0.01 for all our programs for a 64

36

*

wb depth=1 ——TF—— wb depth=2 wb depth=4 ———— wb depth=6

0.2 0.2
0.18 ™ 0.18
~ 016 C (a) Assoc =1 ~ 0.16 B (b) Assoc =2
S - S
o 0.14 5 0.14 U
g [g - -
z 0.12 2 0.12
= U = O
2 0.1 2 0.1
0 . n 0 .
% 0.08 . % 0.08 -
= 0.06 . < 0.06 O
> = > .
O 0.04 0 m O 004 .
- U O
0.02 - 0.02 -
0 0
N N N N N N N N N
%) & N =) %) & N <
— on O S — o \O
I and D cache size I and D cache size

Figure 2.6: Write buffer CPI contribution for VLIW, With page-mode writes

37

>[Om

128K

*

wb depth=4 ———— wb depth=6

wb depth=1 ——TF—— wb depth=2

06 0.6
|
] (a) Assoc =1] . (b) Assoc =2
|]
05 O [05 |
g O " " £ O "
o= O = O
= Q
2 04° = 45 4 E 04 - 0
Z * g
— . - 23
B 03 . £ 03 .
% * 'S % *
S =
8 0.2 8 02
5 5
0.1 0.1
0 0
¥ ¥ ¥ ¥ ¥ H X ¥ 9§ %
— (ep) \O C‘_‘\] — o \O
I and D cache size I and D cache size

Figure 2.7: Write buffer CPI contribution for VLIW, Without page-mode writes

38

128K

entry unified TLB. For half the benchmarks, it is below 0.01 even for a 32 entry TLB.

25

L] cow
2o] leroy
O
- w * lexgen
8
ERRR life
Z
=]
3 A pia
L
% 1 simple
3
o ° vliw
8 o yace
0.5 M
X
0 b g ol o
2 4 8 16 32 64

Number of TLB entries

Figure 2.8: TLB contribution to CPI

2.3.6 Validation

To validate my simulations, I ran each of the benchmarks five times on a DECStation
5000/200 (running Mach 2.6) and measured the elapsed user time for each run. I ran
the programs on a lightly-loaded machine but not in single-user mode. The simulations
with write allocate/subblock placement, 641K direct-mapped caches, 16 byte blocks, and a
64 entry TLB correspond closely to the DECStation 5000/200 with the following three
important differences. First, the simulations ignore the effects of context switches and system
calls. Second, the simulations assume a virtual address=physical address mapping that can
have many fewer conflict misses than the random mapping used in Mach 2.6 [49]. Third,
the simulations assume that all instructions take exactly one cycle (plus memory-system
overhead).

In order to minimize the memory-system effects of the virtual to physical mapping and
context switches, I take the minimum CPI of the five runs for each program and compare
it to the CPI obtained via simulations. I present my findings in Table 2.8: measured (sec)
is the user time of the program in seconds, measured CPI is the CPI obtained from the
measured time, simulated CPI is the CPI obtained from the simulations, multi-cycle CPI is
the overhead of multi-cycle instructions when it could be accurately computed; discrepancy
is the discrepancy between the simulated CPI plus the multi-cycle CPI and the measured
CPI as a percentage of measured CPI.

Table 2.8 shows that with the exception of PIA, the discrepancy is less than 10% and
that the actual runs validate the simulations. The discrepancy in PIA is due to multi-
cycle instructions that comprise 4.8% of the total instructions executed. Because multi-
cycle instructions do not cause stalls until their results are used, their cost can usually be

39

| Program | Measured (sec) | Measured CPI | Simulated CPI | Multi-cycle CPI | Discrepancy (%) |

CW 25.83 1.42 1.39 0.00 2.48
Knuth-Bendix 14.95 1.27 1.21 0.00 5.22
Lexgen 16.13 1.40 1.31 0.00 6.29
Life 17.16 1.23 1.21 0.00 1.19
PIA 6.41 1.43 1.18 * 17.62
Simple 29.81 1.33 1.21 * 9.03
VLIW 25.61 1.76 1.39 0.20 9.66
YACC 6.58 1.39 1.36 0.00 2.20

cannot be determined without simulating the CPU and/or FP unit pipelines.

Table 2.8: Measured versus Simulated

determined only by simulation. I was able to determine accurately the overhead of multi-
cycle instructions for VLIW because the results of most multi-cycle instructions are used
immediately afterwards. In the case of PIA, the distance between multi-cycle instructions
and their use varies considerably. However, even if each multi-cycle instruction stalls the
CPU for half its maximum latency, the discrepancy falls well below 10%. Thus, multi-cycle
instructions can explain the discrepancy for PIA.

2.3.7 Extending the results

Section 2.3.3 demonstrated that heap allocation has a significant memory system cost if new
objects cannot be allocated directly into the cache. In this section, I present an analytic
model that predicts the memory system cost due to heap allocation when this is the case. The
model formalizes the intuition presented in Section 2.3.1, and predicts the memory system
cost due to heap allocation when the block size, the miss penalties, or the heap-allocation
rate changes. I use the model to speculate about the memory system cost of heap allocation
for caches without subblock placement if SML/NJ were to use a simple stack.

An analytic model

Recall that heap allocation with copying garbage collection allocates memory that typically
has not been touched in a long time and is unlikely to be in the cache. This is especially
true when the allocation area does not fit in the cache. When newly allocated memory is
initialized, write misses occur. The rate of write misses depends upon the allocation rate
(a words/instruction) and the block size (b words). Given the rate of write misses, I can
calculate the memory system cost, C, due to heap allocation. The read and write-miss
penalties are r, and w, respectively.

Under the assumption that the allocation area does not fit in the cache, i.e. initializing
writes miss,

C

write alloc w, *a/b

Under the additional assumption that programs touch data soon after they allocate it,

40

Cache size | write no alloc/no subblock | write alloc/no subblock
(Kilobytes) (%) (%)
8K 7 2
16K 7 2
32K 7 2
64K 11 6
128K 32 24
256K 129 111
512K 1848 1746

Table 2.9: Percent difference between analytical model and simulations

C r, *a/b

write no alloc

Because the benchmarks do few assignments, the cost of heap allocation should account
for the difference in CPIs when the write-miss policy varies. Hence,

C
C

write alloc/no subblock ~ CPlLyjte alloc/no subblock ~ CPLrite alloc/subblock
write no alloc/no subblock ™ CPLrite no alloc/no subblock ~ CPLrite alloc/subblock

Table 2.9 shows the average (arithmetic mean) difference between the predicted cost, C
and the actual difference in CPls, as a percentage of the actual difference in CPIs. The
values used to calculate Table 2.9 were: b =4, r,=15 and w,=15.

The model is accurate for small caches of 128K or less, when the allocation area does
not fit in the cache. As expected, the model is inaccurate when the allocation area fits in
the cache. The percentage difference increases rapidly as the benefit of subblock placement
becomes negligible. Thus, this model predicts the memory system cost of heap allocation
only for small cache sizes.

SML/NJ with a stack

[can speculate about the memory-system cost of heap allocation in SML/NJ when a stack is
used using this model. In the absence of first-class continuations, which the benchmarks do
not use, callee-save continuations can be stack-allocated easily. The callee-save continuations
correspond to procedure activation records. The first two columns of Table 2.10 give the
rate of heap allocation with and without heap allocation of callee-save continuations.

Assuming only continuations are stack-allocated, column 3 of Table 2.10 presents an
estimate of the memory-system cost of heap allocation for caches that do not have subblock
placement and are too small to hold the allocation area. The block size is 16 bytes, the
read-miss penalty 15 cycles, and the write-miss penalty for the no-subblock caches 15 cycles.
Because the read and write miss penalties are the same, C is the same for write-allocate and
write-no-allocate organizations.

This is an upper bound on the expected memory-system cost of heap allocation with a
stack because it may be possible to stack-allocate additional objects [52]. We see that even

41

Program Allocation rate Allocation rate

including callee-save conts. | excluding callee-save conts. C

(words/useful instruction) | (words/useful instruction) | (cycles/instruction)
CW 0.12 0.04 0.15
Knuth-Bendix 0.23 0.12 0.44
Lexgen 0.11 0.03 0.12
Life 0.11 0.02 0.09
PIA 0.17 0.13 0.47
Simple 0.14 0.05 0.17
VLIW 0.16 0.06 0.23
YACC 0.14 0.07 0.24
Median 0.14 0.05 0.20

Table 2.10: Assuming procedure activation records are stack allocated in SML/NJ, this table
presents the expected memory system cost of heap allocation for caches without subblock
placement

with a simple stack, the memory system costs due to heap allocation for caches without
subblock placement will probably be significant for SML/NJ programs.

2.4 Related Work

There have been many studies of the cache behavior of systems using heap allocation and
some form of copying garbage collection. Peng and Sohi [68] examine the data-cache behavior
of small Lisp programs. They use trace-driven simulation, and propose an ALLOCATE
instruction for improving cache behavior that allocates a block in the cache without fetching
it from memory. Wilson et al. [96, 97] argue that cache performance of programs with
generational garbage collection will improve substantially when the youngest generation fits
in the cache. Koopman et al. [50] study the effect of cache organization on combinator graph
reduction, an implementation technique for lazy functional programming languages. They
observe the importance of a write-allocate policy with subblock placement for improving heap
allocation. Zorn [99] studies the effect of cache behavior on the performance of a Common
Lisp system when stop-and-copy and mark-and-sweep garbage collection algorithms are used.
He concludes that when programs are run with mark-and-sweep garbage collection they have
substantially better cache locality than when run with stop-and-copy garbage collection.
My work differs from previous work in two ways. First, previous work uses the overall
miss ratio as the performance metric, which is a misleading indicator of performance. The
overall miss ratio neglects the fact that read and write misses may have different costs.
Also, the overall miss ratio does not reflect the rates of reads and writes, which may affect
performance substantially. I use memory system contribution to CPI as my performance
metric, which accurately reflects the effect of the memory system on program running time.

42

Second, previous work does not model the entire memory system: it concentrates solely on
caches. Memory-system features such as write buffers and page-mode writes interact with
the costs of hits and misses in the cache and should be simulated to give a correct picture
of memory-system behavior. I simulate the entire memory system.

Appel [7] estimates CPI for the SML/NJ system on a single machine using elapsed time
and instruction counts. His CPI differs substantially from mine. However, Appel confirms my
measurements by personal communication and later work [8]. The reason for the difference
is that instructions were undercounted in his measurements.

Jouppi [45] studies the effect of cache write policies on the performance of C and Fortran
programs. My class of programs is different from his, but his conclusions support mine: that
a write-allocate policy with subblock placement is a desirable architectural feature. He finds
that the write-miss ratio for the programs he studies is comparable to the read-miss ratio,
and that write-allocate with subblock placement eliminates most of the cost of the write
misses.

2.5 Conclusions

In this chapter, I study the memory-system performance of SML programs. To my surprise,
I find the memory-system performance of SML programs is quite good on some memory
systems. In particular, on an actual machine (the DECStation 5000/200), I find that the
memory-system performance of SML programs is comparable to that of C and Fortran
programs [19]: programs run only 3 to 13% slower due to data-cache misses than they would
run with a zero-latency memory.

I also find that heap allocation has a dominant effect on the memory-system performance
of SML programs. For memory-system configurations that do not support heap allocation
well, the slowdown due to data-cache misses is often higher than 50%. Ifind that the memory-
system features that are important for achieving good performance with heap allocation
are subblock placement with a subblock size of one word, combined with write-allocate on
write-miss, page-mode writes, and cache sizes of 32K or larger. Heap allocation leads to
poor memory-system performance on machines whose caches are smaller than the allocation
area of the programs (256K or larger for the benchmarks that I study) and do not have one
or more of the features mentioned previously. That is, most workstations circa 1995 do not
support heap allocation well.

These results have two implications for compiling SML programs. First, we should avoid
heap allocation whenever possible. Although heap allocation does not have to lead to poor
memory-system performance, it often does. Thus, we should prefer stack allocation. Second,
we should focus on reducing the instruction counts of SML programs, instead of improving
their memory-system performance. On machines with the right memory-system architec-
tures, the memory-system performance of SML programs is comparable to that of C and
Fortran programs. Because SML programs are so much slower than C and FORTRAN pro-
grams, even on these machines, the implication is that SML programs must be executing
too many instructions.

43

44

Chapter 3

Cost of automatic storage
management

In this chapter, I study the conjecture that SML programs spend a lot of time doing auto-
matic storage management. This is joint work with Amer Diwan. Amer and I designed the
experiment and did the measurements. Amer also made additional changes to the SML/NJ
compiler and QPT [12, 53, 54] beyond those described in Chapter 2 so that we could make
the measurements.

[measure the cost of storage management for eight programs on a DECstation 5000/200
[28]. T chose the DECStation 5000/200 because its memory system is favorable to programs
that heap allocate intensively. Chapter 2 shows that a less favorable memory-system orga-
nization would increase the cost of storage management by increasing the cost of allocation.

As I mentioned previously, I use trace-driven simulation to make the measurements.
Trace-driven simulation allows me to count the instructions spent performing various tasks,
such as tagging integers and implementing the write barrier. The measurements include
most of the instruction-level and memory-system costs of storage management. I measure
instructions spent garbage collecting, allocating, checking if garbage collection is necessary,
tagging, implementing a write barrier, and making code relocatable so that it can be placed
in the heap and garbage-collected. In addition, I measure the memory-system cost incurred
during garbage collection and the memory-system cost incurred during the rest of program
execution. [also measure the effect of garbage collection displacing instructions and data
used during the rest of program execution from the cache. I estimate upper bounds on
the memory system cost due to the disruption of spatial locality by storage management,
header words occupying space in the data cache, and instruction-cache misses from storage-
management instructions.

The measurements show that SML programs spend 19% to 46% (with a median of 31%)
of their execution time doing automatic storage management. They also show that the cost
of automatic storage management is scattered throughout the programs: in particular the
time spent doing storage-management tasks other than garbage collection is greater than
the time spent collecting garbage. I discuss the implications of these results for compiling
SML programs in the conclusion of this chapter.

I have organized the chapter in the following manner: Section 3.1 introduces terminology

45

and describes the storage-management strategy used by the SML/NJ compiler, Section 3.2
describes the measurement techniques and benchmark programs, Section 3.3 presents mea-
surements for eight SML/NJ programs, Section 3.4 reviews related work, and Section 3.5
concludes.

3.1 Background

The following sections introduce terminology and describe the storage-management tech-
nique that is used in the version of the SML/NJ compiler that I measure.

3.1.1 Terminology

Storage management refers to the management of memory by an individual program. In
a garbage-collected program, the part of the program that is not the garbage collector is
called the mutator. Execution of the mutator is called mutation. Storage management has
two components in garbage-collected programs. The first component, which is obvious, is
the execution of the garbage collector. The second component comprises tasks done outside
the garbage collector to support storage management. The cost of these tasks is called the
storage-management cost during mutation.

The number of instructions that it takes to perform a task is the instruction-level cost
of that task. The time that a processor waits for memory while performing a task is the
memory-system cost of that task.

3.1.2 Storage management in the SML/NJ compiler

[use version 0.91 of the SML/NJ compiler in this study. Storage management in this system
has many components. One obvious component is garbage collection, but there are many
additional components:

o checking whether garbage collection is needed

allocating new objects

tagging

implementing a write barrier,
e and implementing position independent code.

The SML/NJ compiler uses heap-only allocation: all allocation is done on the heap. In
particular, all activation records are allocated on the heap instead of a call stack. The heap
is managed automatically using generational copying garbage collection [5, 6, 58].

In copying garbage collection [20, 32|, an area of memory is reclaimed by copying the live
(non-garbage) data to another area of memory. The area from which the data is copied can
then be reused.

46

Version 0.91 of the SML/NJ compiler uses a simple variant of generational copying
garbage collection [5]. It divides memory into an old generation and an allocation area.
The mutator creates new objects in the allocation area. When the allocation area becomes
full, the garbage collector copies the live data in the allocation area to the old generation
in a minor collection. When the size of the old generation becomes sufficiently large, the
garbage collector collects the entire heap in a major collection. The garbage collector copies
live objects using a Cheney scan [20], which copies objects in a breadth-first order. In Sec-
tion 3.2.4, I describe the criteria that the system uses to decide when to collect the whole
heap. Generational garbage collection is efficient because most allocated objects die young
(about 99% [7, p. 206]) and few objects are copied from the allocation area.

Before a mutator can allocate an object, it must check that there is sufficient space on
the heap to allocate the object. If not, it must invoke the garbage collector. The SML/NJ
compiler places these checks at the beginning of most extended basic blocks, instead of
inserting them before every allocation. An extended basic block is a block of code with only
forward jumps. Thus, the cost of a check may be amortized across across several allocations.
The SML/NJ compiler places checks on only some of the extended basic blocks. For other
extended basic blocks, the checks are redundant because there are checks along all paths
to those blocks that suffice to establish that a garbage collection will not be needed. The
SML/NJ compiler also places checks on many extended basic blocks that do no allocation
because these checks are also used to implement asynchronous signals [74].

The SML/NJ compiler generates in-line machine code to allocate everything but arrays
and strings. The in-line machine code is only two instructions long. Recall from Section 2.1.4
that only two instructions are needed because the garbage collector always reclaims the
entire allocation area. The SML/NJ compiler generates procedure calls to allocate arrays
and strings. I do not regard initializing newly allocated storage as part of allocation.

The compiler tags all objects so that the garbage collector can find all live objects and
copy them. All objects except integers have a header word that describes the kind and the
size of the object. The kind tells whether the object is a record, array, byte-array, etc. The
compiler tags integers with a 1 in the least significant bit and it tags pointers with a 0 in the
least significant bit. This means that programs often need to manipulate tags to do integer
arithmetic operations.

The write barrier tracks all pointers from the old generation to objects in the allocation
area. The objects that the write barrier tracks must be regarded as live when only the
allocation area is collected. Otherwise, collection of the allocation area could create dangling
pointers.

The compiler implements the write barrier using a store list. The only way that a program
can create a pointer from the old generation to the new generation is by doing an assignment.
Before a program does an assignment x := t where the source value t could be a pointer,
it adds x to the store list. The garbage collector processes the store list during a minor
collection and then discards it.

The SML/NJ interactive system places code in the heap so that it may be reclaimed by
the garbage collector, but this means that code may be moved by the garbage collector. Thus,
code needs to be position independent. The compiler implements position independence by
doing all addressing of instructions using base-offset addressing. A program adjusts the base

47

register every time it enters a module.

3.2 Methodology

I use trace-driven simulation to measure the cost of storage management. This allows me to
measure the cost of storage management precisely, including the memory-system cost, and
to separate the cost into its components.

In the following subsections, I describe what I measure for each component of the cost of
storage management, the traces and trace-generation mechanism that I use, the memory sys-
tem that I simulate, my benchmark programs, and the garbage collection sizing parameters
that T use.

3.2.1 Measurement methodology for each component

Table 3.1 lists what I measure for each component of the cost of storage management. The
first three entries are the cost of garbage collection. The remaining rows are the storage
management costs in the mutator.

The one instruction-level cost of storage management that I do not measure is the effect
of storage management on program optimization [18]. Diwan et al. [30] present techniques
that allow extensive optimization even using copying collection with unambiguous roots.

Storage management also affects the memory-system cost that a mutator incurs. I am
unable to measure this effect directly. I defer discussing this effect in detail and how I
measure it to Section 3.3.3.

I measure the cost of position-independent code as the number of instructions spent
updating the base register and the additional instructions that have to be executed relative
to position-dependent code. In particular, jump tables are more expensive in position-
independent code. For position-dependent code, the table address is an absolute address,
but for position-independent code the table address must be computed. In addition, for
position-dependent code, the table gives absolute addresses. In position-independent code,
the table gives relative offsets and the address of the target must be computed also.

[use the modified versions of QPT and the SML/NJ compiler described in Chapter 2
to produce traces for SML/NJ programs. Amer Diwan extended QPT further by adding an
event tracing facility to QPT.

An event is a specially marked instruction. Amer Diwan extended QPT so that when an
event is encountered during the execution of a traced program, an event marker is inserted
into the trace. The event marker identifies the event and also contains parameters to the
event (if any). The simulator consuming the trace can take whatever actions are necessary
when it encounters an event marker. For example, when an integer-tag event is encountered
during run time, an integer-tag event marker is inserted into the trace. When the simulator
sees the marker, it increments the count of instructions spent doing integer tagging.

I also use the event-tracing mechanism to mark different phases of garbage collection. For
example, the first and last instructions for the Cheney scan are events. When the simulator
encounters one of these events, it outputs a message noting the event and the memory-system

48

Root processing

Instructions to process the store list and registers, includ-
ing copying objects immediately reachable from the store
list and registers. Also any memory-system cost incurred
while executing those instructions.

Cheney Scan

Instructions to do the breadth-first copying of objects.
Also any memory-system cost incurred while executing
those ingtructions

Moveback

Instructions to move the old generation to one end of the
free region. Also any memory-system cost incurred while
executing those instructions.

Allocation

Instructions to increment the allocation pointer and ini-
tialize registers to point to newly-allocated objects. This
does not include instructions to initialize newly-allocated
storage before it is used.

GC Check

Instructions to check whether garbage collection is
needed and to jump to the garbage collector entry code
if garbage collection is needed.

Integer Tagging

Instructions to tag and untag integers.

Record Tagging

Instructions to write header words of records.

Position-Independent code

Instructions to update base register. Also, additional in-
structions needed relative to position dependent code to
compute jump table addresses from the addressing regis-
ter

Store list

Instructions to add a record to the store list.

Table 3.1: Measurements for each component of the cost of storage management

49

statistics. The statistics are the total numbers of reads, writes, data-cache read misses, data-
cache write misses, instruction-cache misses, and write buffer stalls through that point of
program execution. From these statistics, I can compute the memory-system cost incurred
during each phase of garbage collection.

Amer Diwan identified events to QPT by adding event tables to executable files. Each
event table corresponds to one kind of event and lists the locations of all instructions at
which that kind of event occurs. In addition, each event table also specifies the values of
the parameters to the event for each instruction. When invoked on an executable file, QPT
searches the executable file for these tables. Amer Diwan modified the SML/NJ compiler to
emit these tables for “interesting” events. He created event tables for the garbage collector,
which is written in C, by manually editing the assembly file produced by a compiler.

The tracing mechanism is non-intrusive: the traces produced by QPT correspond to
addresses in the original programs rather than those in the instrumented programs.

3.2.2 Memory system simulation

[simulate the DECstation 5000/200 memory system using the extended version of Tycho
[42] described in Section 2.2.1. Table 3.2 summarizes the memory system of the DECstation
5000/200. The DECstation 5000/200 has a split instruction and data cache. The instruction
cache is direct mapped and is composed of blocks of 16 bytes each. The data cache is also
direct mapped, but has a block size of 4 bytes. However, on a read miss, 16 bytes aligned
on a 16 byte boundary are fetched from memory. Because the DECstation 5000/200 has a
block size of 4 bytes, a write miss can write to the cache immediately without fetching a
block from memory'. The DECstation also has a write buffer to avoid stalling the CPU on
a write; the CPU needs to stall on a write only when the write-buffer fills up. Chapter 2
shows that this memory system is favorable to allocation-intensive programs.

3.2.3 Benchmark Programs

I use the same benchmarks that I use to study memory-system performance. I describe the
benchmarks in Section 2.2.3.

Stefanovi¢ and Moss [87] find that the allocation of callee-save continuation closures on
the heap has a profound impact on the young-object dynamics of ML programs. In the
programs they measure?, most objects are short-lived. They attribute the high mortality
rate to the allocation of callee-save continuation closures on the heap. The age at which
most objects die is program dependent, as is the percentage of objects that die at that age.
In particular, YACC has a relatively high object survival rate when compared to Knuth-
Bendix. Thus, I expect YACC to have a higher garbage collection cost than Knuth-Bendix
because the garbage collector has to copy more objects from the allocation area to the old
generation.

! Partial-word writes are treated differently, but because the benchmark programs do so few partial writes,
I ignore them in my discussion without a loss of accuracy.

?This includes many of the programs we measured. However, they give data for only Knuth-Bendix and
YACC in their paper.

50

Instruction cache

64K, direct mapped

Block size 16 bytes
On miss fetch aligned 16 bytes

Data cache

64K, direct mapped
Block size 4 bytes
Write through

On write miss, write word to cache

On read miss, fetch aligned 16 bytes

Write buffer
Six 4-byte entries

Table 3.2: Summary of the DECstation 5000/200 memory system

‘ Task ‘ Penalty (in cycles) ‘
Write hit or miss 0
Read miss 15
Instruction-fetch miss 15

Non-page-mode write

Page-mode write 1

Table 3.3: Penalties of memory operations

51

Program Roots | Cheney | Move || Alloc. | Ge Int | Record | Pos. ind. | Store | Total
back check | tag | tag code list
CW 0.06 0.05 0.01 0.04 0.05 | 0.02 | 0.04 0.03 0.01 | 0.31
Knuth-Bendix || 0.00 0.09 0.01 0.08 0.05 | 0.00 | 0.08 0.02 0.00 | 0.33
Lexgen 0.00 0.06 0.01 0.03 0.06 | 0.08 | 0.03 0.04 0.00 | 0.31
Life 0.00 0.01 0.00 0.04 0.06 | 0.02 | 0.04 0.02 0.00 | 0.19
PIA 0.00 0.05 0.00 0.06 0.05 | 0.00 | 0.06 0.01 0.00 | 0.23
Simple 0.05 0.07 0.03 0.05 0.04 | 0.03 | 0.05 0.02 0.00 | 0.34
VLIW 0.01 0.06 0.01 0.04 0.04 | 0.05 | 0.04 0.03 0.00 | 0.28
YACC 0.01 0.25 0.04 0.04 0.04 | 0.02 | 0.04 0.02 0.00 | 0.46

Table 3.4: Breakdowns of storage management costs for benchmark programs. All numbers
are fractions of total execution time

3.2.4 Garbage collection sizing parameters

[use the default strategy for sizing the allocation area and the old generation [5]. The heap
is sized as r times the size of the old generation after the old generation is collected, where
r is the desired ratio of heap size to live data. 1 use the default system value (r=5). The
allocation area is sized as one-half of the free space (the heap space not occupied by the old
generation). As the old generation grows after each collection of the allocation area, the free
space decreases and the allocation area decreases. The old generation is collected when the
remaining free space is less than the original size of the old generation (less than 1/5 the size
of the heap).

In addition to the ratio, the garbage collector is controlled by the softmax and the initial
heap size. The softmax is a desired upper limit on the heap size. It is exceeded only to
prevent programs from running out of space. The softmax is 20 megabytes; the benchmark
programs never reach this limit and are always able to resize their heaps to maintain the
desired ratio of 5. The initial heap size is 1 megabyte.

3.3 Results

In this section, I present my results. First, I give the breakdown of the cost of storage
management. Second, I show that the cost of automatic storage management is scattered
throughout programs: focusing only on the cost of garbage collection is misleading. Third,
I identify the different components of the memory-system cost of storage management and
explain why 1t is difficult to measure these components. I then give measurements for most
of these components and estimate upper bounds for the remaining components. These
estimated costs range from a few percent to negligible on the DECStation 5000/200.

3.3.1 The cost of storage management

Figure 3.1 gives a breakdown of the cost of storage management. Table 3.4 gives these
numbers as a table. For garbage collection, I measure:

52

0.5

0.45 B Root processing L] Cheney Il Moveback [Allocation Gec check

04 Int tagging M Record tagging Posit. ind. code

035

03

0.25

02

Fraction of total execution time

0.15

0.1 I R RRNNE]

0'05 -
0] —

CwW Knuth- Lexgen Life Pia Simple Viiw Yacc
Bendix

Program

Figure 3.1: Breakdowns of storage management cost for benchmark programs.

e the cost of processing the store list and registers (roots),
e scanning and forwarding reachable objects (Cheney),
e and moving the heap back at the end of a major collection (moveback).

I also measure entry and exit costs, which are the costs of entering the collector from SML
and returning from the collector to SML. These costs are insignificant, so I omit them from
the graph. All the costs of garbage collection include memory-system costs.

For mutation, I measure:

e the instruction counts for allocation (allocation),

e checking whether garbage collection is needed (gc check),
e tagging integers (int tagging),

e storing header words (record tagging),

e and position-independent code (posit. ind. code).

The cost of adding elements to the store list is negligible for most programs, so 1 omit it
from the graph.

Figure 3.1 suggests several opportunities for improving the performance of storage man-
agement in SML/NJ programs. First, eliminating position-independent code can reduce
program execution time by 1% to 4%. Although placing code in the garbage-collected heap

33

is useful in the setting of an interactive development environment, it is not useful for stand-
alone executables.

Second, improving integer tagging, which accounts for 0% to 8% of overall execution
time, ignoring the negligible instruction cache penalty, may reduce execution time. Integers
are tagged with 1 and pointers are tagged with 0 in the least significant bit. By tagging
integers with 0 and pointers with 1 and using displacement addressing, which is available on
many architectures, many tagging operations can be removed. Representation analysis [56]
may also eliminate some tagging operations.

Third, T speculate that using a hash-based scheme would improve the write barrier im-
plementation. The cost of adding elements to the store list during mutation is 0% to 1% of
overall execution time and the cost of processing the store list during garbage collection is
0% to 6% of overall execution time (Table 3.4, columns Store list and Roots). In a hash-based
scheme, a table is used instead of a list, and duplicate entries are eliminated when elements
are added to the table during mutation. The cost of adding entries during mutation should
be similar for both schemes, because the cost of adding an element to the store list is already
high (8 or 9 instructions). The cost of processing the table during garbage collection would
be lower than the cost of processing the list, because the table has no duplicate entries.

Fourth, scanning and forwarding reachable objects takes 1% to 25% of overall execution
time. This can be reduced by coding the inner loops of the collector carefully and by
increasing the size of the allocation area. Increasing the size of the allocation area allows
more objects to die, and thus fewer objects need to be copied during garbage collection.
However, this involves a trade-off: increasing the size of the allocation area may reduce
copying time but increase the memory-system cost. For the DECStation 5000/200 memory-
system organization, which is favorable to heap allocation, increasing the allocation area
size is unlikely to change the memory-system cost. In Chapter 2, I show that halving the
cache size for the DECStation 5000/200 organization affects performance little. Some other
memory-system organizations, such as the SPARCStationll [24], are more sensitive to cache
size. Increasing the allocation area size can increase the memory-system cost greatly.

An interesting point to note about Figure 3.1 is that the cost of checking whether garbage
collection is needed (gc check) is larger than the cost of allocation (allocation) for CW, Lex-
gen, and Life. This is despite the fact that the check and allocating an object both take two
instructions on the MIPS, and that a check is sometimes for multiple allocations. I specu-
late that this is because the SML/NJ compiler overloads checks to implement asynchronous
signals [74]. This results in checks in extended basic blocks that do no allocation, so that
the allocation cost is not an upper bound on the cost of checking whether garbage collection
is needed.

3.3.2 Most costs are incurred during mutation

To illustrate how inaccurate it can be to focus only on time spent garbage collecting, Fig-
ure 3.2 compares the cost of garbage collection against the cost of instructions executed
during mutation to support storage management. The garbage-collection cost includes the
memory-system cost, but the storage-management cost during mutation does not include
the memory-system cost. Still, the storage-management cost during mutation is larger than

54

the garbage-collection cost for seven of the programs. This shows that regarding the cost

of garbage collection as the cost of storage management is inaccurate: most of the cost is

scattered throughout the program.

Fraction of total execution time

0.35

03 B GC total
0.25 L] Mutator total

02
0.15

0.1
0'05 L

0 L .
Ccw Knuth- Lexgen Life Pia Simple Vliiw Yacc
Bendix
Program

Figure 3.2: Comparison of garbage collection and mutation storage-management costs

3.3.3 The memory-system cost of storage management

Because the cache is a global shared resource, it can be difficult to pinpoint the exact cause

of a cache miss. One instruction may cause a cache miss that knocks data out of the cache

that is used by a subsequent instruction. Thus, the subsequent instruction will also have a

cache miss. This makes it difficult to correlate misses with their actual source: an instruction

at which a miss occurs may not be the actual cause of the miss.

Storage management may incur memory-system cost:

1. during garbage collection.
2. by collection displacing mutator data and instructions from the cache.

3. by allocating memory that is not resident in the cache. When the mutator initializes
or uses the memory, cache misses may occur.

4. by increasing the size of data by adding header words. This reduces spatial locality
and the effective size of the cache.

5. by reducing the spatial locality of mutation by rearranging the layout of data in mem-
ory. This may also improve spatial locality.

35

1
B = — - u
Q B Gc inst cache
£ 038
g L] Gc data cache
§ 0.6
% . B Geinsts
=
8 B Mutator inst cache
< 04
=}
=
k) [] Mutator data cache
Q
s 02
s 0.
= [] Mutator insts
0
o = (5} < <L Q
5 €4 § £ £ g & 2
b 5 g > >
M M 3 n
Program

Figure 3.3: Breakdown of memory-system cost during collection and mutation.

6. by changing the code size of the mutator by requiring code for tagging, the write
barrier, and position-independent code. This may increase instruction-cache misses.

I measure some of the components of the memory-system cost of storage management,
and place upper bounds on the remaining components

[measure the memory-system cost incurred during garbage collection. Figure 3.3 presents
the memory-system costs incurred during mutation and collection. The memory-system
cost that occurred during collection is 0.1% to 4.3% of overall execution time. The cost of
instruction-cache misses during collection is negligible.

I also measure the effect of garbage collection displacing instructions and data used during
mutation from the cache. The effect is negligible. The cost of instruction misses during mu-

| Program | Before (miss rate) | After (miss rate) |
CW 0.03 0.02
Knuth-Bendix | 0.04 0.04
Lexgen 0.03 0.03
Life 0.01 0.01
PIA 0.01 0.01
Simple 0.01 0.01
VLIW 0.02 0.01
YACC 0.03 0.04

Table 3.5: Data-cache miss rates before and after garbage collections

56

tation caused by garbage collection is bounded from above by the cost of instruction misses
during garbage collection, because the machine has a split instruction and data cache. Be-
cause the cost of instruction misses during garbage collection is low (see Figure 3.3), this
effect is negligible. To measure the effect of data-cache misses during mutation caused by
collection, I collected memory-system statistics for intervals before and after each collection.
The arithmetic mean of the sizes of the intervals measured before each collection was 143,000
instructions. The mean of the sizes of the intervals after each collection was 166,000 instruc-
tions. Table 3.5 shows the average cache-miss rates for the intervals for each program; the
Before column gives the data-cache read-miss rates for the intervals just before each garbage
collection and the After column gives the data-cache read-miss rates for the intervals after
each garbage collection. If garbage collection were disturbing the cache locality of mutation,
I would expect the miss rates after garbage collection to be noticeably higher than those
before garbage collection. I see only a slight variation. This suggests that data references
during collection do not cause significant data-cache misses during mutation.

Because the DECStation 5000/200 memory system has no penalty for write misses, be-
sides write-buffer penalties that are small enough to be negligible, there is no cache penalty
for initializing writes that miss. If there were a penalty for write misses®, the programs would
run 24% to 72% slower than they do now. In other words, with a penalty for cache write
misses, most of the cost of storage management would be for initializing newly-allocated
objects.

Although I am unable to measure the remaining components of the memory-system cost
of storage management exactly, I place upper bounds on these components. Recall that
header words and copying during garbage collection may worsen the spatial locality of the
program. To bound this, note that obtaining perfect spatial locality could change the cache
misses by at most a factor of 2. This is because without header words, at most two of the
smallest objects (2 word cons cells) can fit in 16 bytes (which is the amount fetched on a
read miss). Table 3.6 shows an upper bound on the disruption of spatial locality by garbage
collection and other storage-management tasks. I compute the upper bound by halving the
cost of mutator data cache misses. This table demonstrates that the cost of disrupted spatial
locality is small. Of course, the cost of disrupted spatial locality may be more substantial
with larger fetch sizes or larger cache-miss penalties.

Header words may also increase the memory-system cost of mutation by decreasing the
effective cache size. Because a header word occupies 1/3 of the space used for the typical
smallest object, a list cell, at most 1/3 of the space in the cache is being occupied by header
words. The cache would need to be 50% larger in practice to achieve the same effective cache
size. | can give a generous estimate of the cost of header words by subtracting the data-cache
cost for a 128K cache from the cost for 64K cache, that is, generously assuming that without
header words the cache size is effectively doubled. Table 3.7 gives the improvement in going
to a 128K cache; this is an upper bound on the memory-system costs due to header words
decreasing the effective cache size.

The effect of effectively increasing the size of data depends on cache boundary conditions.
If data fits well within the cache, then increasing the size does not matter much. However, if
data just fits in the cache, then increasing the size of the data may cause cache misses. If data

3In particular, if write misses were blocking and required the cache block to be fetched from main memory.

57

Program Upper Bound
(% execution time)
CW 2.8
Knuth-Bendix | 4.8
Lexgen 3.2
Life 1.1
PIA 2.4
Simple 1.9
VLIW 1.6
YACC 2.9

Table 3.6: Upper bound on disruption of spatial locality by storage management

Program Upper Bound
(% execution time)
CW 1.8
Knuth-Bendix | 3.7
Lexgen 2.6
Life 1.0
PIA 1.8
Simple 0.8
VLIW 0.7
YACC 1.0

Table 3.7: Upper bound on data cache costs due to smaller effective cache size

38

Program Est. cost
(% execution time)
CW 1.8
Knuth-Bendix | 0.1
Lexgen 0.9
Life 0.0
PIA 0.4
Simple 0.4
VLIW 3.8
YACC 1.1

Table 3.8: Estimate of instruction cache costs due to storage management instructions

does not fit in the cache, increasing the size of the data leads to proportionately more cache
misses. | explored the effect of cache size on SML/NJ programs thoroughly in Chapter 2,
and found that there were no dramatic boundary conditions for SML/NJ programs on the
DECStation 5000/200.

Just as header words increase the size of data, storage-management instructions increase
the size of a program. This may cause additional instruction-cache misses. The fraction
of instruction misses during mutation that are on average due to storage management is
the fraction of instructions executed during mutation in support of storage management.
Figure 3.8 gives an estimate of the cost due to these extra instruction-cache misses for each
of the programs.

3.4 Related work

This study is more comprehensive in its measurements than previous works studying the
cost of storage management in garbage-collected systems. Ungar [92] measures the time
spent garbage collecting and the cost of integer tagging in a Smalltalk system, but does
not measure other costs incurred during mutation. Zorn [100] compares the cost of two
simulated garbage-collection algorithms. In contrast, I measure an actual implementation.
He measures the memory-system cost using the cache-miss ratio, which is an inaccurate
indicator of performance because it does not separate the cost of read and write misses.
Wilson et al.[96] and Peng and Sohi [68] also measure the memory-system cost of garbage
collection using the cache-miss ratio. They do not measure the instruction-level cost of
garbage collection or costs incurred during mutation. Reinhold [73] measures the cost of
garbage collection for a Scheme system, including the change in memory-system performance
of entire programs, but does not measure costs incurred during mutation.

Steenkiste [86] studies ways to reduce the cost of tagging in Lisp. He also studies in-
structions used for stack allocation. He is primarily concerned with hardware support to
improve tag checking required for dynamic typing. He finds that tag insertion and removal

59

costs about 4.5% with the best software scheme.

There have been several studies of the cost of storage management in languages with
explicitly-managed heap storage and stack allocation of procedure activation records. Detlefs
[27] measures time spent in allocation and deallocation routines, but does not measure the
cost of managing the stack. Grunwald et al. [35] finds that the implementation of explicit
heap management can affect the performance of allocation-intensive C programs significantly.

3.5 Conclusion

In this chapter, I study the cost of automatic storage management for SML programs. Unlike
other work measuring the cost of storage management, [measure both the time spent garbage
collecting and costs incurred during mutation.

The measurements show that SML programs spend 19% to 46% (with a median of 31%)
of their execution time doing automatic storage management, and that the cost of automatic
storage management is scattered throughout programs.

In the previous chapter, I showed that the memory-system performance of SML programs
implied that that SML programs must be executing too many instructions. The measure-
ments in this chapter show that automatic storage management is not the main reason SML
programs are executing too many instructions: even halving the cost of automatic storage
management would reduce the execution time of SML programs by only 15%. Thus, I must
look elsewhere to determine why SML programs are so much slower than C and FORTRAN
programs.

60

Part 11

Optimization

61

In the first part of this thesis, I demonstrated that SML programs were executing too
many instructions. Furthermore, I showed that automatic storage management was not the
main reason so many extra instructions were being executed.

In this part of the thesis, I describe a new approach to compiling SML programs based
on two ideas:

o A “pay-as-you-go” compilation strategy.

e Applying optimizations known to improve loops in conventional languages to recursive

SML functions.

Specifically, I describe the TIL compiler and I demonstrate how to apply to apply several
optimizations known to improve loops to SML programs. I focus on two sets of optimizations:
code motion optimizations, such as common-subexpression elimination and invariant removal
and array-bounds checking optimizations.

I have organized this part of the thesis to reflect the structure of the TIL compiler. In
Chapter 4, I describe the typed intermediate language framework used by TIL and LMLI, the
specific intermediate langauge used by TIL. I also give a general overview of the structure of
TIL and an example that illustrates how TIL translates SML programs to machine code. In
Chapter 5, I describe TIL’s machine-independent optimizer, excluding the “loop” optimiza-
tions. In Chapter 6, I describe the loop optimizations. Finally, in Chapter 7, I describe how
TIL translates optimized programs to machine code.

63

64

Chapter 4

The Typed Intermediate Language
(TIL) Framework

In this chapter, I provide background material on the TIL (Typed Intermediate Language)
compiler. This compiler is primarily joint work with Greg Morrisett. Perry Cheng, Chris
Stone, Robert Harper, and Peter Lee also helped construct TIL.

TIL is organized around the framework of typed intermediate languages: TIL uses a
typed intermediate language in most phases of compilation, and propagates type-related
information through all levels of the compiler: type-related information is propagated even
through register allocation.

By keeping type information around, TIL is able to use efficient specialized data represen-
tations, even though Standard ML is a polymorphic language. Previous ML compilers have
used a universal data representation for compiling at least some parts of an ML program.
A universal data representation forces every different type of data to have the same-sized
representation, usually a machine word, where part of the machine word is dedicated to a
tag. The tag tells a garbage collector whether the data is a pointer that the garbage collector
must trace, or an integer or floating point number that garbage collector does not need to
trace. The rest of the machine word is dedicated to holding actual data. For example, on a
machine with a 32 bit word size, 1 bit might be used for the tag, and 31 bits would be used
for data. This data might be a pointer or an integer.

With a universal data representation, data items that are naturally smaller than the
untagged part of the machine word, such as characters, are padded to fit in the untagged
part of the machine word. Data items that are naturally larger than the untagged part of
the machine word, such as floating-point numbers, are represented as pointers.

Forcing each piece of data to have a universal representation solves two important prob-
lems in compiling polymorphic languages. First, how do we create one piece of code for a
polymorphic function 7 If everything has the same size, then any data can be passed to a
polymorphic function. Second, how does a garbage collector find data that is in use, so that
it avoids reclaiming that data 7 The tag provides the garbage collector with the information
that it needs.

TIL takes a fundamentally different approach to these problems that is well-suited to
a language such as SML. Instead of forcing data to all have the same representation, TIL

65

propagates type information through all phases of compilation and passes type information
around at run time if necessary. This solves the problem of how to pass data of different
sizes to polymorphic functions: the functions simply examine the type of their argument
and do different things for different types. It also solves the problem of how to allow the
garbage collector to find data that is live: the garbage collector can use type information to
determine how to traverse data structures.

[have organized this chapter in the following manner. First, I introduce LMLI [63], the
primary intermediate language of TIL. Next, I give an overview of the phases of TIL and
the garbage collection technique used by TIL. Finally, I give an example that illustrates how
TIL translates SML programs to machine code.

4.1 LMLI

The key difficulty with using a typed intermediate language is formulating a type system
that is expressive enough to statically type check expressions that branch on types at run
time. TIL uses an intensionally polymorphic language called LMLI, which was designed
by Morrisett and Harper [63]. LMLI is the actual intermediate language used by the TIL
compiler, and it is the language that I use in the next two chapters on optimization. Morrisett
and Harper based their design on their intermediate language MM [37], which they used to
explore the theory of intensional polymorphism. In this section, I describe the syntax of AML
and informally describe its semantics. 1 then present the syntax of LMLI and informally
describe LMLI’s semantics. Finally, I give an example of an LMLI program.

4.1.1 Overview of M}t

My description of AML follows Morrisett’s presentation [63]. The syntax for AM% is presented
in Figure 4.1. There are four syntactic classes: kinds, constructors, types, and terms. Kinds
describe constructors, while types describe terms. Constructors can be thought of as the
representation of types at run time. There is an explicit injection of constructors into types:
T(u) is the type represented by the constructor p.

Constructors consist of type variables, the base type Int, function types, constructor func-
tions, constructor applications, and Typerec expressions. Typerec allows constructors to be
defined by structural induction on monotypes, which are constructors of kind 2. Monotypes
include type variables, Int, and constructors formed from Arrow. If Typerec p of (fint; farrow)
is given some g = Int, it selects pin. If the Typerec is given some p of the form Arrow(py, 112),
it applies itself to py and py respectively (i.e. the Typerec “unrolls” itself). It then applies
Larrow tO the resulting types.

