
Signature and Speci�cation Matching

Amy Moormann Zaremski

January ����

CS�CMU�������

School of Computer Science

Carnegie Mellon University

Pittsburgh� PA �����

Submitted to Carnegie Mellon University in partial ful�llment of the
requirements for the degree of Doctor of Philosophy in Computer Science�

Thesis Committee�

Jeannette M� Wing� Chair

David Garlan

Peter Lee
Steven J� Garland� Massachusetts Institute of Technology

Copyright c� ���� Amy Moormann Zaremski

This research is sponsored by the Wright Laboratory� Aeronautical Systems Center� Air Force Materiel
Command� USAF� and the Advanced Research Projects Agency �ARPA� under grant number F�����	
�	�	�����
Views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the o
cial policies or endorsements� either expressed or implied� of Wright Laboratory
or the U� S� Government�

Keywords� software reuse� software libraries� component retrieval� library indexing� sub�

typing� signature matching� speci	cation matching

Abstract

Large libraries of software components hold great potential as a resource for software engineers�
but to utilize them fully� we need to be able
 ��� to locate components in the library
 ��� to
organize the library in a way that facilitates browsing and improves e�ciency of retrieval
 and
��� to compare the description of a library component to the description of what we want�

A key requirement in all of these problems is to be able to compare two software components
to see whether they match� In this dissertation� we consider two di�erent kinds of semantic
descriptions of components to determine whether components match
 signatures �type informa�
tion� and speci�cations �behavioral information�� Semantic descriptions o�er advantages over
either textual descriptions� such as variable names� or structural descriptions� such as control
�ow graphs� Using semantic information focuses on what the components do rather than how
they do it� Signatures and speci	cations are natural ways of describing software components
and have well�understood properties� such as type equivalence and logical relations between
formal speci	cations� that enable us both to de	ne matches precisely and to automate the
match�

This dissertation makes the following contributions

� Foundational� Within a general� highly modular� and extensible framework� we de	ne
matching for two kinds of semantic information �signatures and speci	cations� and two
granularities of components �functions and modules�� Each kind of matching has a generic
form� within which all of the matches are related and may� in some cases� be composed�
The orthogonality of the matches allows us to de	ne match on modules independently of
the particular match used on functions in the modules�

� Applications� We show how the de	nitions of matching can be applied to the problems
of retrieval from libraries� indexing libraries� and reuse of components� We demonstrate
the various signature and speci	cation matches with examples of typical uses in each
application�

� Engineering� We describe our implementations of function and module signature match�
function speci	cation match� function signature�based indexing� and function signature�
based retrieval� These implementations demonstrate the feasibility of our approach and
allow us to illustrate the applications with results from a moderately�sized component
library�

�

Acknowledgements

I owe a deep debt of gratitude to my advisor� Jeannette Wing� for both her technical and moral

support� Jeannette is an endless source of information and insights on technical issues and has

a way of asking the questions that open up new angles on a topic� She is also able to sense

somehow whether I need support and encouragement or a stern �nudge� in the right direction�

I would never have made it without her�

I would like to thank the other members of my thesis committee� David Garlan� Peter Lee� and

Steve Garland� all of whom have given me invaluable assistance� both with insights on the �big

picture�� with technical details� and with excellent comments on an earlier draft of the thesis�

A number of people at Carnegie Mellon helped me over the years� I am thankful to all the

members of the Mir�o� Venari� and Coda projects� as well as members of the Composable Systems

group� I particularly want to thank Gene Rollins� for his help in modifying the SML compiler

to provide the necessary hooks for the signature matcher� and Chris Okasaki� for his helpful

suggestions both on an early draft of the thesis and in a number of discussions� particularly

about the implementation to build indexed libraries� Both Gene and Chris also tested Beagle

and suggested improvements� I also want to thank Maria Ebling� not only for helping me keep

Coda running on my machines so that I could write at home� but for being such a good friend�

I also owe thanks to all the great people at Carnegie Mellon who keep things running smoothly

and who cheerfully make all the administrative hassles go away� especially Sharon Burks�

Catherine Copetas� Cary Lund� and everyone on the facilities sta��

I would also like to thank all those who have helped keep me sane throughout this process� in

particular Maria� Chris� Francesmary Modugno� Mark Maimone� the members of CTQC� and

all my other friends� A special �woof� of thanks to my basset hounds� Raleigh� and Augie��

who have been quite happy to assist me in the quest for acronym appendages to names�

I extend my heartfelt thanks to my husband� Mark Zaremski� for his love� support� patience�

and faith in me� I especially thank him for understanding and tolerating the irrationality of

�thesis mode�� He and I are two halves of a whole � without him I would be far less than I am�

Finally� I would like to thank my parents for the uncountable ways they have helped me� and in

particular for always believing that I could do anything� My father� Ralph Moormann� taught

me to question and to be curious� and my mother� Frances Moormann� showed me the meaning

of determination� Those two elements have combined to give me the interest and capability to

do research in science�

�Blu	line Raleigh� CGC� TDI
�Salvador D�Augie� CGC� ILP pending

i

ii

Contents

� Introduction �

��� Problem Description �

��� A Solution �Thesis Scope� �

����� Component Signatures and Speci	cations � � � � � � � � � � � � � � � � � � �

����� De	ning Match �

����� Applications ��

��� Thesis Contributions ��

��� Roadmap and Terminology ��

� Function Signature Matching ��

��� Signatures ��

��� Match De	nitions ��

����� Exact Match ��

����� Transformation Relaxations ��

����� Partial Relaxations ��

��� Combining Relaxations ��

��� Properties of the Matches ��

����� Equivalence and Partial Order ��

����� Match Composition ��

����� Relating the Matches ��

����� Generic Match Forms ��

��� Implementation ��

����� Beagle
 Signature�based Retrieval ��

����� Index Builder ��

����� Why use ML� ��

��� Discussion ��

� Function Speci�cation Matching ��

��� Larch�ML Speci	cations ��

��� Match De	nitions ��

iii

����� Pre�Post Matches ��

����� Predicate Matches ��

��� Properties of the Matches ��

����� Equivalence and Partial Order ��

����� Relating the Matches ��

��� Implementation ��

��� Discussion ��

����� Speci	cation Matching ��

����� Match De	nitions ��

����� Choice of Language and Theorem Prover � � � � � � � � � � � � � � � � � � ��

	 Module Matching
�

��� Match De	nitions ��

����� Exact Match ��

����� Partial Matches ��

��� Properties of the Matches ��

����� Distinctions Between the Matches ��

����� Equivalence and Partial Order Matches ��

��� Implementation ��

��� Discussion ��

� Applications
�

��� Retrieval ��

����� Reuse ��

����� Statistical Analysis ��

����� Retrieval�based Browsing ��

����� Compound Retrieval ��

����� Discussion ��

��� Indexing ��

����� Indexed Library De	nition ��

����� Indexes on the Community Library ��

����� Discussion ��

��� Substitution ��

����� Substitution Guarantees ��

����� Subtyping ��

����� Discussion ���

 Related Work ���

��� Signature�Based Retrieval ���

����� Category Theoretic Approaches ���

iv

����� In Conjunction with Speci	cation Match ���

����� Others ���

��� Speci	cation�Based Retrieval ���

����� Pre�Post Style Speci	cations ���

����� Other Systems ���

��� Other Approaches ���

� Conclusions and Future Work ���

��� Conclusions ���

��� Future Work ���

����� Function Signature Matching ���

����� Function Speci	cation Matching ���

����� Signatures and Speci	cations ���

����� Larger Components ���

��� Epilogue ���

A The Container Trait ���

B Subtype Speci�cation ���

Bibliography ���

v

vi

List of Figures

��� Design space of component match �

��� The Toy Signature Library �ML signature modules� � � � � � � � � � � � � � � � � �

��� A Larch�ML module speci	cation �

��� Which chapters de	ne what �

��� Output bu�er of Beagle ��

��� The Toy Speci	cation Library �Larch�ML modules� � � � � � � � � � � � � � � � � ��

��� Idea behind plug�in match ��

��� Proof sketch of matchweak�post�pop� Q�� ��

��� Properties of plug�in match� ��

��� Lattice of function speci	cation matches ��

��� LP input for Stack and Q� ��

��� LP input for plug�in match of Stack�push with Q� � � � � � � � � � � � � � � � � � ��

��� LP output for generalized match of Stack�pop with Q� � � � � � � � � � � � � � � � ��

��� LP output for weak post match of Queue�rest with Q� � � � � � � � � � � � � � � � ��

��� The retrieval problem ��

��� The idea behind pipelining ��

��� Indexed library for the Toy Signature Library with added �special� nodes� In�

dex pair � �matchtycon � matchreorder � matchuncurry �matchtycon � matchreorder �

matchuncurry �matchgen �� ��

��� Graphs of indexes for the three sub�libraries using the EQ index pair� � � � � � � ��

��� Graphs of indexes for the Community Library� ��

��� Details of some nodes in Community Library �EQ index pair�� � � � � � � � � � � ��

��� Larch�ML speci	cations of bag and stack object types � � � � � � � � � � � � � � � ��

��� LP subtype proof script ���

B�� Container� trait ���

B�� Bag speci	cation translated to LP input ���

B�� Stack speci	cation translated to LP input ���

vii

viii

List of Tables

��� Summary of libraries used in the thesis ��

��� Function signature matches� their symbols and classi	cations � � � � � � � � � � � ��

��� Instantiations of generic function match ��

��� Instantiations of generic pre�post match ��Qpre R� Spre� R� �Spost R� Qpost�� � � ��

��� Instantiations of generic predicate match �Spred R Qpred � � � � � � � � � � � � � � ��

��� Summary of predicate symbol� match form� and kind of match for each function

speci	cation match� ��

��� Which functions match which queries �Q � Queue module and S � Stack module� ��

��� Level of user assistance required for LP proofs of queries � � � � � � � � � � � � � � ��

��� Which modules match which queries ��

��� Relation between �QF and �LF for the module matches� � � � � � � � � � � � � � � ��

��� Results of module library query M� ��

��� Usage of various base types �bt stands for the base type used in each column� � � ��

��� Number of functions with input tuples of various sizes � � � � � � � � � � � � � � � ��

��� Statistics on indexes for the Community Library and sub�libraries� � � � � � � � � ��

ix

x

Chapter �

Introduction

Demand for software continues to increase� and software systems continue to grow in size and

complexity� The challenge for software engineering is to meet these demands as cheaply and

as quickly as possible� Software libraries hold great potential as a resource for the software

engineer� both to enable him or her to reuse existing software components to build larger

systems and as a source of examples to become more familiar with a language or with a style of

programming usage� There is a growing collection of software libraries� especially on the World

Wide Web�

Reusing existing components can decrease the time spent building a large system �and thus

decrease costs�� since it can signi	cantly reduce the amount of new code that must be written�

Furthermore� reusing components from a well�tested library can reduce time spent debugging

and improve reliability� Components in software libraries are also more likely to have been

veri	ed formally� Time and expense spent on veri	cation is more easily justi	ed for library

components than for code used only once� since such costs can be amortized over multiple uses�

The 	rst challenge in reuse is to be able to locate a component in the library� It should be

faster and easier to 	nd a component than to write it from scratch� We can 	nd a component

either by describing it with a query� and retrieving components that match the query� or by

browsing through the library �preferably indexed somehow� until we 	nd a component we want�

Once we have found a component� we must be able to compare it to the task at hand� We may

be able to use the component directly� or may have to modify it slightly�

The activities of retrieving� browsing� and comparing have other uses as well� For example�

software libraries are a source of examples of the use of a programming language� A software

engineer can learn how to use particular language constructs and learn about the style of pro�

gramming for the language� either by browsing the library� or retrieving particular components�

Retrieving components from a library can also provide statistics about the contents of the li�

brary� such as what percentage of the functions in a library have more than one input� The

same index structure used to enable browsing on the library can be used to improve e�ciency of

retrieval� And comparing two components answers the general question of how they are related�

�

� CHAPTER �� INTRODUCTION

even outside the context of reuse� For example� we can determine whether one component is a

subtype of another�

In this thesis� we present a way to retrieve components from a library� index a library� and

compare two components� to help realize more of the potential of software libraries� We use

semantic information about software components to do this� In particular� we assume that

each component in a library has associated with it a signature �type information� and possibly

a speci�cation �behavioral information�� In the remainder of this chapter� we describe in detail

the problems we want to handle �Section ����� the approach we use in the thesis to solve the

problems �Section ����� the main contributions of the thesis �Section ����� and a roadmap to

the rest of the thesis �Section �����

The general approach of using semantic descriptions of components applies to many other

domains in addition to software� For example� consider the information available through the

World Wide Web� Having an e�ective way to describe the kinds of information we are interested

in could simplify the increasingly daunting task of locating the information we want� Other

examples of domains where semantic information could aid in retrieval include the nationwide

Library of Congress� law briefs� police records� and geological maps�

��� Problem Description

Consider the following list of seemingly diverse questions

�� Retrieval� How can I retrieve a component from a software library based on its semantics�

rather than its syntactic structure�

�� Indexing� How can I index the components in a software library�

�� Navigation� Given a hierarchical index of a library� let me see all the nodes one level up

from the current component�

�� Substitution� When can I replace one software component with another without a�ecting

the observable behavior of the entire system�

�� Subtyping� When is one type a subtype of another�

�� Modi�cation� How might I adapt a component from a software library to 	t the needs of

a given subsystem�

Each of these questions is interesting on its own� Most work on software reuse cites the

crucial problem of retrieving a component from a library �question �� �AM��� BP��� Kru���

MMM��� IEE�� � We cannot reuse a component if we cannot 	nd it� Adding an index to a

library �question �� enables us to navigate through the library �question �� and increases the

e�ciency with which we can store and retrieve components� The advantages of hierarchical

���� A SOLUTION �THESIS SCOPE� �

indexes are well�understood in the object�oriented domain� where users can navigate the class

inheritance structure with a browser �e�g�� Smalltalk �Tes�� and C!! �Bis�� �� However� there

has been no previous work to extend the use of indexes beyond object�oriented languages�

Currently many libraries use the 	le system for their only organization �directories and 	les�

and 	le system and editor commands for navigation and retrieval� For example� the local ML

library is organized with categories of components as directories �e�g�� local�lib�Container��

local�lib�Threads��
 users locate desired components with Unix tools such as ls and grep�

Aside from some of the information that could be gleaned from how the library is organized�

the task of 	nding something in these libraries relies on the names of components� Sharing

components with others requires mutual agreement on a naming scheme and a directory struc�

ture�

Once we have retrieved a component from a library� there is the additional issue of how to use

it� Can we substitute it directly where we need a component� or do we have to modify it in some

way before we can use it� If we substitute directly� we would like to know that the component

behaves in a way we expect �question ��� That is� if we have speci	ed the behavior we expect�

we would like to know that the component behaves in a way consistent with that speci	cation�

A special kind of substitution is the notion of subtyping in object�oriented languages �question

��� De	ning when one component is a subtype of another� particularly behaviorally� is a current

research topic of interest �Ame��� Car��� DL��� Lea��� LW��� LW��� Mey�� � If we cannot

substitute a component directly� we need to know how to adapt it for reuse in the current

context �question ��� Knowing how a retrieved component di�ers from what we want �i�e��

identifying a mismatch� can often help determine how to modify the component�

The questions listed above also share some commonalities� In retrieval� we search for all

library components that satisfy a given query� In building a hierarchical index on a library�

we relate each pair of components� In navigation� we go from one component to another

that is higher �or lower� in the hierarchy� In substitution� we expect the behavior of one

component to be observably equivalent to the other"s
 a special case is substituting a subtype

object for a supertype object� In modi	cation� we adapt a component to 	t its environmental

constraints� based on how well the component meets our requirements� Common to answering

these questions is deciding when one component matches another� where �matches� generically

stands for �satis	es�� �relates�� �is higher�� �is equivalent to�� or �meets��

��� A Solution �Thesis Scope�

In this thesis� we de	ne various kinds of component matching� Most generally� a component

match function� M � takes two components �or abstract descriptions of the components� and

returns a boolean indicating whether a particular relation holds between the two components�

� CHAPTER �� INTRODUCTION

Declaration �
�
�� �Component Match�

M
 Component � Component � Bool

We vary three parameters in our concept of match
 the kind of information used to describe

the components� the granularity of the components� and the degree of relaxation of the match�

Figure ��� illustrates the design space created by these three parameters�

Figure ���
 Design space of component match

The x�axis indicates the kind of abstraction used by the match� Components themselves

may be either textual pieces of code or executable binaries� In either case� it is unlikely that

components themselves will be the same� or even similar enough to relate� Therefore� we must

compare abstracts of components� An abstract of a component is a description of the component

that eliminates some of the details or that characterizes the component at a more abstract

level� Examples of component abstracts include textual descriptions� structural information�

signatures� and speci	cations� The semantic richness of abstracts increases as we move to the

right on the x�axis�

With textual descriptions� matching is based on text strings� and perhaps some knowledge

about synonyms� There is usually at least some textual information available about any com�

�Declarations declare a function and its type� De�nitions include a de�nition of the function as well�

���� A SOLUTION �THESIS SCOPE� �

ponent �e�g�� variable names� documentation�� A drawback of textual descriptions� however� is

the lack of precision� For example� what does �delete� mean� What format does the returned

value have� And how can we de	ne matching when people use very di�erent words to describe

similar concepts� or perhaps even a di�erent language�

Examples of structural abstracts include control �ow or data �ow graphs� Although such

graphs are precise� the abstracts they provide focus on how the component works� rather than

what the component does� The questions we want to answer are more interested in the what�

not the how�

Semantic abstracts enable us both to describe the behavior of components precisely and

to focus on the what� Two examples of semantic abstracts are signatures� which describe the

type information of a component� and speci�cations� which describe the dynamic behavior of

a component� Signatures are really just a weak form of speci	cation� Both are natural ways

of describing components and have well�understood relations between instances of the abstract

�e�g�� type equivalence� logical relations between formal speci	cations�� which we exploit heavily

in de	ning matches�

We are interested in both signatures and speci	cations because they provide a range of

expressiveness and �cost�� On the one hand� signatures are �cheap� � for an existing component�

the type is either required by or inferred by the compiler� and queries are easy for a programmer

to write� since he or she is already familiar with the language"s type system� On the other hand�

although speci	cations require additional work� their expressive power is much greater�

The second factor in component matching is the granularity of the components� as illus�

trated by the y�axis of Figure ���� Components vary in size from individual language constructs

to moderately�sized blocks of code to large software systems� In order to describe and reuse

components� though� the components must be encapsulated in some way �e�g�� function de	ni�

tions� modular collections of functions� or stand�alone software systems�� The granularities of

software components in which we are interested are functions �e�g�� C routines� Ada procedures�

ML functions� and modules �e�g�� C!! classes� Ada packages� ML modules�� We are interested

in both levels of match because in practice we expect users to want to reuse components at

both levels of granularity�

The z�axis of Figure ��� represents the degree of relaxation of a match� It is rarely the case

that we would require one component to match the other �exactly�� In retrieval� we want a

close match
 as in any information retrieval context �Cor��� ML��� SM�� � we might be willing

to sacri	ce precision for recall� That is� we would be willing to get some false positives as long

as we do not miss any �or too many� true positives� In indexing� we use a partial ordering

over a set of components� rather than equivalence between components� And in determining

substitutability� we do not need the substituting component to have the exact same behavior as

the substituted� only the same behavior relative to the environment that contains it� Therefore

for each kind of match� we de	ne both an exact match and various notions of relaxed match�

� CHAPTER �� INTRODUCTION

For example� relaxed signature matching on functions might allow reordering of a function"s

input parameters�

����� Component Signatures and Speci�cations

To be concrete in our examples and implementation� we have chosen particular languages for

our signatures and speci	cations� We use ML �MTH�� as our component language� and hence

rely on the ML type and module systems� Figure ��� shows three ML signature modules�

List� Queue� and Set� �ML signature modules are akin to Ada de�nition modules and Modula��

interface modules
 ML implementations are written in modules called structures�� Each module

signature contains a set of function signatures� For example� the Queue module contains four

function signatures� including the function deq with signature � T � �� Functions in a module

are sometimes named with the module name as a pre	x �e�g�� Queue�deq�� We explain the

function signature notation in detail in Chapter �
 deq"s signature indicates that deq takes a

queue of objects of some type and returns an object of that type�

signature List �
sig

val empty
 unit � � list
val cons
 � � � list � � list
val hd
 � list � �

val tl
 � list � � list
val map
 �� � �� � � list � � list
val intsort
 �int � int � bool� � int list � int list

end

signature Queue �
sig

type � T

val create
 unit � � T
val enq
 � T � �� � T

val rest
 � T � � T
val deq
 � T � �

end

signature Set �
sig

type � T

val create
 unit � � T
val insert
 �� � T � � T

val delete
 �� � T � � T
val member
 �� � T � bool
val union
 � T � � T � � T
val intersection
 � T � � T � � T

val di�erence
 � T � � T � � T
end

Figure ���
 The Toy Signature Library �ML signature modules�

���� A SOLUTION �THESIS SCOPE� �

signature Queue � sig

��! using Container !��
type � T ��! based on

Container�E Container�C !��

val create
 unit � � T
��! create � � � q

ensures q � empty !��

val enq
 � T � �� � T
��! enq � q� e � � q�
ensures q� � insert �e� q � !��

val rest
 � T � � T

��! rest q � q�
requires not �isEmpty �q��
ensures q� � butFirst �q� !��

val deq
 � T � �
��! deq q � e

requires not �isEmpty �q��
ensures e � �rst �q� !��

end

Figure ���
 A Larch�ML module speci	cation

The expressiveness of a type system �and thus the e�ectiveness of signature matching� varies

greatly across di�erent programming languages� In a language such as C �KR�� � functions

operate on a few built�in base types �e�g�� int or double� or pointers to them �e�g�� char �� and

thus� types are of limited expressiveness� In contrast� more advanced programming languages

have rich type systems with user�de	ned abstract types� functional types� and polymorphic

types� and thus types can convey more information about a component"s behavior �Wad�� �

For example� an ML function with signature � list � � takes as input a list of objects of some

type � and returns an object of that type� Call the input list l and the returned object x�

Because there is no way to generate objects of type � any other way� x must be an element

of l �e�g�� the 	rst element� or a randomly�selected element�� Thus� particularly for rich type

systems� signatures provide a great deal of expressiveness�

Most type systems go only so far� however� in characterizing a component"s behavior� For

example� exactly which element of the list does the function in the example return� Speci�

� CHAPTER �� INTRODUCTION

	cations allow us to go further� We use Larch�ML �WRZ�� as our speci	cation language�

Larch�ML is a Larch interface language for ML� which we describe in more detail in Sec�

tion ���� Figure ��� shows the Larch�ML module speci	cation for Queue� which contains four

function speci	cations� A function speci	cation consists of a pre�condition clause �requires�

and a post�condition clause �ensures�� where each clause is an assertion in predicate logic� The

interpretation of a function"s speci	cation is that the pre�condition implies the post�condition�

For example� the function speci	cation for deq speci	es that if the input queue q is not empty�

then the result returned by the function� e� is the 	rst element of q� The operator �rst is de	ned

in the Container trait �referenced in the using clause��

Speci	cations enable us to express very precise and detailed relationships between the be�

haviors of two components� For example� the C library routines strcpy and strcat have the same

signature but we would be unhappy if one were substituted for the other� If we had speci	ed

the behavior we desired from a string function� we could compare that speci	cation with the

speci	cations of strcpy and strcat to see if either of those functions behaves as we desire�

Formal speci	cations may or may not be available for each component� Our hope is also that

as more applications such as ours come to expect speci	cations� there will be more incentive

for programmers to provide them�

����� De�ning Match

Now we can instantiate component match �M in Declaration ������ for the four cases where

components are either functions or modules and components are described by abstracts that

are either signatures or speci	cations� Figure ��� shows how we partition the matches and in

which chapter we de	ne a particular class of matching� For functions� we consider signature

and speci	cation matches individually �Chapters � and �� respectively�� For modules� we de	ne

the matches independently of whether the abstracts are signatures or speci	cations �Chapter

���

The 	rst class of matching we consider is function signature matching� The various relaxed

matches allow reordering of elements in a tuple� uncurrying of arguments to a function� renaming

of type constructors� and instantiation of type variables� Allowing instantiation of type variables

introduces both complexity and a great deal of expressiveness to the matches� We express each

of the function signature match de	nitions in terms of whether we can 	nd transformations

to apply to the two function signatures such that the results are equal� Using transformations

allows us to de	ne match composition easily and cleanly� Chapter � describes function signature

matching in detail�

The second class of matching is function speci	cation matching� We de	ne each of the

matches in terms of a logical relationship� e�g�� implication� between two speci	cations or be�

tween parts of the speci	cations� We relate all of the matches in a lattice� Chapter � describes

function speci	cation matching in detail�

���� A SOLUTION �THESIS SCOPE� �

Figure ���
 Which chapters de	ne what

The third class of matching is module matching �both signature and speci	cation�� A mod�

ule consists of some global information �e�g�� type declarations� and a set of functions� Each

module match requires some kind of correspondence between functions� The module match def�

initions are parameterized over what function match is used to determine this correspondence�

which can be instantiated with any of the function matches in Chapters � or � �i�e�� with either

function signature or function speci	cation match�� Chapter � describes module matching in

detail�

Our match de	nitions are orthogonal in several ways� Module match is parameterized by a

function match that can be instantiated by any function match �either signature or speci	ca�

tion�� Function signature matches themselves are de	ned in such a way that the relaxed matches

are composable� We could even consider signature match as a parameter to speci	cation match�

Additionally� our general approach is �exible and extensible� The basic function signature

match de	nitions apply to any statically�typed programming language �although some relaxed

matches only apply if the language has particular features�� Function speci	cation matching

is not even tied to formal speci	cations
 the match de	nitions still apply for informal speci	�

cations� although proving a match must then be done informally� Moreover� we could use the

same basic approach �identify the form of the abstract and de	ne exact and various relaxed

�� CHAPTER �� INTRODUCTION

matches� to de	ne matching for other kinds of abstracts� and then use those matches in the

same way we use our signature and speci	cation matches� An example of a di�erent abstract

is one that takes a keyword�based approach to speci	cations� so that a speci	cation is a set

of attribute�value pairs �PD�� � Another example is a speci	cation abstract that also includes

a protocol �AG�� � which is a description of how the component expects to communicate with

other components �e�g�� remote procedure call in a client�server system architecture�� Having

protocols in addition to our existing speci	cations would allow us to detect mismatches in the

way that two components communicate�

����� Applications

Recall the list of questions at the beginning of Section ���� Now we can ask the same questions

using the concepts of function� module� signature� and speci	cation

��� Retrieval� I need a function that returns an element from a given list of elements �i�e�� a

function with the type � list � ���

��� Indexing� What is the object class hierarchy that results from indexing the library�

��� Navigation� Let me see all the nodes that are more general than int � int � bool �

��� Substitution� Is Queue�deq behaviorally equivalent to Stack�pop�

��� Subtyping� Is Stack a subtype of Bag�

��� Modi�cation� Is there a reordering of arguments and an instantiation of variables such

that the create function in the library �with type int � � � � list� can be called instead

of a function with type bool � int � bool list�

We use the match predicates in three ways to answer these questions
 ��� to compare a given

component against all components in a set� ��� to compare components in a set pairwise� and ���

to compare two components directly� Formal descriptions of each of these classes of applications

appear in Sections ���� ���� and ���� respectively� Each class of applications is de	ned in terms

of the general component match M �Declaration ������� which can be instantiated by any of

our match de	nitions�

The 	rst class of applications uses match predicates to retrieve a subset of components in

a library� Suppose we want to 	nd all the components in a library� L� that are like a query

component� Q� We can select an appropriate signature or speci	cation match� M � and check

M�S�Q� for each S � L� Retrieval itself has several kinds of applications� We can use retrieval

to locate components for reuse �e�g�� question ��� and to analyze or to browse the library�

The second class of applications uses match predicates to build a hierarchical index on

a library of components� An indexed library is useful for e�cient storage and retrieval of

���� A SOLUTION �THESIS SCOPE� ��

components and for browsing� Using a subtype speci	cation match� we could build an index for

an object library to represent the subtype hierarchy �question ���� And while question �� might

at 	rst glance look like a retrieval problem� if we are starting from the type of a component in

the library� we can use the index of the library to answer the question�

The third class of applications simply compares two components using one of the matches�

Questions ��� ��� and �� are examples of applications in this class� Depending on the match�

we get guarantees about whether various properties will hold if we substitute one component

for the other� For example� if two function components have the same signature� then we can

replace one with another and still be assured that our code will type check� In cases where a

match is not exact� we may be able to use the information about how they are di�erent to know

what we need to change in order to reuse a component� For example� question �� is answered

by a function signature match that includes relaxations to allow reordering of arguments and

instantiation of variables�

Speci	cation matches de	ne even stronger relationships between components� We may

consider two components to be behaviorally equivalent if their pre�conditions are equivalent and

their post�conditions are equivalent� We de	ne this �exact pre�post match� in Section ����� and

use this match to answer questions like ��� In Section ������ we use module match to de	ne three

di�erent versions of subtyping� any of which we can use to answer questions like ��� Heuristic

and text�based approaches to matching cannot answer questions like ��� ��� and �� de	nitively�

since the matches are not based on a formal and complete relationship between components�

Libraries

Since the second and third classes of applications assume a library of components� we brie�y

discuss libraries here� and explain the particular libraries we use in the thesis�

A component library is a set of components� either all functions or all modules� Given a

library of modules� we form a library of functions by taking the union of the functions in each

module� Another source of a function library is the set of built�in functions for a language�

In this thesis� we use three example libraries� summarized in Table ���� There are two small

libraries� the Toy Signature Library and the Toy Speci�cation Library� We use these to give

examples of the various match de	nitions
 they are very small so that we can easily see exactly

which functions or modules are and are not matched by a query component� We use the Com�

munity Library to illustrate the results of our implementation of function signature matching

on a moderate�sized library
 all the examples in Section ��� and Section ��� use this library�

The Community Library is built from three sub�libraries
 the Edinburgh Library �Ber�� � the