Typerec is useful for specifying the types of functions that operate inductively over the
structure of types. Harper and Morrisett [37] present several examples of such functions,
including a function for flattening nested tuples and functions for marshalling and unmar-
shalling data that is transmitted over a network.

Terms consist of variables, integer literals, functions, polymorphic functions, function
applications, and polymorphic function application. typerec allows the definition of terms
by structural induction on monotypes, and works in a manner similar to Typerec. Informally,

66

(kinds) ko= Q| Kk — Ky

(constructors) p =t |Int | Arrow(puy, p2) | Atk g | pa pia |
Typerec M of (;uint; ,uarrow)

(types) o uw= T(p)|int| oy — o9 | Viuko

(expressions) e = x || Ao e| Atuke| erex | e[py] |
typerec p of [t.0](€int; Earrow)

Figure 4.1: Abstract syntax of \ML

it can be thought of as being similar to a “fold” operation over lists, except that it works
over monotypes. typerec p of [t.0](€int; €arrow) €Valuates u to a normal form. If the normal
form of u is Int, then the typerec evaluates ej,. If the normal form of p is Arrow(gy, p2),
the typerec applies itself to p; and ps to produce values vy and wvq, respectively. It then
applies the expression €up0w t0 i1, 12, v1 and v,.

Morrisett and Harper [37] show that typechecking for AM% is decidable, despite its rich
type system.

4.1.2 Overview of LMLI

In this section, I describe LMLI, the intermediate language of the TIL compiler.

Kinds, constructors, and types

In Figure 4.2, I describe the syntax of kinds, constructors, and types of LMLI. Kinds are ex-
tended to describe lists of constructors and tuples of constructors. These lists and tuples are
useful in building compound constructors such as record constructors and sum constructors.
Every constructor is annotated explicitly with its kind. Raw constructors consist of type
variables, arity-0 constructors, arity-1 constructors, recursive constructors, Typecase, and
introductory and eliminatory forms for lists and tuples of constructors.
The introductory and eliminatory forms for lists of constructors are straightforward:

o Nil is the empty list of constructors.

e Cons(u1, p2) places py on the front of the list .

o Fold takes a list of constructors. If the list is Nil, it evaluates py. Otherwise, it applies
itself to the rest of the list to produce some constructor c¢. It applies ¢f to the pair of

the first element of the list and c.

67

(kinds) Kk u= |k — Ky | List k| Tuple(x*)

(constructors) pu = rec::k

*

(raw con.) re = t]co|cr(p) | Rectype(t = p)*inp | ef | papa |
Typecase pq of «* default:py | Let t::x=pq in g |
Nil | Cons(g1, o) | Fold gy of Nil:psg Cons:cf |
Listcase p; of Nil:py Cons:ef | Tuple(p™) | Proj(z, i)

(arity-0 con.) ¢o := Int | Real | String | Intarray | Realarray | Exn | Enum :

(arity-1 con.) ¢; = Ptarray | Arrow | Record | Sum | Enumorrec ¢ |
Enumorsum ¢ | Excon | Deexcon

(typecase arm) a = c¢o:ip|cref

(con. functions) cf = Mk

(types) o u= T (u)|¥Y(tzr)*.o | int | real | string | realarray | stringarray |
exn | enum ¢ | ptrarray o | 0y — 03 | sum [oy...0,) |

enumorrec i[oy...0,] | enumorsum i[oy...0,] | record [oy...0,] |
excon o | deexcon o

Figure 4.2: Abstract syntax for kinds and types of LMLI

68

o Listcase takes a list of constructors. If the list is Nil, it evaluates py. Otherwise, it
applies the constructor function ¢f to the pair of the first element and the rest of the
list.

The introductory and eliminatory forms for tuples of constructors are also straightfor-
ward:

e Tuple creates a tuple of constructors.
e Proj projects the ith constructor from the tuple.

The arity-0 constructors include

integers,

o floating point numbers,
e strings,

e integer arrays,

e real arrays,

e and exception packets.

Enum 7 is a special case of a sum type: it represents enumerated types. For example, the
SML type datatype d = RED | BLUE is represented as the type Enum 2 in LMLI.
Arity-1 constructors include the following:

e Ptrarray, which constructs pointer arrays. Pointer arrays are arrays of values that are
represented at the machine level as pointers. These include arrays of all types except
Int and Real. The different array types allow LMLI to use specialized representations
for arrays. In particular, values stored in arrays of type Intarray and Realarray are never

boxed.
o Arrow, which constructs function types given a pair of constructors.
e Record which constructs a record type given a list of constructors.
e Sum, which constructs a sum type given a list of constructors.
e Enumorrec and Enumorsum, which construct special cases of sum types.

— Enumorrec i represents the special case of a sum where 7 of the cases carry nullary
types, and the final case carries a record type.

— Enumorsum is the analogous sum where the final case is a sum type.

69

For example, the SML type datatype d = NONE | SOME of int * int isrepresented
as

Enumorrec 1(Cons(Int, Cons(Int, Nil)))

The special sum types Enum, Enumorrec, and Enumorsum allow LMLI to directly ex-
press the various strategies for representing SML datatypes given by Appel [7].

The Rectype constructor defines recursive types. It takes a list of variables and construc-
tors and a constructor p, binds the variables mutually recursively to the constructors, and
places p in their scope. For example, the SML type

datatype intlist = nil | cons of int * intlist
is translated to
Rectype intlist=Enumorsum 1(Cons(Record(Cons(int,intlist)),Nil)) in intlist

LMLI as implemented in TIL supports Typerec. However, Typerec currently is not used
in TIL. The simpler form Typecase is used instead. Typecase takes a list of arms and a
default arm. Given a monotype p of the form pg, it selects the arm corresponding to po.
Given a monotype p of the form py(py), it selects the arm corresponding to p; and applies
the constructor function to py. If no arm corresponds to the monotype, it selects the default
arm.

Term-level expressions and declarations

In Figure 4.3, T give the syntax of term-level expressions and declarations of LMLI. Every
expression is annotated with its type. Expressions include floating-point constants (ranged
over by r), string constants (ranged over by s), values of enumerated sums, primitive opera-
tors of one argument, primitive operators of two arguments, and coercions (these operators
are described below).

The expression update(ar, e, €2, €3) updates an array. It evaluates ey, ey and es to the
values A, ¢, and v and updates the " value of A to be v. update does no bounds checking.
Also note that update is a specialized array operator: there are three different forms of the
operator: one for integer arrays, another for floating point arrays, and another version for
pointer arrays.

The expression extern(s,0) denotes an external identifier of type o. The expressions
make vararg and call_vararg are used to implement functions with variable numbers of
arguments [63]. The expressions eq and neq implement structural polymorphic equality
and inequality. They each take a constructor as an argument, and return an equality and
inequality function, respectively. These operators can actually be coded in LMLI, but they
are easier to optimize if they are kept as primitive operators. At the end of optimization, in
fact, they are replaced by LMLI expressions.

The expression record creates a record from a list of expressions. The expression inject
creates a sum, where each case of the sum takes multiple arguments. Sums are deconstructed
using switch, which is also overloaded to allow branching on integer values. For sums,
switch examines the case for the sum. It then selects the arm corresponding to the case,

70

(expressions) e

(bindings) b
(raw exp.) re
(functions) f
(type fun.) tf

(switch type) st
(typecase arm) ta

(opt. exp) o€

(opt. type fun.) otf ::

re: o

rio=e|ti:k=p|fix (z:0=f"|
fixtype (v:0 =1tf)*

e lilr|s | emm i | pu(e) | palersea) | eple) |
update(ar, e, €2, €3) | extern(s,o) | new_exn p |
make vararg(u, e) | call_vararg(us, €1, €2) |

eq /| neq p | record(e®) | inject(s, e*) |
switch(st)e of (i: f)* default: oe |

typecasepu of [t.o]|ta* rectype: ot fdefault :otf |
tlistcase p of[t.o]nil:econs: if|let b in ¢ |
fltf]e(e”)] e[pn*]| raise e | handle (e, f)

Az :o)*e

A(t i k)%e

Int | Sum | Enum | Enumorrec | Enumorsum
co:ele:tf

ele

i e

Figure 4.3: Abstract syntax for term-level expressions and declarations of LMLI

71

(arity 1 op.) p1 = real | not | floor | sqrt | sin | cos | arctan | exp | 1n |
size ar | select 1 |

(arity 2 op.) py = divi | muli | plusi|minusi | modi | eqi | 1ti | gti |
ltei | gtei | divui | mului | plusui | minusui | 1tui |
gtui | 1teui | gteui | divr | mulr | plusr | minusr | eqr |
1tr | gtr | 1ter | gter | alloc ar | sub ar |
excon | de_excon | eqptr

(coercions) ¢p = roll | unroll | enum_enumorrec | rec_enumorrec |
enum_enumorsum | sum_enumorsum | enum2int |

fromstring | tostring | chr

(arrays) ar = Intarray | Realarray | Ptrarray

Figure 4.4: Primitive term-level operations for LMLI

if one matches, and applies the function for the arm to the values from which the sum was
constructed. If no arm matches, it evaluates the default expression.
For example, a switch expression of the form

switch(Sum) (inject(2,["hello",5])) of

2 @ Ax,y.€

selects the arm corresponding to 2, since the case of the sum is 2. It then binds = and y
to the values "hello" and 5 respectively, and evaluates e. inject creates values of a sum
type, so it is referred to as the introductory form for sums. switch deconstructs values of a
sum type, so it referred to as the eliminatory form for sums.

The expression typecase branches on the value of a constructor at run time. The con-
structor is required to be a monotype, that is, have kind €. If the constructor is a primitive
constructor of 0 arguments, the corresponding arm is selected (if there is one) and the asso-
ciated expression is evaluated. If the constructor is a primitive constructor of 1 argument,
say c1(cz2), the arm corresponding to ¢; is selected (if there is one), and the associated type
function is applied to c3. If the constructor is a recursive constructor, the constructor is
unrolled once, and the function associated with the rectype arm (if there is one) is applied
to the unrolled constructor. If no arm matches, the default arm is used.

The typerec expression in MM is not provided at the term-level in LMLI, but can be
written using typecase and a recursive function definition. Hence, it is redundant at the
term-level in LMLI.

The tlistcase expression branches on lists of constructors. The let declaration allows
binding of expressions to variables, binding of constructors to constructor variables, definition

72

of mutually-recursive functions, and definition of mutually-recursive polymorphic functions.
Polymorphic functions take constructors as arguments.

LMLI allows the definition of functions of multiple arguments. A function of multiple
arguments i1s written Az,y, z.e, where z,y,and z are the multiple arguments. A function
f applied to multiple arguments is written f(1,2,3). A polymorphic function applied to
multiple arguments is written f[Int, Int, Int].

raise raises an exception. handle(e, f) evaluates an expression e and applies f if an
exception is raised but not caught during the evaluation of e.

In Figure 4.4, I list the primitive operators and coercions. The single argument primitive
operators include real (convert an integer to a floating-point number) not (bitwise integer
negation), floor (convert a floating-point number to an integer), various operations on
floating-point numbers, size (size of a 1-dimensional array), and select (select the i'* field
of a record). The primitive operators of two arguments include the usual arithmetic and
comparison operators on integers. The integer comparison operators are eqi (equality), 1ti
(less than), gti (greater than), 1tei (less than or equal), and gtei (greater than or equal).
The arithmetic and comparison operators for unsigned integers (ending in ui) and floating
point numbers (ending in r) are similar. The operator alloc(i,v) creates a 1-dimensional
array of size i and initializes it to v. The operator sub(a,i) returns the i element of
a l-dimensional operator. The alloc and sub operators are unsafe: they do no bounds
checking. LMLI does not provide multi-dimensional arrays; they must be implemented
using 1-dimensional arrays.

The coercion operators coerce values in a type-safe mannner from one type to another;
they have no effect at run time. The operators roll and unroll are used to type values
of recursive types. The operators enum_enumorrec and rec_enumorrec inject values of enu-
merated types and values of record type, respectively, into enumorrec sums. The operators
enum_enumorsum and sum_enumorsum provide similar operations for enumorsum sums. The
operators tostring and fromstring coerce values of string types to the actual representa-
tion of strings. LMLI uses a string representation similar to that used by Appel [7]. Strings
are represented as either a character or a pair consisting of the length of the string (in bytes)
and an integer array. Characters are simply an enumerated type, so the string representation
is simply

Enumorrec 256 [Record(Int,Intarray)]

The operator enum2int coerces an enumerated type to an integer, while the operator chr
coerces an integer to a string (i.e. a value of an enumerated type between 0 and 255).

4.1.3 An example

Figure 4.5 illustrates the passing and construction of constructors in an LMLI program. The
binding con list binds list to a constructor corresponding to the SML list datatype. It
is a constructor function that when given a constructor ¢ as an argument, builds a recursive
constructor that represents the list type instantiated to ¢. The binding val map defines a
map function for lists, which maps a function f across a list. The map function first takes
two constructors as arguments. The binding val v applies this map function to convert a

73

con list:: Q — € = At :: Q.Rectype t’=Enumorrec 1 ([t,t’]) in t’

val map : V o,f8.(a — () — T(list o) — T(list §) =
Ala, 3).Af.
fix m = JAy.
switch(Enumorrec) y
of 0: enum O
| 1: Az.record [f (#0 z),m (#1 =z)]

val v : T(list String) = map [Int,String] (Ax.makestring x) [1,2,3]

val y : T(list (list String)) = map [String,list String] (Ax.[x]) v

Figure 4.5: Application of the polymorphic function map illustrates passing and construction
of constructors at run time

list of integers to a list of strings. The function is first applied to two constructors before
being applied to its other arguments. The binding val y applies the map function to convert
the list of strings to a list of lists of strings. When the map function is applied here, the
second constructor actually will be the result of a constructor application. At run time, the
constructor function list will be applied to the constructor String to build a constructor
which represents the the SML type string list.

4.2 An overview of TIL

Figure 4.6 shows the various compilation phases of TIL. The phases through and including
closure conversion use typed intermediate language that are variants of LMLI. The phase
after closure conversion use an untyped language where variables are annotated with garbage
collection information. The low-level phases of the compiler use languages where registers
are annotated with garbage collection information.

4.2.1 Front end

The first phase of TIL uses the front-end of the ML Kit Compiler [15] to parse and elaborate
(type check) SML source code. The ML Kit Compiler produces annotated abstract syntax
for all of SML, which it typechecks using the Hindley-Milner typechecking algorithm. It
then compiles a subset of this abstract syntax to an explicitly-typed language called Lambda.
The compilation to Lambda converts pattern matching to decision trees and expands various
derived forms according to [61].

74

," ¥ d parse, elaborate, eliminate
. ront en pattern matching

s \ 4

¢ C Conversion to Lmli)

introduce intensional polymorphism,
choose data representations

. T di d flatten args,
Typed intermediate ype- -1rec'te flatten constructors,
languages optimization box floats
R . do inlining, uncurrying, constant-
s Conventional and ou g, UNCurtying, co
. s . folding, CSE, invariant removal,
. loop optimizations
% etc.
‘\ 1 . close functions,
, osure conversion choose environment representations
A\

calculate gc info for variables,
choose representation for types

'

Conversion to RTL

choose machine representation
for variables, introduce tagging
for records and arrays

Conversion to untyped
language with gc info.
d

with gc info v

do graph-coloring register
allocation, construct tables for gc

—

. [Register allocation

Y

Assembly

Figure 4.6: Phases of the TIL compiler

75

4.2.2 Translation to LMLI

The next phase of TIL translates Lambda programs to LMLI programs and uses the in-
tensionally polymorphic language constructs of LMLI to provide specialized arrays, multi-
argument functions, efficient data representations for user-defined datatypes, and tag-free
polymorphic equality.

The translation to LMLI specializes arrays into one of three cases: int arrays, float
arrays, and pointer arrays. It replaces the polymorphic array primitives with new versions
that use intensional polymorphism to select the appropriate creation, subscript, and update
operations for polymorphic arrays.

For example, the translation replaces polymorphic subscript with a new version that
uses a typecase expression to determine the type of the array and to select the appropriate
specialized subscript operation:

val newsub = Aa.A(x:Typecase v ..., 1i:int).
typecase o of
Int : sub Intarray (x, 1)
Real : sub Realarray (x, i)
default : sub PtrArray (x, 1)

Note that if the type of the array can be determined at compile-time, the optimizer can
eliminate the typecase:

newsub[Real] (a, 5) — sub Realarray(a, 5)

The translation to LMLI also makes polymorphic equality explicit as a term in the
language.

After this phase translates an SML program to an LMLI program, it does several type-
directed optimizations. A type-directed optimization is an optimization that uses the type of
an expression to determine how to translate the expression. Thus, the following optimizations
are applied even when some call sites of a function are unknown.

SML provides only single-argument functions; multiple arguments are passed in a record.
The first optimization, argument flattening, translates each function that takes a record as
an argument to a function that takes the components of the record as multiple arguments.
These arguments are passed in registers, avoiding allocation to create the record and memory
operations to access record components. If a function takes an argument of variable type
a, then TIL uses typecase to determine the proper calling convention, according to the
instantiation of o at run time.

As with functions, datatype constructors in SML take a single argument. For example,
the cons data constructor (::) for an « list, takes a single record, consisting of an « value
and an «list value. Naively, such a constructor is represented as a pair, consisting of a tag
(e.g., cons), and a pointer to the record containing the o value and the « list value. The tag
is a small integer value used to distinguish among the constructors of a datatype (e.g., nil
vs ::). The second optimization, constructor flattening, rewrites all constructors that take
records as arguments so that the components of the records are flattened.

In addition, constructor flattening eliminates unneeded tag components by specializing
sums to Enumorrec or Enumorsum sums. For example, it specializes the sum used in the

76

definition of the 1ist datatype to an Enumorrec sum. This corresponds to dropping the tag
from the flattened representation of the cons constructor. After naive constructor flattening,
cons applied to (hd,tl) is represented as a three element record consisting of the tag, hd,
and t1. The tag is unnecessary, because the record (represented as a pointer) can always be
distinguished from nil.

The third optimization boxes all floating-point values, except for values stored in floating-
point arrays. This makes record operations faster: if floating-point values were unboxed,
then record offset calculations could not always be done at compile-time. The problem is
that floating-point values are 64 bits, unlike scalars and pointers, which are 32 bits. If
floating-point values were unboxed, then the sizes of fields whose types were polymorphic
type variables would not be known until run time.

Straight-line floating point code still runs fast: the optimizer later eliminates unecessary
box/unbox operations during the constant-folding phase.

In all, the combination of type-directed optimizations reduces running times by roughly
40% and allocation by 50% [63, Chapter 8]. However, much of this improvement can be
realized by other techniques; For example, SML/NJ uses Leroy’s unboxing technique to
achieve comparable improvements for calling conventions [81]. The advantage of the TIL
approach is that it uses a single mechanism (intensional polymorphism) to specialize calling
conventions, flatten constructors, unbox floating-point arrays, and eliminating tags for both
polymorphic equality and garbage collection.

4.2.3 Optimizations

TIL employs an extensive set of optimizations, which are described in Chapters 5 and 6.

Before optimization, TIL translates Lmli to a subset of Lmli called B-form. B-form, based
on A-Normal-Form [33], is a more regular intermediate language than Lmli that facilitates
optimization. The translation from Lmli names all intermediate computations and binds
them to variables by a let-construct. It also names all potentially heap-allocated values,
including strings, records and functions. Finally, it allows nested let expressions only within
switches (branch expressions). Hence, the translation from Lmli to B-form linearizes and
names nested computations and values.

4.2.4 Closure conversion

TIL uses a type-directed, abstract closure conversion in the style suggested by Minamide,
Morrisett, and Harper [62] to convert B-form programs to Lmli-Closure programs. Lmli-
Closure is an extension of B-form that provides constructs for explicitly constructing closures
and their environments.

For each escaping B-form function, TIL generates a closed piece of code, a type envi-
ronment, and a value environment. The code takes the free type variables and free value
variables of the original function as extra arguments. The types and values corresponding to
these free variables are placed in records. These records are paired with the code to form an
abstract closure. TIL uses a flat environment representation for type and value environments

7).

77

For known functions, TIL generates closed code but avoids creating environments or
a closure. Following Kranz [52], we modify the call sites of known functions to pass free
variables as additional arguments.

TIL closes over only variables which are function arguments or are bound within func-
tions. The locations of other “top-level” variables are resolved at compile-time through
traditional linking, so their values do not need to be stored in a closure.

4.2.5 Conversion to an untyped language

To simplify the conversion to low-level assembly code, TIL translates Lmli-Closure programs
to an untyped language called U-Bform. This conversion is described in detail in Section 7.3.

U-Bform is a much simpler language than Lmli because similar type-level and term-level
constructs are collapsed to the same term-level constructor. For example, in the translation
from Lmli-Closure to Ubform, TIL replaces typecase with a conventional switch expression.
This simplifies the generation of low-level code, because there are many fewer cases.

TIL annotates variables with representation information that tells the garbage collector
what kinds of values variables must contain (e.g., pointers, integers, floats, or pointers to
code). The representation of a variable may be unknown at compile time, in which case
the representation information is the name of the variable y that will contain the type of «
at run time.

4.2.6 Conversion to RTL

Next TIL converts U-Bform programs to RTL,a register-transfer language similar to ALPHA
or other RISC-style assembly language. This conversion is described in detail in Section 7.4.

RTL provides an infinite number of pseudo-registers each of which is annotated with
representation information. Representation information is extended to include locatives,
which are pointers into the middle of objects. Pseudo-registers containing locatives are
never live across a point where garbage collection can occur. RTL also provides heavy-weight
function call and return mechanisms, and a form of interprocedural goto for implementing
exceptions.

The conversion of U-Bform to RTL decides whether U-Bform variables will be repre-
sented as constants, labels, or pseudo-registers. It also eliminates exceptions, inserts tagging
operations for records and arrays, and inserts garbage collection checks.

4.2.7 Register allocation and assembly

Before doing register allocation, TIL converts RTL programs to ALPHA assembly language
with extensions similar to those for RTL. Then TIL uses conventional graph-coloring register
allocation to allocate physical registers for the pseudo-registers. It also generates tables
describing layout and garbage collection information for each stack frame, as described in
Section 4.2.8. Finally, TIL generates actual ALPHA assembly language and invokes the
system assembler, which does instruction scheduling and creates a standard object file.

78

4.2.8 Nearly Tag-Free Garbage Collection

Nearly tag-free garbage collection uses type information to eliminate data representation
restrictions due to garbage collection. The basic idea is to record enough representation
information at compile time so that, at any point where a garbage collection can occur, it
is possible to determine whether or not values are pointers and hence must be traced by
the garbage collector. Recording the information at compile time makes it possible for code
to use untagged representations. Unlike so-called conservative collectors (see for example
[16, 26]), the information recorded by TIL is sufficient to collect all unreachable objects.

Collection is “nearly” tag-free because tags are placed only on heap-allocated data struc-
tures (records and arrays); values in registers, on the stack, and within data structures
remain tagless. TIL constructs the tags for monomorphic records and arrays at compile
time. For records or arrays with unknown component types, TIL generates code that (par-
tially) constructs tags at run time. As with other polymorphic operations, we use intensional
polymorphism to construct these tags.

Registers and components of stack frames are not tagged. Instead, TIL generate tables
at compile time that describe the layout of registers and stack frames. TIL associates these
tables with the addresses of call sites within functions at compile time. When garbage
collection is invoked, the collector scans the stack, using the return address of each frame as
an index into the table. The collector looks up the layout of each stack-frame to determine
which stack locations to trace. TIL records additional liveness information for each variable
so that the garbage collector can avoid tracing pointers that are no longer needed.

This approach is well-understood for monomorphic languages requiring garbage collec-
tion [17]. Following Tolmach [90], we extended it to a polymorphic language as follows:
when a variable whose type is unknown is saved in a stack frame, the type of the variable is
also saved in the stack frame. However, unlike Tolmach, we evaluate substitutions of ground
types for type variables eagerly instead of lazily. This is due in part for technical reasons
(see [63, Chapter 7]), and in part to avoid a class of space leaks that might result with lazy
substitution.

4.3 An example

This section shows an SML function as it passes through the various stages of TIL. The
following SML code defines a dot product function that is the inner loop of the integer
matrix multiply benchmark:

val sub2 : ’a array2 * int * int -> ’a

fun dot(cnt,sum) =
if cnt<bound then
let val sum’=sum+sub2(A,i,cnt)*sub2(B,cnt,j)
in dot(cnt+1,sum’)
end
else sum

79

The function sub2 is a built-in 2-d array subscript function which the front end expands to

fun sub2 ({columns,rows,v}, s :int, t:int) =
if s <0 orelse s>=rows orelse t<0 orelse
t>=columns then raise Subscript
else unsafe_subl(v,s * columns + t)

Figures 4.7 through 4.12 show the actual intermediate code created as dot and sub2
pass through the various stages of TIL. For readability, | have renamed variables, erased
type information, and performed some minor optimizations, such as eliminating selections
of fields from known records.

Figure 4.7 shows the functions after they have been converted to Lmli. The sub2 function
takes a type as an argument. A function parameterized by a type is written as At ., while a
function parameterized by a value is written as Ai. In the dot function, the sub2 function
is first applied to a type and then applied to its actual values. Each function takes only one
argument, often a record, from which fields are selected. The quality of code at this level is
quite poor: there are eight function applications, four record constructions, and numerous
checks for array bounds.

Figure 4.8 shows the Lmli fragment after it has been converted to B-form. Functions
have been transformed to take multiple arguments instead of records and every intermediate
computation is named.

Figure 4.9 shows the B-form fragment after it has been optimized. All the function
applications in the body of the loop have been eliminated. sub_ai(av,a) is an application
of the (unsafe) integer array subscript primitive. All of the comparisons for array bounds
checking have been safely eliminated, and the body of the loop consists of 9 expressions.
This loop could be improved even further; TIL does not implement any form of strength
reduction and induction variable elimination.

Figure 4.10 shows the B-form fragment after it has been converted to U-Bform. Fach
variable is now annotated with representation information, to be used by the garbage col-
lector. INT denotes integers and TRACE denotes pointers to tagged objects. The function is
now closed, since it was closure converted before converting to U-Bform.

Figure 4.11 shows the U-Bform fragment after it has been converted to RTL. Every
pseudo-register is now annotated with precise representation information for the collector.
The representation information has been extended to include LOCATIVE, which denotes point-
ers into the middle of tagged objects. Locatives cannot be live across garbage-collection
points. The (*) indicates points where the sub_ai primitive has been expanded to two RTL
instructions. This indicates that induction-variable elimination would also be profitable at
the RTL level. The return instruction’s operand is a pseudo-register containing the return
address.

Figure 4.12 shows the actual DEC ALPHA assembly language generated for the dot
function. The code between L1 and L3 corresponds to the RTL code. The other code is
epilogue and prologue code for entering and exiting the function. Note that no tagging
operations occur anywhere in this function.

80

sub2 =
let fix £ = Aty.
let fix g =)arg.
let a = (#0 arg)
s = (#1 arg)
t = (#2 arg)
columns = (#0 a)
rows = (#1 a)
v = (#2 a)
check =
let testl = 1ti(s,0)
in Switch_enum test of
1 => A.enum(1)
| 0 => A,
let test2 = gti(s,rows)
in Switch_enum test2 of
1 => A.enum(1)
| 0 => A,
let test3 = 1ti(t,0)
in Switch_enum test3 of
1 => A.enum(1)
| 0 => A.gti(t,columns)
end

end
end
in Switch_enum check of
1 => A.raise Subscript
| 0 => A.unsafe_subl [ty] {v,t + s * columns}

end
in g
in f
end
fix dot=
Ai.let cnt = (#0 i)
sum = (#1 i)

d = 1ti(cnt,bound)
in Switch_enum d
of 1 => A.let sum’ = sum +
((sub2 [Int]) {A,i,cnt}) *
((sub2 [Int]) {B,cnt,j})
in dot{cnt+1,sum’}
end
| 0 => A.sum
end

Figure 4.7: After conversion to Lmli

81

sub2 =
fix dot = Acnt,sum.
let test = 1ti(cnt, bound)

r =
Switch_enum test of
1 => A
let a = sub2[Int]
b = a(A,i,cnt)
¢ = sub2[Int]
d = c(B,cnt,j)
e = bxd
f = sum+te
g = cnt+l
h = dot(g,f)
in h
end
| 0 => A.sum
in r
end
Figure 4.8: B-form before optimization
fix dot =
Acnt,sum.

let test = 1ti(cnt,bound)
r = Switch_enum test of

1 =>
Al
let a = t1 + cnt
b = sub_ai(av,a)
c = columns * cnt
d=3]+c
e = sub_ai(bv,d)
f = b*e
g = sum+f
h = 1l+cnt
i = dot(h,g)
in 1
end
| 0 => A.sum
in r
end

Figure 4.9: Bform after optimization

82

fix dot =
Abound:INT,columns:INT,bv:TRACE,av:TRACE,t1:INT,
j:INT,cnt:INT,sum:INT.
let test:INT = gti(bound,cnt)

r:INT =
Switchint test of
1 =>
let a:INT = t1 + cnt
b:INT = sub_ai(av,a)
c:INT = columns * cnt
d:INT = j + ¢
e:INT = sub_ai(bv,d)
f:INT = b*e
g:INT = sum+f
h:INT = 1+cnt
i:INT = dot(bound,columns,bv,
av,tl,j,h,g)
in 1
end
| 0 => sum
in r
end : INT

Figure 4.10: After conversion to U-Bform

83

dot (([bound (INT),columns(INT) ,bv(TRACE),
av(TRACE) ,t1(INT),j(INT),cnt (INT),
sum(INT)], 1))
{ LO: gti bound (INT) , cnt(INT) , test(INT)
bne test(INT),L1
mv sum(INT),result (INT)

br L2

Li: addl t1(INT) , cnt(INT) , a(INT)
(%) s4add a(INT) , av(TRACE) , t2(LOCATIVE)
(%) 1d1 b(INT) , O(+2(LOCATIVE))

mull columns(INT) , cnt(INT) , c (INT)
addl j(INT) , c(INT) , d (INT)

(%) s4add d (INT) , bv(TRACE) , t3(LOCATIVE)

(%) 1dl e (INT) , 0(t3 (LOCATIVE))
mull/v b (INT) , e (INT) , £(INT)
addl/v sum(INT) , £ (INT) , g (INT)
addl/v cnt(INT) , 1 , h (INT)
trapb
mv h (INT),cnt(INT)
mv g (INT),sum(INT)
br LO

L2: return retreg(LABEL) }

Figure 4.11: After conversion to RTL

84

.ent Lv2851_dot_ 205955

arguments : [$bound,$0] [$columns,$1] [$bv,$2]
[$av,$3] [$t1,$4]1 [$j,$5]

[$cnt,$6] [$sum,$7]

results : [$result,$0]

return addr : [$retreg,$26]

destroys : $0 $1 $2 $3 $4 $5 $6 $7 $27

Lv2851_dot_205955:
.mask (1 << 28), -32
.frame $sp, 32, $26

.prologue 1
ldgp $gp, ($27)
lda $sp, -32($sp)
stq $26, ($sp)
stq $8, 8($sp)
stq $9, 16($sp)
mov $26, $27

Li:
cmplt $6, $0, $8
bne $8, L2
mov $7, $1
br $31, L3

L2:
addl $4, $6, $8
s4addl $8, $3, $8
1d1 $8, ($8)
mull $1, $6, $9
addl $5, $9, $9
s4addl $9, $2, $9
1d1 $9, ($9)
mullv $8, $9, $8
addlv $7, $8, $7
addlv $6, 1, $6
trapb
br $31, L1

L3:
mov $1, $0
mov $27, $26
1dg $8, 8($sp)
1dg $9, 16($sp)
lda $sp, 32($sp)
ret $31, ($26), 1

.end Lv2851_dot_ 205955

Figure 4.12: Actual DEC ALPHA assembly language

85

4.4 Conclusion

In this chapter, I have given an overview of the TIL compiler and the typed intermediate
language framework that it uses. 1 have described LMLI, the intensionally-polymorphic
intermediate language used in TIL. I have given an example of an LMLI program that
illustrates the use of intensionally-polymorphic constructs, namely the construction, passing,

and analysis of types at run time.
I also have described each phase of the TIL compiler and given an example that illustrates

how TIL compiles SML programs to machine code.

86

Chapter 5

The TIL optimizer

In this chapter, I describe TIL’s optimizer. The optimizer is based on the SML/NJ opti-
mizer [7, 10]. It includes all the optimizations that Appel found to be important for SML
[7]. However, it uses improved algorithms for inlining and uncurrying. [improved these
algorithms because it is particularly important to eliminate higher-order functions before
doing loop optimizations [83].

I have organized this chapter as follows. First, I discuss the intermediate language used
by the optimizer, B-form. B-form is a subset of LMLI, the intermediate language that I
described in Chapter 4. In contrast to the intermediate language that Appel uses, B-form
is a direct-style, typed intermediate language. Second, I discuss the notation that I use to
describe algorithms and data structures. Third, I discuss some assumptions that I make
throughout the optimizer. Fourth, I discuss an effects analysis that I use in the optimizer.
Fifth, I discuss the algorithms for inlining and uncurrying in-depth. Finally, I cover the other
optimizations used in the optimizer. I defer my discussion of the order in which optimizations
are applied until after I have discussed the loop optimizations.

5.1 B-form intermediate language

In this section I discuss B-form, the intermediate language used by the optimizer. B-form
is a subset of LMLI that is a typed, direct-style intermediate language similar to A-Normal-
Form [33]. I use a subset of LMLI instead of LMLI to simplify the writing of the optimizer.
As I will explain, the subset is more easily manipulated by the optimizer.

It is important to design the intermediate language for an optimizer carefully. In design-
ing an intermediate language, there is a tension between choosing a language that retains
information and simplifying the language by discarding information. A complex language
that retains information makes an optimizer larger and harder to write, but a simpler lan-
guage may discard information that is difficult to recover once it is thrown away.

In choosing to use a direct-style, typed intermediate language, I have chosen to favor a
language that retains information. Other compilers for functional languages have taken the
route of simplifying the language — but losing information — by either using a continuation-
passing style intermediate language or an untyped intermediate language.

In Sections 5.1.1 and 5.1.2, I discuss why I chose to use a typed language instead of

87

an untyped language and a direct-style language instead of a continuation-passing style
language. In Section 5.1.3, I cover practical issues of naming and simplicity. Finally, in
Section 5.1.4, I describe B-form.

5.1.1 Typed versus untyped

One important design choice for an intermediate language is whether the language is typed
or untyped. For example, the Glasgow Haskell optimizer uses a typed language, but the
SML/NJ optimizer uses an untyped intermediate language. Most compilers use an untyped
intermediate language.

There are several advantages to my choice of an intensionally-polymorphic typed inter-
mediate language during optimization. First, distinguishing constructor-level computations
from term-level computations is useful during optimization, because the constructor-level
computations always terminate and are side-effect free. This makes code motion easier for
constructor-level computations than term-level computations. Second, it helps me find bugs
in the optimizer — I can typecheck programs after every optimization phase.

On the other hand, using a typed intermediate language has several potential disadvan-
tages. First, the typed language has more constructs than a corresponding untyped language.
This makes the optimizer larger and means that it takes more time to write the optimizer.
Second, typed programs can be much larger than corresponding untyped programs. This
means the optimizer may use more memory and be slower. Third, types can constrain
optimization.

I claim that the advantages of a typed intermediate language outweigh the potential
disadvantages. It may require more time to write the code for the optimizer because the
code needs to handle more constructs, but it requires less time to debug the code for the
optimizer: the typed intermediate language makes it easier to find and isolate bugs. In
Chapter 10, I show that types do not unreasonably increase intermediate program sizes.
With appropriate techniques that are not difficult to implement, typed programs are usually
no more than twice the size of their untyped versions. At the end of optimization, typed
programs are only 15% larger than their corresponding untyped versions.

5.1.2 Direct-style versus continuation-passing style

Another important design choice for an intermediate language is whether the language is
direct-style (DS) or continuation-passing style (CPS). For example, the Glasgow Haskell
optimizer uses a DS language, but the SML/NJ optimizer uses a CPS language. Most
compilers use a DS intermediate language.

From a theoretical point of view, the two languages are essentially equivalent: programs
can be converted from one representation to the other in asymptotically-efficient time [25,
77, 78]. The choice of which representation to use is a matter of engineering.

I chose to use a DS intermediate language. This has two advantages. First, a DS language
is more amenable to the kinds of interprocedural program analyses that I want to do than
a CPS language. For code motion optimizations, I want to determine the run-time nesting
of recursive functions, which requires a distinction between function call and return. It is

88

unclear how to make this distinction when analyzing CPS programs, because functions never
return. Second, a DS language makes it possible to re-use existing compilation techniques,
such as interprocedural register allocation.

On the other hand, using a DS language has a disadvantage. Sabry and Felleisen [78]
showed that the 3, rule (inlining) is less powerful for DS programs than for CPS programs.
They showed that you need several additional rules (that is, optimizations) for DS programs.

These optimizations, however, are not onerous to implement. I claim that the advantages
of a DS language — in particular, being able to re-use existing compilation techniques —
more than offset the disadvantage of having to write several additional optimizations.

5.1.3 Practical engineering issues

The intermediate language should satisfy some practical requirements also. First, any pro-
gram term about which the optimizer may need to store information should be named. For
example, the language should name every function. Second, the language should not have
redundant constructs because this requires redundant code in the optimizer. For example,
LMLI contains two ways of creating functions over values, fix and A; B-form should contain
only one way of creating functions over values. Third, the language should apply functions
and primitive operations only to trivial expressions, such as constants or variables (an ex-
pression is trivial if it can be evaluated without risk of non-termination or side effects),
because this simplifies many optimizations. For example, it makes inlining a function easy:
simply apply the 3, rule of the call-by-value A-calculus.

5.1.4 B-form

B-form is a conceptual subset of LMLI similar to A-Normal-Form [33]. Figure 5.1 shows
the syntax for B-form constructors and types. B-form has the same kinds as LMLI and the
same arity-0 and arity-1 primitive constructors as LMLI. The language of constructors is
divided into three levels: constructor values, constructor expressions, and constructor dec-
larations. Constructor values consist of constructor variables, the empty constructor list
Nil, and arity-0 primitive constructors. Constructor expressions use only constructor values,
except for branching constructor expressions. Those contain constructor functions or con-
structor declarations in their arms. Constructor declarations use Let to name program terms
manipulated by the optimizer. There are three kinds of bindings: constructor expression
bindings, constructor function bindings, and recursive constructor bindings. Types remain
almost unchanged from LMLI: the only change is that the type expression T(—) must contain
a constructor declaration. The “...” denotes the rest of the LMLI types.

Figure 5.2 shows the abstract syntax for term-level expressions and declarations of B-
form. Like constructors, these are divided into three levels: values, expressions, and decla-
rations. A B-form program is a declaration. Values consist of term-level variables, integers,
floating point numbers, enumerated values, the special case of the empty record, and exter-
nal values. An external value is the name of a value defined outside the B-form program,
such as a function written in C. Expressions use only values or constructor values, except for
branching expressions. Again, declarations name terms manipulated by the optimizer. They

89

(con. values) cv n= tur|Nl:k|c

(constructors) = cv | ¢i(ew) | cvycvy | Typecase cvof a* default ¢d :: &
Cons(cvy, cvs) | Fold cv of Nil : ¢d Cons : cf |
Listcase cv of Nil:ed Cons:cf |
Tuple(cv™*) | Proj(i, cv)

(con. bindings) ¢b = turk=p|t:r=cf|t:r=Rectype(t; cd;)*.cd
(con. decl.) ed = cv|Letcbin ed

(con. functions) cf = M :k.ed

(types) T ou= Ted| ...

(typecase arm) a = c¢y:cd e :ef

Figure 5.1: Abstract syntax for constructors of B-form

consist of expression bindings, constructor bindings, mutually recursive function bindings,
mutually recursive type function bindings, exception raise, and exception handling. Note
that all functions must be named in B-form.

I assume that all B-form programs satisfy the “value” restriction: the bodies of all
polymorphic functions must be operationally equivalent to values. Wright [98] originally
proposed the value restriction for SML programs as a simple way of remedying problems
that arose in typing expressions which are polymorphic and use side-effects. Wright showed
that nearly all SML programs satisfied the value restriction to start with, and those that did
not could be trivially modified to satisfy the restriction.

It is reasonable for me to make the value restriction for B-form programs, because all
compiler developers for SML plan to (or do) enforce the value restriction for SML programs
and the translation of SML programs to B-form programs preserves the restriction. Second,
all the optimizations presented in this chapter preserve the value restriction.

5.2 Notation

In this section, I discuss the notation that I use to describe algorithms and data structures.
I write each algorithm as a sequence of data structure definitions followed by a sequence
of mutually-recursive function definitions. I write the definitions in a pseudo-code language
similar to SML. Evaluation of function parameters is call-by-value, and evaluation of expres-

90

(values) v

(expressions) e

(declarations) d

(functions) f

(type fun.) tf
(typecase arm) ta

(opt. decl) od

(opt type fun.) otf

x| 7] r|enum(i): o | Unit | extern(s,o) | ep(v): o

v s | pi(v) | p2(vy,v9) | update(ar, vy, ve, v3) |

new_exn cv | make_vararg(cv,v) | call_vararg(cvy, v, v2) |
eq cv | neq cv | record(v®) | inject(i, v*) |

switch(st) v of (i: f)* default : od |

typecase cvof[t.o]ta*rectype :otf default : od |
tlistcase cvof[t.o]nil: dcons: {f |

o(0%) | o[

v:oc|let x:0=¢ in d|let ¢b in d |

let fix (x:0=f)" in d | let fixtype (v :0 = {fn)* ind
raise (v,0) | let = :0 = d; handle fin d;

AMa:o)*.decl

A(t k). decl

co:d|cy:tf

d]e

tf|e

Figure 5.2: Abstract syntax for term-level expressions and declarations of B-form

91

sions proceeds from left to right. I write case expressions as

case z of
C1 . €1
Cp €

A case expression analyzes x to see if it has the form ¢y, ¢; or so on. If it finds that matches
¢;, then it evaluates ¢;. I write “if” expressions as

ife
then e;
else ey

An if expression evaluates e. If e is true, then it evaluates e;. Otherwise it evaluates ef. I
write let declarations as

let £ = ¢

n ey

end
A let declaration evaluates €1, binds x to the result, and then evaluates e;. The expression
(e1;...;€,) evaluates expressions sequentially: first it evaluates ey, then it evaluates ey, and
so on up to e,.

Occasionally I overload notation, and apply a function f to an optional B-form declaration
when I have defined f only for declarations. The overloaded notation means apply f if the
optional declaration is present. Similarly, sometimes [apply a function f to optional B-form
functions.

[use finite maps as the primary data structures for most algorithms. I write a finite map
mapping 1 to yi, x5 to yo and so on as {a; — Y1, x3 = ya,...}. [require that all the z; be
distinct. T write the empty map as (). T write a map extended by an entry as M[z — y]. 1
write a map M, extended by the entries in map M, as M; + M;. I assume that the domains
of My and M; are disjoint.

To distinguish program terms manipulated by algorithms from the definitions of the
algorithms, I enclose program terms manipulated by algorithms in Quine brackets, following
notation used in denotational semantics. For example, I write a B-form let expression being
used by an algorithm as

[let © =€ in x|

Program terms may contain meta-variables, which range over other pieces of syntax and
are variables used by the algorithms. I write meta-variables in an italic font, such as this.
In the previous example, x and e are meta-variables that range over B-form variables and
expressions respectively. I write actual pieces of syntax in a teletype font, such as this. For
example,

[let y=a+b in y|

is a B-form let-declaration binding the B-form variable y to the B-form expression a+b.
I use SML notation for reference cells to indicate updateable state. The ref operator
allocates and initializes a store location: A = ref () binds the variable A to a store location

92

which contains the empty map. The ! operator reads a store location: 'A is the current value
of the map stored in A. The := operator writes a store location; for example A := {z — y}
updates A to contain the singleton map mapping z to y.

5.3 Assumptions

In this section, I discuss some assumptions that [have made throughout the optimizer.
Throughout the description of the optimizer, I assume that bound variables have been re-
named so that each bound variable has a unique name. Assuming that each bound variable
has a unique name avoids artificial constraints on optimization due to scoping, with infor-
mation having to be deleted because a variable has been rebound. For example, consider a
program of the form:

val a = b + e
val a = b
val d = b + e

After a is bound to b+e, the value of the expression b+e becomes available. However, when
a is then rebound to b, the value of b+e becomes unavailable, i.e. , d cannot be bound to a.
Renaming variables to be unique means that the value of b+e is available when d is bound,
so d can be assigned to that value:

val a = bt+e
val a’ = Db
val d = a

Renaming variables also makes it easy to keep program-wide maps from variables to program
properties. For example, inlining keeps a count of the number of times a function has been
applied so that it can identify functions that are applied only once. If two functions could
have the same name, then keeping a program-wide map of counts would lead to an incorrect
count of the number of times those functions have been applied.

The first phase of the optimizer renames bound variables so that the invariant that all
bound variables are unique becomes true. Subsequent phases of the optimizer preserve the
invariant by renaming variables when necessary.

5.3.1 Effects analysis

In this section, I discuss a simple effects analysis for B-form programs. I first motivate the
problem of effects analysis and discuss my approach to it. Next, I present an algorithm that
formalizes the effects analysis. After that, I present a memoized version of the algorithm that
computes the effects for all expressions. Because the analysis is simple, it can be computed
efficiently — the memoized version runs in O(N) time, where N is the size of the program.
Finally, I discuss related work.

An expression has an effect if it reads, updates, or allocates updateable data, such as
arrays, if it raises an exception, or if it does not terminate. An expression is pure if it is

93

equivalent to a value and does not have an effect. In general, moving expressions with effects
around in a program changes the meaning of the program. Moving pure expressions around,
on the other hand, does not change the meaning of the program.

The problem of determining when expressions read or write the store has been stud-
ied extensively for conventional languages such as C and Fortran. This is because in C and
FORTRAN, variables are updateable, and hence an expression that uses a variable implicitly
dereferences the store. Similarly, an expression that assigns to a variable implicitly updates
the store. This implicit use of the store makes careful tracking of side-effects to the store
a central component of conventional data flow analysis [3]. Indeed, it has led to the devel-
opment of the static single assignment (SSA) intermediate representation, where variables
can be assigned to only once. The fact that variables can be assigned to only once simplifes
many analyses.

In SML, however, variables are not updateable. Variables may only be bound. In this
aspect, SML differs from Scheme and Lisp, where variables are updateable just like C and
FORTRAN. If you are unfamiliar with the distinction between binding versus assignment
of variables, you should consult references on SML [67, 91] for a further explanation of this
point.

This means that tracking side-effects to the store is less important than it is for more
conventional languages, because side-effects occur less frequently. Thus, 1 use a simple
analysis for determining whether an expression depends on the store: I note whether an
expression reads the store, writes the store, or allocates a new location in the store. My hope
is that even a simple side-effects analysis will lead to significant improvements in practice.
I shall demonstrate in Chapter 9 that this is true. In Chapter 11, Future Work, I discuss
more sophisticated approaches to side-effects analysis.

SML requires that arithmetic operations check for overflow, unlike C and FORTRAN and
that exceptions be raised in the correct (left-to-right) order. This means that the optimizer
must be careful when moving arithmetic expressions around. Again, I rely on a simple
analysis: I note whether an expression may raise an exception.

Finally, sometimes the optimizer can move only terminating expressions. In particular,
invariant removal cannot move a function application that has no side-effects and does not
raise exceptions because that could change the termination behavior of the program. Again,
I use a simple analysis and note whether an expression may not terminate.

An algorithm for effects analysis

In this section, I present an algorithm for computing the effects of B-form expressions and
declarations. The algorithm computes the set of basic effects that each expression or dec-
laration may have. The basic effects are read the store (R), write the store (W), allocate a
new location in the store (A), raise an exception (E), or non-termination (N). The algorithm
uses a lattice whose set of elements is P({R, W, A, £, N}). Lattice elements are ordered by
the subset relation C. The least upper bound U of two lattice elements is computed using
set union U.

I define Algorithm 1 in Figure 5.3 using two mutually recursive functions, eff | and effe.
The function eff ; computes the effect of a declaration, while the function effe computes the

94

effect of an expression. A declaration that is simply a value has no effect. The effect of a 1let-
declaration that binds an expression is the least upper bound of the effect of the expression
and the body of the declaration. The effect of a let-declaration that binds a constructor
variable is the effect of the body of the declaration, because constructors have no effects.
Similarly, the effect of a fix-declaration is the effect of its body, because binding variables
to functions has no effect. A raise declaration has the effect {E}. Finally, the effect of a
handle declaration is the least upper bound of the effects of the declaration wrapped by the
handler, the handler, and the body of the declaration.

Expressions involving primitive operators have no effect, can just raise on exception, or
can read or allocate from the store. The set pure-ops defines the pure primitive operators.
The set exn-ops defines the primitive operators that can just raise exceptions. The update
expression updates the store. The new_exn expression has an allocate effect, because it
creates a new exception that can be distinguished from other exceptions. The effects of the
branching expressions switch, typecase, and tlistcase are simply the least upper bounds
of the effects of the branches.

I do not analyze the effect of term-level function applications, so I make the worst-case
assumption that a term-level function application may have any effect. Because B-form
programs satisfy the value restriction (see Section 5.1.4), however, polymorphic function
applications have no effect. The remaining kinds of expressions (record creation, sum cre-
ation, functions to deal with variables numbers of arguments, and polymorphic equality and
inequality), are pure and have no effect.

Algorithm 1 has an O(N) running time, where N is program size. It visits each syntax
node for the program at most once, and does a constant amount of work for each node.

An asymptotically efficient version

Many optimizations need to analyze the effect of each expression. For these optimizations,
applying Algorithm 1 leads to an O(N?) running time, where N is program size. You can
avoid this behavior by memoizing Algorithm 1 and computing the effects in one pass over
the program.

Figure 5.4 presents the changes needed to memoize Algorithm 1. The memoized algorithm
computes a mapping M from variables to the effects of the expressions or declarations bound
to those variables. The memoized algorithm has an O(N) running time.

Related work

Many researchers have studied effects analysis for functional languages, but have concen-
trated on analyzing the effects of higher-order functions. Their analyses produce detailed
effects information but at considerable cost in terms of compile-time. In contrast, I have
ignored the problem of higher-order functions by assuming that a term-level function appli-
cation may have any effect, but my analysis is asymptotically efficient. As I demonstrate in
Chapter 10, it is quite reasonable to ignore higher-order functions in practice.

Neirynck and others [64, 65] present an analysis based on abstract interpretation for
determining whether an expression uses or updates the store in a simply-typed A-calculus.
However, she is concerned primarily with demonstrating soundness of the analyses, and does

95

eff(d) = case d of

[v:co]:0

[let x:0=-¢c in d'] :effe(e)Ueffy(d’)

[let cb in d'] :effy(d’)

[let fix zy:01 = f1... and 2, :0, = f, in d'] :effy(d')

[let fixtype zy:0y=1f,... and z,:0, =1f, in d'] :effy(d')
[
[

raise (v,0)] : {FE}
let x:0 =d; handle Av.dy in ds] :effy(di)Ueffy(dy) Ueffy(ds)

effe(e) = case e of
(0 :if py € pure-ops

()] + { {E} :if py € exn-ops

[p2(v1,02)] :

case pg of

[sub ar]:{R}

[alloc ar]: {A}

.| 0:if p, € pure-ops

otherwise : { (B} :if py € exn-ops
[update(ar, vy, vy, v3)| : {W}
[new_exn(cv)] : {A}
[switch (st)v of (i:Aw.d;)” default: od| : (Ueffy(d;)) U effy(od)
[typecase st of [cv|t.c rectype :(i:ta;)* default:otf] od

(Ueffya(ta;)) Ueff (ot f) U eff y (od)

[tlistcase cv of [f.0] nil :d; cons:Al.dy| :effy(dy)Ueffy(d;)
PEvl o vnﬂﬂ {]g, W, A E N}
vievy...cv,]]

otherwise : ()

effi,(a) = case a of
[co @ d] :effy(d)
[e1: Ax.d] - eff g (d)

pure-ops = {real,not,size,select i,eqi,lti,gti,ltei, gtei,divui,mului,
plusui,minusui, ltui, gtui,lteui, gteul, eqr,1tr,gtr, 1ter, gter,
excon,de_excon, eqptr}

exn-ops = {floor,sqrt,sin, cos,arctan,exp,ln,divi,muli, plusi, minusi, modi,
divr,mulr, plusr,minusr}

Figure 5.3: Algorithm 1: compute effects of B-form declarations and expressions

96

effq(d) =

ref ()

case d of

[v:o]:0

[let ©:0=¢ in d']
let y = effe(e)
in M :=!M+{z = yhyUeffy(d)
end

[let cb in d'] :effy(d')

[let fix @y:01=f1... and 2, :0,=f, in d'|
(V1 <0 < neeffp(f;); effg(d'))

[let fixtype #y:0y=1f;... and x,:0,=1tf, in d']
(V1 <i < neeffip(tf;);effy(d'))

[raise (v,0)] :{FE}

[let ©:0 =d; handle Av.dy in ds]
let y = effy(di) and z = eff y(d2)
in M :=M+{r—yUz}yUzUeffy(ds)
end

case f of

[A(zy .. .x,).d] :effy(d)

case tf of
[A(ty...1,).d] : effy(d)

Figure 5.4: Changes needed to memoize Algorithm 1

97

not describe the asymptotic complexity of the analysis when it is applied to a language with
all the features of ML. The complexity of her analysis appears to be at least exponential.

Lucassen and Gifford [59, 34] describe a type-and-effect system where expressions are
explicitly annotated with types and descriptions of effects. Jouvelot and Gifford [46] show
how to reconstruct types-and-effects in a language with explicit polymorphism, where quan-
tification occurs over types and effects. Talpin and Jouvelot [88] show how to infer types-
and-effects in a manner similar to Hindley-Milner type reconstruction for ML. Leroy and
Weis [55] study another extension to the ML type system.

5.4 Inlining

Inlining selectively replaces function calls with copies of the bodies of the called functions.
It is an important optimization for eliminating higher-order functions. In addition, it is also
important for eliminating small functions, where the cost of a function call and return may
be as large as the cost of evaluating the body of a function.

For example, consider applying inlining to the following program:

fun map f =
let fun loop nil = nil
| loop (h::t) = f h :: loop t
in loop
end
val inc = Ax.x+1
val mapinc = map inc
val a = mapinc [1,2,3,4]

Inlining the function map produces the following program:

val inc = Ax.x+1
val mapinc = let val f = inc
fun loop nil = nil
| loop (h::t) = f h :: loop t
in loop
end
val a = mapinc [1,2,3,4]

Inlining the function inc produces

val mapinc = let fun loop nil = nil
| loop (h::t) = h+l :: loop t
in loop
end
val a = mapinc [1,2,3,4]

The final program should run faster than the original program, because a call to an unknown
function has been replaced by an addition operation.

98

This example illustrates how inlining often improves programs in the presence of higher-
order functions. Inlining first changes a call to an unknown function to a call to a known
function. Then it eliminates the call to the known function, if the known function is small
enough.

5.4.1 Algorithms for inlining

The decision to inline a function at a particular call must balance program speed against
program size. Inlining the function usually makes a program faster, but it also makes the
program bigger. In fact, repeatedly inlining a recursive function within its body could make
a program “infinitely” bigger, and cause the optimizer to not terminate.

Given that inlining is a trade-off between program speed and program size, and that
inlining recursive functions within their own bodies is dangerous, I use the following heuristics
for deciding when to inline a function:

e If a function is called only once, inline it.

o If the size of a function is less than some constant ¢, and the function is not recursive,
then expand all the calls to the function.

The first heuristic does not change the size of a program, so it is always safe. Repeated
application of the second heuristic, however, is dangerous. Although each application of the
heuristic increases the size of the program by only a constant factor, repeated application
of the heuristic could produce a program which is exponentially larger than the original
program. To avoid this, the second heuristic should applied only a small number of times.

The following two algorithms for inlining are refinements of these heuristics. The first
algorithm, given below, inlines functions called only once.

Algorithm 2 Inlining functions called only once

e Phase 1 (analysis): identify functions to inline.

Keep an updateable map M from variables naming functions bound by fix or fixtypes
to the following counts: the number of recursive applications, the number of non-
recursive applications, and the number of other uses.

Traverse the program from top to bottom. On encountering a fix or fixtype, initialize
the counts for all the functions bound by the fix or fixtype to 0.

At any recursive application of a variable naming a function, increment the number of
recursive applications by 1. A variable naming a function is recursively applied if it is
applied within the body of the function it names or it is applied within the body of
any other function defined by the same fix or fixtype.

At any other application of a variable naming a function, increment the number of
non-recursive applications by 1.

At any other occurrence of variable naming a function, increment the number of other
uses by 1.

99

After traversing the program, let the set I be those variables in the domain of M such
that the count of recursive applications is 0, the count of non-recursive applications is
1, and the number of other uses is 0.

Phase 2 (transformation): inline those functions.

If I is empty, then return the original program.

Otherwise, let S be a map from function names to functions or polymorphic functions.
(expressions in syntactic classes f and tf).

Traverse the program from top to bottom. At each fix or fixtype do the following:
1. Rewrite the functions defined by the fix or fixtype, so that any functions applied
only once within their bodies are inlined.

2. Add the rewritten definitions of any functions in I to S. Place only the rewritten
definitions of functions not in I in the fix or fixtype, and continue rewriting
the body of the fix or fixtype.

At any application or type application of a function f € dom(.S), replace the application
of f with the body of S(f). Do this as follows. Let the application have the form

let @ = f(x1, ..., @)
in d
First, rewrite d to d' so that all functions applied only once in d are inlined.

Now, place the body of the function inline by calling the function expand (defined
below) with S(f), the argument list 1,...,2,, and d'.

Function 1 expand the body of a function

Expand first binds the formal parameters to the actual parameters. It then calls the function
flatten to turn the declaration let x = d in d' into a valid B-form declaration The let-

declaration is not a valid B-form declaration because d is a nested declaration.

expand([A a1 ... ap.d], x1 ... x,, d) =
[let a3 = =
a, = T,
in flatten(x,d,d)
end |

Function 2 flaiten a nested declaration.

100

Create a valid B-form declaration equivalent to the LMLI declaration let @ = d; in ds.

flatten(x, dy, dz) =

let append(d) = case d of
[v:o]:]let # =v in dy]
[let v:o=¢e in d'| :[let v:o =e in append(d’)]
[let ¢b in d'] :[let ¢b in d']
[let fix fl in d']:[let fix fl in append(d’) end]
[let fixtype fl in d'|:[let fixtype fl in append(d’) end]
[raise (v,0)| :[raise (v,type-of(dz))]
[let v:o =d handle f in d"]

[let v:0 =4d handle f in append(d")]
in append(d;)
end

Note that variables need to be renamed in the bodies of expanded functions to preserve
the invariant that all bound variables names are unique. This renaming can be avoided for
a function that is applied only once, provided that the definition of the function is removed
when the function body is expanded.

Algorithm 3 Inlining functions called multiple times using original copies of those func-
tions.

This algorithm inlines non-recursive functions whose sizes are less than some constant c.

e Phase 1 (analysis): identify functions to inline

First, identify functions that are applied recursively. Repeat the analysis from phase

1 of Algorithm 2.

Second, calculate the sizes of functions. Figure 5.5 shows mutually-recursive functions
that measure the sizes of the syntax trees of functions, polymorphic functions, expres-
sions, and declarations. The functions to calculate sizes of constructors are similar.

Sizes of functions should not be calculated by traversing the program syntax tree
and applying the sizeg function to every function in the program. This has an O(N?)
running time, because it recomputes the sizes of nested functions. Instead, sizes should
be calculated in one bottom-up pass over the syntax tree. The sizej function should
be modified to record the sizes of functions as it calculates them.

Let the set I be those variables naming functions whose sizes are less than the constant
¢ and whose count of recursive applications is 0.

e Phase 2 (transformation): inline those functions.
If I is empty, then return the original program.

Otherwise, let S' be an updateable map from function names to functions or polymor-
phic functions. Traverse the program from top to bottom. At each fix or fixtype,

101

sizeg(f) = case f of
[A(zy...oxn).d] 2 1 + sizey(d)

sizegg(tf) = case tf of
[A(ty...t,).d] - 1+ s1zed(d)

sizeq(d) = case d of

[v:o]:1

[let x:0=-¢ in d'] : 1+ sizee(e) + sized(d’)

[let ¢b in d'| : 1+ sizer(cb) + sized(d’)

[let fix 2y:01=f1... and 2, :0, = f, in d'|
L+3n, sizef(fi) + sized(d’)

[let fixtype #y:0y=1f;... and x,:0,=1tf, in d']
1+ 370 sizep(tf;) + sizeq(d')

[raise (v,0)] :1

[let #:0 =d; handle f in dy] :1 +sizey(dy) + sizep(f) + sizey(d2)

sizee(e) = case e of

[switch (st)v of (i: f;)* default: od]
1+ sizef(fi) + sized(od)

[typecase cv of [t.o](i:ta;)" rectype :otf default: od]
L+ > size, (ta;) + sizetf(otf) + sized(od)

[tlistcase cv of [t.o] nil :d cons:tf]
1+ sized(d) + sizetf(tf)

[record(vy...v,)] 1 n

[1n_]ect(z V1...0)] i

vl]

[vlevs - con)] £

otherw1se 1

sizeg,(a) = case a of ‘
[co: d] : s1z‘ed(d)
[er :tf] « sizep(tf)

Figure 5.5: Functions to calculate the sizes of functions, type functions, expressions, and
declarations

102

record in the map S any functions defined there that are in I. Then rewrite the func-
tions defined by the fix or fixtype and the declaration that is the body of the fix
or fixtype.

At any application or type application of a function f € dom(.S), replace the application
with the body of S(f) using the same procedure used by Algorithm 2. Note that S(f)
is the original copy of f, not the rewritten version of f.

A subtlety of Algorithm 3 is that it uses copies of functions before inlining has been
applied to their bodies. This can cause problems when Algorithm 3 is applied repeatedly to
a program; functions in inner loops may not be inlined. Consider the following program:

fix inc = Ax.x+1
fix £ = Ax.
let fix g = \y.
let fix loop = Ai.
. loop (inc 1)

in loop y
end
in g (x+1)
end
val a =£f 5
val b = a 2

One application of Algorithm 3 produces the following program:

fix inc = Ax.x+1
fix £ = Ax.
let fix g = \y.
let fix loop = Ai.

. loop (i+1)
in loop y
end
in g (x+1)
end
val a =

let fix g = My’.
let fix loop’ = Ai’.
. loop’(inc i)

in loop’ ¥y’
end
in g’ (5+1)
end
val b = a 2

The algorithm inlines the application of inc in £, but it also creates a new application of
inc when it inlines the original body of £. If you apply the algorithm a second time, the

103

algorithm does not inline inc in an inner loop. Only when you apply the algorithm a third
time does it inline inc.

Fixing this problem leads to a third algorithm for inlining, which is based on Algorithm 3.
This algorithm is the one that TIL actually uses. In this variant, most of the analysis phase
is combined with the transformation phase:

Algorithm 4 [nlining functions called multiple times using new copies of those functions.

e Phase 1 (analysis): use the analysis from phase 1 of Algorithm 2 to identify recursive
functions.

e Phase 2 (analysis and transformation):

Let S be an updateable map from function names to functions or constructor functions.
Rewrite the program from top to bottom. At each fix, fixtype, or constructor
function binding, do the following:

1. Rewrite the functions defined there so that inlining is applied to their bodies.
2. Calculate the sizes of the rewritten functions.

3. Add those rewritten definitions whose sizes are less than ¢ and that are not applied
recursively to S.

4. Place the rewritten definitions of functions in the fix or fixtype, and rewrite
the body of the fix or fixtype.

At any application of a function f € dom(S), replace the application using the same
procedure used by Algorithm 2.

5.4.2 Related work
My basic inlining strategy:
e inline a function if it is called only once

e or inline a function if it is suitably small and non-recursive

is a simpler and more conservative version of Appel’s inlining strategy [7].

Appel’s strategy inlines recursive functions, but my strategy does not (directly) inline
recursive functions. From examining code produced by the SML/NJ compiler, I believe
that inlining recursive functions using a simple local syntactic criteria often leads to code
expansion without any significant improvement in execution time.

Appel’s strategy also attempts to estimate the decrease in code size that may occur when
an inlined function is optimized. I believe that such an estimate is likely to be inaccurate
and thus not useful, given all the optimizations done by TIL and the way that they interact.

Even though my strategy is a simpler version of Appel’s strategy, Chapter 10.1 shows
that my strategy produces excellent results when compiling whole programs. Almost no
higher-order or polymorphic functions remain after optimization. My inlining strategy is
also fairly insensitive to the definition of what a “suitably small” function is. Code size
varies only by a factor of two, even when this definition varies over a wide range.

104

5.5 Uncurrying

A common programming idiom in SML is to write a function in a “curried” style, where
each of the arguments is passed in by a function call:

val £ = Ax.A.y. z.x+y+z
val t= ((f 1) 2) 3

This allows more flexibility in programming: the function may be partially applied to its
first n arguments. For example, if one is writing an interpreter for a programming language,
one may have a function eval:

val eval = Ae.AE.

which takes an environment e, and evaluates an expression E in the environment. When
interpreting a function call e _.0(e_1, ... em), in some environment, eval could be partially
applied to an environment, and then applied to each expression:

case exp
of APP(e0,args) =>
let val eval’ = eval e
val e 0’ = eval’ e0
val args’ = map eval’ args

Although currying allows more flexibility in programming, it can be inefficient when
implemented straightforwardly. Passing each argument except the last one results in a
function call, construction of a closure, and a function return. Also, currying introduces
first-class functions, which means that the control-flow graph is no longer statically apparent
[83].

For these two reasons, an important optimization for SML programs is uncurrying: taking
a curried function and transforming it to a multi-argument function where all arguments are
passed at once. For example, the uncurried version of £ is

val £ = Ax,y,z.x+y+z

5.5.1 An algorithm for uncurrying

The algorithm for uncurrying is divided into four phases:
Algorithm 5 Uncurrying

e Phase 1 (analysis): identify the functions to be uncurried.

Traverse the program in a top-down manner. When a function of the form

let fix f; = Ax;.let fix fy3 = Axsy.
in £,
end

in £,

end

105

is found, scan down the sequence of nested function definitions (following the “...”)
until a function £, is encountered
1. whose body b does not fit the form:
let fix g = \y.
in g

end

2. or where f,, occurs free in b (that is, £, is a recursive function).
Given the sequence of nested functions

let fix f; = Ax;.let fix fy =

Axo. ... let fix f,=)x,.e
in £,
end
in £,
end

in f1

record f; as a curried function of arity n which is to be uncurried. Do not mark any
of the intermediate functions f, through £, as candidates to be uncurried. Instead,
continue traversing e and b, looking for more functions to uncurry.

e Phase 2 (analysis): identify applications of those curried functions.

The key idea here is the notion of a partial application of a curried function f. Be-
cause of the nature of B-form, the algorithm cannot just look for a sequence of nested
applications:

(((f e1) e) ... e,)

In B-form, each application is named and the sub-computations of e; and so on are
interspersed with the applications. For example, SML code of the form:

AX . Ay . Az . x+y+z
(g (s+t) (t+u) (t+t))

val g
val a

is represented in B-form as

106

fix g = Ax.
let fix h=)\y.
let fix j = Az.

let val t1 = x+y
val t2 = y+z
in t2
end
in j
end
in h
end
val t3 = s+t
val g, = g t3
val t4 = t+u
val g, = g, t4
val tb = t+t

val a = g, tb

The applications occur at g;, g, and a. The computations of the arguments s+t, t+u,
and t+t are interspersed between the applications.

A curried function g is partially applied to one argument t3 at the binding of g,
partially applied to two arguments t3 and t4 at the binding of g, and fully applied to
the three arguments t3, t4, and t5 at the binding of a.

The information for a partial application of a curried function £ to n arguments can
be represented as a pair consisting of £ and a list of the n arguments (which are all
required to be value expressions).

To identify all applications of curried functions, create a map M from variables to
partial applications. Traverse the program in a top-down manner. At each application
val a = g x, do the following:

1. If g is a curried function, then add an entry mapping a to the partial application

(g [2])-

2. If g is in the domain of M, and M(g) = (£,[), then add an entry mapping a to
the partial application (£,["), where [’ is [with x appended to its end.

Phase 3 (transformation): create uncurried versions of functions.

For each curried function £; of the form:

let fix f; = Axy.let fix fy = Axe. ... let fix f,=)x,.e
in £,
end
in £,
end
in ...
end

107

change its definition to have the form

let fix £y = Ax1,% ... X,.¢€
fix £, = Ax{'.1let £, = Axs'. ... let f,=)x,)/
in f'(x/,x", ... %))
end
in £,
end
in ...
end

e Phase 4 (transformation): replace applications of curried functions with calls to the
uncurried versions.

1. For each variable in the domain of M which maps to a fully applied curried
function i.e., such that M(x) = (f,[v1...v,]), where f is a curried function with
arity n, replace the binding

let val x = ...
with
let val x = f(vy ... v,)

2. Do dead-code elimination with all partial applications of curried functions marked
as pure. Note that these applications cannot be deleted outright, because the vari-
ables bound to those applications may be used elsewhere. For example, suppose
f is a curried function of two arguments. The following may occur.

let val x = f a

val y = x b
in ... X ...
end

5.5.2 Asymptotic complexity

Under the assumption that some small constant ¢ bounds the arities of curried functions,
the running time of this algorithm is O(N log V), where N is the size of the progam. Each
of the four main phases of the algorithm has an O(N log N) running time:

e Phase 1: scan the program to identify functions to uncurry.

This phase traverses the program syntax tree in N steps. At each step, a function

could be marked as a candidate for uncurrying, which takes log(N) time, with maps

implemented using balanced trees. Hence, the running time of this phase is O(N log V).
e Phase 2: identify applications of curried functions.

This phase also traverses the syntax tree in N steps. When an application node is
encountered, it takes O(log N) time to process the node, assuming the map M is

108

implemented as a balanced tree. The list in the pair stored in M can be kept in reverse
order, so the append can be replaced by a constant-time cons operation. Thus, the
running time of this phase is O(N log N).

Phase 3: created uncurried versions of functions.

Again, this phase traverses the syntax tree in N steps. When a function definition is
encountered, the function is looked up in a map, taking O(log N) steps. If the function
has arity n, then it takes 2n steps to create the uncurried version of the function and
changed the curried version to call the uncurried version. However, because the sum
of the arities of all the curried functions in the program is less than N, there are at
most 2N steps involved in rewriting functions. Thus, this phase takes N * logN + 2N
steps, and has a running time of O(N log V).

Phase 4: replace applications of curried functions with calls to uncurried versions.

This phase is divided into two parts. Yet again, the first part of this phase traverses a
syntax tree in N steps. When it encounters the application of a function f, it looks up
f in a map, taking O(log N) steps. If f € dom(M), then it rewrites the application.
Because 1 assumed some small constant ¢ bounds the arities of curried functions, the
rewriting can be done in constant time. Thus, the first part processes an application
in O(log N) steps. Hence, the running time of the first part is O(N log N).

The second part is dead-code elimination. Dead-code elimination can be done in
O(N log N) time, so the asymptotic complexity of this entire phase is O(N log N).

Because each phase of the algorithm has an O(N log V) running time, the running time of
the entire algorithm is O(N log N).

If I drop the assumption that some small constant ¢ bounds the arities of curried functions,
then the running time of phase 4 is O(N?). Thus, the running time of the entire algorithm
becomes O(N?). However, empirical evidence demonstrates that ¢ = 5 is a reasonable

assumption.

5.5.3 Related work

This uncurrying strategy was inspired by the uncurrying strategy suggested by Appel [7].
His uncurrying strategy is to apply a simple syntactic transformation and then do inline
expansion. His transformation is phrased in terms of CPS programs, but it can be used for
B-form programs easily.

The transformation takes a B-form expression of the form

let fix f = Ax.
let fix g = Ay = e
in g
end

in £

end

where g is not recursive, to an expression of the form:

109

let fix f = Ax.let fun g = Ay.f’(x,y)

in g
end
and £’ = Ax,y.e
in £
end

The transformation n-expands the body of g and hoists the resulting function to the scope
enclosing g.

Inlining then replaces any fully-applied occurrences of £ with calls to £’. At any points
where £ is fully applied, £ and then g will be inlined because the sizes of these functions
are now small constants. This results in the fully-applied occurrence of £ being replaced
with a call to £’ (for this to work correctly, inline expansion of £’ in the body of g must be
forbidden).

This always uncurries recursive functions of two arguments: if e has a recursive fully-
applied call to £ in it, that call will be replaced with a call to £’.

Unfortunately, this uncurrying strategy is not guaranteed to uncurry recursive functions
of more than two arguments, because it is underspecified. To uncurry functions of several
arguments, the syntactic transformation has to be applied several times in the correct order.

Consider the SML code

let fun f ab c = e
in f
end

Its B-form representation is:

let fix £ = Aa.
let fix g = Ab.
let fix h = Ac.e
in h
end
in g
end
in £
end
The transformation can be applied either to the inner let-declaration which binds g or the
entire expression. The result of applying it to the inner let-expression is

let fix £ =)a.

let fix g = Ab.
let fun h = Ac.g’(b,c)
in h
end

and g’ = Ab,c.e
in g
end

end

110

Because the declaration that binds g also binds g’, this expression does not fit the form for
the transformation. and the transformation cannot be applied again.
The result of applying the transformation to the outermost let-declarations is

let fix £ = Aa.
let fun g = Ab.f’(a,b)
in g
end
and £’ =)Aa,b.
let fix h = Ac.e
in h
end
in £
end
In this case, the transformation can be applied again to £’. The resulting code is

let fix £ = Aa.
let fun g = Ab.f’(a,b)
in g
end
and £’ =)Aa,b.
let fix h = Xc.f’’(a,b,c)
in h
end
and £f’’ = Aa,b,c.e
in £
end
Now, assuming enough inlining, any fully applied occurrences of £ will be uncurried.
In fact, uncurrying as implemented in the SML/NJ compiler applies the transformation
in the wrong order, and as a result does not uncurry functions of more than two arguments.
Note that even applying the transformation in the right order may not succeed in uncur-
rying a function with many arguments. There is a crucial assumption that “enough” inlining
occurs. I believe that my algorithm, even though it is more complex than this algorithm, is
better because it reliably uncurries functions with many arguments.

5.6 Other optimizations

The optimizer also implements the following optimizations, which were originally described

for SML by Appel and Jim [7, 10, 9]:
e dead-code elimination: eliminate unreferenced, pure expressions and functions.

e constant folding: reduce arithmetic operations, switches, and typecases on constant
values, as well as projections from known records.

e sinking: push pure expressions used in only one branch of a switch into that branch.
However, it does not push them into function definitions.

111

e inlining switch continuations: Inline the continuation of a switch when all but one
branch raises an exception. For example, it transforms the expression

let x = 1f y then ey else raise e3
in ey
end

to
1f y then let x = e; 1n e4 end else raise e3.

This makes expressions in e; available within e4 for optimizations like common sub-
expression elimination.

5.7 Conclusion

In this chapter, I have described the optimizer for the TIL compiler. I have shown improved
algorithms for inlining and uncurrying, which are important for eliminating higher-order and
polymorphic functions. For inlining, I have shown that the order in which inlining is done
— doing inlining in a function before considering inlining it — can produce better code for
loops. For uncurrying, I have presented an algorithm which does a better job of uncurrying
functions with a large number of arguments than the algorithm presented by Appel [7].

In Chapter 10, I will show that the algorithms for uncurrying and inlining eliminate
nearly all higher-order or polymorphic functions when whole programs are compiled.

[found that using a typed intermediate language did make the optimizer bigger, but that
types did not constrain any of the optimizations that I presented in this chapter. For example,
inlining had to handle polymorphic functions in addition to non-polymorphic functions. It
also had to propagate type information when it copied the body of a function. In general,
this was the case for the optimizations that I presented here: they had to handle more
language constructs and had to do some additional work to propagate type information.

I found that although using a typed intermediate language required more code, the typed
intermediate language simplified the process of debugging the optimizer: typechecking a
program before and after each optimization phase often helped me to quickly find which
phase contained the bug.

Thus, I claim that a typed intermediate language can be used in an optimizer to support
improved data representations without significantly burdening the implementor and without
constraining optimization.

112

Chapter 6
Loop optimizations

In this chapter, I describe new algorithms that show how to apply several “loop” optimiza-
tions to SML programs. I focus on two sets of optimizations: code motion optimizations,
such as common-subexpression elimination and invariant removal, and array-bounds check-
ing optimizations. [could have, however, chosen a different set of optimizations, such as
strength reduction, invariant removal, and loop unrolling, to demonstrate the importance of
applying “loop” optimizations to recursive functions.

I chose the code motion optimizations because I believe they are likely to demonstrate
the importance of applying “loop” optimizations: these kinds of optimizations are well-
known to be important for more conventional languages [21]. The array-bounds checking
optimizations are intended to support the code motion optimizations: Chow shows that
array bounds checking can interfere with code motion optimizations [21].

It is important to emphasize that the algorithms are new, even though most of the opti-
mizations are well-known. I designed new algorithms because I apply these optimizations to
programs in a A-calculus-based intermediate language (B-form). This makes it impossible
to apply the textbook versions of optimizations [3]: the languages used in the textbooks
differ too much from from the A-calculus. Those languages are first-order, have a flat name
space, are imperative and have looping constructs. In contrast, my A-calculus-based inter-
mediate language is higher-order, has lexical scoping, emphasizes variable binding instead of
assignment, and uses only recursion.

I believe that there are several advantages to implementing these optimizations on a
higher-level A-calculus based language instead of a machine-level language such as RTL,
triples, or SSA. First, there are some computations that are easier to move when they are
represented at a high level, such as record creation and constructor-level computations.
Second, and more fundamentally, the optimizer can use the invariants of the A-calculus
involving scoping of variables. In contrast, with a machine-level language, the compiler must
decide how to represent environments for functions before translating to the machine-level
language. This introduces data structures that seem likely to cause trouble for a traditional
machine-level optimizer. For example, consider loop-invariant removal of an expression that
uses values fetched from a closure: the optimizer would have to figure out that the data
structure representing the closure was also invariant.

One important question is whether my algorithms are practical: are they efficient enough

113

to be used in practice or on large programs? To address this question, I study the algorith-
mic efficiency of my algorithms. Most of the algorithms have an O(NlogN) asymptotic
complexity.

[have organized this chapter in the following manner. First, I discuss common-subexpression
elimination. Second, I discuss eliminating redundant switches, the control-flow analog of
common-subexpression elimination. Third, I discuss a limited form of invariant removal —
hoisting constant expressions to the tops of programs. Fourth, I discuss a general form of
invariant removal. I distinguish between the two forms of invariant removal because I believe
that the limited form is likely to be more specific to TIL’s use of intensional polymorphism:
inlining polymorphic functions can eliminate the cost of passing types around, but some
form of invariant removal is needed to reduce the cost of constructing (monomorphic) types.
Fifth, I cover eliminating redundant comparisons, an optimization for reducing the cost of
array-bounds checking. Finally, I discuss how to order all the optimizations discussed in this
chapter and the previous chapter.

6.1 Common-subexpression elimination

In the following discussion, I assume that every bound variable is unique. An expression is
a common subexpression if it is bound to two variables whose scope overlaps. For example,
consider the program fragment:

let b = ata
c = ata

in ...

end

The expression a+a is a common subexpression. Common-subexpression elimination (CSE)
removes common subexpressions that do not read, update, or allocate updateable data, such
as array. It may remove expressions that raise exceptions or not terminate. For example, it
transforms the program fragment given above to

let b = ata
c=5b

in ...

end

I can state the result of CSE for B-form programs succinctly. I say that all common
subexpressions have been eliminated from a program P if

e For all declarations in P of the form

let a = ¢
in d
end

if e does not contain any declarations nested within it and the effect of ¢ is a subset of
{E,N} according to Algorithm 1, then e does not appear in d.

114

e For all constructor declarations in P of the form

let £t = p
in d
end

if 1 does not contain any constructor declarations nested within it, then p does not
appear in d.

6.1.1 An algorithm for eliminating common subexpressions

I present Algorithm 6, which does CSE for B-form programs, in Figures 6.1 through 6.4. The
algorithm is given as a large number of mutually-recursive functions that traverse program
syntax trees. Figure 6.1 defines functions that decide which expressions and constructors
can be eliminated. Figures 6.2 and 6.3 contain functions for traversing expressions and
declarations, and Figure 6.4 contains functions for traversing constructors and types.

The functions for traversing expressions and declarations take a program term and two
maps as arguments. The first map, ae, contains available expressions. The second map,
ac, contains available constructors. Available expressions are simply expressions that have
been computed and bound to variables. The map ae maps expressions to the variables to
which they are bound and the types of those variables, while ac maps constructors to the
constructor variables to which they are bound.

Most of the functions rewrite program terms. Note that the functions rewrite types to
eliminate common constructors from them, in addition to rewriting expressions and con-
structors.

The function ce eliminates common subexpressions in terms. This occurs in the case that
analyzes let-bound expressions of the form let #:0 =¢ in b . The function first rewrites
e to eliminate any common subexpressions in e. It binds the result to ¢’. The function next
checks whether ¢’ can be eliminated. To make CSE asymptotically efficient, expressions that
contains expressions within them, such as switch expressions, are not eliminated. Expres-
sions that use the store also are not eliminated, because that could change the meaning of
the program. If ¢’ can be eliminated, the function checks whether ¢’ is an available expression
that is already bound to some variable y (that is, it checks whether ¢’ is in the domain of ae).
If so, the function then compares the types of ¢’ and y. If these are the same, the function
replaces ¢ with y. If ¢ is not an available expression, the function extends the mapping ae
to note that ¢’ is bound to x, and rewrites the body of the let declaration using the new
mapping.

The check that types are equal is needed to preserve the type correctness of programs. It
is possible for two expressions to be identical syntactically, but to have different types. For
example, this may occur with operators that create an element of a disjoint sum, such as the
inject operator and the enum_enumorsum operator. The term inject(1,"abc") may have
a different sum type every place it is used.

Note that checking whether two types are equal is non-trivial in this language because con-
structors may be bound to variables and, more fundamentally, the language of constructors is

115

is_elim exp(e) = case e of
[switch ...] :false
[typecase ...] :false
[tlistcase ...]:false
otherwise :eff(e) C{N,FE}

is_elim con(p) = case p of
[Fold ...]:false
[Listcase ...] :false

[Typecase ...] :false
otherwise : true

Figure 6.1: Algorithm 6: functions to decide which expressions and constructors can be
eliminated.

rich. In general, to check whether two types are equal you need to create a constructor envi-
ronment, normalize the types, and then compare the normalized types for syntactic equality.
The constructor environment maps free constructor variables to constructors. Normalization
places all equal types in the same syntactic form by applying constructor functions, reducing
Typecases, and so forth. It is needed because of the richness of the constructor language.

A simple example of a program where type normalization is required is:
con s5::{0 = = At :: Q.Record [t,t]

val x : T(s int) = record (5,5)
val y : T(Record[Int,Int]) = record (5,5)

The types T(s int) and T(Record [int,int]) are in fact equal under normalization.

You can compare types for syntactic equality, but that misses some equivalent types
(such as those given in the preceding example). In practice, I use full normalization to check
for type equality, but I have not studied whether simple syntactic equality produces equally
good results.

Returning to the description of the algorithm for CSE, the function cbe eliminates com-
mon subexpressions in constructors. The logic it uses for eliminating common constructors
is similar to that used by ce for eliminating common subexpressions. Note that the function
cbe differs from other functions in its return value. Other functions simply return a new
term, while cbe returns a rewritten constructor binding and an updated map of available
constructors. This allows cbe to be used in two places: when rewriting constructor variable
bindings at the level of expressions and also when rewriting constructor variable bindings
at the level of constructors. The function cbirewrites types: if a type is a constructor,
it rewrites the constructor. Otherwise, it rewrites the type in the obvious way (the “...”
indicates this).

116

cqld,ae,ac) =
case d of
[vio]:]v:o]
[let 2 :0=¢€ in D]
let € = ce(e, ae, ac)
in if is_elim_exp(e’)
then if ae(e’) = (y,7) and 0 =7
then [let z:0 =y in cq(b,ae, ac)]
else [let z:0 =¢' in cq(b,aele’ — z], ac)]
else [let z:0 =¢' in cq(b,ae,ac)]
end
[let ¢b in d] :
let (eb', ac’) = cq,(cb, ac)
in [let ¢b' in cq(d,ae,ac’)]

end
[let fix 23:01=f1... and @, :0, = f, in d'|
[let fix y:cy(o1,ac) = cp(fi,ae,ac)... and x, : ci(o,,ac) = c¢(fn,ae, ac)

in cq(d';ae,ac)]
[let fixtype #y:01=1tf,... and x,:0,=1tf, in d']
[let fzxtype xﬁ: cy(o1,ac) = cp(tfy,ae,ac)... and z, : cg(on,ac) = cp(tf,, ae, ac)
in cq(d',ae,ac
[let 2y :0 =d; handle f in dy]
[let) :cy(o,ac) = cq(di, ae,ac) handle cp(f,ae,ac) in cy(dy,ae, ac)]
[raise (v,0)]| :
[raise (v,0)]

ce(e, ae,ac) =
case e of
[switch (st)v of (i: f;)" default: od]

[switch (st)v of (i:cq(fi,ae,ac))” default: cgq(od,ae,ac)]
[typecase cv of [t.o|ta] rectype :otf default: od]

[typecase cv of [t.ci(o,ac)|ci,(ta;, ae, ac)*

rectype :cip(otf,ae, ac)

default : cq(od, ae,ac)]
[tlistcase cv of [t.o] nil :d cons:tf]

[tlistcase cv of [l.cf(o,ac)] nil :cy(d,ae,ac) cons: cip(lf,ae, ac)]
otherwise : e

Figure 6.2: Algorithm 6, part 1: traversing expressions and declarations

117

c(f,ae,ac) =

case | of

Ay oxp)d] o [A2y. .. 2,).cq(d, ae, ac)]

cif(tf,ae,ac) =
case tf of
[A(ty. . tn)d] = [A(t.. . t,).cq(d, ae,ac)]

ctala, ae,ac) =
case a of
[co o d] 2 [co:cqld,ae,ac)]
[er i tf] : [er s cp(tf, ae,ac)]

Figure 6.3: Algorithm 6, part 2: traversing expressions and declarations.

6.1.2 Correctness

For a lazy functional language, we can show the correctness of code motion optimizations
such as CSE by using the [rule of the A-calculus:

(Ae.M)N = M[N/x]

This rule states that the result of applying a function to an expression is equivalent to
substituting the expression into the body of the function. For example,

(Ar.x +a)er =€ + €

This rule corresponds to a call-by-name parameter passing strategy.
Note that we can also phrase the 3 rule in terms of let, because let x = N in M end
is simply syntactic sugar for (Ax.M)N:

let =N in M end = M[N/z]
Rephrasing the previous example,
let x=¢€; in v+ x end=¢€1 + €

To eliminate a common subexpression using the [rule, we do a [-expansion (convert
M[N/z] to (Ax.M)N or let * = N in M end), followed by several S-reductions.

For example,

let s = a+a

t = b*xb

u = ata
in s+t+u
end

118

ceplcb,ac) = case cb of
[tk =p]:
let 4/ = ccon(p, ac)
in if is_elim_con(u’)
then if ac(p') =t/
then ([t :: k =1'],ac)
else ([t k= '], aclp’ — t])
else ([t r = p'], ac)
end
[tk =M ke :
([t r =Mk c.gled ac)],ac)
[t :: k = Rectype(t;, cd;)".cd'] :
([t :: K = Rectype(l;, c.q(cds, ac)).coq(ed ac)], ac)

ccon(p,ac) = case u of

[Typecase cv of af default ed :: k] :

[Typecase cv of cycq(ai,ac) default c.q(cd,ac) :: K]
[Fold cv of Nil :ed; Cons : At ::k.edy]:

[Fold cv of Nil :c.q(edy,ac) Cons : At :: k.c.q(cda, ac)]
[Listcase cv of Nil :edy Cons : At ::k.cds]:

[Listcase cv of Nil :c.q(edi,ac) Cons : At ::k.cdy]
otherwise :

Cteala,ac) = case a of
[co:ed] @ ot cpgled, ac)]
[er: At meed] < [ey 0 At i ke g(ed, ac)]

ceqled,ac) = case ed of
[cv] : [ev]
[Let ¢b in od'] :
let (cb', ac’) = c,(cb, ac)
in [Let ¢ in c q(ed’, ac)]
end
ct(o, ac) = case o of

[T ed :coqled, ac)]

Figure 6.4: Algorithm 6, part 3: traversing constructors and types.

119

is equivalent by 3 expansion to

let x = a+a

s = X
t = b*xb
u=x

in s+t+u

end

By (3 reduction, we can substitute x for s and x for u to obtain:

let x = ata

t = b*xb
in x+t+x
end

If we want to preserve variable names, we can rename x to s:

let s = ata

t = b*xb
in s+t+s
end

SML, however, is not a lazy functional language. It uses a call-by-value parameter passing
strategy, instead of a call-by-name parameter passing strategy. For SML, we can only use
the weaker (3, rule [70]:

(A M)V = M[V/z]

where V' is a value. A value is a constant, such as 0, a variable, or a A-expression. This rule
does not allow us to prove correctness for any interesting cases of CSE, where computation
is being done.

To prove the correctness of CSE of expressions that do not raise exceptions and do
terminate, we can extend the syntactic class of values beyond constants, variables, and A-
expressions to include other effect-free expressions such as creating a record from values and
selecting a field of a record.

Proving the correctness of CSE of expressions that may raise exceptions or not terminate
requires more than extending the syntactic class of values, however. For example, it is
obvious that for the expression

let x = a+a
y = ata

in e

end

the second occurrence of a+a must not raise an overflow exception. At that point in the
program, we know that a+a is equivalent to a value v that is bound to x. The 3 rule,
however, does not support this form of contextual reasoning.

120

To demonstrate the correctness of CSE of expressions that may raise exceptions or not
terminate, we can use contextual assertions [43, 60] or conditional lambda-theories [93]. These
variants of the call-by-value A-calculus justify the correctness of the transformations that are
done by Algorithm 6.