SML�NJ Library �ATT�� � and a CMU Library of local contributions �TR�� �

�� CHAPTER �� INTRODUCTION

Name Figure Sig or Spec # of Modules # of Functions

Toy Signature Figure ��� Signature � ��
Toy Speci	cation Figure ��� Speci	cation � �
Community � Signature ��� ����

Edinburgh �� ���
SML�NJ �� ���
CMU �� ���

Table ���
 Summary of libraries used in the thesis

��� Thesis Contributions

This dissertation makes the following contributions

� Foundational� Within a general� highly modular� and extensible framework� we de	ne

matching for two kinds of semantic information �signatures and speci	cations� and two

granularities of components �functions and modules�� Each kind of matching has a generic

form� within which all of the matches are related and may� in some cases� be composed�

The orthogonality of the matches allows us to de	ne match on modules independently of

the particular match used on functions in the modules�

� Applications� We show how the de	nitions of matching can be applied to the problems

of retrieval from libraries� indexing libraries� and reuse of components� We demonstrate

the various signature and speci	cation matches with examples of typical uses in each

application�

� Engineering� We describe our implementations of function and module signature match�

function speci	cation match� function signature�based indexing� and function signature�

based retrieval� These implementations demonstrate the feasibility of our approach and

allow us to illustrate the applications with results from a moderately�sized component

library�

��� Roadmap and Terminology

The remainder of the thesis is structured as follows� Chapters �� �� and � de	ne signature

and speci	cation matching� as shown in Figure ���� In each chapter� we present notions of

both exact and relaxed match� show how the de	nitions are related to each other� discuss our

implementation of the matches� and evaluate the approach� Chapter � describes applications

of the match de	nitions in the areas of retrieval ������ indexing ������ and substitution ������

We discuss related work in Chapter � and discuss conclusions and directions for future work in

Chapter ��

���� ROADMAP AND TERMINOLOGY ��

Throughout the de	nition chapters �Chapters � � ��� we give examples of matches for each

de	nition� We give additional examples of the applications of signature and speci	cation match�

ing in Chapter �� For each match� there is both a match name and a match predicate symbol�

For example� the match predicate for function signature equivalence is named exact match �or

exact function signature match when we are not clearly talking about function signatures� and

has the predicate symbol matchE � For each match named M with the predicate symbol matchM
and components S and Q� if matchM �S�Q�� we say equivalently

� S matches with Q �under M�

� M match of S with Q

� Q is matched by S �under M�

� Q retrieves S �under M�

It is important to distinguish between �matches with� and �is matched by�� because not

all matches are symmetric
 matchM �S�Q� does not necessarily imply that matchM �Q� S�� For

the matches that are symmetric� we also say that �S and Q satisfy the match��

�� CHAPTER �� INTRODUCTION

Chapter �

Function Signature Matching

In this chapter� we examine various de	nitions of function signature matching� We begin

in Section ��� with a description of what we mean by function signatures� present our de	nitions

of the various matches in Section ���� and show how to compose de	nitions in Section ����

In Section ���� we de	ne various properties of the matches� and show how each of the exact and

relaxed matches are instances of a generic function signature match de	nition� We describe an

implementation of the matches in Section ����

��� Signatures

Function matching based on just signature information boils down to type matching� in partic�

ular matching function types� The following de	nition of types is based on Field and Harrison

�FH�� � A type is either a type variable � TypeVar �denoted by Greek letters� or a type con�

structor � TyCon applied to other types� Polymorphic types contain at least one type variable

types that do not contain any type variables are monomorphic�

Each type constructor has an arity indicating the number of type arguments� Base types are

constructors of ��arity� e�g�� int� bool
 the �arrow� constructor for function types is binary� e�g��

int � bool� We use in	x notation for tuple construction ��� and functions ���� and otherwise

use post	x notation for type constructors �e�g�� int list stands for the �list of integers� type��

The user�de	ned type� � T � represents a type constructor T with arity �� where the type of the

argument to T is the type variable ���

We assume that the type system includes tuples� polymorphism� higher�order functions�

and user�de	ned types� These features are not necessary to do signature matching� but without

them� some of the relaxed matches will not apply� We discuss this in more detail in Section ����

�In ML� a common programming practice is to use T for the constructor name of the user	de�ned type of
interest�

��

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

De�nition �
�
� �Type Equality ��
T
��

� �
T
� � i�

��� they are lexically identical type variables or

��� � � tyCon���� ���� �n�� �
� � tyCon��� ��� ���� �

�
n��

tyCon � tyCon�� and � � � i � n� �i �
T
� �i �

Variable Substitution

To allow substitution of other types for type variables� we introduce notation for variable

substitution
 �� ��� � represents the type that results from replacing all occurrences of the type

variable � in � with � �� provided no variables in � � occur in � �read as �� � replaces � in ����

For example� ��int � int��� �� � �� � � � �int � int�� A sequence of substitutions is

right associative� For example� ���� ���� �� � �� � ���� ��� �� � �� � ��� In a case like

the previous example� where � � is just a variable� �� ��� � is simply variable renaming� The

concatenation of two sequences is denoted with a �$�
 U�$U�� � U��U����

We use the same notation for renaming of type constructors� In this case� �c��c � �where

c� c� � TyCon� represents the type that results from replacing all occurrences of the type

constructor c in � with c�� provided c� does not occur in � � For example� �Set�T �� T � �� �

� Set � �� The � and � type constructors cannot be renamed�

We will use V for a sequence of variable renamings� VTC for a sequence of type constructor

renamings� and U for a sequence of variable substitutions�

��� Match De�nitions

Given the type of a function from a component library� �l� and the type of a query� �q� we de	ne

a generic form of function signature match� M��l� �q�� as follows

De�nition �
�
� �Generic Function Signature Match�

M��l� �q� � � a transformation pair� T � �Tl� Tq�� such that Tl��l� R Tq��q�

where the implicit parameter R is some relationship between types �e�g�� equality� and Tl
and Tq are transformations that are applied to the library and query types� respectively� A

transformation is a function from types to types �e�g�� a function that reorders elements in a

tuple�� Most of the matches we de	ne apply transformations to only one of the types� Where

possible� we apply the transformation to the library type� �l� in which case Tq is simply the

identity function� For example� in exact match� two types match if they are equal modulo

variable renaming� In this case� Tl is a sequence of variable renamings� Tq is the identity

function� and R is the type equality ��
T
� relation�

���� MATCH DEFINITIONS ��

We classify relaxed signature matches as either partial matches� which vary R� the rela�

tionship between �l and �q �e�g�� de	ne R to be a partial order�� or transformation matches�

which vary Tl or Tq� the transformations on types� In the following sections� we 	rst de	ne

exact match� followed by transformation matches� partial matches� and combined matches� We

illustrate each de	nition with examples that use the de	nition to retrieve functions from the

Toy Signature Library in Figure ��� �page �����

����� Exact Match

De�nition �
�
� �Exact Match�

matchE ��l� �q� � � a sequence of variable renamings� V� such that

V �l �
T
�q

Two function types match exactly if they match modulo variable renaming� For monomorphic

types� there are no variables� so matchE ��l� �q� � ��l �
T
�q� where �l and �q are monomorphic�

We only need a sequence of renamings for one of the type expressions� since for any two

renamings� V� and V� such that V��� �
T
V���� we could construct a V � such that V ��� �

T
���

�Note we could consider matchE as a form of transformation match since it allows variable

renaming��

For polymorphic types� actual variable names do not matter� provided there is a way to

rename variables so that the two types are identical� For example� �l � �� ��� � bool matches

with �q � �� � �� � bool with the substitution V � ���� � But �l � � � � does not match

with �q � � � � because once we substitute � for � to get � � �� we cannot substitute � for

�� since � already occurs in the type� This is the �right thing� because the di�erence between

�l and �q is more than just variable names
 �q takes a value of some type � and returns a value

of the same type� whereas �l takes a value of some type and returns a value of a potentially

di�erent type�

To see how exact match might be used in practice� suppose a user wants to locate a function

in the Toy Signature Library that applies an input function to each element of a list� forming

a new list� The query �q � �� � �� � � list � � list is matched by the map function �with

the renaming ���� �� exactly what the user wants�

����� Transformation Relaxations

Exact match is a useful starting point� but it may miss useful functions whose types are close

but do not exactly match the query� Exact match requires a user to be either familiar with a

library or lucky in choosing the exact syntactic format of a type�

One class of relaxed match transforms a type expression to achieve a match� Examples in�

clude renaming type constructors� changing whether a function is curried or uncurried� changing

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

the order of types in a tuple� and changing the order of arguments to a function �for functions

that take more than one argument�� These last two are similar since we can view multiple argu�

ments to a function as a tuple� The following two queries illustrate the need for transformation

relaxations� The query �q � � � � list � � list would miss the cons function because �q is

curried while cons is not� The query �q � �� list � �� � � list would miss cons because the

types in the tuple are in a di�erent order�

Type Constructor Renaming

Most type systems have a small set of built�in type constructors �e�g�� list� but allow users to

add new types using user�de	ned type constructors �e�g�� the Queue and Set modules in the

Toy Signature Library both have the user�de	ned type constructor T �� In the same way that

queriers should not have to guess a type variable name� neither should they have to guess a

type constructor name de	ned by someone else� since di�erent users may use a di�erent name

for the same type constructor� Type constructor match allows renaming of type constructors

for these cases� We do not include this renaming in the exact match� since there may also be

cases where a querier does want to restrict the matches to those with exactly the same type

constructors� We could choose to restrict renaming to user�de	ned types� but that would make

an unnecessary distinction between a built�in type like list and a user�de	ned type� since for a

query like � T � �� we would want T to match not just user�de	ned type constructors� but

also list� We exclude the type constructors � and � from renaming� since they have special

meanings in the type system and we expect users to be familiar with them �and hence not to

need to rename them��

De�nition �
�
� �Type Constructor Match�

matchtycon ��l� �q� � � a sequence of type constructor renamings� VTC� such that

matchE �VTC �l� �q�

As an example� suppose a user wants a function to return the 	rst element of a list with

the query � C � �� Under exact match� this query is not matched by any functions in the Toy