The important point is that there is a strong connection between the transformations
that are done by Algorithm 6 and variants of the call-by-value A-calculus.

6.1.3 Asymptotic complexity

The maps for available expressions and available constructors can be implemented using
balanced trees. The comparison operators for expressions and constructors can use a lexico-
graphic ordering. Note that because expressions and constructors containing nested decla-
rations are excluded, all constructors and expressions stored in these maps can be regarded
as having constant size!. This means that expressions stored in the balanced trees can be
compared in constant time, and that operations on the balanced trees can be done O(log),
where N is the program size.

Because the algorithm traverses each node in the syntax tree only once, and it does only
O(log N') work at each node, the algorithm has a running time of O(N log N).

6.2 Redundant switch elimination

Redundant switch elimination is the control-flow analog of common-subexpression elimina-
tion. Common-subexpression elimination removes redundant expressions; redundant switch-
elimination removes redundant switches. A switch on some variable z is redundant if it is
nested within a branch of another switch on x. For example, consider the following B-form
expression which operates on boolean values?:

let b = switch(enum) x
of 0 : M().
let y = switch(enum) x
of 0 : MO .enum(1)
1 : A0 .enum(0)
in y
end
1 : AQ .enum(1)
in b
end

The nested switch that is bound to y is redundant, because we know that x is bound to the
enumerated sum value 0 at that point.

Tt is not strictly true that the sizes are constants because records and sums can have various sizes, but
for all practical purposes they are bounded by a small finite constant.
false is the enumerated sum value 0, and true is the enumerated sum value 1.

121

Redundant switches arise naturally from array-bounds checking and after inlining and
CSE. For example, consider a simple loop that sums the contents of an array A. The SML
version is:

val bound = len A

fun loop (cnt,sum) =
if cnt<bound then loop(cnt+1,sum+subli(A,cnt))
else sum

val s = loop(0,0)

The B-form version of the loop function, after making array bounds checking explicit, is:

fix loop = A(cnt,sum).
let t1 = cnt<bound
t2 = switch(enum) t1
of 0 : A().sum
1 : 20.
let cnt’ = cnt+l
t3 = cnt >= 0
t5 = switch (enum) t3
of O : enum O

1 : let t4 = cnt < bound
t6 = switch(enum) t4
of O : enum O
1 : enum 1
in t6
end
elem = switch(enum) t5
of 0 : A().raise Subscript
1 : A0 .let t7 = sub1(A,cnt)
in t7
end
sum’ = sum + elem

t8 = loop(cnt’,sum’)
in t8
end
in t2
end

The switch expression bound to t5 computes the bounds check predicate 0 < cnt < bound
and the switch expression bound to elem branches on the predicate. CSE replaces t4 with
t1, so the subsequent switch becomes redundant; t6 is known to be bound to enum 1. In
larger programs, CSE and inlining interact to expose unnecessary switches.

The algorithm for eliminating switches, Algorithm 7, is similar conceptually to Algo-
rithm 6 for CSE. Because the algorithms are similar, I only sketch the changes needed to
Algorithm 6. Instead of keeping a map of available expressions and available constructors,

122

the algorithm keeps a map M that tells which switch arms (branches) on variables with sum
types have been taken. The algorithm infers this information when it traverses particular
arms of switches. For example, when the algorithm processes the switch on t1 that is bound
to t2 in the previous example, the map contains an entry {¢{1 — 0} when the algorithm
traverses the 0 arm, and {t1 — 1} when the algorithm traverses the 1 arm. In addition,
the map also contains the list of variables bound by that arm. This list is empty for the
branches in the previous example because the arms do not bind any variables.

When the algorithm encounters a switch on some variable z, it checks to see whether
x € dom(M). If so, and if M(x) = (¢,vl), the algorithm deletes the switch and replaces it
with the body of branch ¢. It also binds the variables bound by the arm 7 to the variables
in vl. If a branch 7 does not exist, then it uses the default branch. All switches in B-form
are required to be complete, so either branch ¢ or a default branch must exist.

It is straightforward to extend the algorithm to eliminate redundant branches on con-
structors, such as those done by typecase and tlistcase. The current implementation of
the algorithm does not eliminate redundant branches on constructors, however. It would
be interesting to extend the implementation and investigate the benefits of eliminating re-
dundant branches on types. I would expect eliminating redundant branches on types to be
especially important for programs that are separately compiled, where the compiler cannot
eliminate polymorphism.

We can show the correctness of the transformations done by Algorithm 7. like the cor-
rectness of the transformations done by Algorithm 6, using variants of the call-by-value
A-calculus. Specifically, we need to use contextual assertions [43, 60] or conditional lambda-
theories [93] to show the correctness of the transformations done by Algorithm 7.

Algorithm 7 has an O(N log N) asymptotic complexity, like Algorithm 6. The algorithm
traverses each node in the program syntax tree. The algorithm processes each node using
a constant number of operations on maps on variables. If you implement these maps using
balanced trees, each operation takes at most O(log N) time. Thus, the total running time of
Algorithm 7 is O(N log N'). This could be improved to an average running time of O(N), by
implementing maps using hash tables, at the expense of a slightly more complicated program
(after the algorithm processes a branch of a switch, it needs to delete the corresponding entry
for the variable from the hash table).

6.3 Hoisting constant expressions

An important optimization is moving expressions from frequently-executed parts of programs
to less frequently-executed parts of the programs. A special case of this is hoisting all constant
expressions and constructors to the tops of programs. This ensures that constant expressions
and constructors are evaluated only once, instead of perhaps being evaluated many times
within recursive functions.

The definitions of constant expressions and constructors are more subtle than what you
might expect. Consider defining an expression to be constant if it uses only constants, that is,
if it has no free variables. The problem with this definition is that B-form forces expressions
that intuitively should be constant, such as a constant list, to contain free variables. For
example, in the following program:

123

let a = 2 :: nil
b=1::a

in ...

end

the expression bound to a is constant with this definition, while the expression bound to b
is not. This problem can be corrected by regarding an expression as constant if all its free
variables are bound to constant expressions or constructors.

This definition is still incomplete for two reasons. First, an expression may be constant,
but its type may not be. For example, the expression inject(1,1), which injects an integer
into a sum, is constant, but the sum type may not be constant. Hoisting the sum to the top
of the program could move the expression out of the scope of its free constructor variables.
Thus, an expression is constant only if the type of the expression is constant. Second, an
expression may have an effect. For correctness, moving a constant expression should not
change the meaning of the program. In other words, constant expressions must be pure.

The following mutually-recursive definitions summarize these requirements:

Definition 1 (Constant expressions, constant constructors, and constant types)
An expression is constant if

o all its free variables are bound to constant expressions or constructors,
e its lype is constant,
o and it is pure.

A constructor is constant if all its free constructor variables are bound to constant con-
structors.
A type is constant if all its free constructor variables are bound to constant constructors.

6.3.1 An algorithm for hoisting

Figures 6.5 through 6.7 present Algorithm 8, which hoists constant expressions and constant
constructors to the tops of programs. The algorithm is divided into an analysis phase
and a transformation phase. Figure 6.5 contains the analysis phase and Figure 6.6 and
Figure 6.7 contain the transformation phase. The analysis phase computes two sets, £ and
C', which contain the names of constant expressions and constant constructors, respectively.
It traverses programs in a top-down manner. When it encounters a let-bound expression,
it first decides whether the expression is constant and should be moved before traversing the
body of the let-declaration. It computes the free variables of the expression, and checks to
see that they are in £ and . It also checks whether the expression has an effect. The logic
for let-bound constructors is similar.

The transformation phase rewrites programs in a top-down manner. Given a program P,
it rewrites P to delete constant expressions and constructor bindings. It stores the deleted
expressions and constructors in the list B. It then prefixes the bindings in B to the rewritten
program (note that the list B is kept in reverse order).

124

When the phase encounters a let-declaration of the form let z:0 =€ in d, it first
rewrites e to €. Next, it checks whether e is a constant expression. If so, it deletes the
binding of x and adds a binding with ¢’ to the list B. The logic for constructors differs only
slightly: the constructor is not rewritten.

6.3.2 Correctness

We can show the correctness of the transformations done by this optimization like we show
the correctness of the transformations done by CSE, by using variants of the call-by-value
A-calculus.

For the simple case of moving constants and variables, we can use the 3, rule. For
example, to move z to the top of the following program:

let x =5
fix £y =
let z = 3
in z * y
end
in f x
end

we can do a (3,-expansion:

let z? = 3
x =5
fix £y =
let z = 2’
in z *x y
end
in f x

followed by a [3,-reduction to substitute z’ for z:

let z? = 3

x =5

fix fy=2" *xy
in f x
end

We can then rename z’ to z

let z = 3
x =5
fixfy=2z*y
in f x
end

125

cq(d)

ce(e)

cf(f)
cef(tf)

ctala)

ref ()
ref ()

case d of
o 0] £ ()
[let 2:0=¢€ in d'] :
let f=fv(e)Ufv(o)
inif Vo € f.o € (1E) and Vt € f.t € (1C) and effe(e) = 0
then £ = (F)U{«}
else ();
cq(d)
end
[let ¢b in d] :
if Vt € fv(eb).t € (1C)
then C' := (1C) U {getv(cb)}
else ()
[let fix xy:01: f1... and @, :0, = f, in d']
(Vi.cg(fi); cqld))
[let fixtype @y:01:tf;... and x,:0,=1tf, in d']
(Vi.cpp(tfi)s eq(d))
[let 2y :0 =d; handle f in dy]
(Cd(d1)§cf(f)§cd(d2))
[raise (v,0)] :()

case e of

[switch (st)v of (i: f;)" default: od]
(Vi.cg(fi); cqlod))

[typecase cv of [t.o|ta rectype :otf default: od]
(Vi.ca(tai); cplot f)ieqlod))

[tlistcase cv of [t.o] nil :d cons:tf]

(cq(d); ceg(tf))

case f of
[A(zy..on)d] :eq(d)
case tf of
[A(ty .. .ftn).cﬂ teqld)

[co: d] :cq(d)
[c1:tf]: ctf(tf)

Figure 6.5: Algorithm 8: identify constant expressions and constructors

126

re(e)

ref nil

let d' =rq(d)
in prefix(rev(!B),d’)

end

case d of
[v:o]:[v:o]
[let :0=¢ in d'] :
let ¢’ = re(e) and d" =rq(d')
inif z € (1E)
then (B = (x,0,€¢) : (1B);d")
else [let z:0=¢ in d"]
end
[let ¢b in d'] :
let d" = rq(d')
in if z € (1C)
then (B := cb:: (IB);d")
else [let ¢b in d"]
end
[let fix @y:01=f1... and 2, :0,=f, in d'|
[let fix zy:0y =1¢(f1)... and @, : 0, = 1p(fn) in rgq(d)]
[let fixtype #y:0y=1f;... and x,:0,=1tf, in d']
[let fixtype 21:01 =rip(tfy)... and x, 0, = 1¢(Lf,) in rq(d’)]
[let 21 :0 =d; handle f in d,]
[let 21 :0 =rq(di) handle r¢(f) in rq(dy)]
[raise (v,0)] :
[raise (v,0)]

case e of
[switch (st)v of (i: f;)" default: od]
[switch (st)v of (i:rp(f;))” default: rg(od)]
[typecase cv of [t.o]taf rectype :otf default: od]
[typecase cv of [t.o]rgy(ta;)” rectype :1p(otf) default:ry(od)]
[tlistcase cv of [t.o] nil :d cons:tf]
[tlistcase cv of [f.o] nil :ry(d) cons:rip(tf)]
otherwise : e

Figure 6.6: Algorithm 8, part 1: move constant expressions and constructors

127

re(f) = case fof
Ay oxp)d] o [AMzy .. 2,)rg(d)]

rip(tf) = casetf of
[A(ty.. . tp)d] 2 [A(ty.. . tn).rq(d)]

riy(a) = case a of
[co:d]:[eco:rq(d)]
[cr:tf]: [a :rd(tfﬂ

Figure 6.7: Algorithm 8, continued: move constant expressions and constructors

To prove the correctness of hoisting other kinds of expressions, we can again use the (3,
rule with an extended syntactic class of values. For example, we can use this version of the

0, rule to show the correctness of hoisting the expression (3,x) to the top of the following
program:

let x =5
fix £y =
let z = (3,x)
in z
end
in f x
end

We can do a (J-expansion that binds z’ to (3,x):

let x =5
z’ = (3,x)
fix £y =
let z = 2’
in z
end
in f x
end

followed by a #-reduction:

let x =5
z’ = (3,x)
fix fy =2’
in f x
end

128

If we wish to preserve variable names, we can rename z’ to z.

Note that this version of the (3, suffices to show the correctness of the transformations
done to hoist constant expressions. Thus, showing the correctness of hoisting constant
expressions is even easier than showing the correctness of CSE.

6.3.3 Asymptotic complexity

The running time of Algorithm 8 depends on what kind of expressions you hoist. If you
hoist all kinds of expressions, the running time of Algorithm 8 is O(N?) (I conjecture below
that this can be improved with a different algorithm). If you hoist only expressions and
constructors that do not contain declarations within them, the running time is O(N).

The algorithm can compute the effects of all expressions in one pre-pass over the program
in O(N) time. It can look up the effect of an expression in average constant time, if you
implement the map from variables to effects as a hash table.

You can implement the sets of constant variables and constant constructor variables as
hash tables, so operations on them can be done in average constant time.

If you can hoist all expression and constructors, Algorithm 8 takes O(N?) time. There
are N syntax nodes, and it takes O(N) time to process let-bound expressions and let-
bound constructors. For let-bound expressions, first the algorithm computes the set F' of
free variables. Because NV bounds the size of an expression, this produces a set of size O(NV)
and takes O(N) time, assuming that you implement F' as a hash table. Next, the algorithm
must check whether all the free variables are constant. Because the size of F'is O(N) and
looking up each free variable in ' takes average constant time, this takes O(N) time. Finally,
the algorithm must look up the effect of the expression, which takes average constant time.
Thus, the total time to process a let-bound expression is O(N). Similarly, it takes O(N)
time to process a let-bound constructor.

If you can hoist only expressions and constructors that do not contain nested declarations,
then Algorithm 8 takes O(N) time. Let the size of each expression or constructor be s;. It
takes O(s;) time to process each expression or constructor, because s; bounds the size of the
set of free variables for an expression or constructor. Now, by definition, ¥s; < N, where N

is the size of the program. Thus, ¥(O(s;)) = O(N).

I conjecture that we can reduce the time for hoisting any kind of expression from O(N?)
time to O(N) time by improving the computation of whether an expression or constructor is
constant. Algorithm 8 does this computation by checking whether the free variables of each
expression or constructor are constant, which results in an O(N?) running time. We can
improve upon this by doing a single, memoized bottom-up pass over the program. The pass
must carefully traverse nodes in the proper order. For example, for a let-bound expression,
it needs to process the expression bound by the let before it processes the body of the let.
For a A-expression or a A-expression, it needs to mark the variables bound by the expression
as non-constant before it processes the body of the expression.

129

6.4 Invariant removal

An expression is invariant in a loop if the expression evaluates to the same value on every
iteration of the loop. Similarly, an expression is invariant in a recursive function if the
expression evaluates to the same value every time the body of the recursive function is
evaluated. For example, in the trivial SML function

fun r nil = nil
| r (h ::t) = ((a,a),h) :: ¢ t

the expression (a,a) is invariant.

Invariant expressions arise naturally during compilation from array address computations
for multi-dimensional arrays. In type-safe languages, these computations typically are not
exposed at the user level, so the compiler must optimize them. For example, consider a
simplified version of the dot product function from integer matrix multiply where the 2-d
array address computations are made explicit:

fix dot=
Acnt,sum.
let val test = 1lti(cnt,bound)
in Switch tag test
of 1 => let val vi

subl(al,j*columns al+cnt)

val v2 = subl(a2,cnt*columns_a2+k)
val sum’ = ¢ + vl * v2
in dot (cnt+1,sum’)
end
| 0 => sum

end

The dot function computes the product of some row j of matrix al with some column £
of matrix a2. Because the variable j does not change during this function, the expression
j*columns_al is invariant.

Normally, you cannot move multiplications upward in scope in SML because they may
overflow. However, the 2-d array address computations, which are introduced by the com-
piler, use arithmetic that ignores overflow. Array bounds checking ensures that ignoring
overflow is correct in this situation. Let r be the result of a 2-d address computation that
is used to index a l-dimensional array. if array bounds checking succeeds, then the 2-d
array indices are within bounds and r must be smaller than the size of the 1-d array. This
implies that no overflow occurred when computing r. If array bounds checking fails, then
any overflow that occurs when computing r can be ignored because r is never used.

Thus the array-address multiplications are pure, and the expression j*columns_al can
be moved out of the loop.

6.4.1 An algorithm for invariant removal

The general idea behind invariant removal is first to estimate the number of times each point
in the program is executed, and then to move expressions that may be executed frequently to

130

points where they may be executed less frequently. I have divided the algorithm for invariant
removal into into three phases. The first phase estimates how frequently each program point
is executed. It computes the the mazimal recursive-function nesting depth of each program
point and assumes that program points with higher maximal nesting depths are executed
more frequently. Recursive-function nesting depths are analogous to loop-nesting depths in
conventional languages like C or Pascal. The second phase decides which expressions to move
and where to move them. It bases this decision on the estimates of program point execution
frequencies computed by the first phase. The third phase is a transformation phase that
actually moves expressions.

Recursive-function nesting depth is a dynamic estimate of how deeply nested a function
is within recursive functions. For example, consider the following SML program:

if x>0 then x+f(x-1) else 0
fun g y = if y>0 then f x + g(y-1) else 0
val a = g 10

fun f x

The recursive-function nesting depth of g is 1; the recursive-function nesting depth of £ is 2.
This example also illustrates that recursive-function nesting depth is different from lexical
nesting depth.

I use recursive-function nesting depths to construct a profile at compile time of where a
program may be spending its time. In informal measurements, which I do not present in
this thesis, I have found that profiles constructed from recursive-function nesting depths are
very good predictors of where programs actually spend their time.

To compute recursive-function nesting depth, we analyze the call graph [76] of a program.
A call graph tells for each function in a program what functions it may call. A call graph is
a directed graph G whose nodes are functions. The edges represent potential function calls:
there is an edge from a function f to a function g if f may call g. Calls from functions
lexically nested within f are not considered to be calls from f. If & is nested within f and
it calls j, then there is an edge from h to 5 but not from f to j.

Here is an example that illustrates this point:

fun f x = if x>0 then x+f(x-1) else

let fun b) = jO

in h ()

end
fun g y = if y>0 then f x + g(y-1) else 0
val a = g 10

Figure 6.8 shows the call graph for this program fragment.
In languages with higher-order functions, the call graphs of programs may need to be
approximated. Consider the following definition of the map function:

fun map f =
let fun loop nil = nil
| loop (h::t) = f h :: loop t
in loop
end

131

Figure 6.8: A call graph for a program fragment with a nested function. The function h is
nested within f, but the call from & to 7 does not result in an edge from f to j.

The functions called by map are not syntactically apparent and the set of possible functions
that may be bound to f must be approximated. This problem has been studied extensively
and numerous analyses have been proposed for constructing approximations of call graphs
and control-flow graphs [36, 39, 44, 76, 82, 83, 95].

It is not clear, however, that these analyses are useful or needed. First, none of the pre-
vious works demonstrated that their analyses are useful in an actual optimizing compiler, or
that the approximations they chose improve existing optimizations in practice. Second, in-
lining can eliminate many higher-order functions, reducing the importance of approximating
the control-flow graph.

Because of this, I chose not to use these analyses for approximating call graphs. Instead,
I rely on inlining to eliminate higher-order functions and use just the known fragment of
the call graph. The idea is to see if a simple approach yields improvements, and leave the
use of more sophisticated analyses for future work. To construct the known fragment of the
call graph, consider only known function applications, and ignore all other applications. A
known function application is an application of a variable f where f is bound to a function
definition. For example, in the expression

fun inc x = x+1
fun compose f g x = £ (g x)
val a = inc 5

the application inc 5 is a known function application and the application of g x is not a
known function application.

Figure 6.9 gives Algorithm 9, which calculates the known fragment of the call graph.
The graph is represented as a set of edges stored in the set (. The set of variables bound to

132

functions is stored in the set F'. I have defined the algorithm as a set of mutually-recursive
functions that traverse the program from top to bottom. I omit the functions for traversing
constructors, because these are similar to those for traversing expressions and declarations.
Each function has two arguments: a program term, such as an expression or declaration, and
g, the name of the function whose body it is processing. When the algorithm encounters a
function definition, it adds the variable to which the function is bound to the set F. At an
application v(...), it checks to see whether v is in F. If so, it adds an edge in G from g (the
function that it is processing) to v.

Algorithm 9 takes O(N) time, where N is the size of the program syntax tree. In
the following discussion (and throughout the remainder of this section), I will assume that
variables are integers between 1 and N. In practice, variables are actually unique arbitrary
integers, but it is straightforward to use a hash table to map them to integers between 1 and
N in average constant time.

The running time is O(N) because the algorithm traverses each node in the syntax tree
and does a constant amount of work at each node. In most cases, it simply recurses. At
function definitions, it also adds variables to the set F'. This takes constant time if F'is
implemented as a boolean array. At function applications, the algorithm takes constant
time to check for membership in F. If the set G is implemented as an array of N hash
tables, where the hash table for a variable f represents the set of variables ¢ such that there
is an edge from f to g, then adding an edge f — ¢ takes constant time: index the array
by f to find the hash table for f in constant time and then insert ¢ into the hash table in
average constant time.

Given the call graph, mutually-recursive functions can be found by first computing the
strongly connected components of the graph. A strongly-connected component of a graph is
a set of nodes such that every node in the component is reachable by a path with 0 or more
edges from every other node in the component. In other words, for components with two or
more nodes, there is a a cyclic path (loop) connecting all nodes in the component.

Algorithms for identifying maximal strongly-connected components are well-known [80].
It takes O(M) time to find strongly-connected components, where M is the number of
vertices and edges in the graph.

The following definition uses strongly-connected components to identify recursive func-
tions. Note that a component with a single node must be treated specially because a single
node is by definition always a strongly-connected component: there is a path of length 0
from the node to itself.

Definition 2 (Recursive function) Given the strongly-connected components of a call
graph G, a function f € GG is recursive if

o it is a member of a strongly-connected component with two or more nodes

e or it is in a strongly-connected component with just one node, and there is an edge
from the node to itself in the call graph.

Definition 3 (Mutually-recursive functions) A set of functions F' is mutually recursive
if all the functions are recursive and they are all members of the same strongly-connected
component.

133

F = ref ()
G = ref ()

cge(f,9) = case f of
Ay .. 2,).d] :cgqld,g)

cgi(tf,g) = casetf of
[A(ty...t).d] :cgqld,g)

cgd(d,g) = cased of

[vio]:()

[let a:0=c in d'| :(cge(e,g);icgq(d’,9))

[let cb in d'] :(cgcp(cd,g)icgq(d, g))

[let fix 2y:01=f1... and 2, :0, = f, in d'|
(F =1 U {1l <i <n}Viege(fi 2i); cgq(d', 9))

[let fixtype #y:0y=1f;... and x,:0,=1tf, in d']
(£ =1 U x|l <@ <npViegyg(tf,, 2i);cgq(d',)

[raise (v,0)] :()

[let v:0 =d; handle f in d3|
(ceq(di,g);ce(f,9); ceq(dz, g))

cgele,g) = case e of
[switch (st)v of (i: f;)* default: od]
(cge(fi:9); cgqlod, 9))
[typecase cv of [t.o]taf rectype :otf default: od]

(cgtaltai, g); cggs(otf, g); cgqod; g))
[tlistcase cv of [t.o] nil :d cons:tf]
” (ng(djf);cgtf(tfag))

11f U EnF éhen G =G UA{(g,v)} else ()
[v[cvr...cv,)] -

if v € F then G :=GU{(g,v)} else ()

otherwise : ()

cgtala,g) = case a of
[co = d] : cgqld, g)
[er ctf] : cgep(tf,9)

Figure 6.9: Algorithm 9: calculate the known fragment of the call graph

134

Definition 4 (Recursive-function nesting) A function f is nested within a set of mu-
tually recursive functions C if f is reachable from some node in C'.

Based on this notion of nesting, we can define the notion of recursive-function nesting depth:
how deeply a function is nested within recursive functions. For example, consider the pro-
gram

fun inc 1 = i+l
if i<10 then g(inc i) else g ()
if i<10 then (g i; £(j+1)) else ()

fun g 1
fun £ j

Here the function £ has a nesting depth of 1, because £ is not nested within any other
function. Because g is nested with £, it has a nesting depth of 2. Finally, because inc is
nested within g, it also has a nesting depth of 2.

A function actually has multiple nesting depths, because it can be nested within multiple
recursive functions. Consider the slightly different program:

fun inc 1 = i+l
if i<10 then g(inc i) else g ()
if i<10 then (g i; f(inc j)) else ()

fun g 1
fun £ j

where inc is called from by £ and j. Here the function inc has nesting depths 1 and 2.

Definition 5 (Recursive-function nesting depths) The set of recursive-function nest-
ing depths (ND) of some function f is the smallest set ND(f) such that

e 0 ND(f)

o If f is not recursive, then

Vg € pred(f).ND(f) 2 ND(g)

o If f is recursive, then

Let C' be the strongly-connected component of which f is a member. Let P = U{pred(g)|g €
C}—C.
Vg€ PND(f) D {z+ 1|z € ND(g)}

The nesting depths of a non-recursive function are simply the nesting depths of its pre-
decessors in the call graph. The definition of nesting depths for a recursive function f is
more complicated, because it is phrased in terms of the component of which the function is
a member. First, the predecessors of the component are computed. The predecessors P of
a component C' include the predecessors of each node in €', but exclude nodes in C'. Then,
one is added to the nesting depths for P.

Because we want to generate excellent code for inner loops and deeply-nested loops, we
will choose to use the maximal nesting depth of a function as the estimate of how frequently
it is executed.

135

Definition 6 (Maximal nesting depth) The maximal nesting depth (MND) of a func-
tion f is MND(f) = max(ND(f))

The following linear-time algorithm computes the MND for every function in a call graph
(. The algorithm takes O(M) time, where M is the number of edges and vertices in the
call graph. Because M is bounded by program size, the algorithm also takes O(N), where
N is program size. (Note that this is a subtle point: M is bounded by N only because we
are using the known fragment of the call graph. If we were not using the known fragment of

the call graph, M would be bounded only by N2.)

Algorithm 10 Compute mazimal nesting depths of functions

1.

Compute the strongly-connected components of the call graph. It is straightforward to
return the list L of components so that it is topologically sorted. A list of components
L is topologically sorted if a component C' precedes any components D € L that it
calls (that is, depends on).

Each component can be represented as a list.

Assign each component a number and create a mapping COMP from function names
to component numbers. This mapping can be implemented as an array of integers,
and can be created in O(M) time.

Also create a mapping PRED that maps each function name to a list of its predecessors.
PRED is an inverted version of the call graph. The mapping can be implemented as
an array of lists, and can be created in O(M) time by traversing all the edges in the
call graph.

. Create a mapping MND from components to maximal nesting depths. Initialize the

mapping to 0. This mapping can be implemented as an array and can be created in

O(M) time.
Traverse the list L of strongly-connected components. For each component ('

o If (' is a set of mutually-recursive functions, traverse each node in C' to compute
max(MND(COMP (pred(C)))). Initialize a variable m to 0. For each node, look
up the set of predecessors using PRED. For each predecessor p, use COMP to
find the component C’ that the predecessor is in. Next, use MND to find the
nesting depth d of C’. If d > m, then set m to d.

After traversing every predecessor of every node in C', set MND(C') = m + 1.

o Otherwise C is a singleton set {f}. Find the MND of each predecessor of f, and
take the maximum m. Set MND(C') = m.

L can be processed in O(M) time. The number of predecessors to be processed is the
same as the number of edges in the call graph. Each predecessor can be processed in

constant time. The look ups in COMP and MND can both be done in constant time,
and so can the comparison against the current maximum.

136

6. Finally, create a map M that computes the MND of each function. For each function
fyset M(f)= MND(COMP(f)). This mapping can be created in O(M) time.

Because each individual step of the algorithm has a running time of O(M), the algorithm
has an O(M) running time.

6.4.2 Deciding which expressions and constructors to move

The algorithm for deciding which expressions and constructors to move is divided into two
phases. The first phase traverses the program from top to bottom and records for each
bound variable:

o its lexical nesting depth
e its maximal recursive-function nesting depth

The lexical-nesting depth of a variable v is simply the number of variable bindings within
which v’s binding is nested. The recursive-function nesting depth of a variable v is the
recursive-function nesting depth of the nearest function definition f enclosing v’s binding.

With this information, it is quite easy to decide which expressions and constructors
to move and where to move them. [will discuss only deciding how to move expressions,
because the treatment of constructors is similar. Given an expression e with a recursive-
function nesting depth d °, let the set of variables it uses be UU. The set of variables it uses
is simply its free variables. The expression ¢ is invariant and can be moved if

e Vv € U, recursive-function nesting depth(v) < d
e ¢ is pure according to the effects analysis presented in Section 5.3.1
and a side-condition related to preserving scoping is met:
o Vv € U, v is not the name of a recursive function within whose body e is nested.

The expression should be moved to the point immediately after all its free variables have
been bound, because this point is estimated to be executed less frequently then the current
location of the expression.

The side-condition is needed when moving expressions whose free variables include names
of recursive functions. It is not possible to move the invariant expression “after” the binding
of such a function name, because that places them outside the scope of the fix or fixtype.
For example, consider the simple function f:

fix £ = Ax.if x>0 then NONE else SOME f

The expression SOME f cannot be moved after the binding of f because that places the
expression outside of the scope of f:

3More properly, which is bound to a variable v with a nesting depth d.

137

Ax.1if x>0 then NONE else a
SOME £

fix f
val a

For constructors, the implementation moves only constructors bound at the level of ex-
pressions. It does not move individual constructors bound at the level of constructors because
that would complicate the implementation even further. It is straightforward to extend the
implementation to do so, and it would be interesting to measure its benefit.

Figure 6.10 presents Algorithm 11, which implements the first phase of deciding which
expressions and constructors to move. It produces a mapping M from bound variables to
their properties. Each function takes three arguments: a term, the lexical-nesting depth of
the term, and the recursive-function nesting depth of the term.

For constructor variables, Algorithm 11 computes information only for constructor vari-
ables bound at the level of expressions. The function getv(cb) retrieves the variable bound
by a constructor binding.

Figure 6.11 and Figure 6.12 present Algorithm 12, which actually decides which expres-
sions and constructors to move. It produces a set MV and a mapping A. MV tells which
let-bound expressions or constructors to move, while A tells how to move them. A maps a
variable = to the sequence of expressions and constructors S that should be moved immedi-
ately after the binding of . Each expression let y: o = e to be moved is represented as a
triple (y,0,€) and each constructor binding ¢b is represented as itself.

The algorithm directly implements the conditions described earlier. The set F' is the
set of recursive functions whose bodies are being processed; it is used to check for the
side-condition related to preserving scoping for recursive functions. When the algorithm
encounters an expression, it checks that none of the free variables of the expression is in
the set [’ and that the recursive-function nesting depth of each free variable is less than
the recursive-function nesting depth of the expression. If so, and if the expression is pure,
then it should be moved. To decide where to move the expression, the algorithm finds the
free variable dst with the greatest lexical-nesting depth, that is, the last free variable of the
expression to be bound. The algorithm updates the mapping A to record that the expression
should be moved after the binding of variable dst.

The treatment of constructors is simpler than the treatment of expressions. First, the
algorithm does not need to check that constructors are pure. Second, the algorithm does not
need to check whether any of the free variables of the constructor are in the set F', because
constructors cannot refer to recursive functions. Recall that getv(cb) retrieves the variable
bound by a constructor binding.

Finally, Figure 6.13 presents Algorithm 13, which moves expressions and constructors.
It traverses the program syntax tree from top to bottom. Whenever a variable is bound,
it consults the mapping A to find which expressions and constructors to move after the
variable binding. Note that it moves expressions and constructors after the point at which
the variable was originally bound, and not the new point at which the variable is bound.
The auxilary function insert(S,d) takes a sequence of expressions and constructors S =
{(z1,01,€1),¢ba, ... (24,04, €,)} to move and a declaration d to insert the expressions and
constructors before and creates a declaration

138

M =ref ()
pe(f,ld,rd) =case f of
[A(zq...2,).d]
(Vi:1<i<nM:=IM+{v, = {lex=1d+1i—1,rec = rd}};
pa(d,ld 4+ n,rd))

pip(tf,ld, rd) = case tf of
[A(ty...t,).d] :
(Vi: 1 <i<nM:=IM+{t; = {lex=ld +i—Lrec=rd}};
pq(d,ld +n,rd))

pq(d,ld,rd) =case d of
[let ©:0=-¢ in d']
(M =M + {z — {lex = ld,rec = rd} };pele, ld, rd);pq(d', ld + 1, g))
[let ¢b in d'] :
(M :=!M + {getv(cb) — {lex = Id,rec = rd} };pg(d',ld + 1,rd))
[let fix 2y:01=f1... and 2, :0, = f, in d'|
(Vi:1<i<nM:=IM+{z; = {lex =ld,rec = rd}};
Vi:l <o < npe(fi,ld+1, MND(x;));
pa(d',ld+1,rd))
[let fixtype xy:0y=1tf;... and x,:0, =tf, in d']
(Vi:1<i<nM:=IM+{z; = {lex =ld,rec = rd}};
Vil <i < npyp(tf,ld+1, MND(z;));
pg(d',ld+1,rd))
[let ©:0 =d; handle f in dy]
(M =M + {z — {lex = ld,rec = rd}};pq(di,ld, rd);
pe(fild,rd);pg(da, ld 4 1,rd))

otherwise : ()

pele,ld,rd) =case e of
[switch (st)v of (i: f;)* default: od]
(pp(fis ld, rd);py(od, ld, rd))
[typecase cv of [t.o]taf rectype :otf default: od]
(Ptaltai,ld, rd); pip(tf,ld,rd);pqlod,ld,rd))
[tlistcase cv of [t.o] nil :d cons:tf]
(pd(d, ld, rd);ptf(tf, ld,rd))

otherwise : ()

ptala,ld,rd) =case a of
(o d] :pyld,ld,rd)
[er s tf] = peg(tf, ld, rd)

Figure 6.10: Algorithm 11: calculate properties of bound variables

139

MV

F

mvg(f)

mv¢(tf)

mvg(d)

case d of

ref ()
ref ()
ref ()

case | of

Ay .2,).d] :mvy(d)

case tf of
[A(ty...t,).d] :mvy(d)

[let ©:0=-¢ in d']
(mve(c):
let U = fv(e) and d = rec. depth(x)
in if pure(e) and Vy € U.rec. depth(y) < d and y ¢ F
then let dst = y where y € U with the max. lex. nesting depth
in (MV:=MV U{z}; A=A+ {dst — A(dst)U{(x,0,e)}})
end

else ();
g ()
end
[let ¢b in d'] :
(let U = fv(eb) and d = rec. depth(getv(cb))
in if Yy € U.rec. depth(y) < d
then let dst = y where y € U with the max. lex. nesting depth
in (MV := MV U {getv(x)}; A:= A+ {dst — A(dst) U {cb}})
end
else ();
g ()
end
[let fix 2y:01=f1... and 2, :0, = f, in d'|
(F:=FU{z;1;Vi: 1 <i<nmvp(f;); F:=F—{z;};mvy(d))
[let fixtype xy:0y=1f;... and a,:0, =1tf, in d']
(F:=FU{z; 1 Vi: 1 <i<nmvp(fi); F = F = {x:;mvg(d))
[let v:0 =d; handle f in d3|
(mvg(di); mve(f);mvg(dz))

otherwise : ()

Figure 6.11: Algorithm 12, part 1: decide which expressions to move.

140

mve(e) = case e of
[switch (st)v of (i: f;)* default: od]
(mve(fi);mvg(od))
[typecase cv of [t.o]taf rectype :otf default: od]

(mvig(ta;); mvge(ot f); mvg (od))
[tlistcase cv of [t.o] nil :d cons:tf]

(mvg(d); mvye(4f))

otherwise : ()

mvi,(a) = case a of
[co : d] - mvy(d)
[er s tf] : mvyp(tf)

Figure 6.12: Algorithm 12, continued: decide which expressions to move.

let @1 : o1 = re(er)
Cbg

T, : 0, = re(en)
in d
end

When the algorithm processes a let-bound expression, it checks whether the variable
being bound is in the set MV. If it is, then this occurrence of the expression is deleted
because the expression is being moved elsewhere. The algorithm processes constructors
bound at the level of expressions in a similar manner.

Algorithms 12 and 13 preserve variable scoping. First, consider the case of an expression
that does not contain any expressions nested within it or a constructor. Variable scoping
is preserved if all free variables in the expression or constructor are still bound before the
occurrence of the expression or constructor. The algorithms broaden the scope of variables,
and they do not move any expression or constructor before the original point at which its
last free variable was bound, so this is true.

Next, consider the more complicated case of an expression that contains expressions
nested within it. The nested expressions may be moved, introducing free variables into the
expression, which may also be moved. For example, in the following program:

let v = if true
then let y
in y
end
else let z

(a,a)

(1,1)
in z
end

141

re(e)

Ita(a)

insert(UA(v;),rq(d))

insert(UA(t;),rq(d))

case d of
[let ©:0=¢ in d']
Hze MV

then insert(A(z),rq(d’))
else [let z:0 =re(e) in insert(A(z),rq(d'))]
[let ¢b in d'] :
if getv(cb) € MV
then insert(A(getv(ch)),rq(d"))
else [let cb in insert(A(x),ry(d'))]
[let fix @y:01=f1... and 2, :0, = f, in d'|
[let fix zy:o0y =1p(f1)... and x,:0, =1¢(f5)
in insert(UA(z;),rq(d'))]
[let fixtype #y:0y=1f;... and x,:0,=1tf, in d']
[let fixtype xy:0p =1p(tf;)... and x,:0, =14(tf,)
in insert(UA(z;),rq(d"))]
[let ©:0 =d; handle f in dy]
[let 2:0 =rg(dy) handle r¢(f)
in rq(da)]

otherwise : d

case e of
[switch (st)v of (i: f;)* default: od]
[switch (st)v of (i:rp(fi))” default: rg(od)]
[typecase cv of [t.o]taf rectype :otf default: od]
[typecase cv of [t.olrp(ta;)”
rectype :rig(otf)
default : ry(od)]
[tlistcase cv of [t.o] nil :d cons:tf]
[tlistcase cv of [t.o] nil :rq(d) cons:rip(tf)]
otherwise : e

case a of
[co: d] :rq(d)
[c1:tf]: rtf(tf)

Figure 6.13: Algorithm 13: move expressions.

142

the if-statement and the expression (a,a) may be moved. Consider the general case of
an expression e; with an expression e, nested within it, where e; and ey are both being
moved. If fv(e;) D fv(ez), then e; will be moved so that is bound after es, because there is
some {ree variable of e; that is bound after all the free variables of e, have been bound. If
fv(er) = fv(ez), then e; and ey are being moved after the same variable. Let that variable
be x. Because e; was traversed before being considered as a candidate for moving, e; must
precede e in the sequence A(x).

6.4.3 Correctness

We can show the correctness of the transformations done by Algorithm 13 by using the
call-by-value A-calculus, just as we can show the correctness of transformations done by the
other code motion optimizations (CSE and hoisting constant expressions).

Like we do for the hoisting of constant expressions, we only need to rely on the call-
by-value A-calculus with a larger syntactic class of values. Specifically, the syntactic class
of values must be extended beyond constants, variables, and A-expressions to include other
effect-free expressions, such as creating a record from values.

To remove an invariant expression with this extended version of the 3, rule, we simply
do a (3 expansion. For example, to move len A out of the function loop in the following
program:

let fix loop (cnt,sum) =
if cnt<len A then loop(cnt+1,sum+subi(A,cnt))
else sum

in loop

end

we simply do a (3 expansion that binds len A to the variable bound:

let bound = len A
fix loop (cnt, sum)
if cnt<bound then loop(cnt+1,sum+subli(A,cnt))
else sum
in loop
end

6.4.4 Asymptotic complexity

Let N be the size of the program. Algorithm 11, which records lexical nesting depth and
recursive-function nesting depth, has a running time of O(N). For each bound variable,
the algorithm adds an entry to the map M. This can be done in constant time if M is
implemented as a hash table. When a function bound by fix or fixtype is processed, the
algorithm must look up its maximal-recursive function nesting depth, which can also be done
in constant time.

Algorithm 12, which decides which expressions to move, has a running time of O(N) or
O(N?), depending on what kinds of expressions are moved. The running time is O(N) if only

143

expressions without declarations nested within them are moved; otherwise it is O(N?) (it
may be possible to reduce this running time by using an improved algorithm). The argument
is similar to that presented in Section 6.3.3 for hoisting constant expressions. The important
step is processing let-bound expressions, which takes time proportional to the free variables
of the expression. In turn, the number of free variables is proportional to the size of the
expression.

Let s; be the size of each expression. If only expressions not containing declarations
within are moved, then O(Xs;) = O(N), so processing takes O(N) time. Otherwise, s; is
bounded only by N, so processing takes O(Xs;) = O(N?) time.

Algorithm 13 has a running time of O(N). At each point in the program where a variable
is bound, the algorithm looks up in the map A what expressions have to be moved after the
variable. This takes average constant time, if A is implemented as a hash table.

If there are any expressions that have to be moved, the algorithm inserts them into the
program. Because at most [NV expressions can be moved, the total time to insert expressions
in O(N).

The total running time for invariant removal is O(N) if only expressions not containing
declarations nested within them are moved. It is O(N?) if expressions containing declarations
nested within them are moved. Each step of invariant removal takes only O(N) time, except
for Algorithm 12 which takes O(N) or O(N?) time. Thus, Algorithm 12 dominates the

running time of invariant removal.

6.4.5 Converging in one pass

The algorithm that I just presented for invariant removal requires multiple passes to move
all invariant expressions and constructors. For example, given an expression of the form

let v = (a,a)
(v,v)

W
in ...
end

where (a,a) is invariant, the binding of v will be hoisted on the first pass, but the binding
of w will be hoisted only on a second pass. The problem is that when the algorithm moves
v, it needs to update the lexical nesting depth and recursive-function nesting depth of v.

The actual implementation that I use in TIL converges in one pass. The implementation
combines Algorithm 11 and Algorithm 12 into one pass. When it moves an expression or
constructor, it updates the lexical nesting depth and the recursive-function nesting to reflect
the new location of the expression or constructor.

Maintaining the mapping A used in Algorithm 12 is subtle. A maps each variable to
the sequence of expressions and constructors that should be moved immediately after the
binding of that variable. If an expression let x:0 =€ in ... is supposed to be moved
after some variable y, but y is supposed to be moved after the binding of some variable z,
then we add (x,0,¢€) to the sequence of expressions for z, not y. To preserve scoping, it is
important to keep expressions and constructors in the sequence in the same order in which
they are added to the sequence.

144

To illustrate this last point, consider the previous example. Suppose that v is being
moved after the variable a, that is A(a) = [(v, int, (a,a))]. When w is added to A(a), A(a)
must equal [(v, int, (a,a)), (w, int, (v,v))]. This ensures that when A(a) is appended after
the binding of a, the scoping constraints for v and w are preserved.

6.5 Eliminating redundant comparisons

The reader may have noticed that eliminating redundant switches misses some obvious cases.
For example, given an SML program of the form,

let val x = if a>b then
if a>=b then 0 else 1
else 1
in ...
end

redundant switch elimination will not eliminate the inner if-expression. Also, it does not
eliminate all the cost of bounds checking even for the simple example of a loop summing
the contents of the array; the comparison that checks that the loop count is greater than 0
remains.

These problems arise because redundant switch elimination has no knowledge of the
semantics of arithmetic comparisons. It only eliminates switches on the same variable. The
B-form version of the previous example is:

let t1 = a>b
x = switch (enum) t1

0 : X(O.1
1 : let t2 = a>=b
t3 = switch (enum) t2
0 : 20O.1
1 : 20.0
in t3

in ...

CSE cannot eliminate t2, so redundant switch elimination cannot eliminate the switch on
t1.

Redundant comparison elimination is a generalization of redundant switch elimination
that eliminates comparisons. I divided the algorithm into two phases: an analysis phase and
a transformation phase. The analysis phase determines for each point in a program a set of
propositions about relations between integer variables that are true at that point.

Definition 7 A proposition has the form
bvy = bvg, buy > bvg, buy # buy, or buy >= bvy

where bv; ranges over variables and integers.

145

a=b = b=ua
a=b = b>a
a# b = b#a
a>b = a>b
a>b = a#b
a=bandbopec = aopc
a=bandcopb = copa
a#banda>b = a>b
a>bandb>c¢c = a>c
a>bandb>c¢c = a>c
a=bandb=¢c = a=c

Figure 6.14: Axioms used by redundant comparison elimination

There are numerous analyses possible that can produce results in such a form. I use two
simple analyses. The first analysis scans a program top-down, examining switches. If a
switch is on a boolean variable that is bound to an arithmetic comparison, the analysis
infers that the arithmetic comparison is true in the true branch of the switch, and false in
the false branch of the switch. In the previous example, when the analysis processes the
switch on t2, it infers that a > b in the true arm of the switch (the 1 branch), and that
a # b (that is b > a) in the false branch of the switch (the 0 branch). The second analysis
uses a simple abstract interpretation based on the rule-of-signs for arithmetic operations (if
a >0 and b > 0 then ab > 0 and so on).

The transformation phase traverses the program. When it sees a comparison, it converts
the comparison to a proposition P. It then looks up the set of propositions S which are
known to be true. It checks to see if P € S or =P € S. If this fails, it computes the
transitive closure T'S of S, according to the axioms given in Figure 6.14. It then checks
whether P or =P € 5. If P is a proposition involving a constant, it checks to see if there is
some P’ € S involving a constant which implies P or =P. For example, if P is a > 5, then
a > 7 € S implies the truth of P.

6.5.1 Inferring propositions from switches

The first analysis, Algorithm 14, is presented in Figure 6.15 and Figure 6.16. The result of
the algorithm is a map M that maps each program point to a set of propositions that are
true at that program point. Each function in the analysis takes three arguments: a term
to analyze, an environment env mapping variables of boolean type to propositions that are
true if the variable is true, and a set S of propositions that are known to be true. For
each let-bound variable, the analysis records the set S in the map M. When the analysis
processes a let-bound comparison expression of the form let = = op(y,z) in ..., it infers

146

a proposition P from the comparison and extends env to map = to P. When it processes a
switch on a variable z, it checks to see if x is in the environment. If so, it adds env(z) to
the set S of true propositions when processing the true branch of the switch, and adds the
negation of env(x) to the set S when processing the false branch.

This analysis has an asymptotic complexity of O(Nlog N). On processing each let-
bound expression, it needs to add the current set of propositions to the map M. This can
be done in average constant time if M is implemented as a hash table. If the expression is
a boolean expression, it also needs to extend the environment mapping variables to propo-
sitions. This can be done in O(log N) if environments are implemented as balanced trees.
Thus the time to process a let-bound expression is O(log N).

On processing a switch, the analysis needs to check the environment in O(log N) time
to see if the variable is bound to a boolean expression. If so, the analysis needs to add a
proposition to the set of propositions when processing the true and false arms of the switch.
The set of propositions can be implemented as a balanced tree, with a lexicographic ordering
imposed on propositions, and there are at most N propositions in the set, so this can be
done in O(log N) time. Thus, the total time to process a switch is O(log N) time.

Because there are at most N steps in the analysis, the entire analysis takes O(N log N)
time.

6.5.2 Rule-of-signs abstract interpretation

The rule-of-signs abstract interpretation uses a lattice whose elements are {T,+,—,¢, L},
where T denotes any integer, + denotes the set {i[¢ > 0}, — denotes the set {i|s < 0}, ¢
denotes integer constants, and 1 denotes absence of information.

Figures 6.17 through Figures 6.19 present the abstract interpreter. Figures 6.17 and 6.18
contain the main body of the interpreter, while Figure 6.19 defines the abstract primitive
operations. The definitions of multiplication and division are elided to save space.

The analysis uses two data structures. The first is a map F' from function names to
their approximated domain and range values, where the approximated domains and ranges
are stored in ref cells. F' should be initialized so that all escaping functions? are mapped
to domains of T values, while all known functions are mapped to domains of | values. All
ranges should be initialized to L. The second data structure is an updateable map A from
variables to their approximated values. This map A approximates all the possible values
of environments. A should be initialized so that all bound variables are mapped L values,
except for variables bound by the arms of branching expressions. Those variables represent
values extracted from program data structures, so they should be initialized to T.

After the data structures have been initialized, the function ay should be applied to a
program repeatedly until the ranges of ' and A do not change. That is,

1. aq is applied to the program.

2. If that changes the ranges of F' or A, we go back to step (1).

4A function escapes if some of its call sites are unknown.

147

neg(p) = case p of

aq(d,env,s) = case d of
[let ©:0=¢ in d']
let env’ = case e of
[eqi(buy, buy)| @ env[x — [bvy = buy]]
[1ti(bvy, buy)| @ env[x — [bvy > buy]
[gti(buy, buy)| @ env[x — [bvy > buyl]
[1tei(bvy, bvy)] @ env]z — [bvg > buq]]
[gtei(bvy, bvy)] @ env]z — [buy > bug]]
[switch (enum)a’ of 0:enum 0, f; :enum | default: ¢
if ' € dom(env) then env]z — env(a’)] else ()
[switch (enum)a’ of 0:enum 1,f;:enum 0 default: ¢
if ' € dom(env) then env]z — neg(env(a’))] else ()
in (M := (IM)[z — s];ae(e, env,s);aq(d’, env’, s))
end
[let ¢b in d']
aq(d',env, s)
[let fix #y:0=f1... and 2, :0=f, in d'|
(Vi.ag(fi,env,s);aq(d', env, s))
[let fixtype #1:0=f1... and z,:0=f, in d'|
(Vi.agp(fi, env, s);aq(d, env, s))
[let ©:0 =d; handle f in dy]
(ag(dy,env, s);ap(f,env, s);aq(dy, env, s))

otherwise:()

Figure 6.15: Algorithm 14, part 1: infer truth or falsity of comparisons from switches.

148

ae(e,env,s) = case e of
[switch (st)x of (i:f;)" default: od]
if @ € dom(env)
then let true_s = S U{env(x)} and false_s = S U {neg(env(x))}
in Vi.if 2 =0
then ag(fo, env, false_s)
elseif 1 =1
then ag(f1, env, true_s)
else impossible
end
else (ap(fi, env,s);aq(od, env, s))
[switch (st)v of (i: f;)* default: od]
(ap(fi,env,s);aq(od, env, s))
[typecase cv of [t.o]taf rectype :otf default: od]
(agq(tai, env,s);aip(ol f,env, s);aq(od, env, s))
[tlistcase cv of [t.o] nil :d cons:tf]
(agq(d, env, s);ap(ot f,env, s))

ap(f,env,s) = case f of
[A(ty...t,).d] :aq(d,env,s)

agp(tf,env,s) = casetf of
[A(ty...t,).d] :aq(d,env,s)

aty(a,env,s) = case a of
[co: d] s ag(d,env,s)
[er i tf] rag(tf,env,s)

Figure 6.16: Algorithm 14, continued: infer truth or falsity of comparisons from switches.

149

When the function aj traverses a let-bound expression (see Figure 6.17), it evaluates
the expression, updates A, and traverses the body of the let. When it traverses a function
definition, it evaluates the function in its approximated domain, and updates the approxi-
mated range of the function. When it encounters a raise declaration, it returns L, since
raise declarations never return a value.

The function ag evaluates expressions. For one and two-argument primitives operators,
ae evaluates the arguments and then applies versions of the primitives which work on ap-
proximated values. For expressions which branch, ae evaluates each of their branches and
return the least upper bound of their branches. For function applications where the func-
tion being is applied is known, ae adds their arguments to the domain of the function, and
returns the range. When the function is unknown ae returns T. For polymorphic function
applications, the function ae does not update the domains of polymorphic functions because
the arguments are known to be types. All other expressions return T.

The interpretation has a running time of O(N?), where N is the size of the program. It
takes O(N) time to make one pass over the program. There are at most N variables, and
each variable can have at most 4 abstract values (the height of the lattice). Since the values
of variables only move upward in the lattice, at most 4N passes can be made before the data
structures converge. Thus, the total running time is 4N * O(N), or O(N?).

I speculate that using dependency information to recalculate the abstract values of vari-
ables only when necessary can significantly improve the actual running time of the algorithm,
perhaps to the point where the actual running time of the algorithm is linear in the size of
the program.

The result of the interpretation is the map A, which maps variables to their approximated
values. It is straightforward to convert A to a set of propositions P about variables. P is
true for all program points, so converting P to be the mapping M needed by the following
transformation phase is easy. M has to be a mapping from program points to propositions
that are true at that point, so M = Ax.P.

6.5.3 Eliminating comparisons

Figures 6.20 and 6.21 show Algorithm 15, which does the actual elimination of comparisons.
The algorithm is parameterized by a mapping M from program points (let-bound variable
names) to sets of propositions that are true at that point. It traverses the program from
top to bottom. At each let-bound boolean expression, it looks up the set of propositions
that are known to be true. It then checks to see if the boolean expression is true or if the
negation of the boolean expression is true in this set. If so, it replaces the expression with
the appropriate constant.

The running time of this algorithm depends on the implementation of the function
provable. If this function is the identity function (that is, uses only the set of syntactic
propositions), then the time to process each boolean expression is O(log N), where N is
program size. It takes constant time to look up the set of propositions in M. Because there
are at most NV propositions, it takes O(log N) time to check whether an expression is true or
false. Because there are at most N steps, the total running time of this phase is O(N log N).

If, however, the function provable computes all provable propositions using transitive

150

A = ref ...

aq(d) = case d of
o] - av(o)
[let ©:0=-¢ in d']
let @' = ae(e)
in A :=1A[x — (IA)(z) U 2'];aq(d")
end
[let ¢b in d']
aq(d’)
[let fix 2y:0=f1... and 2,:0=f, in d]| :
(Vilet {dom = d,range = r} = F(z;) and s = ag(f;, !d)
inr := (Ir)Us
end
aq(d))
[let fixtype #1:0=f1... and ¢, :0=f, in d]
(Vilet {dom = d,range = r} = F(z;) and s = a¢¢(f)
inr := (Ir)Us
end
ag(d))
[raise (v,0)] : L
[let ©:0 =d; handle f in dy]
let 21 : 0y = ag(dy) and x5 = ang(f)
in A = (IA)[z = 2 Uxy);aq(da)

end

ay(v) = case v of
[2] : (1A4)(2)
[0] : 4
[ep(v)] 2 0 tav(v)
otherwise: T

Figure 6.17: Rule-of-signs abstract interpretation, part 1: the function aj is repeatedly
applied to a program until the sets F' and M do not change.

151

ae(e) =

a(f args) =

aof(f) =

apg(tf) =

ata(a) =

case e of

v:ay(v)

[p1(v)] : agp1(p1yav(v))

(pz(vlﬂhﬂ : aopg(pg,av(vl),av(vg))

[switch (st)v of (i: f;)* default: od]
Uauf(fi) Uag(od)

[typecase cv of [t.o]taf rectype :otf default: od]
Uayg(ta;) Uagg(ot f) Uag(od)

[tlistcase cv of [t.o] nil :d cons:tf]
aq(d) Uagp(otf)

[v(vy...0,)]
if v is a variable x and @ € dom(!F)

then let {dom = d,range = r} = F(x) and (ay,...,a,)

in (d := (a1 Uay(vi),...an Uay(v,));!r)
end
else T
[v[v...v,]]
if v is a variable x and @ € dom(!F)
then let {dom = d,range = r} = (\F')(x)
in (Ir)
end
else T
otherwise: T

case (f,args) of
([May o1 an i 0,)d]| yar...a,):
(Vi.A =1A[z; = a;];a4(d))

case | of
[AMzy:01... 2y 0,).d]
(Vi.A :=1A[z; = Tlyaq(d))

case tf of
[A(ty...t,).d] aq(d)

case a of
[co: d] :aq(d)
[er s tf] s app(tf)

(1d)

Figure 6.18: Rule-of-signs abstract interpretation, continued.

152

aopl(opl,v) = case opl of
size: +
otherwise : T

aop2(0P27U1,U2) = case op2 of
plusi:
case (v, vq) of
(T,o): T
LT): T
1,y L
5) L
+,4): +
=) —
—): T
—+):T

+,2):if 2 > 0 then + else T
cif 2 > 0 then + else T
:if 2 <0 then — else T
:if 2 <0 then — else T

h,J) it
minusi :
let v}, = case vy of
1:—1
+: -
L1
T:T
in aopg(plus,vl,vé)
end
muli :
divi:

otherwise: T

Figure 6.19: Definitions of abstract operators for rule-of-signs abstract interpretation.

153

closure, then the running time of this phase is O(N*). At each let-bound expression point,
computing transitive closure may take O(N?) time, using an N by N boolean matrix repre-
senting propositions which are true between variables. It takes constant time to check the
matrix to see whether the boolean expression is true or false. Because there are at most N
steps, the total running time of this phase is O(N?) x N = O(N*).

6.5.4 Correctness

In this section, I sketch how to prove the correctness of redundant comparision elimination
by using a variant of the call-by-value A-calculus that supports pre-and-post conditions.

If we are using Algorithm 14, which infers propositions from switches, we can modify
the algorithm to produce programs annotated with pre-and-post conditions. That is, instead
of the algorithm producing a mapping from program points to propositions that are true at
those program points, the algorithm can annotate the program with those propositions.

A statement and proof that the modified algorithm produces an annotated program could
take the following lines. Let ¢y be the main function of the algorithm that takes a program
P and a pre-condition A and produces an annotated program. cq(P, A) produces properly
annotated programs. The proof is by structural induction on P.

We can then modify Algorithm 15 to take annotated programs, and prove that it correctly
eliminates comparisons from properly annotated programs. The proof would again be by a
structural induction on (properly annotated) programs.

If we are using the rule-of-signs abstract interpretation, we would need to modify the ab-
stract interpretation to produce properly annotated programs. This is not hard to do. Recall
that the abstract interpretation produces an abstract environment that can be regarded as
a set of propositions about variables. We can simply annotate each program point with the
propositions that are true for the variables in scope at that point.

6.5.5 Overall asymptotic complexity

The asymptotic complexity of redundant comparison elimination depends on exactly what
analysis we use and what set of propositions infer from the set collected by the analysis. If
we infer propositions from switches, and do not try to infer any additional propositions,
then the running time is O(N log V). If we include a rule-of-signs analysis, the running time
increases to O(N?). If we compute the transitive closure of the set of available propositions,
the running time increases to O(N*).

It should be noted that even an O(N*) running time is feasible in practice, because N is
actually bounded by the number of variables with integer types in scope at any particular
point in the program.

In practice, TIL uses the O(N?) version of redundant comparison elimination. This
uses the most accurate — and expensive — analysis. Chapter 9 shows that this version of
redundant comparison elimination offers little benefit in practice.

6.6 Ordering the optimizations

154

cq(d) =

ce(e) =

case d of
[v:io]:[v:o]
[let ©:0=-¢€ in D]
let € = ce(e)
in if €' € provable((!M)(x))
then [let z:0 = true in cq(b)]
else if not(e’) € provable(!M)(x)
then [let z:0 = false in cy(b)]
else [let z:0=¢" in cq(b)]
end
[let ¢b in d]
[let cb in cy(d)]

[let fix @3:01=f1... and 2, :0, = f, in d'|
[let fix zy:01 =cp(f1)... and z,: 0, = cp([fn)
in cq(d)]

let fixtype xy:0,=1f,... and z,:0, =1f, in d
yp 1 n
[let fixtype 21:0y =cyp(tfy)... and z,: 0, = cip(Lf,)
in cq(d')]
[let 21 :0 =d; handle f in dy]
[let @y :0 = cp(f) handle cq(dy) in cy(dy)]
[raise (v,0)]| :
[raise (v,0)]

case e of
[switch (st)v of (i: f;)" default: od]
[switch (st)v of i:cp(fi)” default: cq(od)]
typecase cv of |t.o|tal rectype :otf default:od
yp i yp
[typecase cv of [t.o]ciy(ta;)*
rectype :cyp(otf)
default : cq(od)]
[tlistcase cv of [t.o] nil :d cons:tf]
[tlistcase cv of [t.o] nil :cy(d) cons:cip(tf)]
otherwise : e

Figure 6.20: Algorithm 15: traversing expressions and declarations.

155

ce(f) = case f of
[A(zy.oxp)d] o [M(2y .. 2,).cq(d)]

cif(tf) = casetf of
[A(ty.. . tp)d] 2 [A(t.. . tn).cq(d)]

ctala) = case a of
[co:d]:[co:cy(d)]
[er st f]: [er et f)]

Figure 6.21: Algorithm 15, continued: traversing expressions and declarations.

Figure 6.22 shows the order in which optimizations are applied. The order is similar to
that used by Appel in the SML/NJ compiler [7]. First, a round of reduction optimizations
are done. These optimization include constant-folding, common-subexpression elimination,
redundant switch elimination, inlining of functions only called once, invariant removal, hoist-
ing of constant expressions, and dead-code elimination. These optimizations are guaranteed
to not increase the size of a program; they should make programs smaller and faster. These
optimizations may be iterated until no further reductions occur. Next, after shrinking the
program in size, switch-continuation inlining, sinking, uncurrying, comparison elimination,
and inline expansion are done. The entire process is iterated two more times.

It is important that some optimizations be done before others. CSE should always be done
before inline expansion, because CSE can eliminate applications of polymorphic functions.
This makes it less likely that duplicate copies of polymorphic functions will be created by
inline expansion. CSE should also be done before redundant switch elimination. Redundant
switch elimination looks for switches on the same variable; CSE may show that one variable
can be replaced by another.

With no iteration during the “shrink” phase, the asymptotic complexity of the optimizer
ranges from O(N log N) to O(N*), where N is the size of the program. The asymptotic com-
plexity of the optimizer is determined by the worst-complexity of any particular optimization,
because each optimization is done only a constant number of times and each optimization
increases program size only by a constant factor. Table 6.1 shows the asymptotic complex-
ities of each optimization. The asymptotic complexity of the optimizer is O(N log N) if a
simple version of redundant comparison elimination is done and only expressions without
declarations nested within them are moved by invariant removal and hoisting of constant
expressions. It is O(N?) if invariant removal and hoisting are allowed to move any kinds of
expressions and the rule-of-signs analysis is used during redundant comparison elimination.
It is O(N*) if transitive closure is used during redundant comparision elimination.

[terating optimizations during the “shrink” phase is useful because these optimizations
interact, particularly with inlining of functions only called once [9]. For example, inlining
of a function only called once may expose the fact that a variable passed to a function is in
fact unused, thus presenting an opportunity for dead-code elimination. It may also expose

156

| Simple constant—folding|

CSE

Redundant switch eliminatiod

!

Inline functions only
called once

| Constant—folding|

| Invariant removal |

IDeadcode elimination

Break fixs into
minimal components

I

Inline switch contexts

!

Sink expressions

I

Flatten functions

I

Uncurry functions

!

Comparison elimination

Figure 6.22: Order in which optimizations are applied.

157

Optimization

Asymptotic running time

(N = LMLI program size)

Dead-code elimination O(N)

CSE O(Nlog N)
Constant folding O(Nlog N)
Inlining of functions only called once | O(N)

Inline expansion O(N)

Invariant removal O(N) or O(N?)
Hoisting of constant-expressions O(N) or O(N?)
Redundant switch elimination O(Nlog N)
Redundant comparison elimination | O(Nlog N) to O(N*)
Switch-continuation inlining O(N)

Sinking O(Nlog N)
Uncurrying O(Nlog N)

Table 6.1: Asymptotic running times of optimizations

the fact that an expression is invariant, and can be moved out of loop.

It is unclear, however, that this iteration is worthwhile. First, iteration can change the
asymptotic complexity of this phase from O(N log N') to O(N?log N), where N is the original
size of the program. N iterations may need to done, each taking O(N log N) time. Second,
all the individual optimizations in this phase can be implemented so that each one converges
in one pass. For example, CSE, redundant switch elimination, and hoisting as described in
this chapter converge in one pass. Invariant removal and inlining as implemented (but not
as described) also converge in one pass. Third, the additional optimizations done during
iteration may improve performance only a small amount.

6.7 Related work

In this section, I describe related work on optimization of functional languages. That is, this
section also covers some related work for the previous chapter.

Steele [85] proposes the use of source-to-source transformations in compiling SCHEME,
using a A-calculus based intermediate language. His optimizer does some simple forms of
inlining, eliminates unused arguments to functions, does short-circuiting of if-statements,
and does constant-folding of primitive operations. His description is complicated by the fact
that he uses a subset of SCHEME for his intermediate language. SCHEME differs from the
call-by-value A-calculus in that it allows variables to be assigned.

Kranz et al. [48, 52, 51] also use source-to-source transformations in the ORBIT compiler
for SCHEME. Their set of optimizations is similar to Steele’s set, with one notable difference:
they propagate values, such as small function definitions, across compilation units.

Appel and Jim [10, 7] continue in this vein by using source-to-source transformations in
compiling SML. Their optimizer does inlining, uncurrying, constant-folding, and dead-code
elimination. In addition, they also do hoisting (moving variable bindings up or down in
scope) and a form of CSE. They move function definitions up or down in scope (so that

158

closures may be shared or not constructed until necessary), and they also move operators
that are used only once into branches of switch statements if possible. However, they do
not hoist expressions of out of function bodies (that is, they do not do a form of hoisting
analogous to invariant removal).

Appel [7] finds that hoisting provides small improvements in execution time (5-10%) and
that CSE provides no improvement in execution time. It is unclear why his form of CSE
provides no improvement, because it is quite similar to my form of CSE. Ispeculate that CSE
in the SML/NJ compiler interacted poorly with the closure conversion phase of the compiler.
At that time, the SML/NJ compiler did not share closures and it also allocated continuation
closures instead of stack frames. Thus, every common subexpression live across a function
call was written to memory (saved in a continuation closure). Indeed, it could be written
to memory at every function call, offsetting the benefit of avoiding the extra computation.
In TIL’s register allocator, a variable that is bound to a common subexpression and live
across a function call may not be written to memory at all if it is saved in a callee-save
register. If the variable is written to memory, it is written to the stack only once because
TIL uses Chaitin’s graph coloring register allocation, which allocates a variable to memory
or a register for its entire live range.

Shivers [83] advocates the importance of adapting optimizations used in compilers for C
and FORTRAN so that the optimizations can be applied to languages like SML. He shows
how to approximate the control-flow graph for programs that use higher-order functions. He
shows to use this information to do induction-variable elimination (IVE) and to potentially
improve inlining. The optimizations that I describe in this chapter extend Shivers work. I
have focused on the simpler problem of applying optimizations to programs that use first-
order, recursive functions.

Peyton-Jones [69] and Santos [79] describe an optimizer for the Glasgow Haskell compiler
that is similar in spirit to my optimizer. Like my optimizer, their optimizer uses many simple
transformations that are iterated repeatedly. Their optimizer also uses a typed intermediate
language, although the Glasgow compiler is unable to use type information to avoid tagging
data (laziness, and the need to check for whether an expression is a thunk that needs to be
evaluated or a value, seems to impede this).

Their transformations are similar at a high-level to my transformations: they do inlining,
constant-folding, dead-code elimination, code motion optimizations such as hoisting, and
optimizations on switch statements. The optimizers differ in their details because of the
different source languages. Their optimizer must be careful to preserve laziness and to
reason about laziness. My optimizer must be careful to preserve side-effects.

6.8 Conclusions

In this chapter, I have shown how to apply several optimizations that are known to improve
loops in imperative languages such as C and FORTRAN to programs in a A-calculus interme-
diate language. [have presented new algorithms to do common-subexpression elimination,
elimination of redundant branches, hoisting of constant expressions, invariant removal, and
eliminating unneeded comparisons. I have analyzed the asymptotic complexity of these al-
gorithms and shown that core versions of these algorithms have an O(N) or O(N log N)

159

asymptotic complexity, where N is program size. This shows that the algorithms are practi-
cal. For hoisting of constant expressions and invariant removal, [have shown that extending
these optimizations to move functions or branching expressions increases their asymptotic
complexity form O(N) to O(N?). For redundant comparision elimination, the asymptotic
complexity may range between O(N?) and O(N?).

In addition, I have separated analysis from transformation when presenting the algo-
rithms, and have argued that the correctness of all but one of the transformation phases can
be justified by variants of the call-by-value A-calculus.

160

Chapter 7

Compilation to machine code

In this chapter, I describe how TIL compiles B-form! programs to ALPHA machine code.
First, I describe my approach to compiling B-form programs to machine code. Then, I give
an overview of the phases that implement the translation. Next, I explain each phase in
detail and show how TIL translates a polymorphic function to machine code.

My approach to compiling B-form programs to machine code is quite different from the
approach suggested in the literature. Many researchers who have implemented higher-order
languages such as SML have stated the importance of compiling functions well [52, 7, 81]
— they have focused on strategies for representing environments for first-class functions. I
believe that this is not the central problem for compiling languages such as SML, because
optimization is so effective at eliminating higher-order functions. I will show the effectiveness
of optimization at eliminating higher-order functions in Chapter 10.1. In contrast to the
approaches suggested in the literature, I have taken conventional compiler technology and
adapted it to compile B-form programs to machine code. Thus, I use a simple closure
conversion strategy, but combine it with a conventional graph-coloring register allocator that
uses callee and caller-save registers. To support the register allocator, I use a sophisticated
tag-free garbage collector. I make certain that the translation to machine code recognizes
constant expressions, such as constant records, and converts them to data at compile time.
Also, T use the standard system assembler to do instruction scheduling. The end result is
a translation to machine code that is similar to the approach used in more conventional
compilers.

The translation to machine code consists of five phases. The first phase is type reification,
which converts types that may be needed by the garbage collector to constructors. This
phase examines the type of each bound variable; if it cannot determine from the type at
compile time whether the garbage collector must trace the variable, it converts the type
to a constructor, so that the garbage collector can examine the constructor at run time
to determine whether it must trace the variable. For example, if the type of a variable x
is a typecase on a constructor variable bound by a polymorphic function, type reification
converts the type to a constructor. If a garbage collection occurs while z is live, the garbage
collector can examine the constructor to determine whether it must trace the variable. In
constrast, if the type of x is a record type, type reification does not convert the type to a

IThe subset of LMLI produced by the optimizer.

161

constructor: TIL generates a table at compile time that tells the garbage collector it must
trace the variable.

The second phase is closure conversion, which Morrisett implemented. Closure conver-
sion closes each function (ensures that it has no free variables), so that the function will be
suitable for translation to a machine-code function. It uses a simple strategy for choosing
closure representations that depends on whether the function is known or is escaping. If the
function is known, closure conversion adds the free constructor variables and value variables
to the arguments for the function, following Kranz’s approach [52]. If the function is es-
caping, closure conversion builds a closure for the function, which consists of a constructor
environment, a value environment, and a closed version of the function. The environments
respectively bind free constructor variables and value variables; closure conversion represents
them as flat records [7]. The closed version of the function takes the environments as two
additional arguments; closure conversion changes all references to free variables to be pro-
jections from the environments. Closure conversion closes only over variables bound within
functions; it does not close over top-level variables that are not bound within functions.

TIL applies the global optimizer after both type reification and closure conversion; we
can do this because type reification and closure conversion operate on B-form programs. For
type reification, the optimizer eliminates common subexpressions involving reified types and
moves loop-invariant constructor computations. For closure conversion, the optimizer sinks
projections from environments into branches when possible and does constant folding, as
described in Section 5.6.

The third phase is translation to U-Bform. This phase collapses similar constructor and
term-level constructs to just term-level constructs. For example, it maps constructor tuples
and record expressions to U-Bform record expressions. This simplifies the next phase of the
compiler, which converts programs to a low-level assembly language, by reducing the size of
the language on which that phase must operate. This phase also maps primitive constructors
to their run-time representations. For example, it maps the Int constructor to 0 and the
Real constructor to 1.

Because the translation collapses the constructor level and the term level together, U-
Bform is an untyped language. Instead of being annotated with types, U-Bform variables
are annotated with information that tells the garbage collector whether it must trace the
variable. Note that this information may direct the garbage collector to consult a constructor
variable at run time to determine traceability. For example, if a B-form variable x has type
«, the garbage collector must consult o at run time to determine the traceability of x.

The fourth phase is translation to register-transfer language (RTL). This phase selects se-
quences of assembly language instructions that implement higher-level U-Bform constructs.
In addition, it chooses how each U-Bform variable is stored at the machine level (for ex-
ample, as a compile-time constant, a global variable, or a variable local to a function). It
also recognizes constant expressions and converts them to static data when possible. This
phase also annotates RTL variables with representation information that is similar to the
information that annotates U-Bform variables.

The fifth phase is conversion to ALPHA assembly language and register allocation. This
phase uses conventional graph-coloring register allocation. It also generates the tables that
tell the garbage collector how to determine which stack frame locations and registers must

162

fun map £ =
let fun m nil = nil
| m (a::r) = (f a) :: (m 1)
in m
end

Figure 7.1: Original SML source code

be traced.

In the following sections, I describe each of the phases in more detail, and illustrate how
each phase transforms the intermediate code for a polymorphic map function.

Figure 7.1 gives the SML source code for the map function. Figure 7.2 shows the B-form
source code produced after optimization. I have simplified this source code: I have omitted
some type information and turned off type-directed argument flattening during optimization.

7.1 Type reification

Type reification is divided into two conceptual passes: the first pass places all types on
bound term variables in head-normal form (HNF) and the second pass examines the head
constructor of each type to determine whether to reify the type. If the head constructor is

e a constructor variable, then type reification does nothing, because the type is already
available at run time.

e a primitive constructor of arity-0 or arity-1, then type reification does nothing, because
it can determine the traceability of this variable at compile time.

e a recursive type, then type reification unrolls the type once and examines the head con-
structor of the unrolled type. Type reification unrolls the recursive type by substituting
the definition of the type for every occurrence of the type.

e atypecase,fold, or listcase, then type reification converts the type to a constructor
computation, because we cannot determine traceability until run time.

For example, in the function m in Figure 7.2, consider the variables a, r, and x6. The type
of a, T(t1), is available at run time already. To place the type for r in HNF, we apply the
list constructor function. The result is the recursive type list specialized to t1. When we
unroll this type, we find that the head constructor is the primitive constructor enumorrec.
Thus, we do not convert the type of r to a constructor. When we examine the HNF of
the type of x6, we see that it is a record type, and we also do not convert the type to a
constructor.

I require that all types for bound term variables be placed in HNF because closure
conversion does not preserve the traceability of variables of arbitrary types. The HNF of

163

fixt map =
At1,t2.
let fix map’ =
M T(Let con t3=t1l::nil
con t4=<t3,t2>
con t5=arrow[t4]
in t5
end) .
let fix m =
Al : T(Let con t3=1list[t1] in t3 end).
let val x1: T(Let con t3=1list[t2] in t3 end) =
Switch_enumorrec 1
of 0 => Ax2.enum 0 : T(Let con t3=list[t2] in t3 end)
| 1 =>
Ax3.let val a : T(t1) = (#0 x3)
val r : T(Let con t3=list[tl] in t3 end) = (#1 x3)
val x4 : T(2) = f(a)
val x5 : T(Let con t3=list[t2] in t3 end) = m(r)
val x6 : T(Let con t3=list[t2]
con t4=t3::nil
con th=t2::t4
con t6=record[t5]
in t6
end) = {x4,x5}

in x6
end
in x1
end
in m
end
in map’

end

Figure 7.2: Simplified B-form source code after optimization

164

a type before and after closure conversion can differ, because closure conversion closes over
constructor variables. Thus, traceability for a variable before closure conversion can differ
from the traceability for the variable after closure conversion. However, closure conversion
preserves the head constructor of the HNF of a type, so placing types in HNF before closure
conversion prevents closure conversion from changing the traceability of a variable.

Type reification adds the following invariant to programs: if a bound term-variable has
a type t whose head constructor when in HNF' is not a primitive constructor, then ¢ must
be a constructor variable.

The actual implementation of type reification in TIL differs from the idealized description
that I just gave. In practice, the first pass of type reification does not put all types in HNF
to avoid unnecessarily increasing the size of intermediate programs. For example, if the only
free variables of a type are either

e bound to known constructor functions
e or bound by polymorphic functions

and the type (and any known constructor functions that it calls) do not call any unknown
constructor functions, the type does not need to placed in HNF. The normal form of the
closure-converted type and the HNF of the original type will have the same head constructors.

This complicated criteria is actually met quite often: the front end of TIL translates
SML datatypes to known constructor functions. These known constructor functions are
then applied in many different places to simple types, such as a type variable or a primitive
type.

If we did not do this optimization, placing types in HNF would inline the definition of
an SML datatype at every place where the SML datatype is used to construct a type.

The example in Figure 7.2 already satisfies the preceding criteria, and in practice none
of its types need to be placed in HNF. Thus, type reification leaves the example unchanged.
Note that without optimizing what types are placed in HNF, the definition of the list
constructor would be expanded at six different places in the program.

7.2 Closure conversion

To support closure conversion, Morrisett extended B-form expressions and declarations with
four additional constructs:

e a fixcode declaration, which binds functions that take constructors and values as
arguments,

e a fixval declaration, which binds a set of values mutually-recursively, much like
letrec in Scheme. This allows us to create environments for recursive functions,

e a closure expression,

e and a call expression, which applies a closed function to its arguments.

165

(declarations) d = ... |let fixcode (2 :0 = codefn)* in d
let fixval (z:0 = e)* ind d

(code) codefrn = A(t: k)" MNz:o) .decl

Figure 7.3: Syntax of additional declarations for closure conversion

(expressions) e = ... | closure(v,cv,v) | call(v, cv*,v*)

Figure 7.4: Syntax of additional expressions for closure conversion

Figures 7.3 and 7.4 show the syntax for these additional constructs. The fixcode dec-
laration binds functions that take both constructors and values as arguments. The types of
the value variables are within the scope of the constructor variables. The fixval declaration
binds only record expressions, inject expressions, and closure expressions.

A closure expression builds a closure from a closed function, a constructor variable en-
vironment, and a value variable environment. A call expression applies a closed function to
its arguments. Note that the semantics of regular function application changes after closure
conversion: a regular function application extracts the closed function and the environments
from the closure, adds the environments to the appropriate argument lists, and invokes a
call expression.

Closure conversion takes every B-form function bound by a fix or fixtype and maps
it to a fixcode function. If a function escapes, closure conversion adds the constructor
environment and the value environment to the respective argument lists of the function,
making them the first arguments. If a function does not escape, then closure conversion
does not pass environment arguments to the function. Instead, it changes all applications of
the function to use the call construct, and passes the free variables as additional arguments.

Closure conversion uses a flat environment representation for the constructor and value
environments [7]; it builds them using the Tuple constructors and record expressions respec-
tively.

Closure conversion closes over only variables that are function arguments or are bound
within functions. The locations of top-level variables are known at compile time, so their
values are not stored in closures.

Figure 7.2 shows the map example after closure conversion. Because all the functions
escape, they all take a constructor environment and value environment as arguments. For
example, the closed version of map, closed map, takes a constructor environment cenv as
its first constructor argument. It takes a value environment env as its first value argument.
In the function closed map’, the type of the value variable f depends on the constructor
environment cenv. In the closed function m, the types of the value environment env and the

166

list argument 1 depend on the constructor environment.

All free variables are now projections from the appropriate environment. For example, in
the type of the £ argument to the function closed map’, t1 and t2, which were previously
free, are now bound to projections from the constructor environment.

7.3 Translation to U-Bform

Figure 7.6 shows the syntax of U-Bform, which is a much smaller language than B-form.
U-Bform is divided into four syntactic classes: traceabilities, which tell the garbage collector
how to determine whether to trace a variable, values, expressions, and declarations.

There are six kinds of traceabilities:

e TRACE, which denotes values that the garbage collector must trace, such as records. At
run time, these values will either be pointers or small integers that can be distinguished
from pointers,

e CODE, which denotes pointers to closed functions,
e INT, which denotes integers,
e REAL, which denotes floating point numbers,

e COMPUTE 7, which denotes values whose traceability is not known until run time. 7 is
a path to the traceability information. The path is either the name of variable or a
projection from a variable.

e NOTNEEDED, which denotes value whose traceability is not known until run time, but
whose traceability is also not needed at run time. For example, traceability is not
needed at run time for the return value of a function. The value of the function is
immediately bound to a variable (whose traceability information is known), and a
garbage collection cannot occur during the binding operation.

Values include variables, integers, floating point numbers, small integers that can be
distinguished from pointers, and external identifiers. Expressions include values, strings,
primitive operators of one argument, primitive operators of two arguments, array update,
record creation, write expressions, and switch expressions for branching.

We use write expressions to create circular records for the mutually-recursive fixval
declarations that closure conversion introduces and to create circular representations for
recursive constructors. A write expression write(, vy, vy) modifies the field of a record: it
overwrites the ith field of vy with v,. v; must be a variable that is bound to a record, inject,
or closure expression.

We do not introduce a fixval construct at the U-Bform level for the following reason:
we cannot use the trick of allocating an entire record for recursive constructors all at once at
the machine level, as is typically done for environments for recursive functions. In general,
we do not know how to tie the knot for recursive constructors: any amount of computation

167

fixcode closedmap = Acenv,tl,t2.)env:T(Let con t3=record[nil] in t3 end).
let fixcode closedmap’ = Acenv.Aenv:T(Let con t3=record[nil] in t3 end),
f:T(Let con t1=#0[cenv]
con t2=#1[cenv]
con t3=tl::nil
con t4=<t3,t2>
con t5=arrow[t4]
in t5
end) .
let con t1=#0[cenv]
con t2=#1[cenv]
fixcode m = Acenv.Aenv:T(Let con t1=#O0[cenv]
con t2=#1[cenv]
con t3=tl::nil
con t4= <t3,t2>
con t5=arrow[t4]
con t6=list[t1]
con t7=t6::nil
con t8=list[t2]
con t9=<t7,t8>
con til0=arrow[t9]
con t11=t10::nil
con t12=t5::t11
con ti13=record[t12]
in t13
end),
1:T(Let con t1=#0[cenv]
con t2=list[t1]
in t2
end) .
let con tl= #0[cenv]
con t2= #1[cenv]
val m> : ... = #1 env
val £ : ... = #0 env
val x1: T(Let con t3=1list[t2] in t3 end) =
Switch_enumorrec 1
of 0 => Ax2.enum O
| 1 => Ax3.
let val a:tl1 = #0 x3
val r:T(Let con t3 = list[t1] in t3 end) = (#1 x3)
val x4:T(t2) = f(a)
val x5:T(Let con t3 = 1list[t2] in t3 end) = m(r)
val x6:T(Let con t3 = list[t2]
con t4 t3::nil
con t5 = t2::t4
con t6=record[t6]
in t6
end) = {x4,x5}

in x6
end
in x1
end
con cenv’=<t1,t2>
fixval env’ : ... = {f,clo}
and clo : ... = closure{m,cenv’,env’}
in clo
end
con cenv’ = <tl1,t2>
val map’ : ... = closure{map’,cenv,{}}
in map’
end
val map : ... = closure{closedmap,emptycenv,{}}

Figure 7.5: B-form code after closure conversion

168

may occur during the evaluation of a recursive constructor. Thus, we are forced to allocate
a dummy record for the constructor, and overwrite fields with their correct values later.
Switch expressions take declarations instead of functions as their arms. Declarations
include value declarations, let declarations, which bind variables, fix declarations, which
bind sets of mutually-recursive functions, and raise and handle declarations for exceptions.
TIL compiles B-form primitive constructors, recursive constructors, and lists of construc-
tors to the following SML datatypes:

datatype con = Int | Real | String | Intarray | Realarray

Exn | Enum | Ptrarray of con | Arrow of con

I

| Sum of conlist | Record of conlist

| Enumorrec of conlist | Enumorsum of conlist
I

Excon of con | Deexcon of con | Mu of con

and conlist Nil | Cons of con * con

TIL implements the con datatype as a specialized Enumorsum, while it implements the
conlist as an Enumorrec sum. It translates Int through Enum to small integers 0 through
5; it translates Ptrarray through Mu to a sum with 9 cases. For the conlist datatype,
TIL translates Nil to the small integer 0 and Cons to a record. Tuples of constructors are
translated to records.

TIL maps other B-form constructors and constructor declarations to corresonding U-
Bform terms. It maps Listcase to a switch on the conlist datatype; it translates Fold,
which folds a function across a list of constructors, to an U-bform Fix that applies the
function to the list of constructors. It maps Typecase to a switch on the con datatype. TIL
maps App to function application.

TIL’s mapping of B-form values, expressions, and declarations to U-Bform terms is
straightforward. A few of the cases need explanation. TIL maps inject(z,v; ...v,) to
record(z,v;, ..., v,). TIL translates each arm of a switch switch (v) ... from a B-
form function to a U-Bform declaration that binds the function arguments. The bindings
that TIL creates for the function arguments depend on the switch. If the switch is on:

e integers or enumerated sums, then the switch arms are functions without arguments,
so TIL does not create any bindings.

e enumorrec or enumorsumsums, then the switch arms have the form Az.d, so TIL binds
each argument variable z to v (the argument of the switch).

o ageneral sum, then the switch arms have the form Az, ...x,.d. For each bound variable
x;, TIL binds @; to the ¢ + 1 field of v (the first field contains the case of the sum).

Recall from the preceding section on closure conversion that B-form applications are now
applications of closures. TIL translates each B-form application to a U-Bform expression that
extracts the closed function, the constructor environment, and the value environment from
the closure and applies the closed function with the environments as additional arguments.
It translates a B-form call to a U-Bform application.

169

(g.c. info)
(paths)
(values)

(expressions)

(declarations)

(functions)
(opt. decl)

(switch type)

od

TRACE | CODE | INT | REAL | COMPUTE 7 | NOTNEEDED

x| i|r|enum(i) | extern(s,p)

v | s | pi(v) | p2(vi,ve) | update(ar, vy, vy, v3) | record(v®) |
write(i,v1,v2) | switch(st) v of (i:d)* default: od |

v(v*)

vip|llet z:p=-e in d|let fix (x=f)" in d |
raise v | let x:p =d; handle [in d,

AMa:p)*:p.d
d| e

Int | Tagorboxed

Figure 7.6: Abstract syntax for expressions and declarations of U-Bform

170

TIL translates each expression bound by a fixval to separate let expressions. It uses

the value 0 for variables that would be unbound, and later fills in the correct values for those
variables using writes. For example, TIL translates the expression

to

let fixval x = {a,b,y,z}

andy={...x ...}
and z={ ...x ...}
let val x = {a,b,0,0}
valy ={ ... x ...}
val z = { X }
val _ = x.2 <- y
val _ = x.3 <- z

This expression uses the value 0 for y and z in the record bound to x; it then overwrites
those fields with the correct values for y and z (note that record fields are numbered starting

from 0).

TIL computes the traceability of a U-Bform variable as follows. If the corresponding

variable is bound to a closed term-level function or constructor function, then the traceability
is CODE. Otherwise,

o If the corresponding B-form variable is a constructor variable, the U-Bform variable is

marked as TRACE. The datatype representing constructors has a traceable representa-
tion.

If the corresponding B-form variable is a term-level variable, then TIL examines the
normal form of the type of the variable. The normal form must be

— a constructor variable,
— a projection from a constructor variable (these are introduced by closure conver-
sion),
— or a primitive constructor.
In the first two cases, TIL maps the type to a COMPUTE. In the last case, TIL maps

the primitive constructors Int and Real to INT and REAL respectively, and it maps all
other primitive constructors to TRACE.

The only optimization that TIL does on U-Bform programs is dead-code elimination.

This eliminates unnecessary selects of record fields introduced by the translation of switches.
It also drops computations for constructors that turn out to be unneeded after the conversion
to U-Bform. This occurs, for example, if a constructor is only referenced in the type of a
variable whose traceability can be determined at compile time.

171

Figure 7.7 shows the B-form function m from Figure 7.5 after TIL translates it to U-
Bform. Each bound variable is annotated with its traceability. Even in this example of a
polymorphic function, only the variables a and x4 have traceabilities that are not known until
run time. This illustrates an important point: even for polymorphic functions, traceabilities
of many variables can be determined at compile time.

TIL translates the Switch_enumorrec in the function m to a Switch_tagorboxed. The
nil case returns the value 0, which represents nil. The non-nil case rebinds the variable 1 to
itself. It then proceeds to extract the head and tail of the list, and the components of the
closure £, and call f. Finally, it applies itself to the remainder of the list, and creates the
cons cell for the result list.

7.4 Conversion to RTL

RTL is a register-transfer language similar to ALPHA or other RISC-style assembly language.
An RTL program consists of a list of assembly-language procedures, a list of static data, and
a list of global variables. Fach procedure has local variables (pseudo-registers). However,
there is no notion of local data (that is, there is no stack allocation of data structures).
Procedure arguments and results are passed “by value”.

RTL provides “heavy-weight” function call and return mechanisms, and a form of inter-
procedural goto for implementing exceptions. The call stack remains implicit.

To propagate information to the garbage collector, TIL annotates global and local vari-
ables with traceabilities. 1 extended the traceabilities from the U-Bform level to include
locatives, which denote pointers into the middle of objects, and labels, which denote point-
ers to locations outside the heap.

The translation to RTL does three things: first, it decides the representation of U-Bform
variables at the RTL level, second, it converts some constant expressions to RTL data, third,
it translates U-Bform expressions to sequences of RTL instructions.

7.4.1 Representation of U-Bform variables

The translation to RTL must decide upon the representation of U-Bform variables. A U-
Bform variable can be represented at the RTL level in one of three ways:

e as a local variable,

e as a compile-time constant that is loaded into a register when needed (for example, as
a label, integer, or floating-point number),

e or as a global variable (a memory location).

The representations are ordered from most preferred to least preferred. A local variable is
preferred above all, because local variables are usually implemented as machine registers. A
compile-time constant is preferred above a global variable, because on ALPHA workstations
programs can load compile-time constants in one instruction using the gp register, but they

172

val empty_cenv:TRACE = {}
fix closedmap =
Atenv:TRACE,t1:TRACE,t2:TRACE,env:TRACE.
let fix closedmap’ =
Atenv:TRACE, env:TRACE, f: TRACE.
let val t1:TRACE #0 tenv
val t2:TRACE #1 tenv
fix m =
Atenv:TRACE,env:TRACE,1:TRACE.
let val x1:TRACE =
Switch_tagorboxed 1
of 0 =>0
| 1 =>
let val 1 =1
val £:TRACE = #0 env
val m’:TRACE = #1 env
val a:COMPUTE tenv.0 = #0 1
val r:TRACE = #1 1
val f_code:CODE = #0 £
val f_tenv:TRACE = #1 £
val f_env:TRACE = #2 £
val x4:COMPUTE tenv.1l = f_code(f_tenv,f_env,a)
val m’_code:CODE = #0 m’
val m’_tenv:TRACE = #1 m’
val m’_env:TRACE = #2 m’
val x5:TRACE = m’_code(m’_tenv,m’_env,r)
val x6:TRACE = {x4,x5}
in x6

end
in x1
end
val tenv’:TRACE = {t1,t2}
val clo:TRACE = {m,tenv’,0}
val env’:TRACE = {f,clo}
val _ = clo.2<-env’
in clo
end
val tenv’:TRACE = {t1,t2}
val map’:TRACE = {closed map’,tenv’,0}
in map’
end
val map:TRACE = {closed map,empty cenv,0}

Figure 7.7: Map function after conversion to U-Bform

173

require two or more instructions to load global variables (one instruction to load the address
of the variable using the gp register, another instruction to fetch the actual value).
The algorithm for deciding which representation to use is:

o If a U-Bform variable is a top-level variable, then

— If it is bound to a constant expression (as defined in the following section), then
represent the variable as a compile-time constant.

— Otherwise represent the variable as global variable.

o Otherwise, if a U-Bform variable is not a top-level variable, then represent as a local
variable.

7.4.2 Recognition of constant expressions

The translation to RTL also converts some U-Bform expressions to RTL data. For example,
it tries to layout records and arrays at compile time. This has two advantages. First, it
makes programs smaller. For records, the code to construct the record is always bigger
than the data for the record. Second, it makes programs faster, by recognizing constant
expressions in inner program loops. (Note, however, that hoisting constant expressions also
moves constant expressions from inner loops).

Write expressions complicate the conversion of U-Bform expressions to RTL data, because
a record that is created from constant values may be modified to contain a non-constant value
later. For example, consider the following function:

fix f x =
let val a = {100,200}
in a.1 <- x;
X
end

the variable a is a bound to a record created from constants. However, the record is modified
immediately.

In general, this means that we cannot just convert constant records to U-Bform data,
because the different creations of a constant record may be distinguished from each other.
For example, £ 5 # £ 6.

To simplify the presentation, I will first discuss the recognition of constant expressions
assuming that the write construct is not present in the language. I will then discuss the
extensions needed to handle the write construct.

Definition 8 A U-Bform expression can be converted to RTL data if it is
e an integer, a floating point number, or a string,

o or it is a record expression all of whose free variables are bound to expressions that can
be converted to RTL data,

174

e or it is an array creation expression bound at the top-level, all of whose free variables
are bound to expressions that can be converted to RTL data.

Array expressions at the top-level will be evaluated either once or not at all; thus we can
allocate those arrays as static data.

It is straightforward to map the U-Bform expressions to RTL data. U-Bform integers
and floating point numbers map to RTL integers and floating point numbers. Strings, record
expressions, and array creation expressions map to RTL labels; the labels are addresses of
appropriately initialized memory locations.

Handling write’s

The translation from B-form to U-Bform uses writes in limited ways to construct recursive
data structures. It produces U-Bform programs that satisfy three conditions:

o The target of a write must be a variable that is bound to a record expression.
o A field of a record is the target of only one write expression.

o If a field of a record is the target of a write expression, then the field cannot be read
between the time when the record is allocated and the write occurs.

Using the first restriction, we can handle writes by requiring that the free variables
in record expressions and array creation expressions not be the targets of writes. This
requirement, however, is too severe, because it prevents us from converting recursive data
structures to RTL data. For example, consider code that creates a closure for a recursive
function.

val tenv’:TRACE = {t1,t2}
val clo:TRACE = {m,tenv’,0}
val env’:TRACE = {f,clo}
val _ = clo.2<-env’

The records for clo and env’ can be allocated at compile time; the write simply modifies a
constant record to point to another constant record.

Note that the second and third restrictions ensure that allocating clo and env’ at compile
time is correct, even if the code is evaluated repeatedly. On the second evaluation of the
code, field 2 of clo will contain the address of env, not 0. However, the second restriction
ensures that field 2 of clo is overwritten with exactly the same value, and the third restriction
ensures that field 2 of clo can never be read before the write occurs. Thus, there is no way
to tell that the second field has been overwritten already.

The requirement that we want is that constant data should point only to other constant
data. In particular, it should never point to heap-allocated data. The following definition
captures this requirement by ensuring that the free variables of a write expression must be
bound to constant data.

Let S be the set of variables bound to expressions that will be converted to RTL data.
Define S as the largest subset of the variables bound by a program such that:

175

e cach variable is bound to an integer, a floating point number, or a string,
e or it is bound to a record expression all of whose free variables are in S

e or it is bound to an array creation expression bound at the top-level, all of whose free
variables are in S.

o and, if x € S is the target of a write expression e, then all the free variables of e are in

S.

The correctness of the conversion of expressions in .S to RTL data is justified as follows.
Any write that modifies a record in S will overwrite the field of the record with constant
data. Because of the restrictions on the way writes are used, we cannot observe the effect
of overwriting the field.

Note that S is a fixed point; we can compute it by assuming that all variables are in 5,
and then removing variables that do not satisfy the preceding requirements.

7.4.3 Translation to machine code

Finally, the translation to RTL chooses sequences of assembly language instructions that
implement higher-level U-Bform constructs. In this section, I sketch the translation. I omit
details where possible, because this translation is well understood for languages such as SML.

The translation is divided into three functions: which translates values, texp,

byalue:
which translates expressions, and t], which translategﬁgglarations. The function ty,1,6(v)
takes as an argument a value v to translate and produces a local variable as its result. The
local variable will contain the machine representation of v. The translation of expressions,
texp(e,), takes as arguments an expression e to translate and a local variable r that will
contain the result of evaluating e. Likewise, the function tj..)(d,7) takes as arguments a

declaration d to translate and a local variable r that will contain the result of evaluating d.

Translating values

The translation tvalue(v) is defined as follows. If v is

e a constant, then create a new local variable r, generate code to load v into r, and
return r.

e variable x, then the translation depends on the machine representation of x. If the
representation is
— a local variable r, then return r.

— a global variable, then create two new local variables @ and r. Load a with the
address of the global variable, then use a to load r with the contents of the global
variable. Finally, return r.

— a compile-time constant, then create a new local variable r, generate code to load
the constant into r, and return r

176

Translating expressions

The translation of expressions, texp(e,r), is defined as follows. If e is
e a value v, then generate code to load v into the local variable r.
e a string s, then generate code to load the address of s into the local variable r.

e a function call f(vy,...v,), first use t to generate code to load vy ... v, into local

variables vy ...7,.

value

If f is bound to a function, then generate code to do the procedure call:
r <= call f(ry, ...)

Otherwise, use t,,] e to generate code to load f into a local variable f’ and then

generate code to do an indirect procedure call:
r <- call.indirect f'(ry, ... 7,)
Recall that procedure arguments and results are passed by value in RTL.

e a primitive operator pi(v) of one argument, then use t 1, to generate code to load
v into a local variable r1. Next, generate code to compute p;(r1) and store the result

inr.

For example, translate cos(x), where x is stored in a local variable ry, to the RTL
instruction

r <- Ccos 1q

® py(v1,v2) where py is a primitive operator of two arguments, then use t to generate

value
code to load vy and vy into local variables. Then, generate code to compute py applied

to those local variables.

For example, translate plusi(z,y), where & and y are stored in local variables r; and
ro respectively, to

r <= ritry
trapb ; check for overflow

o update(ar,vy, vy, v3), then use t,,1,e to generate code to load vy, vy, and v3 into local
variables. Then generate code to compute the address of element vy of vy into a new
local variable t;. The computation depends on whether ar is an integer array, a floating
point array, or a pointer array. Finally, generate code to update the memory location

at ¢; with the value vs and to initialize r to 0.

e record(v;...v,), then

177

— Use t to generate code that loads vy ...v, into local variables ry...r,.

value
— Next, generate code that checks whether enough space is left in the heap to
construct the record.

— Finally, generate code that constructs the record.

Note that generating code for record construction is complicated by the fact that the
header word for a record may need to be constructed at run time if one of the fields
of the record has a COMPUTE representation. The header word for a record contains a
bitmask that describes which fields must be traced by the garbage collector.

If a field has a COMPUTE representation, then the bit in the header word for the field
must be set at run time. Figure 7.8 illustrates the complications that result. This figure
shows the code for the U-Bform function m after it has been translated to RTL. After
the call to m’, the cons cell for the result record is constructed. The first field of this
cons cell has a COMPUTE representation. The tag construction takes five instructions:

— First, we load the static part of the tag into a local variable static_tag.

— Next, we load the constructor from the COMPUTE into the register t2.

— Then, we set the register tmp to 1 if the constructor is traceable, and 0 if it is an
integer. We do not have to check for the Real constructor, because floating point
numbers are always boxed when they are stored in records.

— Finally, we shift tmp to the appropriate bit position and store the result in
dynamic_tag. We then or the dynamic and start parts of tag together.

a switch, then generate code that tests each arm of the switch sequentially until the
code finds an arm whose condition matches. Translate each arm so that the result of
evaluating the arm is stored in r, the result variable for the switch.

For example, translate

switch (a)
0 :5
1:6
2 7

to

if a==0 then

r <- 5

else if a=1 then
r <- 6

else if a=2 then
r <- 7

Note that it is easy to get the declarations for the arms to store their results into r.
We simply pass r to tj..] when generating code for each arm.

178

Note also that the translation of large switches is poor. Larges switches should be
translated to jump tables or code to do a binary search instead of code that does a
sequential series of tests.

Translating declarations

Define the translation of declarations, tj..1(d,7), as follows. If d is
o a value, then generate code to load the value into the result register r.

e a let-bound expression of the form let x = e in d’, then allocate a new local variable
r'. Apply texp to (e,r’) to translate e. Apply tgo. to (d',7) to translate the body of
the declaration.

e a function definition let fix zy = f1...x, = f, in d’, then translate each function
to an RTL procedure. (Recall that each function must be closed, except for occurrences
of top-level variables.)

We also have to translate the declarations for exceptions. There are generally two ways
to implement exceptions in a stack-like language such as RTL. The first method is “stack-
unwinding”. When an exception handler is installed, we place a marker on the stack. When
an exception is raised, we unwind the stack until we find a marker. We then invoke the
exception handler. The other way is to save enough context for each exception handler that
we can “pop” a large number of stack frames at once and jump into the frame containing
the exception handler.

With the former method, we can set an exception handler in constant time using only
a few instructions. However, invoking an exception handler may take time proportional to
the size of the stack. If N is the maximum depth of the stack, creating and invoking an
exception handler may take O(N) time. With the latter method, we can create and invoke
an exception handler in constant time. Thus, the latter method is more asymptotically
efficient. Because the latter method is more efficient, we use that method.

To save the context for an exception handler, we generate an exception closure when we
enter an exception handler. These closures are allocated on the heap, although it would be
more efficient to allocate them on the stack. As noted earlier, however, there is no support
for stack-allocated data structures in RTL.

Exception closures have a standard format:

e the address of the handler,

e the stack pointer to restore,

the previous exception handler closure,
e the values of local variables used by the handler.
When an exception is raised, we

e extract the location of the handler from the current exception closure,

179

e move the value assocated with the exception to a dedicated exception argument regis-

ter,

e do an interprocedural goto to the handler.

When we enter an exception handler, we extract the values of the local variables used by the

handler.

7.5 Register allocation and assembly

Before doing register allocation, TIL converts RTL programs to ALPHA assembly language
with extensions similar to those for RTL. Then TIL does conventional graph-coloring register
allocation to allocate physical registers for the pseudo-registers. It also generates tables
describing layout and traceabilities of variables for each stack frame. Finally, TIL generates
actual Alpha assembly language and invokes the system assembler, which does instruction
scheduling and a creates a standard object file.

7.6 Conclusion

In this chapter, [have described the translation of B-form programs to ALPHA machine code.
In this translation, I adapted existing compiler technology to translate B-form programs in
order to produce good code for first-order monomorphic programs. The translation uses
a simple closure conversion strategy. It tries to choose efficient representations of B-form
variables: it converts some variables into “global” variables and it recognizes variables bound
to constant expressions and converts them to labels. It uses conventional graph-coloring
register allocation and supports a split caller/callee save register convention. Finally, it uses
the system assembler to do instruction scheduling.

180

([tenv : TRACE,env :
= (retreg : LABEL),
([resultreg :

m{args
retaddr
result

{

start:

beq
1d1
1d1
1d1
1d1
1d1
1d1
1d1
calll:
x4
1d1
1d1
1d1
call2:

1, nilcase

f : TRACE , 0(env)

m’ : TRACE , 4(env)

: COMPUTE tenv.0 , 0(1)
TRACE , 4(1)

: CODE , 0(f)

: TRACE , 4(f)
TRACE , 8(f)

a
r
f_code
f_tenv
f_env :

: CODE , 0(m’)
m’ _tenv : TRACE, 4(m’)
: TRACE , 8(m’)

m’ _code

m’_env

TRACE,1 :

TRACE] ,

: COMPUTE tenv.1 <- call f_

TRACE], [1),

[}

code(f tenv,f env,a)

x5 <- call m’_code(m’ _tenv,m’_env,r)

needgc 3

11 268435472,static_tag :
1d1 t2 : TRACE , 4(tenv)
1i O,tmp : INT

cmvune t2, 1 , tmp

INT

sll tmp, 3 , dynamic_tag : INT
or dynamic_tag, static_tag,
stl dynamic_tag , O(heapptr)
stl x4, 4(heapptr)
stl x5, 8(heapptr)
addl heapptr , 4 , resultreg
addl heapptr , 12 , heapptr
br exit

nilcase:
1i 0, resultreg

exit:
return retaddr

tag :

; load static portion of tag
; load type variable
set tag bit to 0
if t2 # 0 (the int constructor),
set tag bit to 1
shift tag bit into position
INT
store tag

b

b
3
; combine tag parts
3
store first word in record
store second word in record

b

: TRACE

Figure 7.8: Code for the function m after conversion to RTL

181

182

Part 111

Evaluation

183

In the second part of the thesis, I described an approach to compiling SML programs
based on two ideas:

® a pay-as-you-go compilation strategy, where programmers pay for advanced language
features only when they use them.

e applying optimizations that are known to improve loops in imperative languages such
as C and Fortran to recursive SML functions.

In this part of the thesis, I test whether these ideas improve performance.

In Chapter 8, I provide evidence that a pay-as-you-go compilation strategy is an effective
strategy for compiling SML programs. I establish that the TIL compiler produces compet-
itive code for an SML compiler by comparing it to the SML/NJ compiler, a widely used
reference compiler for SML. In fact, TIL produces code that is not only competitive — it is
often much better than code produced by the SML/NJ compiler. I also discuss the many
differences between the two compilers that make it difficult to explain conclusively why TIL’s
code is so much better.

In Chapter 9, I measure the effect of the loop optimizations described in Chapter 6
on program performance. First, [show that the optimizations reduce execution time by
8% to 87%. The effect of the optimizations varies widely and depends on the benchmark
program, so I do not present averages. Second, I measure the effect of each optimization to
determine which ones are most important. Finally, I measure how specific the effect of each
optimization is to TIL framework.

In Chapter 10, I present some other interesting measurements of the optimizer. First, [
measure the effect of optimization on the numbers of polymorphic and higher-order functions.
Second, I measure the effect of types on intermediate program size.

185

186

Chapter 8

Comparison against the SML/INJ
compiler

In this chapter, I demonstrate that the TIL compiler produces good code for an SML compiler
by comparing it with the SML/NJ compiler. I compare the performance of code produced
by TIL against code produced by SML/NJ in several dimensions: execution time, total heap
allocation, physical memory footprint, and the size of the executable.

In Section 8.1, I introduce the benchmarks that I use throughout this part of the thesis. In
Section 8.2, I compare performance of these benchmarks when compiled by TIL and when
compiled by SML/NJ. The code produced by TIL often performs much better than that
produced by SML/NJ. In Section 8.3, I discuss how you might study why the performance
of TIL’s code is better and the differences between the two compilers that make it difficult
to conduct such a study.

8.1 Benchmarks

Table 8.1 describes the benchmark programs, which range in size from 62 lines to about
2000 lines of code. The benchmarks cover a range of application areas including scientific
computing, list-processing, systems programming, and compilers. Appel used some of these
programs to measure ML performance [7].

The set of benchmark programs that I use in this part of the thesis includes only some
of the programs that I used in the first part of the thesis. This is because the TIL compiler
does not yet compile the full SML module system (it does not support nested structures or
functors). Thus, I could not use CW (the Concurrency Workbench), VLIW (the very-long-
instruction-word scheduler), and YACC (the parser generator). It is possible to eliminate
all uses of nested structures or functors by rewriting the source code by hand, but these
programs were simply too large (from 3200 to 5700 lines) and complex for me to do so. |
was able to eliminate these language constructs from Lexgen and Simple, however.

The fact that the TIL compiler does not yet compile the entire SML module system is not
a fundamental limitation of the TIL approach. Harper and Stone [38] show how to extend
the TIL framework to support modules.

187

Program ‘ lines ‘ Description ‘

Checksum 241 | Checksum fragment from the Foxnet [14], doing 5000 checksums
on a 4096-byte array.

FFT 246 | Fast fourier transform, multiplying polynomials up to degree
65,536

Knuth-Bendix | 618 | An implementation of the Knuth-Bendix completion algorithm.

Lexgen 1123 | A lexical-analyzer generator [11], processing the lexical descrip-
tion of Standard M.

Life 146 | The game of Life implemented using lists [72].

Matmult 62 Integer matrix multiply, on 200x200 integer arrays.

PIA 2065 | The Perspective Inversion Algorithm [94] deciding the location
of an object in a perspective video image.

Simple 870 | A spherical fluid-dynamics program [31], run for 4 iterations

with grid size of 100.

Table 8.1: Benchmark Programs

I compiled whole programs during benchmarking (the programs were single closed mod-
ules). I extended the built-in ML types with safe 2-dimensional arrays. The 2-d array
operations do bounds checking on each dimension and then use unsafe 1-d array operations.
Arrays are stored in column-major order.

8.2 Comparison against SML/INJ

For TIL, I compiled programs with all optimizations enabled, including the loop optimiza-
tions. For SML/NJ, I compiled programs using the default optimization settings. I used
version 1.08 of the SML/NJ compiler.

TIL always prefixes a set of operations on to each module that it compiles to facilitate
optimization. This “inline” prelude contains 2-d array operations, commonly used list func-
tions, and so forth. To provide a fair comparison withSML/NJ, I created separate copies of
the benchmark programs for SML/NJ, and placed equivalent “prelude” code at the beginning
of each program by hand.

Because TIL creates stand-alone executables, I used the exportFn facility of SML/NJ to
create stand-alone programs. The exportFn function of SML/NJ dumps part of the heap
to disk and throws away the interactive system.

[measured execution time on a DEC ALPHA AXP 3000/250 workstation, running
OSF/1, version 3.2C, using the UNIX getrusage function. For SML/NJ, I started tim-
ing after the heap had been reloaded. For TIL, I measured the entire execution time of the
process, including load time. I made 5 runs of each program on an unloaded workstation
and chose the lowest execution time. Each workstation had 96MBytes of physical memory,
so paging was not a factor in the measurements.

I measured total heap allocation by instrumenting the TIL run-time system to count

188

125%t

100%

5%

50% 1

25% 1

cksum FFT KB lexgen life Mmult PIA SIMPLE

Figure 8.1: TIL Execution Time Relative to SML/N.J

the bytes allocated. I used existing instrumentation in the SML/NJ run-time system. I
measured the maximum amount of physical memory during execution using getrusage. |
used the size program to measure the size of executables for TIL. For SML/NJ, I used the
size program to measure the size of the run-time system and then added the size of the
heap created by exportFn.

Figures 8.1 through 8.3 present the measurements. For each benchmark, measurements
for TIL were normalized to those for SML/NJ and then graphed. SML/NJ performance is
the 100% mark on all the graphs.

Figure 8.1 presents relative running times. On average, programs compiled by TIL run 3.3
times faster than programs compiled by SML/NJ. In fact, all programs except Knuth-Bendix
and Life are substantially faster when compiled by TIL. I speculate that we see less of a
speed-up for Knuth-Bendix and Life because they make heavy use of list-processing, which

SML/NJ does a good job of compiling.

Figure 8.2 compares the relative amounts of heap allocation. On average, the amount
of data heap-allocated by the TIL program is about 17% of the amount allocated by the
SML/NJ program. This is not surprising, because TIL uses a stack while SML/NJ allocates

frames on the heap.

Figure 8.3 presents the relative maximum amounts of physical memory used. On average,
TIL programs use half the memory used by SML/NJ programs. 1 see that floating-point
programs use the least amount of memory relative to comparable SML/NJ programs. I
speculate that this is due to the fact that TIL always keeps floating-point values unboxed
when stored in arrays.b

TIL stand-alone programs are about half the size of stand-alone heaps and the runtime
system of SML/NJ. The difference in size is mostly due to the different sizes of the runtime
systems and standard libraries for the two compilers. (TIL’s runtime system is about 100K,
while SML/NJ’s runtime is about 425K.) The program sizes for TIL confirm that generating
tables for nearly tag-free garbage collection consumes a modest amount of space, and that
the inlining strategy used by TIL produces code of reasonable size.

189

100%

5%

50% 1

25% 1

cksum FFT KB Lexgen life Mmult PIA SIMPLE

Figure 8.2: TIL Heap Allocation Relative to SML/NJ

100%

5%

50% 1

25% 1

cksum FFT KB Lexgen life Mmult PIA SIMPLE

Figure 8.3: TIL Physical Memory Used Relative to SML/NJ

100%

5%+

50% 1

25% 1

cksum FFT KB Lexgen life Mmult PIA SIMPLE

Figure 8.4: TIL Executable Size Relative to SML/NJ

190

8.3 Further comparison

The previous section leaves an interesting problem: the performance of code compiled by
TIL is often much better than the performance of code compiled by SML/NJ. To determine
why this is the case, you would have to start with one system and vary each design choice
until you have tried all the design choices made by the other system.

This would be time-consuming to do because TIL differs from SML/NJ at nearly every
level. The major design differences between TIL and SML/NJ are:

e intensional polymorphism:

TIL constructs and passes types around at run time, whereas SML/NJ does not.

e optimization:
TIL does loop optimizations, whereas SML/NJ does not. TIL also uses different algo-
rithms for inlining and uncurrying.

e closure conversion:

TIL uses a simple closure conversion strategy, whereas SML/NJ uses a sophisticated
closure conversion strategy that also implements a split callee/caller-save register con-
vention. Also, TIL’s closure converter does not close over variables defined at the
top-level (outside functions).

® recognizing constant expressions:
TIL converts constant expressions, such as records, to their machine data represntation
at compile time.

o register allocation:
TIL uses a conventional graph-coloring register allocator that supports a split callee/caller
save register convention for procedure calls, whereas SML/NJ uses a simple register-
tracking scheme.

e allocation of procedure activation records:
TIL uses stack allocation of procedure activation records, whereas SML/NJ uses heap
allocation of procedure activation records.

e instruction scheduling

TIL uses the system assembler, whereas SML/NJ uses their own instruction scheduler.

e garbage collection

TIL uses a tag-free garbage collector, whereas SML/NJ uses a garbage collector that
requires tagging.

To try SML/NJ’s design choices in TIL, you would have to rewrite the following phases of
TIL:

191

o the type-directed optimizations that improve data representations
e the inlining and uncurrying optimizations

o the closure converter

o the register allocator

e the instruction scheduler

o the garbage collector

This is an enormous amount of work — it is nearly equivalent to rewriting TIL.

8.4 Conclusion

In this chapter, I have demonstrated that TIL, with all optimizations including the loop
optimizations enabled, produces good code for an SML compiler. On average, its code is 3.3
times faster than code produced by the SML/NJ compiler. Thus, TIL is a reasonable system
in which to measure the effects of the loop optimizations. I have explained why it would be
difficult to fully understand why TIL’s code is so much faster that SML/NJ’s code. Finally,
I also have described the benchmarks used in this part of the thesis.

192

Chapter 9

Effect of loop optimizations

In this chapter, [demonstrate my claim that applying optimizations that improve loops to
SML programs improves performance. In Section 9.1, [measure the combined effect of the
optimizations that I describe in Chapter 6 on performance. It is important to enable all of
these optimizations at once because they can interact in ways that improve each other. In
Section 9.2, I study the effect of individual optimizations from Chapter 6 on performance.
Finally, in Section 9.3, I examine how specific these results are to the typed intermediate
language framework used by TIL.

9.1 Combined effect of loop optimizations

In this section, I measure the combined effect of the “loop” optimizations that I describe
in Chapter 6 on performance. These optimizations are CSE, invariant removal, hoisting,
comparison elimination, and redundant switch elimination. For the sake of conciseness, I will
refer to these optimization as “the loop optimizations” throughout this Chapter, although
of course there are many other optimizations to improve loops.

Figures 9.1 through 9.5 show the effect of adding the loop optimizations to the TIL
optimizer. The 100% mark on each graph is the performance of each benchmark when I
compiled it using just the TIL optimizer (as described in Chapter 5). The columns show
the performance when I compiled the benchmarks using the TIL optimizer and the loop
optimizations. Table 9.1 presents the data in the graphs in tabular form; each number
is the ratio of performance with the loop optimiz ations to performance without the loop
optimizations. Appendix B contains the original data that I used to calculate the ratios.

I use the same metrics that I used in Chapter 8 to compare performance: execution
time, amount of data heap allocated, amount of data copied by the generational garbage
collector, maximum physical memory used by a program while it ran, and the size of the
executable. I ran each program 100 times and used the arithmetic mean of the measurements
for each metric. Appendix B presents the means and standard deviations. Only execution
time and maximum physical memory used varied across runs: the standard error for those
measurements was less than one percent (at a 99% confidence level).

The variance in performance across benchmarks is high, so I will not summarize perfor-
mance using medians or means. Table 9.1 contains medians and geometric means if you are

193

interested in them.

Figure 9.1 shows the effect of the loop optimizations on execution time. The loop opti-
mizations reduce execution time by 8% to 87%. They never increase execution time. Their
effect on execution time, not surprisingly, is greatest on scientific programs, such as FFT,
Matmult, and SIMPLE.

Figure 9.2 shows the effect of the loop optimizations on the amount of heap-allocated
data. For Lexgen, Matmult, and Life they increase heap allocation by 4 to 18%. For FFT,
however, they reduce it by 98%. The loop optimizations may increase heap allocation if they
move heap-allocating expressions to points in programs where the expressions are executed
more frequently than their original location.

Figure 9.3 shows the effect of the loop optimizations on the amount of data copied by the
generational garbage collector. For Lexgen and Simple, they increase the amount of data
copied by 1 and 4%, respectively. This is presumably because the loop optimizations are
not safe for space [7]. For other programs, such as Checksum, Life, and FFT, they nearly
eliminate all copying of data. They have no effect on Matmult, because the generational
collector does not copy any data when Matmult runs.

An optimization is safe for space if it does not cause a program to keep data live when
the data would be dead in the original program. For example, invariant removal is not safe
for space. It may cause a large data structure to live across iterations, thus causing more
data to be copied by the generational collector.

Figure 9.4 shows the effect of the loop optimizations on the total amount of physical
memory used by programs. The loop optimizations reduce the amount of physical memory
used by programs, by reducing the amount of data copied by the generational collector.
FFET, Life, and Checksum use 9% to 94% less memory. Even though the loop optimizations
are not safe for space, memory usage increases only for SIMPLE, and only by 2%.

Finally, Figure 9.5 shows the effect of the loop optimizations on program executable sizes.
The optimizations always make program executables smaller and reduce program sizes by
3% to 26%.

To summarize, my experimental measurements show that for these benchmarks the loop
optimizations:

e reduce execution time always,

e are important for scientific programs,

e may increase or decrease heap allocation,

e may increase physical memory usage negligibly but sometimes reduce it dramatically,

e and reduce sizes of program executables always.

194

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.1: Effect of loop optimizations on total time

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.2: Effect of loop optimizations on heap allocation

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen

PIA SIMPLE

Figure 9.3: Effect of loop optimizations on data copied by the garbage collector

195

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.4: Effect of loop optimizations on physical memory

100%

5%+

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.5: Effect of loop optimizations on code size

Program Time | Heap alloc. | GC copying | Phys mem. | Code size
checksum | 0.13 | 0.37 0.00 0.06 0.97
ftt 0.15 | 0.02 0.01 0.91 0.74
kb 0.68 | 0.78 0.86 0.89 0.92
life 0.92 | 1.18 0.15 0.52 0.92
lexgen 0.90 | 1.04 1.01 0.94 0.76
matmult 0.61 | 1.09 - 1.00 0.95
pia 0.87 | 0.96 1.00 0.97 0.79
simple 0.55 | 0.78 1.04 1.02 0.82
Median 0.65 | 0.87 0.86 0.93 0.87
Geo. mean | 0.49 | 0.53 0.33 0.63 0.85

Table 9.1: Tabular comparison of performance with and without loop optimizations

196

9.2 Effects of individual optimizations

In the previous section, I demonstrated that the loop optimizations can improve the perfor-
mance of SML programs significantly. In this section, I investigate which optimizations are
most important to improving performance. I do this by measuring the effect on performance
of each loop optimization when it is added to the TIL optimizer.

I was unable to measure the effect of invariant removal on the performance of PIA and
SIMPLE because TIL did not generate garbage collection tables for large stack frames prop-
erly. TIL uses an escape mechanism to handle the rare case of stack frames with more than
64 elements, but this mechanism was not working when I made these measurements.

9.2.1 Effect on execution time

Figure 9.6 shows the average effect on execution time of adding each loop optimization to the
TIL optimizer. The 100% mark represents execution time when I compiled the benchmark
programs using just the TIL optimizer. Each column shows execution time when I compiled
the benchmark programs using the TIL optimizer and a particular optimization. I used the
geometric mean to average the percentages across benchmarks. We see that adding CSE,
adding hoisting or adding invariant removal reduces execution time by nearly a third. Adding
comparison elimination reduces execution time by 5%, and adding switch elimination has no
effect on execution time at all.

Figures 9.7 through 9.11 shows the effect of adding each loop optimization to the TIL
optimizer on each of the benchmark programs. We see that adding comparison elimination
has a significant effect only on Matmult and Lexgen. In contrast, adding CSE, hoisting, or
invariant removal improves the execution times of most benchmark programs. For scientific
programs adding invariant removal improves performance much more than just hoisting. For
FFT, adding invariant removal reduces execution time by 28%, but adding hoisting reduces
execution time by only 5%. Similarly, for Matmult, adding invariant removal reduces exe-
cution time by 17%, but adding hoisting increases execution time by 1%. For non-scientific
programs, adding invariant removal or hoisting has nearly the same effect on performance.

9.2.2 Effect on heap allocation

Figure 9.12 shows the average effect on heap allocation of adding each loop optimization to
the TIL optimizer. Figures 9.13 through 9.17 show the effect of each optimization on each
benchmark. The 100% mark on each graph is the base case of just the TIL optimizer.

We see that comparison elimination and switch elimination have no effect on heap allo-
cation. This is what [expected, because they do not affect language constructs that cause
heap allocation. The effect of CSE on heap allocation ranges from a 64% reduction to a
2% increase in heap allocated data. For CSE, most of the reduction in heap allocation is
due to the elimination of constructor computations: elimination of constructor computations
accounts completely for the reductions seen for Checksum, Knuth-Bendix, and Life, but it
does not account for the reductions seen in FFT.

197

9.2.3 Effect on GC copying

Figure 9.18 shows the average effect on GC copying of adding each loop optimization to
the TIL optimizer. Figures 9.19 through 9.23 show the effect of each optimization on each
benchmark. Again, the 100% mark on each graph is the base case of just the TIL optimizer.
In computing the geometric means for Figure 9.18, I excluded Matmult, because the garbage
collector does no copying of data for Matmult.

We see that adding comparison elimination or switch elimination has no effect on GC
copying, as we would expect. These optimizations do not affect any language constructs that
do heap allocation. Adding CSE, adding hoisting, or adding invariant removal each have
nearly the same effect on GC copying. They differ in their effect on FF'T primarily, but the
GC copying for FFT is insignificant (only 85 Kbytes) even with the base case TIL optimizer.

9.2.4 Effect on physical memory usage

Figure 9.24 shows the average effect on physical memory usage of adding each individual
loop optimization to the TIL optimizer. Figures 9.25 through Figures 9.29 show the effect
of adding each optimization on each benchmark. Again, the 100% mark on each graph is
the base case of just the TIL optimizer.

There is a strong correlation between the effects of optimizations on GC copying and
physical memory usage: we see that adding comparison elimination or adding switch elim-
ination has no effect on memory usage and that adding CSE, adding hoisting, or adding
invariant removal has almost the same effect on memory usage as adding each does on GC
copying. This correlation is not surprising with a generational collector. GC copying deter-
mines the amount of data in older generations, and the data in older generations determines
the physical memory usage of a program.

9.2.5 Effect on program executable size

Figure 9.30 shows the average effect on program executable size of adding each loop opti-
mization to the TIL optimizer. Figures 9.31 through Figures 9.35 show the effect of adding
each optimization on each benchmark. The 100% mark on each graph is the base case of
the TIL optimizer.

We see that each optimization has a small effect on program executable size and that
no particular optimization stands out. The overall reduction in program executable size
that I observed in Section 9.1 appears to be the cumulative result of the small effects of the
individual optimizations.

198

125%—

100%

5%
50% 1
25% 1

Cmpelim

CSE

Hoist Invariant Switch

Figure 9.6: Relative execution time (geo. mean)

100 %
5%
50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.7: Effect of comparison elimination on total time

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.8: Effect of CSE on total time

199

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.9: Effect of hoisting on total time

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen

Figure 9.10: Effect of invariant removal on total time

100 %
5%
50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.11: Effect of switch on total time

200

125%—

100 %

5%
50% 1
25% 1
CSE

Hoisting Invariant Switch

Cmpelim

Figure 9.12: Relative heap allocation (geo. mean)

100 %
5%
50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.13: Effect of comparison elimination on heap allocation

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.14: Effect of CSE on heap allocation

201

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.15: Effect of hoisting on heap allocation

100%

5%+

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen

Figure 9.16: Effect of invariant removal on heap allocation

202

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.17: Effect of switch on heap allocation

203

125%—

100 %

5%

50% 1
25% 1 I
CSE

Cmpelim

Hoist Invariant Switch

Figure 9.18: Relative GC copying (geo. mean)

100 %
5%
50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.19: Effect of comparison elimination on GC copying

204

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.20: Effect of CSE on GC copying

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.21: Effect of hoisting on GC copying

100%

5%
50% 1
25% 1

FFT Mmult Life Cksum KB Lexgen

Figure 9.22: Effect of invariant removal on GC copying

205

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.23: Effect of switch on GC copying

125%—
100 %
75% T
50%T
25% T I
Cmpelim CSE Hoist Invariant Switch

Figure 9.24: Relative phsyical memory usage (geo. mean)

100 %
5%
50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.25: Effect of comparison elimination on physical memory usage

206

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.26: Effect of CSE on physical memory usage

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.27: Effect of hoisting on physical memory usage

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen

Figure 9.28: Effect of invariant removal on physical memory usage

207

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.29: Effect of switch on physical memory usage

208

125%—

100%

5%
50% 1
25% 1

Cmpelim CSE Hoist Invariant Switch

Figure 9.30: Relative executable program size (geo. mean)

100 %
5%
50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.31: Effect of comparison elimination on executable program size

209

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.32: Effect of CSE on executable program size

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.33: Effect of hoisting on executable program size

100%

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen

Figure 9.34: Effect of invariant removal on executable program size

210

100 %

5%

50% 1

25% 1

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.35: Effect of switch on executable program size

211

9.3 Intensional Polymorphism

In Section 9.1, T demonstrated that applying optimizations that improve loops to SML
programs can improve the performance of SML programs significantly. In this section, I
address how specific this result is to the setting of intensional polymorphism.

Intensional polymorphism adds two costs to programs at run time: the cost of passing
types and the cost of type construction. In Chapter 10, I shall show that there are no
polymorphic functions left after B-form optimization. Thus, the optimizer eliminates the
cost of passing types for the benchmark programs. However, the cost of type construction
remains, even though the benchmark programs are monomorphic after B-form optimization.
Types cannot just be erased; they are needed for the garbage collector. Thus, some of the
benefit of the loop optimizations may be due to reducing the cost of type construction and
may be specific to the setting of intensional polymorphism.

To assess the effect of the setting of intensional polymorphism on the effect of the loop
optimizations, I performed the following experiment on loop optimizations that affect both
constructors and expressions. These are the code motion optimizations: common subex-
pression elimination, hoisting and invariant removal. First, I measured the effect of the code
motion optimizations on performance when they were restricted to optimizing only construc-
tors. Then, I measured the effect of the code motion optimizaitons when they were allowed
to optimize constructors and expressions. This allows us to gauge the additional speed-up
due to optimizing expressions; this additional speed-up is what might be possible in a more
conventional compiler setting.

I did not directly measure the effect of moving only expressions because of the typed
setting in which I was working. In particular, in the setting of intensional polymorphism,
an expression can only be moved in the scope of its free constructor variables. Thus, if you
do not move constructors, you are constraining the movement of expressions in a way that
would not occur in an untyped setting.

Figure 9.36 compares the relative improvements in execution time with code motion
of constructors against the relative improvements in execution time with code motion of
constructors and expressions. The 100% mark represents the performance with no loop
optimizations, the hollow bars show performance with only code motion of constructors, and
the solid bars show performance with code motion of constructors and expressions.

We see the following interesting results. For Life, Checksum, and Knuth-Bendix, code
motion of constructors accounts for nearly all the improvements in execution time that are
due to the loop optimizations. For FFT., Matmult, Lexgen, and PIA, the optimization
of expressions accounts for the improvements in execution time that are due to the loop
optimizations. For SIMPLE, the improvements in execution time are roughly split between
optimizing expressions and optimizing constructors.

We can draw the following conclusions from these results. For list-processing programs,
the improvements in execution time that are due to the loop optimizations are specific to the
setting of intensional polymorphism. For other SML programs, especially scientific programs,
however, the improvements in execution time that are due to the loop optimizations are
general.

Figure 9.37 compares the relative improvements in heap allocation with code motion

212

u Constructors]
O Constructors and expressions

125%t

100 %

5%

50% 1

25% 1

I

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.36: Execution time with code motion of constructors compared to execution time
with code motion of constructors and expressions.

of constructors against the relative improvements in heap allocation with code motion of
constructors and expressions. As before, the 100% mark represents performance with no
loop optimizations, the hollow bars are for code motion of constructors, and the solid bars
are for code motion of constructors and expressions.

We see the following results. For Checksum and Knuth-Bendix, the large reductions in
total heap allocation due to the loop optimizations were due to code motion of constructors
almost entirely. For FFT and SIMPLE, the large reductions in heap allocation were due to
code motion of expressions almost entirely. For Matmult, Life, Lexgen, and PIA code motion
of constructors had little or no effect on heap allocation and code motion of expressions
tended to increase the amount of heap allocation.

We can draw the following conclusions about the loop optimizations in a general setting.
For most programs, code motion of expressions has no effect on heap allocation or tends to
increase heap allocation. For scientific programs, however, code motion of expressions can
reduce heap allocation significantly.

9.4 Conclusions

In this chapter, I have demonstrated that applying optimizations that improve loops to SML
programs improves performance significantly for my benchmarks. Performance improves
across a range of metrics, including execution time and total physical memory used by
programs. [studied the effect of individual optimizations, and demonstrated that the code
motion optimizations were most important to improving performance. Finally, I studied
how specific these results were to the TIL framework. I found that improvements in heap
allocation due to the loop optimizations were specific to the TIL framework. Outside the
TIL framework, the loop optimizations were likely to have no effect on heap allocation or
to increase heap allocation, except for scientific programs. 1 found that the improvements

213

u Constructors]
O Constructors and expressions

125%t

100 % ’7

5%

50% 1

25% 1

fm

FFT Mmult Life Cksum KB Lexgen PIA SIMPLE

Figure 9.37: Heap allocation with code motion of constructors compared to heap allocation
with code motion of constructors and expressions.

in execution time due to the loop optimizations for list-processing programs were specific to
the TIL framework, but that improvements in execution time for other kinds of programs
were likely to be found in other approaches to compiling SML.

214

Chapter 10

Other measurements

In this chapter, I present some other interesting measurements of programs compiled by TIL.
First, 1 investigate the effect of optimization on the numbers of polymorphic and higher-
order functions when whole programs are compiled. Second, I study the effect of types on
intermediate program size. Types may make intermediate programs bigger; this could make
compilers that use typed intermediate languages require more memory and be slower than
compilers that use untyped intermediate languages.

10.1 Optimization and the numbers of polymorphic or
higher-order functions.

In this section, I measure the effect of optimization on the numbers of polymorphic or higher-
order functions when whole programs are compiled. To do this, I instrumented TIL to count
the number of functions in a program before and after B-form optimization and classify
them as (1) polymorphic or (2) higher-order but not polymorphic. All functions bound by
Fixtype are counted as polymorphic. For functions bound by Fix, their types are placed in
a normal form and then examined to see if they contain a function type in either the domain
or range type. TIL did one round of dead-code elimination before it gathered the numbers
for before B-form optimization, so that it only counted functions that are actually used in
programs.

Table 10.1 and Table 10.2 present the percentage of functions that are polymorphic
or higher-order before and after B-form optimization. Table 10.1 displays the percentage
of polymorphic functions, while Table 10.2 shows the percentage of higher-order but not
polymorphic functions.

From these numbers we can draw two conclusions. First, polymorphic or higher-order
functions are widely used in SML source programs. On average, 41% of functions are poly-
morphic or higher-order. Second, optimization is successful at reducing the numbers of
polymorphic or higher-order functions. There are no polymorphic functions left after B-
form optimization. For six of the eight benchmarks, there are no higher-order functions left.
For the other two benchmarks, fewer than 1% of functions are higher-order.

One concern is that inline expansion may be reducing the numbers of polymorphic or

215

Program Poly(before) | Poly(after)
(%) (%)
checksum 19 0
fft 37 0
leroy 31 0
lexgen 23 0
life 29 0
matmult 46 0
pia 17 0
simple 31 0
arith. mean | 29 0

Figure 10.1: Percentage of functions which are polymorphic before and after optimization

Program HO(before) | HO(after)
(%) (%)
checksum 2 0
fft 4 0
leroy 27 2
lexgen 8 0
life 20 0
matmult 0 0
pia 25 0
simple 11 1
arith. mean | 12 0

Figure 10.2: Percentage of functions that are higher-order but not polymorphic before and

after optimization

216

program | 0 100 | 225 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000
checksum | 50 | 50 |58 |86 |68 |68 [68 |68 |68 |68 |68
ftt 60 |54 |57 | BT |57 |57 |57 |57 | 5T | 5T |57
leroy - 73 189 [98 |98 | 108 | 108 | 125 | 125 | 125 | 125
lexgen 169 | 196 | 174 | 327 | 251 | 222 | 236 | 266 | 266 | 362 | 362
life 69 |51 |59 |60 |60 |60 |60 |60 |60 |60 |60
matmult | 42 |40 |49 |48 |48 [48 |48 |48 |48 |48 |48
pia 133 | 111 | 152 | 172 | 153 | 182 | 187 | 187 | 177 | 177 | 177
simple 125 | 135 | 148 | 161 | 169 | 164 | 190 | 191 | 190 | 191 | 179

Figure 10.3: Code size (in thousands of bytes) versus size parameter controlling inline ex-
pansion

higher-order functions at the expense of greatly increasing program size. To show that this
is not the case, [varied the size parameter s controlling inline expansion and measured code
size as s varied. Recall that inline expansion will inline a function only if it is non-recursive
and suitably small (less then s). 1 varied s between 0 and 1000 in increments of 100 and
measured machine code size as s changed. I include only machine code for the SML program
and the standard library; I exclude machine code for the run-time system.

Figure 10.3 shows code size in bytes as the inline expansion parameter s is varied. The
point corresponding to s = 225 is the default setting for the inline parameter size; it is
the point at which I made the measurements described earlier in the thesis. The point
corresponding to s = 0 is with no inline expansion; TIL still inlines non-recursive functions
that are applied only once.

From Figure 10.3 we can draw several conclusions. First, by comparing s = 0 and s = 225,
we see that excessive code expansion is not occurring. Code size increases by at most 25%.
For some programs, it actually decreases. This is due to polymorphic functions being inlined,
with smaller code being generated for the monomorphic versions of those functions. Second,
we see that code size does not increase excessively when we vary s over a wide range — at
most there is a factor of two difference between the minimum and maximum code sizes.

These measurements have several implications for the design of TIL. First, they show
that choosing to make monomorphic functions fast at the expense of making polymorphic
functions slow was a good design choice. Second, they show that a simple closure conversion
strategy was a reasonable design choice. We do not need more sophisticated strategies for
these benchmarks. Finally, they show that relying the known call graph in the optimizer,
instead of doing an analysis to approximate unknown functions, is a reasonable choice.

10.2 Type information and intermediate program size

One concern in using a typed intermediate language instead of an untyped intermediate
language is that the types may make intermediate programs much bigger. This would mean
that compilers that use typed intermediate languages would use more memory than compilers
which use untyped intermediate languages. In addition, they could also be slower, since some
optimizations for typed intermediate languages need to traverse the types.

217

Program | Before | After
checksum | 3.98 3.15

ftt 3.97 1.81
leroy 7.34 4.35
lexgen 5.00 3.55
life 5.98 4.18
matmult | 4.78 2.34
pia 4.89 3.44

simple 6.10 2.09
geo. mean | 5.15 2.97

Figure 10.4: Ratios of total program size to term-level size, without careful treatment of
types.

Figure 10.4 shows the increase in intermediate program size due to types for TIL, before
and after B-form optimization, without any careful management of types. For each bench-
mark, it presents the ratio of total program size to the size of term-level expressions and
declarations. The term-level expressions and declarations correspond to an untyped program,
so this ratio tells how much bigger types make programs. I measured size by instrumenting
the compiler to count syntax nodes in intermediate programs. The count excludes value
nodes and base type nodes. We see that types make programs on average roughly five times
bigger before optimization, and three times bigger after optimization.

You can reduce the effect of types on program size by managing types carefully so that
types are shared. For example, the type of a record expression of the form record(a,b) has
the types of a and b as sub-components. If we name those types, say as 71 and 7, then the
type of the record expression only has a size of three, instead of the size(r) + size(72) + 3.

To name types so that they can be shared, I added a let form which binds a type
variable to a type expression to the B-form intermediate language. I then modified dead-
code elimination to eliminate useless type variables. I also modified invariant and hoist
to hoist these let-bound types when possible. Next, I modified CSE to eliminate type
expressions, in addition to redundant constructor expressions and term-level expressions.
CSE only replaces type expressions with type variables, even though it could replace type
expressions with constructor variables. Finally, I modified other optimizations to preserve
the let-bound types in programs.

Figure 10.5 shows the increase in intermediate program size due to types with this man-
agement scheme. The column labelled “before” presents the ratio of sizes after one round of
CSE but before any other optimization. The column labelled “after” presents the ratio of
sizes after B-form optimization. We see that with careful management of types, programs
are on average two times bigger before optimization and only 15% bigger after optimization.

One question is whether doing a round of other optimizations, such as hoisting, in addition
to CSE, might dramatically decrease the effect of types on program size at the beginning
of optimization. The answer is no; the effect of types on program size gradually drops as

218

Program | Before | After
checksum | 2.07 1.30
ftt 1.83 1.03
leroy 2.38 1.27
lexgen 1.62 1.13
life 1.96 1.14
matmult | 2.51 1.19
pia 1.64 1.11
simple 1.64 1.03
geo. mean | 1.93 1.15

Figure 10.5: Ratios of total program size to term-level size, with careful treatment of types

the optimizer runs. I speculate that this is due to the optimizer eliminating polymorphic
functions and the type information needed for those functions.

219

220

Chapter 11

Future work

In this chapter, I suggest some future directions that researchers may wish to explore. For
convenience, | have divided this chapter into two sections. In the first section, I suggest
some comparative studies of language implementation techniques that may be worthwhile
for languages like SML. In the second section, I discuss some future directions for optimizing
SML programs.

11.1 Comparative studies of language implementation
techniques

In this thesis, I have advocated an empirical approach to implementing modern programming
languages. First, I studied the memory-system performance of SML programs and the
cost of automatic storage management. Based on these studies, I concluded that reducing
the instruction counts of SML programs was important. I then studied the effect of loop
optimizations on SML program performance.

It is possible to carry this empirical approach much further, by systematically studying
and comparing different programming language implementation techniques. The following
studies may be worthwhile for languages like SML:

e comparing different data representation techniques for polymorphic garbage-collected
languages. There are at least three different techniques that should be compared: using
a conventional universal representation, where data is represented as a tagged machine
word, Leroy’s approach [56], where polymorphic values are placed in a universal rep-
resentation but monomorphic values are kept in a native machine representation, and
intensional polymorphism [37].

e comparing different inlining techniques. It would be interesting to compare SML/NJ’s
inlining strategy to TIL’s inlining strategy. For example, TIL does not inline recursive

functions, while SML/NJ does.

e comparing different techniques for automatic storage management. It would be in-
teresting to compare fully tag-free automatic storage management [90] to the mostly
tag-free approach used in TIL.

221

11.2 Optimization

Several directions worth pursuing in the area of optimization are proving the correctness of
the optimizations, studying how to improve the current optimizations, and implementing a
broader range of loop optimizations.

11.2.1 Correctness of programs produced by the optimizer

In Chapter 6, I conclude that the call-by-value A-calculus with simple extensions justifies
almost all the transformations that I use in the optimization algorithms. Thus, you should
be able to prove the correctness of the optimizer using a conceptually straightforward (but
tedious) approach. You would first have to re-establish all this theory for LMLI. After you
developed suitable machinery, you would need to formalize the algorithms and prove that
they transform programs in accordance with the calculus. You could do this by borrowing
techniques from systems for transforming programs, such as NuPRL. You could encapsulate
programs as an abstract data type that has operations that transform programs according
to a calculus. You could modify each optimization to produce a list of transformations to
apply (i.e. a proof of correctness). The only part of the optimizer that you would need to
prove correct would be the abstract operations on programs.

11.2.2 Improving current optimizations

Better effects analyses would allow the current code motion algorithms to move more expres-
sions. The interesting question is how much of an improvement can be achieved at what cost
in compile time. One direction to pursue is analyzing the effects of function applications, so
that they could be eliminated by common-subexpression elimination. CSE can be done for
applications of functions even when the functions may not terminate or may raise exceptions;
the only requirement is that functions not modify or use the store.

Barth’s work [13] and related work on computing interprocedural summary information
could be extended to compute effects that occur when a function is applied. Interprocedural
summary information tells what variables are used or modified by functions, or what variables
are aliased to other variables. The analysis could use the known fragment of the call graph
and assume that any effect can occur when an unknown function is called. To determine
whether a function is effect-free, it would simply scan its body for “impure” expressions. Of
course, the analysis would have to be transitive, and scan any functions it calls and so on.
The analysis could be done in O(N) time, where N is the size of the program if the lattice of
Section 5.3.1 is used, functions are traversed in depth-first search using the call graph, and
mutually-recursive functions are coalesced as single nodes in the call graph,

A cautionary note is that Richardson and Ganapathi [75] found that for Pascal pro-
grams interprocedural summary information did not improve optimization. However, their
optimizer did not move function applications.

222

11.2.3 Additional optimizations

It would be interesting to implement a much broader range of optimizations that improve
loops in the context of SML. Optimizations particularly worth examining are strength re-
duction and induction variable elimination, loop-based techniques for reducing the cost of
array bounds checking, and unrolling recursive functions.

It would also be interesting to implement optimizations that improve imperative lan-
guage features. Consider, for example, eliminating redundant fetches of array elements or
eliminating fetches of array elements that are invariant in recursive functions.

[regard optimizations that improve imperative language features as distinct from the loop
optimizations that I described in Chapter 6. The loop optimizations do not do any path
analysis of side-effects, which optimizations that improve imperative language features would
need to do. For example, if an optimization was going to move a side-effecting expression
e from point A to point B in a program, it would need to examine side effects along all
execution paths between A and B to prove that the part of the state that e uses is identical
at points A and B.

11.2.4 Effect of separate compilation on optimization

It would be interesting to study the effect of separate compilation on optimization (and,
in general, on the performance of programs compiled by TIL). There are several direction
worth pursuing. First, it would be worthwhile to study optimization across compilation
units. [conjecture that inlining across compilation units will be important. I also conjecture
that propagating effects information across compilation units will be important. Second, it
would be worthwhile to study optimizations that reduce the cost of intensional polymorphism
when types are unknown. For example, the tag construction that occurs in Example 7.8 in
Chapter 7 is invariant in the recursive function: the tag could be constructed outside the
recursive function and passed as an additional argument.

223

224

Chapter 12

Conclusion

This chapter is divided into three sections. In the first section, I summarize the specific
contributions of the thesis, most of which are concerned with compilation of programming
languages like SML. In the second section, I take a step back from the details of compiling

SML

to give some advice to compiler writers concerning implementing new programming

languages. Finally, I take a step back from compilation to discuss the broader implications
of this thesis — and work like it — for the field of computing.

12.1 Summary of contributions

The primary contributions that I have made in this thesis are:

demonstrating that a “pay-as-you-go” compilation strategy, where programmers pay
for advanced language features only when they use them, is a practical strategy for
compiling SML programs.

showing that compilers for languages such as SML should focus on generating good
code for recursive functions, just as compilers for conventional languages such as C
focus on generating good code for loops.

Additional contributions that I have made while completing this thesis are:

demonstrating an alternative approach to compiling languages with higher-order func-
tions. The conventional approach to compiling languages with higher-order functions
is to focus on “compiling functions well” by choosing efficient environment represen-
tations for first-class functions. In contrast, my approach is to use optimization to
eliminate higher-order functions and to adapt conventional compiler technology to
compile optimized programs to efficient machine code.

presenting algorithms that show how to apply several optimizations that are known to
improve loops to SML programs. I have given algorithms for common-subexpression
elimination, invariant removal, eliminating redundant switches, and eliminating redun-
dant comparisons.

225

o demonstrating that higher-order functions do not have to interfere with optimization.
In practice, inlining and uncurrying are effective at reducing the number of higher-order
functions.

o showing how to use the call graph of a program to estimate how frequently various
program points are executed.

e showing that heap allocation and copying garbage collection can have good memory-
system performance, given the right memory system.

12.2 Lessons for compiler writers

The previous section listed a number of contributions, most of which are specific to the prob-
lem of compiling languages like SML. In the process of completing this thesis, I also learned
a number of lessons about implementing new programming languages. To a compiler writer
who wishes to implement a new programming language, I offer the following suggestions,
distilled from my experience completing the work described in this thesis:

e Focus on making the core of your new language fast. It is a mistake to focus on the
advanced features of the language at the expense of the more mundane aspects of the
language. The advanced features may be more interesting to work on, but programs
are likely to spend most of their time doing mundane operations such as arithmetic.

e Measure your compiled code carefully. It is difficult to understand where programs
spend their time on modern architectures. and intuition, as this thesis has demon-
strated, is an unreliable guide. It is also difficult to predict a priori what particular
features of the language to spend time optimizing.

Of course, this is easier to say than to do for new programming languages. It can be
difficult to find “representative” programs.

e Try simple local optimizations first. I define a local optimization as an optimization
that can work on a fragment of a program. In particular, a local optimization does not
require an analysis of an entire program for correctness. Almost all the optimizations
described in this thesis fit this description.

There are two reasons to prefer local optimizations. First, as a general rule-of-thumb,
simple optimizations will give you 80% of the benefit of optimization. Obtaining the
last 20% is much harder. Second, local optimizations are less fragile than global opti-
mizations when programs are changed. No one wants to use a programming language
where a seemingly minor program change disables optimization and causes a program
to become a factor of two slower.

e Build analyses to suit transformations and not wvice versa. It is a mistake to build
an analysis and then try to find a program transformation that can use of the results
of the analysis. It is far better to start with a transformation and then develop an
analysis suitable for the transformation.

226

12.3 The big picture

So, what does this work mean for people involved with computers who are not compiler
writers? It means a great deal I believe. Programming languages are the fundamental tools
of programmers: they have a pervasive effect on how programs are written, the reliability of
programs, and the scale of programs that can be written. A poorly-designed programming
language, such as C+4++, forces a programmer into a morass of details and obscure language
rules. It leads to large programs that are nearly incomprehensible and that never quite work
right. A well-designed programming language, such as SML, on the other hand makes it a
joy to program.

For too long, most of the world has favored poorly designed languages in the name of
efficiency. This work presents evidence that we can have well-designed high-level languages
such as SML and efficiency. More work does remain to be done, particularly in the areas
of memory usage of garbage collection, interoperability, and extending languages like SML
to be able to handle low-level systems tasks. I believe that with sufficient implementation
work, programs written in languages such as SML can match programs written in languages
such as C and C++ in performance. Indeed, perhaps one day programs written in high-level
languages such as SML will regularly exceed the performance of programs written in more
low-level languages.

227

228

Appendix A

Memory-System Performance
Summary Tables

Table A.1 and Table A.2 give the CPI for each of the benchmark programs measured in
Chapter 2 using version 0.91 of the SML/NJ compiler. The following abbreviations are used
in the CPI table:

wa/wn: write allocate/write no allocate
s/ns: subblock placement /no subblock placement
4/8: Block size = 4 words/Block size = 8 words

229

Config

Associativity = 1

Associativity = 2

8K | 16K | 32K | 64K | 128K | 256K | 512K

wn,ns,4

8K | 16K | 32K | 64K | 128K | 256K | 512K
CW

2.41

2.07

1.8811.73| 1.43

1.30

1.18

2.22

1.96

1.7811.62| 1.42

1.30

1.17

wa,ns,4

2.44

2.09

1.90(1.74| 1.44

1.31

1.18

2.24

1.98

1.7911.63| 1.43

1.31

1.17

wa,s,4

1.96

1.62

1.4411.39| 1.24

1.20

1.17

1.77

1.50

1.3311.25| 1.21

1.18

1.16

wn,ns,8

2.18

1.89

1.7211.60| 1.37

1.27

1.18

1.98

1.76

1.6211.50| 1.35

1.26

1.17

wa,ns,8

2.19

1.89

1.7211.60| 1.37

1.27

1.18

1.98

1.76

1.6111.49| 1.35

1.26

1.17

wa,s,8

1.88

1.59

1.4311.38| 1.23

1.20

1.17

1.68

1.46

1.3211.25| 1.21

1.18

1.16

Leroy

wn,ns,4

2.32

2.18

1.96|11.87| 1.79

1.65

1.37

2.17

2.03

1.8911.82| 1.76

1.65

1.40

wa,ns,4

2.53

2.40

2.1812.08| 1.98

1.83

1.50

2.38

2.25

2.0912.00] 1.95

1.83

1.57

wa,s,4

1.66

1.52

1.3011.20| 1.15

1.12

1.09

1.51

1.37

1.2111.12| 1.10

1.09

1.08

wn,ns,8

2.05

1.93

1.7511.67| 1.60

1.50

1.30

1.92

1.81

1.681.61| 1.57

1.50

1.33

wa,ns,8

2.12

2.00

1.8211.73| 1.66

1.56

1.35

1.99

1.87

1.7411.67| 1.63

1.55

1.38

wa,s,8

1.56

1.44

1.261.18| 1.13

1.11

1.09

1.43

1.32

1.19]1.11| 1.09

1.08

1.07

L

exgen

wn,ns,4

3.59

1.94

1.8411.72| 1.65

1.50

1.31

2.04

1.85

1.7011.64| 1.60

1.50

1.34

wa,ns,4

3.61

1.96

1.85]1.74| 1.67

1.51

1.31

2.06

1.87

1.7111.66| 1.61

1.51

1.35

wa,s,4

3.17

1.53

1.4211.31| 1.27

1.21

1.19

1.62

1.43

1.2811.22| 1.20

1.19

1.18

wn,ns,8

2.96

1.78

1.6711.57| 1.51

1.39

1.27

1.86

1.71

1.5611.49| 1.45

1.38

1.28

wa,ns,8

2.97

1.79

1.6811.57| 1.51

1.40

1.27

1.87

1.71

1.5711.50| 1.46

1.39

1.28

wa,s,8

2.70

1.51

1.4111.30| 1.26

1.21

1.19

1.60

1.44

1.3011.22| 1.20

1.18

1.18

Life

wn,ns,4

1.79

1.70

1.651.62| 1.61

1.42

1.20

1.77

1.64

1.6111.60| 1.60

1.48

1.19

wa,ns,4

1.80

1.70

1.65]1.62| 1.60

1.42

1.20

1.74

1.64

1.6011.60| 1.59

1.48

1.19

wa,s,4

1.39

1.29

1.2411.21| 1.20

1.19

1.19

1.33

1.23

1.2011.19| 1.19

1.19

1.18

wn,ns,8

1.65

1.55

1.4911.47| 1.46

1.34

1.19

1.57

1.54

1.46(1.45| 1.44

1.37

1.19

wa,ns,8

1.65

1.55

1.5011.47| 1.45

1.34

1.19

1.57

1.51

1.45]1.45| 1.44

1.37

1.19

wa,s,8

1.39

1.29

1.2411.21| 1.20

1.19

1.31

1.25

1.2011.19| 1.19

1.18

1.18

1.19
Pia

wn,ns,4

2.23

1.93

1.8011.75| 1.62

1.34

1.12

2.23

1.83

1.7311.72| 1.63

1.36

1.12

wa,ns,4

2.27

1.96

1.8211.77| 1.65

1.36

1.12

2.26

1.85

1.76]1.74| 1.66

1.39

1.12

wa,s,4

1.66

1.36

1.2211.18| 1.15

1.13

1.10

1.66

1.25

1.15]1.14| 1.12

1.11

1.10

wn,ns,8

1.92

1.70

1.5911.55| 1.46

1.26

1.11

1.87

1.60

1.53]1.51| 1.45

1.28

1.11

wa,ns,8

1.95

1.72

1.60]1.56| 1.47

1.27

1.11

1.89

1.61

1.5411.52| 1.47

1.30

1.11

wa,s,8

1.55

1.32

1.2111.17| 1.14

1.12

1.10

1.49

1.22

1.1411.13| 1.11

1.10

1.10

Table A.1: Cycles per useful instructions, part 1.

230

Config

Associativity = 1

8K | 16K | 32K | 64K | 128K | 256K | 512K

Associativity = 2

8K | 16K | 32K | 64K | 128K | 256K | 512K

Simple

wn,ns,4

2.32

2.02

1.7911.73| 1.70

1.68

1.62

1.98

1.74

1.7011.70| 1.68

1.66

1.63

wa,ns,4

2.35

2.05

1.8111.75| 1.72

1.70

1.64

2.01

1.76

1.7211.72| 1.69

1.68

1.65

wa,s,4

1.80

1.50

1.2611.21| 1.19

1.18

1.15

1.46

1.21

1.181.17| 1.16

1.15

1.14

wn,ns,8

2.03

1.79

1.5711.51| 1.49

1.47

1.43

1.72

1.52

1.4911.48| 1.47

1.46

1.44

wa,ns,8

2.05

1.80

1.58|1.63| 1.50

1.48

1.44

1.74

1.54

1.5011.49| 1.48

1.47

1.44

wa,s,8

1.70

1.45

1.23]1.18| 1.16

1.15

1.13

1.39

1.19

1.15]1.15| 1.14

1.13

1.13

VLIW

wn,ns,4

3.26

2.73

2.3011.98] 1.79

1.35

1.15

3.06

2.64

2.19]1.88] 1.69

1.37

1.14

wa,ns,4

3.29

2.75

2.3212.00| 1.82

1.36

1.15

3.08

2.66

2211191 1.72

1.40

1.14

wa,s,4

2.67

2.13

1.7011.39| 1.31

1.17

1.13

2.47

2.04

1.5911.29| 1.16

1.14

1.12

wn,ns,8

2.62

2.25

1.9311.70| 1.57

1.28

1.14

2.48

2.16

1.8511.63| 1.50

1.30

1.13

wa,ns,8

2.63

2.26

1.9411.70| 1.58

1.29

1.14

2.48

2.16

1.8511.64| 1.51

1.31

1.13

wa,s,8

2.23

1.86

1.5511.31| 1.25

1.16

1.12

2.09

1.76

1.4611.25| 1.16

1.13

1.12

Yacc

wn,ns,4

2.38

2.16

1.9911.90| 1.83

1.64

1.33

2.13

1.99

1.8911.84| 1.79

1.65

1.33

wa,ns,4

2.42

2.20

2.02|11.92| 1.86

1.67

1.34

2.16

2.02

1.9211.86| 1.82

1.68

1.35

wa,s,4

1.85

1.63

1.4511.35| 1.32

1.27

1.21

1.59

1.45

1.35]1.29| 1.26

1.24

1.20

wn,ns,8

2.11

1.90

1.7511.67| 1.62

1.49

1.28

1.87

1.75

1.67]1.62| 1.58

1.49

1.28

wa,ns,8

2.13

1.92

1.7711.68| 1.63

1.50

1.29

1.89

1.76

1.6811.63| 1.59

1.50

1.29

wa,s,8

1.76

1.55

1.4011.32| 1.29

1.25

1.20

1.52

1.40

1.3211.27| 1.24

1.22

1.19

Table A.2: Cycles per useful instructions, continued.

231

232

Appendix B

Performance numbers

This appendix contains the actual performances numbers used in Chapter 8 and Chapters 9.

B.1 Comparison of TIL against SML/NJ

Program Exec. time (s) | TIL/NJ
TIL ‘ NJ
Checksum 1.94 11.64 0.17
FFT 1.48 16.13 0.09
Knuth-Bendix | 1.83 1.74 1.05
Lexgen 1.53 2.53 0.60
Life 1.26 1.43 0.88
Matmult 1.40 7.95 0.18
PIA 0.36 1.10 0.33
SIMPLE 8.05 23.89 0.34
Geo. mean 0.34

Table B.1: Comparison of running times

233

Program Heap alloc. (Kbytes) | TIL/NJ
TIL | NJ
Checksum 140,517 961,586 0.15
FFT 8,895 209,818 0.042
Knuth-Bendix | 45,729 94,493 0.48
Lexgen 8,791 110,749 0.079
Life 24,850 44,198 0.56
Matmult 0 249,942 —
PIA 5,322 53,850 0.10
SIMPLE 315,042 807,133 0.39
| Geo. mean (excluding Matmult) 0.18

Table B.2: Comparison of heap allocation

Program Phys. mem. (Kbytes) | TIL/NJ
TIL ‘ NJ
Checksum 848 1456 0.47
FFT 2696 17592 0.15
Knuth-Bendix | 2648 3496 0.74
Lexgen 1624 2952 0.55
Life 848 1264 0.65
Matmult 512 1560 0.33
PIA 1144 1648 0.68
SIMPLE 10008 17200 0.54
‘ Geo. mean 0.45 ‘

Table B.3: Comparison of maximum physical memory used

234

Program Exec. size (Kbytes) | TIL/NJ
TIL ‘ NJ
Checksum 288 | 638 0.43
FFT 304 | 649 0.46
Knuth-Bendix | 328 | 671 0.48
Lexgen 440 | 731 0.61
Life 280 | 651 0.43
Matmult 576 | 767 0.75
PIA 456 | 724 0.63
SIMPLE 928 | 876 0.47
‘ Geo. mean 0.52 ‘

Table B.4: Comparison of stand-alone executable sizes

Program Comp. time (s) | TIL/NJ
TIL ‘ NJ
Checksum 9.74 1.49 6.5
FFT 12.2 1.97 6.2
Knuth-Bendix 77.1 7.79 9.9
Lexgen 248.67 13.12 18.9
Life 23.4 2.73 8.6
Matmult 4.12 1.02 4.04
PIA 219.61 15.83 13.9
SIMPLE 227.61 18.31 12.4
‘ Geo. mean 9.1

Table B.5: Comparison of compilation times

235

B.2 Effects of loop optimiza-

tions

This section contains the measurements of
the effects of the loop optimizations (com-
parison elimination, CSE, hoisting, invariant
removal, and redundant switch elimination).
For each benchmark, I measured performance
with all optimizations enabled (allopts), all
optimizations but the loop optimizations en-
abled (noloopopts), and then with each loop
optimization enabled one at a time (cmpe-
lim, CSE, invariant, hoist, and switch). For
the measurements of each loop optimization
enabled by itself, all optimizations but the
other loop optimizations were still enabled.

The measurements are the averages of 100
runs of the program; I report standard devi-
ations for all the measurements.

I also calculated ratios of performance. The

ratios are relative to noloopopts.

Checksum

allopts:

TIME(s): total time = 2.10 std. dev. 0.34
user time = 2.03 std. dev. 0.34
sys time = 0.02 std. dev. 0.00
gc-all time = 0.05 std. dev. 0.01
majorgc-copy = 0.00 std. dev. 0.00
gc-copy time = 0.04 std. dev. 0.01
gc-stack time = 0.01 std. dev. 0.00

GC(k): bytes alloced = 143889360 std. dev. O
bytes copied = 544 std. dev. 0

MEM(K) : max phys mem = 689 std. dev. 2

PAGING: page reclaims = 103 std. dev. 2
page faults = 0 std. dev. 0

MISC: GCTableSize = 10404 std. dev. 0
CodeSize = 47988 std. dev. 0

noloopopts:

TIME(s): total time = 15.89 std. dev. 0.07
user time = b5.54 std. dev. 0.02
sys time = 0.05 std. dev. 0.01
gc-all time = 10.30 std. dev. 0.05
majorgc-copy = 0.27 std. dev. 0.01
gc-copy time = 10.25 std. dev. 0.04
gc-stack time = 0.05 std. dev. 0.01

GC(k): bytes alloced = 390598672 std. dev. O
bytes copied = 123364696 std. dev. 0

MEM(K) : max phys mem = 12280 std. dev. O

PAGING: page reclaims = 1551 std. dev. 2
page faults = 0 std. dev. 0

MISC: GCTableSize = 11068 std. dev. 0

cmpelim:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

invariant:

TIME(s):

GC(k):

MEM(K) :
PAGING:

236

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults

390598672
123364696
12280

O OO O NN

0.
144009328
60464

O O OO r K

0.
143889804

O O OO

0.
143889784

49584

.92
.58
.03
.31
.27
.27
.03

1551

11068
49776

.19
.12
.02
.05
.00
.04
01

0

745
110

10628
48988

.96
.89
.02
.05
.00
.04
01

0

988
697
104

10796
49344

.99
.92
.02
.05
.00
.04
01

0

968
696
104

0

std. dev.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.
st

std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.
st

std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.
d. de

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.
d. de

O OO OO0 OO

dev.
dev.

©C O OO OO0

OO OO0 OO0o

dev.
dev.
dev.
dev.
dev.
dev.

O OO OO OO0

.04
.02
.01
.03
.00
.03
.00
std. dev.

std. dev.

std.
std.
std.
std.
std.

.01
.01
.00
.01
.00
.01
.00
V.

.01
.01
.00
.01
.00
.01
.00
std. dev.

std.
std.
std.
std.
std.
std.

.01
.01
.00
.00
.00
.00
.00
V.

0

O OO N O

O OO NNO

O OO NN O

[«3N VI Sl e]

MISC:

switch:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

Ratios:
std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

10800
49292

15.76
5.52
0.03

10.21
0.26

10.18
0.03

390598672
123364696

12272
1550
0
11068
49312

+ cmpelim / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ cse / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ hoist / std opts

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied

.002
.006
.731
.001
.024
.002
.709
1.000
1.000
1.000
1.000

ORr PR OR K

1.000
1.004

.137
.382
.415
.005
.000
.004
.217
0.369
0.000
0.061
0.071

O OO OO OO0

0.960
0.988

.123
.342
.419
.005
.000
.004
.216
0.368
0.000

©C O OO OO0

std. dev.
std. dev.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

©C O OO OO0

dev.

.04
.02
.01
.02
.00
.02
.01
std. dev.

std. dev.

std.
std.
std.
std.
std.

0
0

O OO N O

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

FFT:
allopts:

TIME(s):

237

max phys mem = 0.057
page reclaims = 0.067
page faults = n.d.
GCTableSize = 0.975
CodeSize = 0.995

+ invariant / std opts

total time = 0.125
user time = 0.346
sys time = 0.400
gc-all time = 0.005
majorgc-copy = 0.000
gc-copy time = 0.004
gc-stack time = 0.227

bytes alloced = 0.368

bytes copied = 0.000

max phys mem = 0.057

page reclaims = 0.067
page faults = n.d.

GCTableSize = 0.976

CodeSize = 0.994

+ switch / std opts

total time = 0.992
user time = 0.995
sys time = 0.718
gc-all time = 0.991
majorgc-copy = 0.971
gc-copy time = 0.993
gc-stack time = 0.656

bytes alloced = 1.000

bytes copied = 1.000

max phys mem = 0.999

page reclaims = 0.999
page faults = n.d.

GCTableSize = 1.000

CodeSize = 0.995

+ allopts / std opts

total time = 0.132
user time = 0.365
sys time = 0.407
gc-all time = 0.005
majorgc-copy = 0.000
gc-copy time = 0.004
gc-stack time = 0.288

bytes alloced = 0.368

bytes copied = 0.000

max phys mem = 0.056

page reclaims = 0.067

page faults = n.d.

GCTableSize = 0.940

CodeSize = 0.968

total time = 1.46
user time = 1.42
sys time = 0.05
gc-all time = 0.00
majorgc-copy = 0.00
gc-copy time = 0.00

std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.

O OO OO0

.05
.05
.00
.00
.00
.00

gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
noloopopts:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
cmpelim:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

cse:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
hoist:

TIME(s): total time
user time
sys time

gc-all time
majorgc-copy

0
91

O O OO v

0.
403882364

O OO O W

0.
403882364

OO OO Uo

0.
263001232

o O O W

.00
08496
680
2696
352
0
10620
50468

.75
.50
.06
.18
.00
.13
05

85432
2952
384

0
20116
67972

.97
.69
.06
.22
.00
.16
o7

85432
2952
384

0
20116
67996

.15
.99
.06
.10
.00
.07
03

78632
2872
375

0
16396
61708

.35
.13
.06
.16
.00

std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.
st

std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.

dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.
d. de

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.

0.

O OO OO OO0

dev.

OO OO0 OO0o ©C O OO OO0

o O O OO

00

.06
.05
.01
.03
.00
.02
.01
std. dev.

std.
std.
std.
std.
std.
std.

.04
.05
.01
.02
.00
.01
.01
V.

.10
.10
.01
.01
.00
.01
.01
std. dev.

std.
std.
std.
std.
std.
std.

.32
.32
.01
.01
.00

O O O WwWwoo O OO WO o OO O WO oo

O OO NO O

gc-copy time
gc-stack time
bytes alloced
bytes copied
MEM(K) : max phys mem
PAGING: page reclaims
page faults
MISC: GCTableSize
CodeSize

GC(k):

invariant:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

switch:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

Ratios:

0.12
0.04
403882428
85472
2952
384
0
18236
65096

.06
.94
.05
.06
.00
.05
0.01
153045404
65480
2808
366
0
17464
66804

O OO OO, N

.78
.56
.06
.17
.00
.12
0.05
403882364
85432
2952
384
0
20116
67644

© O O O v

std opts + cmpelim / std opts

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

std opts + cse / std opts

TIME(s): total time
user time

238

.023
.020
.913
.194

= O ==

1.178

1.229
1.000
1.000
1.000
1.000

1.000
1.000

0.630
0.630

std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

0.
0.
std. dev.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.

©C O OO OO0

OO OO0 OO0o

dev.
dev.
dev.
dev.
dev.
dev.

01
01

.06
.06
.00
.01
.00
.01
.00
std. dev.

std.
std.
std.
std.
std.
std.

.03
.02
.01
.02
.00
.01
.01
std. dev.

std.
std.
std.
std.
std.
std.

O OO WO o

O O O WwWwoo

O OO WO o

0

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ hoist / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.953
0.530
n.d.
0.547
0.478
0.651
0.920
0.973
0.977
n.d.
0.815
0.908

0.959
0.961
1.037
0.846
n.d.
0.885
0.749
1.000
1.000
1.000
1.000
n.d.
0.907
0.958

+ invariant / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ switch / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.724
0.730
0.896
0.350
n.d.
0.386
0.271
0.379
0.766
0.951
0.953
n.d.
0.868
0.983

1.004
1.006
0.928
0.903
n.d.
0.913
0.880
1.000
1.000
1.000
1.000
n.d.
1.000
0.995

+ allopts / std opts

total time

0.150

GC(k):

MEM(K) :
PAGING:

MISC:

user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

Knuth-Bendix

allopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

noloopopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cmpelim:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

239

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.
0.
0.
n.d
0.
0.

n

O O OO

0.

468
17

O OO O NN

0.

597
20

O O OO NN

0.

597
20

149
744
020
022
015
0.023
0.008
0.913
0.917
.d.
0.528
0.742

.94
.50
.02
.42
.00
.18
24
27344
76380
2696
353
0
22000
81992

.85
.25
.03
.57
.00
.27
30
44436
61016
3048
398
0
22748
88812

.83
.25
.02
.56
.00
.26
30
44436
61016
3048
398
0
22748
88840

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

©C O OO OO0 O OO OO OO0

O OO OO0 OO

.04
.04
.00
.01
.00
.01
.00

.09
.09
.00
.01
.00
.01
.01

.01
.01
.00
.01
.00
.00
.01

O OO NOOO O OO NO OO

O OO NO OO

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

invariant:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

switch:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

OO OO RN

0.

548
21

O OO O R~

0.

468
17

OO OO RN

0.

545
18

O OO O NN

0.

597
20

.13
.62
.02
.49
.00
.22
27
17816
34024
3056
398
0
21400
85064

.89
.48
.02
.40
.00
.18
22
95404
68656
2704
353
0
23176
89328

.10
.62
.02
.46
.00
.19
27
31944
18524
2744
359
0
21368
84852

.93
.35
.02
.56
.00
.26
30
44436
61016
3048
398
0
22748
87964

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

O OO OO0 OO ©C O OO OO0 O OO OO OO0

©C O OO OO0

.01
.01
.00
.01
.00
.01
.00

.02
.01
.00
.01
.00
.01
.00

.02
.02
.00
.01
.00
.01
.00

.04
.02
.00
.02
.00
.01
.01

O OO MNMO OO OO O WO oo O OO NMO OO

O OO N OOO

Ratios:

std opts + cmpelim / std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

240

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ cse / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ hoist / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.994
1.002
0.818
0.971
n.d.
0.961
0.981
1.000
1.000
1.000
1.000
n.d.
1.000
1.000

0.747
0.718
0.877
0.853

0.802

0.899
0.918
1.035
1.003
1.000

0.941
0.958

0.664
0.656
0.689
0.697
n.d.
0.642
0.747
0.785
0.858
0.887
0.887
n.d.
1.019
1.006

+ invariant / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims

0.737
0.720
0.777
0.799
n.d.
0.687
0.899
0.913
0.882
0.900
0.902

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

Lexgen
allopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

page faults
GCTableSize
CodeSize

+ switch / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

1.
1.
0.
0.
n.d
0.
0.

+ allopts / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

noloopopts:

TIME(s):

GC(k):

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced

0.
0.
0.
0.

0.
0.

O OO O R~

0.

90
7

1

O O OO

0.

86

0.939
0.955

029
043
892
979
969
989
1.000
1.000
1.000
1.000

1.000
0.990

680
666
744
731
672
783
0.784
0.862
0.885
0.887

0.967
0.923

.56
.46
.03
.07
.00
.06
00
02360
87656
1616
219
0
44896
60756

.73
.63
.03
.08
.00
.07
00
88980

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

©C O OO OO0

O OO OO0 OO

std. dev.

.02
.02
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

OO O WO oo

0

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
cmpelim:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

cse:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
hoist:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
invariant:

TIME(s): total time
user time
sys time

241

gc-all time

majorgc-copy
gc-copy time
gc-stack time

7

2

O O OO

0.

86
7

2

O OO O R~

0.

86
7

2

O O OO

0.

86
7

1

O OO OO~

79448
1720
232

0
57828
12300

.61
.50
.03
.08
.00
.07
00
88980
79448
1728
233
0
57020
07492

.64
.55
.03
.07
.00
.07
00
89028
79164
1696
229
0
55064
05276

.53
.44
.02
.07
.00
.06
00
89132
79100
1632
221
0
49812
90636

.57
.48
.03
.07
.00
.07
.00

std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

O OO OO0 OO ©C O OO OO0 O OO OO OO0

©C O OO OO0

.01
.01
.01
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

OO O OO0 O OO O OO O O O OO

O OO O OO

GC(k):

MEM(K) :
PAGING:

MISC:

switch:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

Ratios:
std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

90
7

1

O OO O R~

0.

86
7

1

+ cmpelim / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ cse / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.
0.
0.
1.

1.
1.

0.
0.
0.
0.

=n.d

+ hoist / std opts

total time
user time
sys time
gc-all time

0.
1.

n.

0.
0.
0.
0.

02364
87732
1640
222

0
49128
79148

.69
.58
.03
.08
.00
.07
00
88980
79436
1720
232
0
53816
92824

929
926
910
007
004
082
1.000
1.000
1.005
1.004

0.986
0.977

949
952
863
9209
901
100
1.000
1.000
0.986
0.987
d.
0.952
0.967

882
884
827
866

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

©C O OO OO0

.05
.05
.00
.00
.00
.00
.00

O OO O OO

OO O OO0

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

Life
allopts:

TIME(s):

242

majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

=n.d

0.859

1.082
1.000
1.000
0.949
0.953

n.d.
0.861
0.898

+ invariant / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ switch / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.908
0.909
0.839
0.900
n.d.
0.897
0.975
1.036
1.011
0.953
0.957
n.d.
0.850
0.844

0.973
0.972
0.952
1.003
n.d.
1.004
0.978
1.000
1.000
1.000
1.000
n.d.
0.931
0.908

+ allopts / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time

1.31

std. dev.

0.06

user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
noloopopts:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
cmpelim:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

cse:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
hoist:

0.

254
1

O O OO

0.

215
9

O OO O R~

0.

215
9

O O OO

0.

207

1
0
0.
0
0

.26
.03
02
.00
.02
00
46708
45012
833
120
0
11368
53044

.43
.32
.02
.10
.00
.09
00
62840
44480
1617
219
0
12316
57464

.44
.32
.02
.10
.00
.09
00
62840
44480
1617
219
0
12320
57356

.27
.24
.02
.02
.00
.02
00
23992
98780
792
115
0
11904
54976

std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

©C O OO OO0 O OO OO OO0 O O OO OO

O OO OO OO0

.05
.01
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

.00
.01
.00
.00
.00
.00
.00

O O ON WO O O OO N WO O O OO N WO O

O OO N OO

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

invariant:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

switch:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

Ratios:
std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

243

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

O O OO

0.

207

OO OO Rr K

0.

207

O O OO

0.

215
9

+ cmpelim / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

R O = K

1.
1.

n.

.24
.21
.01
.02
.00
.01
00
24024
98848
793
116
0
11748
55368

.27
.24
.01
.02
.00
.01
00
24004
98792
793
116
0
11924
55500

.42
.31
.02
.09
.00
.09
00
62840
44480
1617
219
0
12216
56644

.003
.003
.975
.019

011
353
1.000
1.000
1.000
1.000
d.
1.000
0.998

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

OO OO OO O0o O OO OO OO0

O OO OO OO0

.01
.01
.00
.00
.00
.00
.00

.04
.04
.00
.00
.00
.00
.00

.00
.01
.00
.00
.00
.00
.00

O OO NNOO O OO N WO O

O OO NWOOo

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

+ cse / std opts

total time = 0.890
user time = 0.939
sys time = 0.874
gc-all time = 0.203
majorgc-copy =n.d.
gc-copy time = 0.188
gc-stack time = 0.936

bytes alloced = 0.961

bytes copied = 0.105

max phys mem = 0.490

page reclaims = 0.526
page faults = n.d.

GCTableSize = 0.967

CodeSize = 0.957

+ hoist / std opts

total time = 0.868
user time = 0.919
sys time = 0.835
gc-all time = 0.164
majorgc-copy =n.d.
gc-copy time = 0.142
gc-stack time = 1.085

bytes alloced = 0.961

bytes copied = 0.105

max phys mem = 0.490

page reclaims = 0.530
page faults = n.d.

GCTableSize = 0.954

CodeSize = 0.964

+ invariant / std opts

total time = 0.885
user time = 0.938
sys time = 0.806
gc-all time = 0.176
majorgc-copy =n.d.
gc-copy time = 0.158
gc-stack time = 0.902

bytes alloced = 0.961

bytes copied = 0.105

max phys mem = 0.490

page reclaims = 0.530
page faults = n.d.

GCTableSize = 0.968

CodeSize = 0.966

+ switch / std opts

total time = 0.995
user time = 0.997
sys time = 0.903
gc-all time = 0.989
majorgc-copy =n.d.
gc-copy time = 0.985
gc-stack time = 1.128

bytes alloced = 1.000

bytes copied = 1.000

max phys mem = 1.000

page reclaims = 1.000
page faults = n.d.

GCTableSize = 0.992

CodeSize = 0.986
std opts + allopts / std opts
TIME(s): total time = 0.918

user time = 0.959
sys time = 1.460
gc-all time = 0.236
majorgc-copy =n.d.
gc-copy time = 0.206
gc-stack time = 1.583
GC(k): bytes alloced = 1.180

bytes copied = 0.154
MEM(K) : max phys mem = 0.515
PAGING: page reclaims = 0.548

page faults = n.d.
MISC: GCTableSize = 0.923

CodeSize = 0.923
Matmult
allopts:

TIME(s): total time = 1.4
user time = 1.40
sys time = 0.01
gc-all time = 0.00
majorgc-copy = 0.00
gc-copy time = 0.00
gc-stack time = 0.00

GC(k): bytes alloced = 376

bytes copied = 0
MEM(K) : max phys mem = 504
PAGING: page reclaims = 80

page faults = 0
MISC: GCTableSize = 8760

CodeSize = 41556
noloopopts:

TIME(s): total time = 2.31
user time = 2.30
sys time = 0.01
gc-all time = 0.00
majorgc-copy = 0.00
gc-copy time = 0.00
gc-stack time = 0.00

GC(k): bytes alloced = 344

bytes copied = 0
MEM(K) : max phys mem = 504
PAGING: page reclaims = 81

page faults = 0
MISC: GCTableSize = 9052

CodeSize = 43752
cmpelim:

TIME(s): total time = 1.60
user time = 1.58
sys time = 0.01
gc-all time = 0.00
majorgc-copy = 0.00
gc-copy time = 0.00
gc-stack time = 0.00

GC(k): bytes alloced = 344

bytes copied = 0
MEM(K) : max phys mem = 504

244

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

OO OO OO O0o O OO OO OO0

O OO OO OO0

std. dev.
std. dev.
std. dev.

.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

O OO NO OO

OO O O OO

0
0
0

PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

invariant:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

switch:

TIME(s):

GC(k):

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied

81

8964
43096

.34
.33
.01
.00
.00
.00
.00
344

OO OO OoONN

504
81

8924
43096

.34
.33
.01
.00
.00
.00
.00
400

O O OO OoONN

504
81

8912
43520

.93
.92
.01
.00
.00
.00
.00
380

C OO OO R

504
80

8964
43824

.25
.24
.01
.00
.00
.00
.00
344
0

OO OO OoONN

std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

O OO OO OO0 OO OO OO O0o O OO OO OO0

©C O OO OO0

std. dev.
std. dev.

.00
.00
.00
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

O O OoON

O OO N O OO O OO N OOO

O OO, O OO0

MEM(K) :
PAGING:

MISC:

Ratios:
std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

245

max phys mem
page reclaims
page faults
GCTableSize
CodeSize

504
81

9052
43428

+ cmpelim / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ cse / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ hoist / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.690
0.689
0.948

B B8 BB
[o PR =y =Ty o)

1.000
n.d.
1.000
1.000
n.d.
0.990
0.985

1.012
1.013
0.883

B B8 B B
[o PR =Ty =Ty o)

1.000

1.000
1.000

0.986
0.985

1.014
1.014
0.982

BB BB
[o P =Ty =Ty o)

1.163
n.d.
1.000
1.000
n.d.
0.985
0.995

+ invariant / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time

0.837
0.836
0.956

s B B
[o Py =Ty o)

std.
std.
std.
std.
std.

O OO N O

gc-stack time = n.d.
GC(k): bytes alloced = 1.105
bytes copied = n.d.
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 0.988
page faults = n.d.
MISC: GCTableSize = 0.990
CodeSize = 1.002
std opts + switch / std opts
TIME(s): total time = 0.974
user time = 0.975
sys time = 0.923
gc-all time =n.d.
majorgc-copy =n.d.
gc-copy time =n.d.
gc-stack time = n.d.
GC(k): bytes alloced = 1.000
bytes copied = n.d.
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 1.000
page faults = n.d.
MISC: GCTableSize = 1.000
CodeSize = 0.993
std opts + allopts / std opts
TIME(s): total time = 0.612
user time = 0.610

sys time = 0.928

gc-all time =n.d.
majorgc-copy =n.d.
gc-copy time =n.d.
gc-stack time = n.d.
GC(k): bytes alloced = 1.093
bytes copied = n.d.
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 0.988
page faults = n.d.
MISC: GCTableSize = 0.968
CodeSize = 0.950
PIA
allopts:
TIME(s): total time = 0.37
user time = 0.31
sys time = 0.02
gc-all time = 0.04
majorgc-copy = 0.00
gc-copy time = 0.04

gc-stack time = 0.00
GC(k): bytes alloced = 5450576
bytes copied = 345200
MEM(K) : max phys mem = 1144
PAGING: page reclaims = 159
page faults = 0
MISC: GCTableSize = 39212
CodeSize = 140788
noloopopts:
TIME(s): total time = 0.42
user time = 0.36
sys time = 0.02

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

.01
.01
.00
.00
.00
.00
.00

OO OO OO O0o

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

std. dev.
std. dev.
std. dev.

0.01
0.01
0.00

OO OO OO

GC(k):

MEM(K) :
PAGING:

MISC:

cmpelim:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

switch:

TIME(s):

246

gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time

0.04
0.00
0.04
0.00
5664272
344552
1184
165
0
49584
179132

.41
.36
.02
.04
.00
.04
0.00
5664272
344648
1184
165
0
49556
179032

O OO OO0

.38
.32
.02
.04
.00
.04
0.00
5654760
348080
1184
164
0
51596
178356

O OO OO0

.40
.34
.02
.04
.00
.04
0.00
5664372
343816
1152
160
0
43176
164860

©C O OO OO

0.41
0.35

std. dev.
std. dev.
std. dev.
std. dev.

.00
.00
.00
.00

(el el elNe]

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

.00
.00
.00
.00
.00
.00
.00

©C O OO OO0

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

.01
.01
.00
.00
.00
.00
.00

OO OO OO O0o

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

.01
.01
.00
.00
.00
.00
.00

O OO OO OO0

std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.
std. dev.

std. dev.
std. dev.

0.00
0.00

OO OO OO C OO OO0 O OO O OO

O OO O OO

GC(k):

MEM(K) :
PAGING:

MISC:

Ratios:
std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

sys time = 0.02
gc-all time = 0.04
majorgc-copy = 0.00
gc-copy time = 0.04
gc-stack time = 0.00
bytes alloced = 5664272
bytes copied = 344640
max phys mem = 1184
page reclaims = 165
page faults = 0
GCTableSize = 47344
CodeSize = 170584
+ cmpelim / std opts
total time = 0.982
user time = 1.003
sys time = 0.725
gc-all time = 0.954
majorgc-copy =n.d.
gc-copy time = 0.965
gc-stack time = 0.612
bytes alloced = 1.000
bytes copied = 1.000
max phys mem = 1.000
page reclaims = 1.000
page faults = n.d.
GCTableSize = 0.999
CodeSize = 0.999
+ cse / std opts
total time = 0.893
user time = 0.887
sys time = 0.859
gc-all time = 0.974
majorgc-copy =n.d.
gc-copy time = 0.982
gc-stack time = 0.736
bytes alloced = 0.998
bytes copied = 1.010
max phys mem = 1.000
page reclaims = 0.994
page faults = n.d.
GCTableSize = 1.041
CodeSize = 0.996
+ hoist / std opts
total time = 0.948
user time = 0.954
sys time = 0.929
gc-all time = 0.929
majorgc-copy =n.d.
gc-copy time = 0.932
gc-stack time = 0.845
bytes alloced = 1.000
bytes copied = 0.998
max phys mem = 0.973
page reclaims = 0.970
page faults = n.d.
GCTableSize = 0.871
CodeSize = 0.920

+ switch / std opts

std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

o O O OO

.00
.00
.00
.00
.00

C OO OO0

TIME(s): total time = 0.981
user time = 0.979
sys time = 0.983
gc-all time = 0.996
majorgc-copy =n.d.
gc-copy time = 0.996
gc-stack time = 1.008
GC(k): bytes alloced = 1.000
bytes copied = 1.000
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 1.000
page faults = n.d.
MISC: GCTableSize = 0.955
CodeSize = 0.952
std opts + allopts / std opts
TIME(s): total time = 0.873
user time = 0.866
sys time = 0.931
gc-all time = 0.910
majorgc-copy =n.d.
gc-copy time = 0.917
gc-stack time = 0.713
GC(k): bytes alloced = 0.962
bytes copied = 1.002
MEM(K) : max phys mem = 0.966
PAGING: page reclaims = 0.963
page faults = n.d.
MISC: GCTableSize = 0.791
CodeSize = 0.786
SIMPLE:
allopts:
TIME(s): total time = 8.01
user time = 7.28
sys time = 0.11
gc-all time = 0.62
majorgc-copy = 0.00
gc-copy time = 0.58
gc-stack time = 0.04
GC(k): bytes alloced = 322603348
bytes copied = 4551040
MEM(K) : max phys mem = 9904
PAGING: page reclaims = 1257
page faults = 0
MISC: GCTableSize = 30264
CodeSize = 138252
noloopopts:
TIME(s): total time = 14.48
user time 13.64
sys time = 0.12
gc-all time = 0.72
majorgc-copy = 0.00
gc-copy time = 0.65
gc-stack time = 0.07
GC(k): bytes alloced = 414037196
bytes copied = 4383064
MEM(K) : max phys mem = 9752
PAGING: page reclaims = 1239
page faults = 0
MISC: GCTableSize = 40128

247

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

©C O OO OO0

dev.
dev.
dev.
dev.
dev.
dev.

OO OO0 OO0o

.04
.03
.01
.01
.00
.01
.01
std. dev.

std.
std.
std.
std.
std.
std.

.04
.03
.01
.02
.00
.02
.01
std. dev.

std.
std.
std.
std.
std.

©C OO WwWwoo

O O OO

cmpelim:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

switch:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize

167852

14.89
14.11
.13
.65
.00
.59
0.05

0
0
0
0

414037196

4383288
9752
1239

0
40128
167856

10.92
10.18
.12
.62
.00
.56
0.06

0
0
0
0

423571572

4409796
9760
1238

0
43160
165472

.19
.39
.12
.68
.00
.63
0.05

o O O O ©

402813428

4219072
9576
1215

0
31492
155088

14.95
14.12
.12
.71
.00
.64
0.06

0
0
0
0

414037196

4384128
9744
1237

0
39768

std. dev.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.
st

std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.
d. de

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

O OO OO0 OO

dev.

©C O OO OO0

OO OO0 OO0o

dev.
dev.
dev.
dev.
dev.
dev.

OO OO0 OO0o

.07
.06
.01
.02
.00
.02
.01
std. dev.

std.
std.
std.
std.
std.
std.

.06
.05
.02
.02
.00
.02
.01
V.

.38
.36
.01
.02
.00
.02
.01
std. dev.

std.
std.
std.
std.
std.
std.

.06
.06
.01
.02
.00
.01
.01
std. dev.

std.
std.
std.
std.
std.

0

O OO OO

O OO OO

O O O WwWwo o

O O OO

Ratios:
std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :

248

CodeSize

166152

+ cmpelim / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ cse / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ hoist / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ switch / std opts

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem

1.028
1.035
1.117
0.892
n.d.
0.914
0.708
1.000
1.000
1.000
1.000

1.000
1.000

0.754
0.746
1.062
0.853

0.859

0.800
1.023
1.006
1.001
0.999

1.076
0.986

0.704
0.689
1.029
0.940
n.d.
0.976
0.635
0.973
0.963
0.982
0.981
n.d.
0.785
0.924

1.033
1.036
1.065
0.975

0.993

0.816
1.000
1.000
0.999

PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

page reclaims
page faults
GCTableSize
CodeSize

n.

+ allopts / std opts :

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.
0.
0.
0.

=n.d

0.
0.

n

0.998
d.

0.991
0.990

563
534
950
851
892
490
0.779
1.038
1.016
1.014
.d.
0.754
0.824

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

B.3 Effects of loop optimizas:w:

This section contains the measurements of

tions on constructor COI-

putations

the effects of individual loop optimizations
when the optimizations are limited to con-

structor computations.

The measurements

are similar to the measurements in the previ-

ous section. I exclude switch elimination and
comparison elimination, because these do not

apply to constructor computations.

Checksum
allopts:

TIME(s):

GC(k):

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize
CodeSize

noloopopts:

TIME(s): total time

user time

O OO O NN

0.
143889328

15
5

.20
11
.03
.06
.00
.05
02

512
800
117

0
10652
49048

.96
.58

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

.17
.16
.02
.01
.00
.01
.00

©C O OO OO0

std. dev.

std.
std.
std.
std.
std.
std.

std.
std.

dev.
dev.

0.05
0.02

O OO NNO

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem

PAGING: page reclaims

page faults

GCTableSize

CodeSize
hoist:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
invariant:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
Ratios:
std opts + cse / std opts :

249

0.
10.
0.
10.
0.
390598672
123364696

OO OO RN

0.
144009328

OO OO RN

0.
143889760

O OO O R~

0.
143889760

04
35
27
31
03

12392
1566
0
11068
49724

.08
.99
.02
.07
.00
.05
02

60464
856
124

0

10700

49024

.01
.93
.02
.07
.00
.05
02

944
817
120

0
10972
49604

.99
.90
.02
.06
.00
.05
02

944
816
120

0
10972
49480

std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.

OO OO0 OO0o

dev.
dev.
dev.
dev.
dev.
dev.

O OO OO OO0

dev.

©C O OO OO0

0.01
0.03
0.
0
0

00

.03
.01
std. dev.
std. dev.
std.
std.
std.
std.
std.

.03
.02
.01
.01
.00
.01
.00
std. dev.

std.
std.
std.
std.
std.
std.

.03
.02
.00
.01
.00
.01
.00
std. dev.

std.
std.
std.
std.
std.
std.

.01
.01
.00
.01
.00
.01
.00
std. dev.

std.
std.
std.
std.
std.
std.

©C O O Wwo

O OO NN O

O OO NN O

O OO NNO

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time = 0.131
user time = 0.357
sys time = 0.616
gc-all time = 0.007
majorgc-copy = 0.000
gc-copy time = 0.005
gc-stack time = 0.601

bytes alloced = 0.369

bytes copied = 0.000

max phys mem = 0.069

page reclaims = 0.079
page faults = n.d.

GCTableSize = 0.967

CodeSize = 0.986

+ hoist / std opts

total time = 0.126
user time = 0.345
sys time = 0.568
gc-all time = 0.006
majorgc-copy = 0.000
gc-copy time = 0.005
gc-stack time = 0.570

bytes alloced = 0.368

bytes copied = 0.000

max phys mem = 0.066

page reclaims = 0.077
page faults = n.d.

GCTableSize = 0.991

CodeSize = 0.998

+ invariant / std opts

total time = 0.125
user time = 0.341
sys time = 0.513
gc-all time = 0.006
majorgc-copy = 0.000
gc-copy time = 0.005
gc-stack time = 0.519

bytes alloced = 0.368

bytes copied = 0.000

max phys mem = 0.066

page reclaims = 0.077
page faults = n.d.

GCTableSize = 0.991

CodeSize = 0.995

+ allopts / std opts

total time = 0.138
user time = 0.378
sys time = 0.843
gc-all time = 0.006
majorgc-copy = 0.000
gc-copy time = 0.004
gc-stack time = 0.474

bytes alloced = 0.368

bytes copied = 0.000

max phys mem = 0.065

page reclaims = 0.075
page faults = n.d.

GCTableSize = 0.962

CodeSize = 0.986

FFT
allopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

noloopopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :
PAGING:

250

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults

10.37
10.13
.08
.16
.00
.12
0.04

0
0
0
0

403882364

85432
3072
400

0
20116
68264

10.27
10.04
.07
.16
.00
11
0.05

0
0
0
0

403882364

85432
3072
400

0
20116
68056

10.85
10.64
.07
.15
.00
11
0.04

0
0
0
0

403882364

85432
3072
400

0
20116
67892

10.32
10.08
.07
.18
.00
.13
0.05

0
0
0
0

403882364

85432
3072
400

0

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.
st

std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.
st

std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.
d. de

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.
d. de

O OO OO0 OO

dev.

©C O OO OO0

OO OO0 OO0o

dev.
dev.
dev.
dev.
dev.
dev.

O OO OO OO0

.08
.08
.01
.01
.00
.01
.01
std. dev.

std.
std.
std.
std.
std.
std.

.22
.18
.01
.04
.00
.02
.02
V.

.80
.80
.01
.01
.00
.01
.01
std. dev.

std.
std.
std.
std.
std.
std.

.07
.06
.01
.02
.00
.01
.01
V.

O OO WO o

©C OO WwWwoo

O O O WwWwo o

o W oo

std. dev.
std. dev.

std.
std.
std.
std.
std.
std.
std.

MISC: GCTableSize = 20116
CodeSize = 67944
invariant:
TIME(s): total time = 10.27
user time = 10.05
sys time = 0.07
gc-all time = 0.15
majorgc-copy = 0.00
gc-copy time = 0.11
gc-stack time = 0.04
GC(k): bytes alloced = 403882364
bytes copied = 85432
MEM(K) : max phys mem = 3072
PAGING: page reclaims = 400
page faults = 0
MISC: GCTableSize = 20116
CodeSize = 67964
Ratios:
std opts + cse / std opts
TIME(s): total time = 1.057
user time = 1.059
sys time = 1.075
gc-all time = 0.908
majorgc-copy =n.d.
gc-copy time = 0.930
gc-stack time = 0.860
GC(k): bytes alloced = 1.000
bytes copied = 1.000
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 1.000
page faults = n.d.
MISC: GCTableSize = 1.000
CodeSize = 0.998
std opts + hoist / std opts
TIME(s): total time = 1.005
user time = 1.003
sys time = 1.051
gc-all time = 1.105
majorgc-copy =n.d.
gc-copy time = 1.135
gc-stack time = 1.037
GC(k): bytes alloced = 1.000
bytes copied = 1.000
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 1.000
page faults = n.d.
MISC: GCTableSize = 1.000
CodeSize = 0.998
std opts + invariant / std opts
TIME(s): total time = 1.000
user time = 1.001
sys time = 1.029
gc-all time = 0.949
majorgc-copy =n.d.
gc-copy time = 0.966
gc-stack time = 0.913
GC(k): bytes alloced = 1.000
bytes copied = 1.000

dev.
dev.
dev.
dev.
dev.
dev.
dev.

©C O OO OO0

.08
.07
.01
.02
.00
.01
.01
std. dev.

std.
std.
std.
std.
std.
std.

0
0

O O O WwWwoo

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

max phys mem
page reclaims
page faults
GCTableSize
CodeSize

1.000
1.000
n.d.
1.000
0.999

+ allopts / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

Knuth-Bendix

allopts:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
noloopopts:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

cse:

TIME(s): total time
user time
sys time

251

gc-all time
majorgc-copy
gc-copy time

1.010
1.008
1.174
1.016

1.079

0.872
1.000
1.000
1.000
1.000

1.000
1.003

.09
.64
.03
.42
.00
.18
0.24
46895360
1768796
2824
370
0
21864
85636

OO OO RN

.85
.28
.02
.55
.00
.26
0.29
59744436
2061016
3168
415
0
22748
88820

O OO O NN

.14
.64
.02
.48
.00
.21

OO OO RN

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.

©C O OO OO0 O OO OO0 OO

O OO OO0

11
.09
.01
.02
.00
.01
.01

.04
.04
.01
.01
.00
.01
.01

.02
.02
.00
.01
.00
.00

O OO WO OO0

OO O WO oo

gc-stack time

0.26 std.
54826920 std.
2132664 std.
3184 std.
415 std.
0 std.
22508 std.
88608 std.
1.94 std.
1.52 std.
0.02 std.
0.40 std.
0.00 std.
0.18 std.
0.23 std.
46895360 std.
1768796 std.
2824 std.
369 std.
0 std.
22304 std.
87064 std.
2.21 std.
1.73 std.
0.02 std.
0.46 std.
0.00 std.
0.19 std.
0.27 std.
55088432 std.
1820072 std.
2880 std.
376 std.
0 std.
21484 std.
85592 std.
0.748
0.718
0.909
0.865
=n.d.
0.815
0.909
0.918
1.035
1.005
1.000
n.d.
0.989
0.998
0.681
0.666
0.901

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize =
hoist:

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy =
gc-copy time =
gc-stack time =

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize =
invariant:

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy =
gc-copy time =
gc-stack time =

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize

Ratios:

std opts + cse / std opts

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy
gc-copy time =
gc-stack time =

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize =
std opts + hoist / std opts

TIME(s): total time
user time =
sys time =

dev.

0.

O OO OO OO0

©C O OO OO0

01

.04
.04
.00
.00
.00
.00
.00

.06
.06
.01
.01
.00
.01
.01

O OO WO OO0 OO O WO oo

OO O WO oo

gc-all time

0.734

majorgc-copy =n.d.
gc-copy time = 0.680
gc-stack time = 0.782
GC(k): bytes alloced = 0.785
bytes copied = 0.858
MEM(K) : max phys mem = 0.891
PAGING: page reclaims = 0.889
page faults = n.d.
MISC: GCTableSize = 0.980
CodeSize = 0.980
std opts + invariant / std opts
TIME(s): total time = 0.776
user time = 0.756
sys time = 1.075
gc-all time = 0.844
majorgc-copy =n.d.
gc-copy time = 0.736
gc-stack time = 0.938
GC(k): bytes alloced = 0.922
bytes copied = 0.883
MEM(K) : max phys mem = 0.909
PAGING: page reclaims = 0.906
page faults = n.d.
MISC: GCTableSize = 0.944
CodeSize = 0.964
std opts + allopts / std opts
TIME(s): total time = 0.732
user time = 0.718
sys time = 1.263
gc-all time = 0.769
majorgc-copy =n.d.
gc-copy time = 0.709
gc-stack time = 0.821
GC(k): bytes alloced = 0.785
bytes copied = 0.858
MEM(K) : max phys mem = 0.891
PAGING: page reclaims = 0.892
page faults = n.d.
MISC: GCTableSize = 0.961
CodeSize = 0.964
Lexgen
allopts:
TIME(s): total time = 2.06
user time = 1.95
sys time = 0.03
gc-all time = 0.07
majorgc-copy = 0.00
gc-copy time = 0.07
gc-stack time = 0.00
GC(k): bytes alloced = 8688968
bytes copied = 779436
MEM(K) : max phys mem = 1872
PAGING: page reclaims = 252
page faults = 0
MISC: GCTableSize = 54920
CodeSize = 203468
noloopopts:

252

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

O OO OO OO0

.06
.05
.01
.00
.00
.00
.00

O OO O OO

TIME(s):

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

cse:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
hoist:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize
invariant:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

Ratios:

.75
.65
.03
.08
.00
.07
0.00
8688980
779448
1920
258
0
57828
212152

O O OO

.68
.58
.03
.07
.00
.07
0.00
8688968
779436
1872
252
0
54872
203780

OO OO Rr K

.03
.93
.03
.07
.00
.07
0.00
8688980
779472
1896
254
0
57872
210164

OO OO RN

.12
.02
.03
.07
.00
.07
0.00
8688980
779448
1896
254
0
57836
210268

O OO O NN

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

O OO OO OO0 OO OO OO O0o O OO OO OO0

©C O OO OO0

.02
.02
.00
.00
.00
.00
.00

.02
.02
.00
.00
.00
.00
.00

.01
.01
.00
.00
.00
.00
.00

.02
.01
.01
.00
.00
.00
.00

O OO O OO OO O OO0 O OO O OO

OO O OO0

std opts + cse / std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

253

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ hoist / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.958
0.959
1.021
0.904

0.904

0.885
1.000
1.000
0.975
0.977

0.949
0.961

1.159
1.173
0.985
0.894
n.d.
0.891
0.952
1.000
1.000
0.988
0.984
n.d.
1.001
0.991

+ invariant / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

1.211
1.228
1.021
0.893
n.d.
0.893
0.914
1.000
1.000
0.988
0.984
n.d.
1.000
0.991

+ allopts / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize

1.174
1.184
1.252
0.931
n.d.
0.934
0.859
1.000
1.000
0.975
0.977
n.d.
0.950

Life
allopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

noloopopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem

O O OO r K

0.

207

O O OO

0.

215
9

OO OO Rr K

0.

207

O O OO

0.

207

0.959

.36
.31
.03
.02
.00
.02
00
23992
98780
889
129
0
11672
55008

.43
.32
.01
.10
.00
.09
00
62840
44480
1745
236
0
12316
57560

.33
.29
.02
.02
.00
.02
00
23992
98780
897
129
0
11904
55212

.27
.23
.02
.02
.00
.01
00
23992
98780
897

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

OO OO OO O0o O OO OO OO0 OO OO0 OO0o

O OO OO OO0

std. dev.
std. dev.
std. dev.

.04
.03
.01
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

.07
.07
.00
.00
.00
.00
.00

.02
.02
.00
.00
.00
.00
.00

O OO N WO O O OO N WO O

O O ON WO O

0
0
3

PAGING: page reclaims
page faults

MISC: GCTableSize
CodeSize

invariant:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

Ratios:
std opts + cse / std opts

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced
bytes copied
MEM(K) : max phys mem
PAGING: page reclaims
page faults
MISC: GCTableSize

CodeSize

std opts + hoist / std opts

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

129

11832
55576

.29
.26
.01
.02
.00
.01
0.00
20723992
98780
905
131
0
12000
55680

O O OO

.927
.976
.143
.223

O = O O

0.210

0.731
0.961
0.105
0.514
0.547

n.d.
0.967
0.959

0.883
0.932
1.158
0.176
n.d.
0.154
0.886
0.961
0.105
0.514
0.547
n.d.
0.961
0.966

std opts + invariant / std opts

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

254

0.900
0.952
0.990
0.181
n.d.
0.160
0.882

std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

O OO OO OO0

.06
.06
.00
.00
.00
.00
.00

O O OoON

O OO N WO O

GC(k):

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize =
std opts + allopts / std opts

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy =
gc-copy time =
gc-stack time =

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize =

Matmult

allopts:

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy =
gc-copy time =
gc-stack time =

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize =
noloopopts:

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy =
gc-copy time =
gc-stack time =

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims =
page faults =

MISC: GCTableSize =

CodeSize =
cse:

TIME(s): total time =
user time =
sys time =

bytes alloced

gc-all time
majorgc-copy

0.961
0.105
0.519
0.555
n.d.
0.974
0.967

0.946
0.987
2.073
0.217

0.190

1.209
0.961
0.105
0.509
0.547

0.948
0.956

.45
.43
.02
.00
.00
.00
.00
344

O OO OO NN

600
93

8904
43084

.45
.44
.01
.00
.00
.00
.00
344

OO OO OoONN

600
93

9052
43788

.42
.41
.01
.00
.00

O OO NN

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.

OO OO0 OO0o

O OO OO OO0

o O O OO

.04
.03
.01
.00
.00
.00
.00

.02
.02
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00

O OO NO OO

O OO N OOO

gc-copy time
gc-stack time
bytes alloced
bytes copied
MEM(K) : max phys mem
PAGING: page reclaims
page faults
MISC: GCTableSize
CodeSize

GC(k):

hoist:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

invariant:

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

Ratios:
std opts + cse / std opts

TIME(s): total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time

bytes alloced

bytes copied

MEM(K) : max phys mem

PAGING: page reclaims

page faults

MISC: GCTableSize

CodeSize

GC(k):

i
8B B B3 B

std opts + hoist / std opts

TIME(s): total time
user time

255

0.00
0.00
344
0
600
93
0
8904
43076

.26
.25
.01
.00
.00
.00
.00
344

OO OO OoONN

600
93

9044
43668

.26
.25
.01
.00
.00
.00
.00
344

O OO OO NN

600
93

9044
43596

0.987
0.987
0.939

[P =Ty =Ty <}

1.000

1.000
1.000

0.984
0.984

0.924
0.923

std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.

0.
0.

©C O OO OO0

OO OO0 OO0o

00
00

.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

O OO NOOO O OO NO OO

O OO NO OO

sys time

1.047

gc-all time =n.d.
majorgc-copy =n.d.
gc-copy time =n.d.
gc-stack time = n.d.
GC(k): bytes alloced = 1.000
bytes copied = n.d.
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 1.000
page faults = n.d.
MISC: GCTableSize = 0.999
CodeSize = 0.997
std opts + invariant / std opts
TIME(s): total time 0.924
user time = 0.924
sys time = 0.963
gc-all time =n.d.
majorgc-copy =n.d.
gc-copy time =n.d.
gc-stack time = n.d.
GC(k): bytes alloced = 1.000
bytes copied = n.d.
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 1.000
page faults = n.d.
MISC: GCTableSize = 0.999
CodeSize = 0.996
std opts + allopts / std opts
TIME(s): total time = 0.999
user time = 0.996
sys time = 1.493
gc-all time =n.d.
majorgc-copy =n.d.
gc-copy time =n.d.
gc-stack time = n.d.
GC(k): bytes alloced = 1.000
bytes copied = n.d.
MEM(K) : max phys mem = 1.000
PAGING: page reclaims = 1.000
page faults = n.d.
MISC: GCTableSize = 0.984
CodeSize = 0.984
PIA
allopts:
TIME(s): total time = 0.40
user time = 0.35
sys time = 0.02
gc-all time = 0.04
majorgc-copy = 0.00
gc-copy time = 0.04
gc-stack time = 0.00
GC(k): bytes alloced = 5664272
bytes copied = 344632
MEM(K) : max phys mem = 1328
PAGING: page reclaims = 183
page faults = 0
MISC: GCTableSize = 48292
CodeSize = 175144
noloopopts:

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

©C O OO OO0

.01
.01
.00
.00
.00
.00
.00

OO O OO0

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

invariant:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

Ratios:

256

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

.41
.35
.02
.04
.00
.04
0.00
5664272
344648
1360
188
0
49580
179132

O OO OO0

.40
.34
.02
.04
.00
.04
0.00
5664272
344640
1344
185
0
48244
175232

©C O OO OO

.40
.34
.02
.04
.00
.04
0.00
5664272
344632
1320
182
0
48280
175400

©C O OO OO

.40
.35
.02
.04
.00
.04
0.00
5664272
344648
1320
182
0
48372
175464

©C OO OO0

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

O OO OO OO0 O OO OO OO0 OO OO OO O0o

©C O OO OO0

.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

.00
.00
.00
.00
.00
.00
.00

O OO O OO O OO O OO OO O OO0

OO O OO0

std opts + cse / std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

+ hoist / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.973
0.972
1.033
0.972

0.975

0.824
1.000
1.000
0.988
0.984

0.973
0.978

0.980
0.983
0.993
0.960
n.d.
0.958
1.033
1.000
1.000
0.971
0.968
n.d.
0.974
0.979

+ invariant / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

0.987
0.989
1.029
0.952
n.d.
0.951
1.022
1.000
1.000
0.971
0.968
n.d.
0.976
0.980

+ allopts / std opts

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize

0.987
0.984
1.093
0.970
n.d.
0.970
0.934
1.000
1.000
0.976
0.973
n.d.
0.974

SINMPLE
allopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

noloopopts:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

cse:

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

hoist:

TIME(s):

GC(k):

MEM(K) :

257

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time
sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem
page reclaims
page faults
GCTableSize
CodeSize

total time
user time

sys time
gc-all time
majorgc-copy
gc-copy time
gc-stack time
bytes alloced
bytes copied
max phys mem

o O O O ©

0.
402813284

42

1

14.
13.

0
0
0
0

0.
414037196

43

1

11.
10.

0
0
0
0

0.
413114228

43

1

10.

o O O O ©

0.
402813284

42

0.978

.67
.90
.13
.64
.00
.58
06

18960
9752
1238

0

37988

68808

57
80
.12
.65
.00
.58
06

84120
9928
1262

0

40128

67796

72
98
11
.62
.00
.57
06

71264
9888
1255

0

39068

70004

26
.43
.13
.69
.00
.64
05

18992
9752

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

dev.
dev.
dev.
dev.
dev.
dev.
dev.

OO OO0 OO0o

O OO OO OO0

dev.
dev.
dev.
dev.
dev.
dev.

OO OO OO O0o

O OO OO OO0

std. dev.
std. dev.

.06
.05
.02
.04
.00
.03
.01
std. dev.

std.
std.
std.
std.
std.
std.

.16
.12
.02
.04
.00
.03
.01
std. dev.

std.
std.
std.
std.
std.
std.

.10
.08
.01
.03
.00
.03
.01
std. dev.

std.
std.
std.
std.
std.
std.

.36
.35
.02
.02
.00
.02
.01
std. dev.

O OO OO

©C OO kOO

O O O OO

0
0
0

PAGING: page reclaims
page faults

MISC: GCTableSize
CodeSize

invariant:

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy =
gc-copy time =
gc-stack time =

GC(k): bytes alloced =

bytes copied =

MEM(K) : max phys mem =

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

Ratios:

std opts + cse / std opts
TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy
gc-copy time
gc-stack time
GC(k): bytes alloced
bytes copied
MEM(K) : max phys mem
PAGING: page reclaims
page faults
MISC: GCTableSize
CodeSize

std opts + hoist / std opts

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

bytes copied =

MEM(K) : max phys mem

PAGING: page reclaims
page faults

MISC: GCTableSize

CodeSize

1

O OO w

0.
403735964

42

1

0.
0.
0.
0.

=n.d

0.
0.

n

0.
0.
1.
1.

=n.d

1.
0.

n

std opts + invariant / std opts

TIME(s): total time =
user time =
sys time =
gc-all time =
majorgc-copy
gc-copy time
gc-stack time

GC(k): bytes alloced

0.
0.
0.
1.
n.d
1.
0.

1239
0
40548
72788

.42
.61
.12
.69
.00
.64
04

65224
9800
1245

0

40788

72652

804
795
918
966
973
897
0.998
0.997
0.996
0.994
.d.
0.974
1.013

704
683
079
068
100
784
0.973
0.962
0.982
0.982
.d.
1.010
1.030

715
696
955
062
106
668
0.975

std.
std.
std.
std.

std.
std.
std.
std.
std.
std.
std.
st

std.
std.
std.
std.
std.
std.

dev.
dev.
dev.
dev.
dev.
dev.
dev.
d. de

O OO OO OO0

.03
.03
.01
.01
.00
.01
.01
V.

O O O »

O OO OO

MEM(K) :
PAGING:

MISC:

std opts

TIME(s):

GC(k):

MEM(K) :
PAGING:

MISC:

258

bytes copied 0.973

max phys mem = 0.987
page reclaims = 0.987
page faults = n.d.
GCTableSize = 1.016
CodeSize = 1.029

+ allopts / std opts
total time = 0.732
user time = 0.718
sys time = 1.015
gc-all time = 0.982
majorgc-copy =n.d.
gc-copy time = 0.989
gc-stack time = 0.920
bytes alloced = 0.973
bytes copied = 0.962
max phys mem = 0.982
page reclaims = 0.981
page faults = n.d.
GCTableSize = 0.947
CodeSize = 1.006

Bibliography

Proceedings of the 18th Annual ACM Symposium on Principles of Programming Lan-
guages, Orlando, FL, January 1991. ACM.

Proceedings of the ACM SIGPLAN 93 Conference on Programming Language Design
and Implementation, Albuquerque, New Mexico, June 1993. ACM.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison—Wesley Publishing Company, 1986.

Andrew W. Appel. Garbage collection can be faster than stack allocation. Information

Processing Letters, 25(4):275-279, 1987.

Andrew W. Appel. Simple generational garbage collection and fast allocation. Software
— Practice and Fxperience, 19(2):171-184, February 1989.

Andrew W. Appel. A Runtime System. Lisp and Symbolic Computation, 3(4):343-380,
November 1990.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.
Andrew W. Appel. Personal communication. March 22 1993.

Andrew W. Appel and Trevor Jim. Making lambda calculus smaller, faster. Journal
of Functional Programming, 1995. accepted for publication.

Andrew W. Appel and Trevor Y. Jim. Continuation-Passing, Closure-Passing Style.
In Proceedings of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 293-302, Austin, Texas, January 1989. ACM.

Andrew W. Appel, James S. Mattson, and David Tarditi. A lexical analyzer generator
for Standard ML. Distributed with Standard ML of New Jersey, 1989.

Thomas Ball and James R. Larus. Optimally profiling and tracing programs. In 19th
Symposium on Principles of Programming Languages. ACM, January 1992.

J.M. Barth. A practical interprocedural data flow analysis algorithm. Journal of the
ACM, 21(9):724-736, September 1978.

259

[14]

[17]

[18]

[19]

[20]

[21]

Edoardo Biagioni, Robert Harper, Peter Lee, and Brian Milnes. Signatures for a
network protocol stack: A systems application of Standard ML. In Proceedings of the
1994 ACM Conference on Lisp and Functional Programming, pages 55—64, Orlando,
Florida, June 1994. ACM.

Lars Birkedal, Nick Rothwell, Mads Tofte, and David N. Tur ner. The ML Kit, Version
1. Technical Report 93/14, DIKU, 1993.

Hans-Juergen Boehm. Space-efficient conservative garbage collection. In Proceedings

of the ACM SIGPLAN ’93 Conference on Programming Language Design and Imple-
mentation [2], pages 197-206.

Dianne Ellen Britton. Heap storage management for the programming language Pascal.
Master’s thesis, University of Arizona, 1975.

David R. Chase. Safety considerations for storage allocation optimizations. Proceedings
of the SIGPLAN 88 Conference on Programming Language Design and Implementa-
tion, 23(7):1-10, July 1988.

J. Bradley Chen and Brian N. Bershad. The impact of operating system structure on
memory system performance. In Fourteenth Symposium on Operating System Princi-

ples. ACM, December 1993.

C.J. Cheney. A nonrecursive list compacting algorithm. Communications of the ACM,

13(11):677-678, November 1970.

Frederick C. Chow. A Portable Machine-Independent Global Optimizer — Design
and Measurements. PhD thesis, Computer Systems Laboratory, Stanford University,
December 1983. Technical Report No. 83-254.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency Work-
bench: A semantics-based tool for the verification of concurrent systems. Transactions
on Programming Languages and Systems, 15(1):36-72, January 1993.

W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE code. Technical
Report UCID 17715, Lawrence Livermore Laboratory, Livermore, CA, February 1978.

Cypress Semiconductor, Ross Technology Subsidiary. SPARC RISC User’s Guide,
second edition, February 1990.

Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations.

In LFP ’92 [57], pages 299-310.

A. Demers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, and S. Shenker. Combining
generational and conservative garbage collection: Framework and implementations.
In Conference Record of the 17th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Francisco, California, January 1990. ACM.

260

[27]

28]

[29]

[30]

31]

32]

33]

David Detlefs, Al Dosser, and Benjamin Zorn. Memory allocation costs in large C and

C++ programs. Technical Report CU-CS-665-93, University of Colorado, 1993.
Digital Equipment Corporation. DS5000/200 KN0O2 System Module Functional Speci-

fication.

Digital Equipment Corporation, Palo Alto, CA. DECStation 3100 Desktop Worksta-
tion Function Specification, 1.3 edition, August 1990.

Amer Diwan, J. Eliot B. Moss, and Richard L. Hudson. Compiler support for garbage
collection in a statically typed language. In Proceedings of the SIGPLAN 92 Con-
ference on Programming Language Design and Implementation, pages 273-282, San

Francisco, California, June 1992. SIGPLAN, ACM Press.

K. Ekanadham and Arvind. SIMPLE: An exercise in future scientific programming.
Technical Report Computation Structures Group Memo 273, MIT, Cambridge, MA,
July 1987. Simultaneously published as IBM/T. J. Watson Research Center Research
Report 12686, Yorktown Heights, NY.

Robert R. Fenichel and Jerome C. Yochelson. A LISP garbage-collector for virtual-
memory computer systems. Communications of the ACM, 12(11):611-612, November
1969.

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN 93 Conference
on Programming Language Design and Implementation [2], pages 237-247.

David K. Gifford, Pierre Jouvelot, John M. Lucassen, and Mark A. Sheldon. Fx-
87 reference manual. Technical Report MIT/LCS/TR-407, Laboratory for Computer
Science, Massachusetts Institute of Technology, September 1987.

Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache locality
of memory allocation. In Proceedings of the SIGPLAN "93 Conference on Programming
Language Design and Implementation, pages 177-186, Albuquerque, New Mexico, June
1993. ACM.

Mary W. Hall and Ken Kennedy. Efficient call graph analysis. Letters on Programming
Languages and Systems, 1(3):227-242, September 1992.

Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type
analysis. In Proceedings of the 22nd Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 130-141, San Francisco, California, January 1995. ACM.

Robert Harper and Chris Stone. A type-theoretic account of Standard ML 1996 (ver-
sion 2). Technical Report CMU-CS-96-136R, School of Computer Science, Carnegie
Mellon University, September 1996.

Nevin Heintze. Set Based Program Analysis. PhD thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, October 1992.

261

[40]

[41]

[42]

[44]
[45]

[46]

[51]

[52]

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing Control in the
Presence of First-Class Continuations. In Proceedings of the SIGPLAN "90 Conference
on Programming Language Design and Implementation, pages 66-77. ACM, June 1990.

Mark D. Hill. A case for direct mapped caches. Computer, 21(12):25-40, December
1988.

M.D. Hill and A.J. Smith. Evaluating associativity in CPU caches. IEEE Transactions
on Computers, 38(12):1612-1630, December 1989.

F. Honsell, I. A. Mason, S. F. Smith, and C. L. Talcott. A variable typed logic of
effects. Information and Computation, 119(1):55-90, 1995.

Neil D. Jones. Flow analysis of lambda expressions.

Norman P. Jouppi. Cache write policies and performance. In Proceedings of the 20th
Annual International Symposium on Computer Architecture, pages 191-201, San Diego,
California, May 1993.

Pierre Jouvelot. Algebraic reconstruction of types and effects. In Proceedings of the
18th Annual ACM Symposium on Principles of Programming Languages [1], pages
303-310.

Gerry Kane and Joe Heinrich. MIPS RISC Architecture. Prentice-Hall, 1992.

Richard A. Kelsey. Compilation By Program Transformation. PhD thesis, Department
of Computer Science, Yale University, New Haven, Connecticut, May 1989.

R. E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. Transactions on Computer Systems, 10(4):338-359, November 1992.

Philip J. Koopman, Jr., Peter Lee, and Daniel P. Siewiorek. Cache behavior of combina-
tor graph reduction. Transactions on Programming Languages and Systems, 14(2):265—

277, April 1992.
David Kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis, Department

of Computer Science, Yale University, New Haven, Connecticut, February 1988.

David Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin, and Nor-
man Adams. ORBIT: An Optimizing Compiler for Scheme. In Proceedings of the
SIGPLAN 86 Conference Symposium on Compiler Construction, pages 219-233, Palo
Alto, California, June 1986. ACM.

James R. Larus. Abstract Execution: A technique for efficiently tracing programs.
Software Practice and Experience, 20(12):1241-1258, December 1990.

James R. Larus and Thomas Ball. Rewriting executable files to measure program
behavior. Technical Report Wis 1083, Computer Sciences Department, University of
Wisconsin-Madison, March 1992.

262

[55]

[56]

[57]

[61]

[62]

[63]

Xavier Leroy. Polymorphic type inference and assignment. In Proceedings of the 18th
Annual ACM Symposium on Principles of Programming Languages [1], pages 291-302.

Xavier Leroy. Unboxed objects and polymorphic typing. In Proceedings of the Nine-
teenth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 177188, January 1992.

Proceedings of the 1992 ACM Conference on Lisp and Functional Programming, San
Francisco, California, June 1992. ACM.

H. Lieberman and C. Hewitt. A real-time garbage collector based on the lifetimes of

objects. Communications of the ACM, 26(6):419-429, 1983.

John M. Lucassen. Types and Effects: Towards the Integration of Functional and
Imperative Programming. PhD thesis, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts, August 1987.

I. A. Mason and C. L. Talcott. Program transformation via contextual assertions. In
N. D. Jones, M. Hagiya, and M. Sato, editors, Logic, Language, and Computation:
Festschrift in Honor of Satoru Takasu, number 792 in Lecture Notes in Computer
Science, pages 225-254. Springer-Verlag, 1994.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1990.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion. In Proceedings
of the 23rd Annual ACM Symposium on Principles of Programming Languages. ACM,
January 1996. To appear.

J. Gregory Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University,
Pittsburgh, Pennsylvania, December 1995. Published as Technical Report CMU-CS-
95-226.

Anne Neirynck. Analysis of Side Effects in Higher-Order Languages. PhD thesis,
Cornell University, Cornell, New York, 1988.

Anne Neirynck, Prakash Panangaden, and Alan Demers. Effect analysis of higher-order
languages. International Journal of Parallel Programming, 18(119), 119.

David A. Patterson and John L. Hennessy. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers, San Mateo, California, 1990.

Laurence C. Paulson. ML for the Working Programmer. Cambridge University Press,
Cambridge, UK, 1991.

Chih-Jui Peng and Gurindar S. Sohi. Cache memory design considerations to support
languages with dynamic heap allocation. Technical Report 860, Computer Sciences
Department, University of Wisconsin-Madison, July 1989.

263

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

78]

Simon Peyton-Jones. Compilation by transformation: a report from the trenches.
In Furopean Symposium on Programming (ESOP 96), Lecture Notes in Computer
Science 1058. Springer Verlag, 1996.

Gordon D. Plotkin. Call-by-name, call-by-value, and the A-calculus. Theoretical Com-
puter Science, 1:125-159, 1975.

Steven A. Przybylski. Cache and Memory Hierarchy Design: A Performance-Directed
Approach. Morgan Kaufmann Publishers, San Mateo, California, 1990.

Chris Reade. FElements of Functional Programming. Addison-Wesley, Reading, Mas-
sachusetts, 1989.

Mark B. Reinhold. Cache Performance of Garbage-Collected Programming Languages.
PhD thesis, Laboratory for Computer Science, MIT, September 1993.

John H. Reppy. Asynchronous Signals in Standard ML. Technical Report 90-1144,
Department of Computer Science, Cornell University, August 1990.

Stephen Richardson and Mahadevan Ganapathi. Interprocedural optimization: exper-
imental results. Software — Practice and Fxperience, 19(2):149-168, February 1989.

Barbara G. Ryder. Constructing the call graph of a program. [FEEE Transactions on
Software Engineering, 5(3):216-226, May 1979.

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuations-passing

style. In LFP 792 [57], pages 288-298.

Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing

style. Lisp and Symbolic Computation, 6(3/4):289-360, November 1993.

Andre Santos. Compilation by transformation in non-strict functional languages. PhD
thesis, Department of Computing Science, Glasgow University, Glasgow, Scotland,

1995.
Robert Sedgewick. Algorithms. Addison-Wesley, 1983.

Zhong Shao. Compiling Standard ML for Efficient Ezxecution on Modern Machines.
PhD thesis, Princeton University, Princeton, New Jersey, November 1994.

Olin Shivers. Control Flow Analysis in Scheme. In Proceedings of the SIGPLAN 88
Conference on Programming Language Design and Implementation. ACM, June 1988.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, Pittsburgh, Pennsylvania, May 1991.

Michael Slater. PA workstations set price/performance records. Microprocessor Report,

5(6):1, April 1991.

264

[85]

[33]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Guy L. Steele Jr. RABBIT: A Compiler for Scheme (A Study in Compiler Optimiza-
tion). Master’s thesis, Al Laboratory Technical Report AI-TR-474, Massachusetts
Institute of Technology, May 1978.

Peter Steenkiste. LISP on a Reduced-Instruction-Set Processor: Characterization and
Optimization. PhD thesis, Computer Systems Laboratory, Stanford University, Stan-
ford,CA 94305, March 1987.

Darko Stefanovi¢ and Eliot Moss. Characterisation of object behavior in Standard ML
of New Jersey. In Proceedings of the 1994 ACM Conference on Lisp and Functional
Programming, 1994.

Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region,and effect inference.
Journal of Functional Programming, 2(3):245-272, 1992.

David Tarditi and Andrew W. Appel. ML-YACC, version 2.0. Distributed with Stan-
dard ML of New Jersey, April 1990.

Andrew Tolmach. Tag-free garbage collection using explicit type parameters. In Pro-
ceedings of the 1994 ACM Conference on Lisp and Functional Programming, pages
1-11, Orlando, FL, June 1994.

Jeffrey D. Ullman. FElements of ML Programming. Prentice Hall, Englewood Cliffs,
New Jersey, 1994.

David Ungar. The design and evaluation of a high performance Smalltalk system. ACM
Distinguished Dissertation. MIT Press, Cambridge, Massachusetts, 1987.

Mitchell Wand and Zheng-Yu Wang. Conditional lambda-theories and the verification
of static properties of programs. Information and Computation, 113(2):253-277, 1994.

Kevin G. Waugh, Patrick McAndrew, and Greg Michaelson. Parallel implementations
from function prototypes: a case study. Technical Report Computer Science 90/4,

Heriot-Watt University, Edinburgh, August 1990.

William E. Weihl. Interprocedural data flow analysis in the presence of pointers,
procedure variables, and label variables. In Conference Record of the Ninth Annual
ACM Symposium on Principles of Programming Languages, pages 83-94, Albuquerque,
New Mexico, January 1982.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for
generational garbage collection: a case for large and set-associative caches. Technical

Report EECS-90-5, University of Illinios at Chicago, December 1990.

Paul R. Wilson, Michael S. Lam, and Thomas G. Moher. Caching considerations for
generational garbage collection. In 1992 ACM Conference on Lisp and Functional
Programming, pages 32-42, San Francisco, California, June 1992.

265

[98] Andrew K. Wright. simple imperative polymorphism. Lisp and Symbolic Computation,
8(4):343-356, December 1995.

[99] Benjamin Zorn. The effect of garbage collection on cache performance. Technical

Report CU-CS-528-91, University of Colorado at Boulder, May 1991.

[100] Benjamin G. Zorn. Comparative Performance evaluation of garbage collection algo-

rithms. PhD thesis, University of California, Berkeley, CA 94720, December 1989.

266