Signature Library� but under type constructor match� the query retrieves the functions hd on

lists �with renaming �C�list � and deq on queues �with renaming �C�T ��

As another example� suppose a user wants to locate a function to add an element to a

collection with the query �q � �� C � �� � � C� Under type constructor match� this query

retrieves the enq function on queues �with the renaming �C�T �� which may be what the user

wants� However� the query is not matched by the cons function on lists or the insert and delete

functions on sets� other likely candidates�

���� MATCH DEFINITIONS ��

Uncurrying Functions

A function that takes multiple arguments may be either curried or uncurried� The uncurried

version of a function has a type ��� � � � � � �n��� � �n� while the corresponding curried version

has a type �� � � � �� �n�� � �n� In many cases� it will not matter to the querier whether or

not a function is curried� We de	ne uncurry match by applying the uncurry transformation to

both query and library types� We choose to uncurry rather than curry each type so that we

can later compose this relaxed match with one that reorders the types in a tuple�

The uncurry transformation� UC� produces an uncurried version of a given type

UC��� �

�
��� � � � � � �n��� � �n if � � �� � � � �� �n�� � �n� n � �

� otherwise

The uncurry transformation is non�recursive
 any nested functions will not be uncurried� We

also de	ne a recursive version� UC�

UC���� �

�����
�UC����� � � � � � UC���n���� � UC���n� if � � �� � � � �� �n�� � �n� n � �

tyCon�UC������ � � � � UC
���n�� if � � tyCon���� � � � � �n�

� where � is a variable or a base type

For example� if � � int � int � �int � int � bool� � bool then UC��� � �int � int � �int �

int� bool�� � bool and UC���� � �int � int � ��int � int� � bool�� � bool�

De�nition �
�
	 �Uncurry Match and Recursive Uncurry Match�

matchuncurry ��l� �q� � matchE �UC��l�� UC��q��

matchuncurry� ��l� �q� � matchE �UC���l�� UC
���q��

Uncurry match takes two uncurried function types and determines whether their corresponding

argument types match� Recursive uncurry match is similar but allows recursive uncurrying of

�l"s and �q"s functional arguments� By applying the UC �or UC�� transformation to both �l and

�q� we are transforming the types into a canonical form� and then checking that the resulting

types are equal �modulo variable renaming��

Suppose we again are looking for a function that adds an element to a collection� But this

time suppose we use the query �q � � T � �� � T � Exact match yields nothing� but uncurry

match would return the function enq on queues� Note that again this query does not retrieve

cons� insert� or delete�

Since the uncurry transformation is applied to both the query and library types� it is

not necessary to de	ne an additional curry match� Such a match would be similar in struc�

ture� relying on a curry transformation to produce a curried version of a given type
 that is�

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

matchcurry ��l� �q� � matchE �curry��l�� curry��q��� The curry and uncurry transformations are

not exactly inverses� since it is not always true that curry�UC���� � � or that UC�curry���� �

� � However� the two matches de	ne the same equivalence
 matchcurry ��l� �q� if and only if

matchuncurry ��l� �q��

Reordering Tuples

Tuples group multiple arguments to a function� but sometimes the order of the arguments does

not matter� For example� a function to test membership in a list could have type �� �� list� �

bool or type �� list � �� � bool � Reorder match allows matching on types that di�er only in

their order of arguments�

We de	ne reorder match in terms of permutations� Given a function type whose 	rst

argument is a tuple �e�g�� � � ��� � � � � � �n��� � �n�� a reorder transformation� T�� de	nes a

permutation 	� which is applied to the tuple� 	 is a bijection with domain and range � � � �n	 �

such that T���� � ������ � � � � � ���n���� � �n�

De�nition �
�
� �Reorder Match�

matchreorder ��l� �q� � � a reorder transformation T� such that

matchE �T���l�� �q�

Under this relaxation� a library type� �l� matches with a query type� �q� if the argument types of

�l can be reordered so that the types match exactly� Although we choose to apply the reorder

transformation� T�� to the library type �l� we could equivalently apply the inverse� T��� � to

the query type �q
 matchE �T���l�� �q� � matchE ��l� T�����q��� With reorder match� the query

�q � �� list ��� � � list we discussed at the beginning of Section ����� is now matched by the

desired list function� cons�

There are two variations on reorder match
 we can allow ��� recursive permutations so that

a tuple"s component types may be reordered �matchreorder� �
 and ��� reordering of arguments

to user�de	ned type constructors� e�g�� so that �int � �� T � int and ��� int� T � int would

match�

����� Partial Relaxations

Often a user with a speci	c query type� e�g�� int list � int list� could just as easily use an

instantiation of a more general function� e�g�� � list� � list� Or� the user may have di�culty

determining the most general type of the desired function but can give an example of what

is desired� Allowing more general types to match a query type accommodates these kinds of

situations� Conversely� we can also imagine cases where a user asks for a general type that does

not match anything in the library exactly� There may be a useful function in the library whose

���� MATCH DEFINITIONS ��

type is more speci	c� but the code could be easily generalized to be useful to the user� We

de	ne generalized and specialized match to address both of these cases�

Referring back to our de	nition of generic function signature match �De	nition ������� for

exact match� the relation� R� between types is equality� For partial matches we relax this relation

to be a partial order on types� We use variable substitution to de	ne the partial ordering� based

on the �generality� of the types� For example� � � � is a generalization of in	nitely many

types� including int � int and �int � �� � �int � ��� using the variable substitutions �int��

and ��int � ���� � respectively�

� is more general than � � ��
 � �� if the type � � is the result of a �possibly empty� sequence

of variable substitutions applied to type � � Equivalently� we say � � is an instance of � �� � � ���

We would typically expect functions in a library to have as general a type as possible�

Generalized Match

De�nition �
�

 �Generalized Match�

matchgen ��l� �q� � �l
 �q

A library type matches with a query type if the library type is more general than the query type�

Exact match� with variable renaming� is really just a special case of generalized match where

all the variable substitutions are variable renamings� so matchE ��l� �q� � matchgen ��l� �q��

For example� suppose a user needs a function to convert a list of integers to a list of boolean

values� where each boolean corresponds to whether or not the corresponding integer is positive�

The user might write a query like �q � �int � bool� � int list � bool list � Under exact match�

this query is not matched by any function in our library� But under generalized match� �q
would retrieve map� since map"s type is more general than the query type� This kind of match

is especially desirable� since the user does not need to make any changes to use the more general

function�

Specialized Match

De�nition �
�
� �Specialized Match�

matchspcl ��l� �q� � �l � �q

Specialized match is the inverse of generalized match
 we could alternatively de	ne matchspcl in

terms ofmatchgen by swapping the order of the types
 matchspcl ��l� �q� � matchgen ��q� �l�� It also

follows that exact match is a special case of specialized match
 matchE ��l� �q� � matchspcl ��l� �q�

As an example of how specialized match is useful� suppose the querier needs a general

function to sort lists and uses the query �q � ��� � �� � bool� � � list � � list � Our library

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

does not contain such a function� but under specialized match� �q would retrieve intsort� an

integer sorting function with the type �l � ��int � int� � bool� � int list � int list � Assuming

intsort is written reasonably well� it should be easy for the querier to modify it to sort arbitrary

objects since the comparison function is passed as a parameter�

Specialized match is also useful in cases where we do not know an actual type for part of the

query� For example� if we wanted a function to compare strings� the return value might be a

boolean� or an integer �e�g�� measuring edit distance�� or an enumerated type� The query string�

string � � with specialized match would retrieve all such functions� Sections ����� and �����

contain many examples using specialized match for statistical analysis and for browsing on

libraries�

Although we present generalized and specialized match in terms of changing the relation

�R� between �l and �q� we could also de	ne them as transformation matches� since the de	nition

of the � relation on types is in terms of variable substitution�

De�nition �
�
� ��alternative� Generalized and Specialized Match�

matchgen ��l� �q� � � a sequence of variable substitutions� U� such that

matchE �U �l� �q�

matchspcl ��l� �q� � � a sequence of variable substitutions� U� such that

matchE ��l� U �q�

We can even de	ne matchgen ��l� �q� as U�l �
T
�q
 the use of matchE is redundant since general�

ized match requires a sequence of substitutions that includes any necessary variable renaming�

We will appeal to the above alternative de	nitions of generalized and specialized match when

we de	ne the composition of di�erent relaxed matches �Section �����

��� Combining Relaxations

Each relaxed match is individually a useful match to apply when searching for a function of a

given type� Combinations of these separately de	ned relaxed matches widen the set of library

types retrieved� Suppose again that a user wants a function to add an element to a collection�

This function might have one of four possible types

�� � � � T � � T

�� � T � �� � T

�� �� � T � � T

�� � T � �� � T

���� COMBINING RELAXATIONS ��

Under reorder match� a query of type � or � retrieves library functions of types � or �� but not

types � or �� Under uncurry match� a query of type � or � retrieves library functions of those

types �and likewise for types � and ��� But no individual relaxed match allows a single query

to retrieve all four types� By composing reorder and uncurry match� a query of any of the four

types will retrieve library functions of all four types� which is what we would like�

We deliberately gave our de	nitions in a form so that we can easily compose them� If we

use the alternative de	nitions of matchgen and matchspcl � each of the relaxed match de	nitions

presented in Sections ����� and ����� can be cast in a composable form by instantiating R to

matchE in the generic function match �De	nition ������

� a transformation pair� T � �Tl� Tq�� such that matchE �Tl��l�� Tq��q���

The match composition of two relaxed matches� denoted as �matchR� � matchR��� is de	ned

by composing the transformations on each type� applying the inner �R�� relaxation 	rst�

De�nition �
�
� �Match Composition�

�matchR� � matchR����l� �q� � � transformation pairs T� � �T�l� T�q� and T� � �T�l� T�q�

such that matchE �T�l � T�l��l�� T�q � T�q��q��

The choice of R� determines the kinds of transformations in T� �and likewise for R� and T���

For matchtycon � Tl is a sequence of type constructor renamings and Tq is the identity function�

For matchuncurry � Tl and Tq are UC
 the ��� is not necessary� since there is only one possible

uncurry transformation� For matchreorder � Tl is a reorder transformation and Tq is the identity

function� For matchgen � Tl is a sequence of variable substitutions and Tq is the identity function�

For matchspcl � Tl is the identity function and Tq is a sequence of variable substitutions�

We can compose any number of relaxed matches in any order� The order in which they

are composed does make a di�erence
 match composition is not commutative� as we show in

detail in Section ������ For simplicity� we omit the recursive versions of matchuncurry� and

matchreorder� � although the analysis below could be easily extended to include them� Thus�

there are 	ve �basic� relaxed matches
 matchtycon � matchuncurry � matchreorder � matchgen � and

matchspcl � That is� R�� R� � ftycon� uncurry� reorder� gen� spclg�

We now consider some of the interesting combinations of these relaxed matches� In cases

where a pair of relaxations is not commutative� we order the relaxations in the way that allows

the most matches� So� for example� uncurry and reorder match are not commutative� but

matchuncurry � matchreorder ��l� �q� � matchreorder � matchuncurry ��l� �q�� so we use matchreorder �

matchuncurry ��l� �q��

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

� �matchreorder � matchuncurry ���l� �q�

With this composition� two types match if they are equivalent modulo whether or not

they are curried or whether or not the arguments are in the same order� We uncurry

the types 	rst� thereby allowing a reordering on any tuples formed by uncurrying� Using

this composition� the query type �q � � T � � � � T would be matched by enq

��l � � T � �� � T � on queues and insert and delete ��l � �� � T � � T � on sets�

� �matchtycon � matchreorder � matchuncurry ���l� �q�

�l and �q match if they are equivalent modulo whether or not they are curried� whether

or not the arguments are in the same order� and with renaming of type constructors� For

example� the query �q � � T � � � � T would be matched by cons ��l � � � � list �

� list� as well as enq� insert� and delete�

� �matchuncurry � matchgen ���l� �q�

�l and �q match if the uncurried form of the result of applying a sequence of variable

substitutions to �l is equivalent to the uncurried form of �q� With this composition� the

query �q � ��int � bool� � int list� � bool list would be matched by the map function ��l
� �� � �� � � list � � list��

� �matchreorder � matchuncurry � matchgen ���l� �q�

�l and �q match if some permutation of the uncurried form of � �l is equivalent to the

uncurried form of �q� where � �l is the result of applying a sequence of variable substitutions

to �l� Using this combined match� the query �q � �int list � �int � bool�� � bool list is

matched by the map function in our library ��l � �� � �� � � list � � list��

� �matchtycon � matchreorder � matchuncurry � matchgen ���l� �q�

This is the same as the previous composition except it also allows renaming of type

constructors� Under this match� �q � int C � int � int C retrieves cons� enq� insert�

and delete�

� �matchgen � matchspcl ���l� �q�

�l and �q match if the result of applying a sequence of variable substitutions� U�� to �l is

equivalent to the result of applying a sequence of variable substitutions� U�� to �q� Note

that there is no constrain on any relationship between U� and U�� Thus� this composed

match is not equivalent to type uni	cation� For example� under this composed match� the

type �l � bool � � matches with the query �q � �� int with substitutions U� � �int��

and U� � �bool�� � But �l and �q are not uni	able� since uni	cation applies the same

renaming to both types and so � would have to be renamed consistently�

���� PROPERTIES OF THE MATCHES ��

��� Properties of the Matches

����� Equivalence and Partial Order

The function signature match de	nitions are relations on types� Thus� we can classify the

matches according to whether they are equivalences� partial orders� or neither� We use this

classi	cation to build indexed libraries �Section �����

De�nition �
	
� �Equivalence Match�

A match relation M� is an equivalence match if

�� M���� �� for all types � �Re�exive

�� If M����� ��� then M����� ��� �Symmetric

�� If M����� ��� and M����� ��� then M����� ��� �Transitive

De�nition �
	
� �Partial Order Match�

A match relation M� is a partial order match if

�� M���� �� for all types � �Re�exive

�� If M����� ��� and M����� ��� then M����� ��� �Antisymmetric

�� If M����� ��� and M����� ��� then M����� ��� �Transitive

Equivalence matches partition types into sets of types that are equivalent modulo some

transformations� Type equivalence ��
T

� and most of the match de	nitions in this chapter

�exact� type constructor� uncurry� and reorder matches� are equivalence matches� Partial order

matches impose an ordering on the types� To show the antisymmetric property of a partial

order match� we need a corresponding equivalence match� M�� Generalized and specialized

match are partial order matches with M� � matchE � Table ��� summarizes this classi	cation�

as well as showing the predicate symbols for each match�

Proving the properties of each of the match de	nitions is fairly straightforward� Most of

the proofs about these matches and their compositions rely on properties of the underlying

transformations on types� Consider the case for showing that exact match is an equivalence

match�

�� Exact match is re�exive �matchE ��� ���� since for any type � � � �
T
� with no variable

renaming�

�� Exact match is symmetric� Suppose matchE ���� ���� Then �by de	nition of exact match�

there is a sequence of variable renamings V such that V �� �
T
��� For a sequence of

variable renamings V � �u��v� � � � �un�vn � de	ne the inverse� V �� � �vn�un � � � �v��u� �

We can prove by induction on the length of V that if V �� is �valid� �i�e�� the occurs

requirement is satis	ed for each renaming�� and V �� �
T
��� then ��� V ���� is valid� and

��� V ���� �
T
��� Thus� matchE ���� ��� using variable renaming V ���

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

Name of Match Predicate Symbol Kind of Match

Exact matchE Equivalence
Type Constructor matchtycon Equivalence

Uncurry matchuncurry Equivalence
Reorder matchreorder Equivalence

Generalized matchgen Partial Order
Specialized matchspcl Partial Order

Table ���
 Function signature matches� their symbols and classi	cations

�� Exact match is transitive� Suppose matchE ���� ��� and matchE ���� ���� Then there exist

variable renaming sequences V � and V � such that V � �� �
T
�� and V � �� �

T
��� Let

V � � V �$V �� Then V � �� � V ��V � ��� �
T
V � �� �

T
��� so matchE ���� ����

For generalized match� the proofs for re�exivity and transitivity are the same as for exact

match� However� because the transformations are variable substitutions rather than variable re�

namings� we cannot guarantee the existence of an inverse substitution sequence� and hence gen�

eralized match is not symmetric� Further� suppose matchgen ���� ��� and matchgen ���� ���� Then

there exist variable substitution sequences U� and U� such that U� �� �
T
�� and U� �� �

T
���

We can prove from this that U� and U� must be variable renamings� and hence matchE ���� ����

and generalized match is antisymmetric� Using the antisymmetry property of generalized match�

and the de	nition of specialized match as the inverse of generalized match� we can prove that

two types match under both generalized and specialized match if and only if the two types are

equivalent�

Lemma �
	
� matchgen ��l� �q� �matchspcl ��l� �q�
 matchE ��l� �q�

Proof

�
 Assume matchgen ��l� �q� �matchspcl ��l� �q�� Since matchgen and matchspcl are inverses�

matchspcl ��l� �q� � matchgen ��q� �l�� It follows from antisymmetry of matchgen thatmatchE ��l� �q��

�
 Assume matchE ��l� �q�� Let U� � U� � Id �i�e�� the identity function�� Then

matchE �U��l� �q� and matchE ��l� U��q�� so matchgen ��l� �q� and matchspcl ��l� �q� �

����� Match Composition

Commutativity

Not all match compositions are commutative� In particular� uncurry match does not commute

with either reorder� generalized� or specialized match
 additionally� reorder and generalized

���� PROPERTIES OF THE MATCHES ��

match do not commute� We list pairs of relaxations whose composition is commutative in The�

orem ������ For pairs that are not commutative� we show which order of composition is stronger

in Theorem ������

Theorem �
	
� The following match compositions are commutative�

�� matchreorder �matchspcl ��l� �q� � matchspcl �matchreorder ��l� �q�

�� matchgen �matchspcl ��l� �q� � matchspcl �matchgen ��l� �q�

�� matchtycon �matchspcl ��l� �q� � matchspcl �matchtycon ��l� �q�

�� matchtycon �matchreorder ��l� �q� � matchreorder �matchtycon ��l� �q�

�� matchtycon �matchuncurry ��l� �q� � matchuncurry �matchtycon ��l� �q�

�� matchtycon �matchgen ��l� �q� � matchgen �matchtycon ��l� �q�

Proof Sketch

��� �� and ��
 For specialized match� the transformation is applied to the second type� while

for reorder� generalized� or type constructor match� the transformation is applied to the 	rst

type� The two transformations are independent� so the order in which the two transformations

is applied does not matter

matchreorder �matchspcl ��l� �q� � � T�� U
 matchE �T���l�� U�q� � matchspcl �matchreorder ��l� �q�

matchgen �matchspcl ��l� �q� � � U�� U�
 matchE �U��l� U��q� � matchspcl �matchgen ��l� �q�

matchtycon�matchspcl ��l� �q� � � VTC � U
 matchE �VTC �l� U�q� � matchspcl �matchtycon ��l� �q�

��� matchtycon �matchreorder ��l� �q� � matchreorder �matchtycon ��l� �q�

�a� matchtycon �matchreorder ��l� �q� � matchreorder �matchtycon ��l� �q�

Assume matchtycon � matchreorder ��l� �q�� Then � VTC � T�
 matchE �VTC � T���l�� �q�� T� �

VTC��� � VTC�T���� �by applying the de	nitions of VTC and T��� So matchE �T��VTC��l�� VTC�

T���l��� Therefore� since matchE is an equivalence match� matchE �T��VTC��l�� �q�� so matchreorder �

matchtycon ��l� �q��

�b� matchreorder �matchtycon ��l� �q� � matchtycon �matchreorder ��l� �q�

The proof is similar to �a��

��� matchtycon �matchuncurry ��l� �q� � matchuncurry �matchtycon ��l� �q�

The proof is similar to that for ���� using the fact that VTC �UC��� � UC �VTC���� which

follows from the de	nitions of VTC and UC�

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

��� matchtycon �matchgen ��l� �q� � matchgen �matchtycon ��l� �q�

�a� matchtycon �matchgen ��l� �q� � matchgen �matchtycon ��l� �q�

Assume matchtycon �matchgen ��l� �q��

Then � VTC� U
 matchE �VTC � U��l�� �q�� where U � ����v� � � � ��n�vn �

Let V �
TC � VTC � U � � �VTC ���v� � � � �VTC �n�vn �

We can prove VTC � U��l� � U � � V �
TC��l� by induction on the lengths of U and VTC �

So � U �� V �
TC such that matchE �U � � V �

TC��l�� �q��

Thus� matchgen �matchtycon ��l� �q��

�b� matchgen �matchtycon ��l� �q� � matchtycon �matchgen ��l� �q�

Assume matchgen �matchtycon ��l� �q��

Then � U� VTC such that matchE �U � VTC��l�� �q��

where VTC � �X��Y� � � � �Xn�Yn and U � ����v� � � � ��n�vn �

Let VY � a sequence of type constructor renamings� For each �Xi�Yi � VTC � if Yi � U then

�Zi�Yi � VY � where Zi is a new type constructor�

V ��
Y � the inverse of VY

V ��
X � a sequence of type constructor renamings� For each �Xi�Yi � VTC� if Xi � U then

�Yi�Xi � V ��
X

U � � �V ��
X � VY ��U� �i�e�� U � � �V ��

X � VY ���v� � � � �V
��
X � VY �n�vn �

V �
TC � V ��

Y � VTC
With some careful symbol manipulation� we can prove that U � VTC��l� � U � � V �

TC��l��

So � U �� V �
TC such that matchE �V �

TC �U
���l�� �q��

Thus� matchtycon �matchgen ��l� �q�� �

Informally� ���� ���� and ��� are commutative because the transformations are applied to

di�erent types and do not interact� ��� and ��� are commutative because the names of type

constructors are independent of the ordering of elements of a tuple or the �curried�ness� of a

function� Renaming a type constructor cannot introduce new elements into a tuple and vice

versa �and similarly for curried�ness��

Proving commutativity of type constructor renaming and generalized match ��� is more

di�cult� because the type constructor renamings and the variable substitutions interact� so it

is not true that for an arbitrary type constructor renaming� VTC � and variable substitution�

U � VTC � U��� � U � VTC���� For example� if VTC � �C�T � U � �� T�� � and � � �� then

VTC �U��� � � C� while U � VTC��� � � T �

However� given a type constructor renaming� VTC� and a variable substitution� U � we can

construct a new type constructor renaming� V �
TC � and a new substitution� U �� that are applied

in the opposite order to give the same result �i�e�� for �a�� VTC �U��� � U � �V �
TC��� and for �b��

U �VTC��� � V �
TC �U

������ The construction of V �
TC and U � varies in the two cases� In �a�� the

type constructor renaming stays the same and U � is the same as U except that VTC is applied

to each �i� In �b�� U � is like U except that it �protects� type constructors that should not be

���� PROPERTIES OF THE MATCHES ��

renamed by VTC and �unrenames� type constructors that VTC will rename� V �
TC applies VTC

and then �unprotects� the type constructors protected by U �� For example� let �l � � � � C�

�q � � T � � C � � T � Then matchgen � matchtycon ��l� �q� with U � �� T � � C�� and

VTC � �T�C � U � � �� C � � Z�� �C is renamed to Z to �protect� it from being renamed
 T

is �unrenamed� to C� since otherwise VTC could not be applied after U�� V �
TC � �C�Z �T�C

�C is �unprotected� after the renamings from VTC��

The remaining four pairs of matches are not commutative� For each pair� there is one

ordering that admits more matches than the other� The following theorem enumerates these

relationships�

Theorem �
	
� The following match compositions are not commutative� but the implications

hold�

�� matchgen �matchreorder ��l� �q� � matchreorder �matchgen ��l� �q�

�� matchgen �matchuncurry ��l� �q� � matchuncurry �matchgen ��l� �q�

�� matchspcl �matchuncurry ��l� �q� � matchuncurry �matchspcl ��l� �q�

�� matchuncurry �matchreorder ��l� �q� � matchreorder �matchuncurry ��l� �q�

We demonstrate non�commutativity by identifying a �l and �q such that one match holds

but the other does not�

��� Let �q � �bool �int� � �int �bool� and �l � �� �� Then �matchgen � matchreorder ���l� �q�

is false� but �matchreorder � matchgen ���l� �q� is true with the substitution ��int � bool��� and a

permutation that swaps the order of a ��element tuple� In the second case� we can apply the

reordering after we have substituted in type expressions that contain a tuple� However� in the

	rst case� variable substitution comes last� so there is no way to reorder any tuples introduced

by the substitution�

�� and �� Let �l � int � � and �q � �int � int� � int� Then matchuncurry �matchgen ��l� �q�

is true �as is matchuncurry � matchspcl ��q� �l��� But matchgen � matchuncurry ��l� �q� is false �as

is matchspcl � matchuncurry ��q� �l��� In the true case� variable substitution may introduce a

functional return value that is then uncurried� while in the false case� it is not possible to

instantiate the variable to the same form�

��� Let �l � int � bool � int and �q � bool � int � int � matchreorder � matchuncurry ��l� �q�

is true� but matchuncurry � matchreorder ��l� �q� is false� Uncurrying may introduce tuples that

are then reordered in the 	rst case but cannot be reordered in the second case�

Proofs of the implications show that the same or slightly modi	ed transformations from the

stronger match can be used to show the weaker match as well� For example� consider ���� For

any �l and �q such that �matchgen � matchreorder ���l� �q�� we can use the same substitution and

tuple transformation to get �matchreorder � matchgen ���l� �q�� since variable substitution cannot

change the number of elements in a tuple�

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

Composing a match with itself

Applying the same match twice does not make a di�erence� This is similar to the notion of

idempotence for an operation� but is for relations� and there is the possibility that in the case

where we compose the match with itself there are two di�erent transformations�

Theorem �
	
	 For R � ftycon� reorder� uncurry� gen� spclg�

matchR �matchR��l� �q�
 matchR��l� �q��

Proof Sketch

�
 Assume matchR��l� �q�� Then � T
 matchE �Tl��l�� Tq��q��� To showmatchR�matchR��l� �q��

we need a transformation pair T � such that matchE �T �l � Tl��l�� T
�
q � Tq��q��� For R �� uncurry�

let T �l � T �q � Id �the identity function�� For R � uncurry� T �l � T �q � UC� so we need to show

that UC�UC���� � UC���� which follows by cases from the de	nition of UC�

�
 Assume matchR �matchR��l� �q�� Then � T�� T�
 matchE �T�l �T�l��l�� T�q �T�q��q���

To show matchR��l� �q�� we need a transformation pair T � such that matchE �T �l ��l�� T
�
q��q��� For

R � uncurry� we again need the fact that UC�UC���� � UC��� �as shown above�� For R �

reorder� we use function composition to construct a new permutation 	� � 	� � 	�� For R �

fgen� spcl� tycong� we concatenate renamings �e�g�� U � � U�$U��� �

Composed Equivalence and Partial Orders

Composing an equivalence match with another equivalence match yields an equivalence match�

We have proved the following composed equivalence matches� Proofs are straightforward ma�

nipulations of transformations�

Theorem �
	
� The following are equivalence matches�

�� matchtycon �matchreorder

�� matchtycon �matchuncurry

�� matchreorder �matchuncurry

�� matchtycon �matchreorder �matchuncurry

Composing an equivalence match with a partial order match yields a partial order match�

Again� proofs are by manipulation of transformations�

Theorem �
	

 Let matchR 	 any subsequence of the sequence matchtycon � matchreorder �

matchuncurry � Then matchR � matchgen is a partial order match and matchR � matchspcl �

matchuncurry� is a partial order match�

���� PROPERTIES OF THE MATCHES ��

Composing generalized and specialized match yields a match that is neither an equivalence

match nor a partial order match� because the composed match is not transitive� Consider the

following counterexample� Let �� � int � int � �� � � � �� and �� � bool � bool � Then

matchgen �matchspcl ���� ��� and matchgen �matchspcl ���� ���� but not matchgen �matchspcl ���� ����

����� Relating the Matches

An important property of the relaxed matches and their compositions is monotonicity
 adding

a new relaxation to a match produces a superset of the existing matches� This property is

important for both retrieval and indexing applications� For retrieval� if we make a query with

a set of relaxations� we know that ��� we will not lose any matches if we add a relaxation� and

��� we will not add any matches if we remove a relaxation� For indexed libraries� this property

means that if an index uses the most relaxed match� we are assured that even using fewer

relaxations� the components matching a query must all be in the same node of the index�

We prove this property by considering two cases
 	rst� the relationship between exact

match and any of the relaxed matches �Theorem ������� and second� the relationship between a

composed match and the result of adding one more relaxation to that match �Theorem �������

Theorem �
	
� For R � ftycon� reorder� uncurry� gen� spclg�

matchE ��l� �q� � matchR��l� �q�

Proof For R �� uncurry� let Tl � Tq � Id �the identity function�� matchE ��l� �q� �

matchE �Tl�l� Tq�q�� so matchR��l� �q��

For R � uncurry� we can show that �l �
T
�q � UC��l� �

T
UC��q� from the de	nition of

UC� �

Theorem �
	
� LetM be a subsequence of �matchtycon�matchreorder� �matchuncurry��matchgen�

matchspcl �� where R is the set of relaxations used inM � Let M� be the result of adding one more

relaxation
in this order� to M � where R� is the set of relaxations used inM�
so jR�j � jRj!���

Then

M��l� �q� �M���l� �q�

Proof Sketch Let X � R�	 R �i�e�� X is the added relaxation�� Assume M��l� �q��

Case �
 X �� uncurry� let Tl � Tq � Id �the identity function�� Then Tl�l � �l and Tq�q � �q�

so M��l� �q� �M��Tl�l� Tq�q�� and �using the same transformations� M���l� �q��

Case �
 X � uncurry�

Case �a
 tycon� reorder �� R� Then uncurry is applied after any other transformations�

M��l� �q� � � Tl� Tq
 matchE �Tl�l� Tq�q� � matchE �UC�Tl�l�� UC�Tq�q�� � matchuncurry �

M��l� �q� �M���l� �q��

Case �b
 tycon � R� reorder �� R� Uncurrying does not change type constructors� so we

can uncurry before renaming type constructors and still match� �Full proof by cases using

de	nitions of UC and type constructor renaming��

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

Case �c
 reorder � R� tycon �� R� M��l� �q� � � T�� Tl� Tq
 matchE �T� � Tl�l� Tq�q��

Make T�� an extension of T� to account for uncurrying� so thatmatchE �T���UC�Tl�l��� UC�Tq�q���

Case �d
 reorder� tycon � R� The analysis is similar to that for cases �b and �c� �

����� Generic Match Forms

Recall the generic match de	nition �De	nition ������

M��l� �q� � � a transformation pair� T � �Tl� Tq�� such that Tl��l� R Tq��q�

Table ��� shows how R is instantiated and the kinds of transformations in Tl and Tq for each

of the basic function match de	nitions presented in this section as well as uni	cation� and two

of the combined matches to show how the matches can be combined� The relation R is either

�
T
�
� �� or exact function match �matchE �� The transformations Tl and Tq are one of Id �the

identity function�� V �variable renaming�� U �substitution�� VTC �type constructor renaming��

T� �permute tuple� or UC �uncurry��

Match R Tl Tq

Exact �
T

V Id

Type Constructor matchE VTC Id

Uncurry matchE UC UC

Reorder matchE T� Id

Generalized
 Id Id

Generalized �alternative� �
T

U Id

Specialized � Id Id

Specialized �alternative� �
T

Id U

Uni	cation �
T

U U

Reorder � Uncurry matchE T� � UC UC

Uncurry � Generalized matchE UC � U UC

Table ���
 Instantiations of generic function match

��	 Implementation

We have implemented a function signature matcher for Standard ML �SML� functions and

incorporated it into both a signature�based retrieval tool and an index builder� Everything

��	� IMPLEMENTATION ��

is implemented in SML as well� The SML type system has some features that we did not

discuss in the de	nitions because they are slightly unusual and not central to the notion of type

matching� In the implementation� we handle these features in as simple a way as possible
 two

record types match if the 	eld names are the same and the types of each 	eld match
 we do

not distinguish between eq types and non�eq types �eq types are polymorphic types that can

be compared for equality�
 and ref is treated as a regular type constructor �a value with type

� ref is a storage location for a value of type �
 the stored value can be modi	ed��

We designed the signature matcher to allow us to experiment easily with di�erent relaxed

matches and combinations of relaxed matches� The matcher has a parameter that speci	es

which relaxations to use and thus the user can �pick and choose� from among 	ve relaxations

�generalized� specialized� reorder� uncurry� and type constructor�� The order in which relax�

ations are composed in the implementation is the same as that discussed in the examples

of Section ���� When all relaxations are selected� the match is

�matchtycon � matchreorder� � matchuncurry� � matchgen � matchspcl ���l� �q�

For any subset of relaxations selected� the relative ordering remains the same� For exam�

ple� if only the reorder and generalized relaxations are selected� the match is �matchreorder� �

matchgen ���l� �q�� We say equivalently that this is �match with relaxations reorder and gen�

eralized�� Thus� the matcher implements exact match� each of the relaxed matches� and the

composed matches�

The implementation uses the recursive versions of reorder and uncurry �matchreorder� and

matchuncurry� �� The algorithms for the generalized� specialized� and type constructor relax�

ations are modi	cations of Robinson"s uni	cation algorithm� as presented by Milner �Mil�� �

The algorithms for the other relaxations are straightforward
 we use a simple transformation of

the type for the uncurry relaxations� and a backtracking algorithm for the reorder relaxation�

We can use a single match implementation and pick and choose relaxations because each re�

laxation a�ects di�erent aspects of the type� Tuple reordering a�ects only tuples� uncurrying

a�ects only higher�order function application� and type constructor renaming a�ects only type

constructors� Both generalized and specialized match a�ect type variables� but their interaction

is limited� since generalized match instantiates variables in �l and specialized match instantiates

variables in �q�

Without any relaxations� the signature matching algorithm is linear in the size of the type�

Allowing both variable instantiation and tuple reordering means that we must allow backtrack�

ing in the algorithm� For example� �int � bool� matches with �� � int� under the relaxations

generalized and reorder by instantiating � to bool� But the 	rst attempt to match the types

would instantiate � to int and then fail� so we must be able to backtrack� With reordering

and generalized or specialized relaxations� matching thus becomes exponential in the size of the

tuples in the types� In practice� most tuples have only two or three elements� so the match is

still e�cient� We do not expect the generalized and specialized relaxations to be used together�

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

so we have not analyzed the complexity of a match with both these relaxations�

����� Beagle	 Signature
based Retrieval

We used the function signature matcher to implement a signature�based retrieval tool called

Beagle�� Given a query and a set of relaxations� Beagle uses the appropriate match to compare

each function in the library with the query and returns the set of functions from the library that

match with the query� Beagle can use any library of SML functions� but in our examples� we

use the test library described in Section ������ which contains ���� SML functions� Chapter �

�in particular� Section ���� gives many example uses of Beagle� On a test suite of �� queries

on each of the �� combinations of the generalized� specialized� reorder� and uncurry relaxations

using our library� the average time to complete a query was ��� seconds� ranging from averages

of ��� seconds for exact match to ��� seconds for the match using all � relaxations�

Beagle"s user interface is intentionally simplistic � it is just gnu�emacs �Sta�� and a mouse�

The user de	nes the query and selects the desired relaxations before performing a search� The

output is a list of functions whose types match the query� along with the pathname for the

	le that contains the function� Figure ��� shows the results of a query as they appear in the

emacs bu�er ��a and �b denote type variables�� Clicking the mouse on a function in the list

causes the 	le in which the function is de	ned to appear in another bu�er� with the cursor

located at the beginning of the function de	nition� We chose to use emacs for our interface

rather than a �ashier graphical user interface in order to give programmers easy access to

signature�based retrieval from their normal software development environment� We wanted to

make signature�based retrieval as easily available for use as string searching�

����� Index Builder

We also used the function signature matching package to implement an index builder� a tool to

build an indexed library from a library of components� Section ��� describes indexed libraries

in detail� The index builder takes as input a component library and a pair of matches� where

the matches de	ne equivalence and partial ordering on components� The output of the index

builder is a directed acyclic graph in which each node contains an equivalence class of functions�

and edges are directed by the partial ordering relation� The implementation is completely

parameterized by the kind of elements in the library and the pair of matches� but examples

in Section ��� are the result of instantiating the library and match pair by a function signature

library and function signature matches�

�Beagles are hunting dogs that are well	known for their ability to �nd animals by following a scent�

��	� IMPLEMENTATION ��

Query � ���a list � �b list� �	 ��a � �b� list�

Matcher � Curry

Total number of objects found
 �

���

zip
���a list � �b list� �	 ��a � �b� list�

� �
 �usr�misc��sml�lib�edinburgh�portable�ListPair�sml

zip
���a list � �b list� �	 ��a � �b� list�

� �� �usr�misc��sml�lib�smlnj�lib�list�util�sml

zip
��a list �	 ��b list �	 ��a � �b� list��

� �� �usr�misc��sml�local�lib�Container�listFns�sml

���

Figure ���
 Output bu�er of Beagle

����� Why use ML�

Implementing signature matching and Beagle for ML gave us the opportunity to explore inter�

esting relaxed matches and also the composition of relaxed matches� A pleasant by�product of

the decision to use ML is that it led naturally to using ML to implement signature matching�

the retrieval tool �Beagle�� and the index builder� We believe that using ML led to an easier and

cleaner implementation� For example� it took only a few days to implement the index builder�

which consists of two modules �one for the node type and operations� and the other to build a

directed acyclic graph of nodes��

There were two drawbacks to our choice of ML� First� the type system is� in a sense� too

rich� It includes features like equality types and weak type variables� which are not common

features in type systems� We chose to exclude these features in order to have more general

function match de	nitions� A second drawback was the relatively small user community� While

the use of ML is growing� it is not yet a rival to C or C!! in number of users� This arose as a

problem when we were generating a component library and trying to evaluate the usefulness of

signature�based retrieval� A small user community means having fewer sources of components

that could be used as a library� The Community Library is large enough to preclude easy

retrieval of components by inspection� but since it is composed of three smaller� somewhat

overlapping libraries that are fairly well�known to local ML users� there was little incentive

for them to use Beagle� A larger more diverse library would have made Beagle a more useful

resource�

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

��
 Discussion

In this section� we discuss what the advantages of signature matching are� how the approach

applies to less�expressive type systems� why we chose to de	ne the matches in terms of transfor�

mations and to separate out each relaxation� and what some alternative matches and approaches

are� Much of our evidence of the usefulness of function signature matching and of which combi�

nations of relaxations are most likely to be used in practice is based on our experience in using

signature matching for retrieval and indexing� Thus� we refer the reader to our discussion of ap�

plications in Chapter � for examples of the use of signature matching and for recommendations

about which relaxations to use for each application�

Regardless of the application� signatures have a number of features that make them a good

choice as a method of comparing software components� First� signatures already exist for library

components� since they are either generated automatically by type inference systems� or they

are provided programmers for the compiler anyway� Second� using signatures for retrieval means

that users write queries in a language they already understand� Third� implementing signature

matching requires nothing more sophisticated than uni	cation� a standard algorithm already

used in some compilers to do type inference� Thus� signatures o�er useful semantic information

and are relatively �cheap� in terms of overhead�

The richness of a language"s type system a�ects how well signature matching works� How�

ever� even for languages with a fairly basic type system a function"s type carries a lot of

information about the function� so the approach still applies� as do the main match de	nitions�

Obviously� if a language does not allow higher�order functions� then the uncurry relaxation

does not make sense� Similarly� for a language without user�de	ned types the type constructor

relaxation does not make sense� However� even for a language with a non�polymorphic type

system� we can still use specialized match by extending the query language to include type

variables�

Our approach to signature matching is to de	ne each match in terms of a transformation�

Each of our match transformations produces a �wrapper� that transforms the type in some

way� For reorder and uncurry match� wrappers rearrange the form of a type �reordering tuple

elements or �un�currying�� For the other matches� wrappers rename or instantiate type variables

or type constructors� When we use signature matching to retrieve a library function or to

compare functions in order to substitute one for the other� a function is more useful if the

overhead of using it is relatively low� i�e�� if the component can be used directly� perhaps even

automatically� Having wrappers makes this possible�

Using transformations lets us de	ne the composition of matches in terms of composition of

the transformation functions� and to prove the various theorems about properties of composed

matches� The di�erent kinds of transformations �e�g�� variable substitutions� permutations� and

the possibility of interaction between transformations makes it necessary to be very careful in

doing the proofs�

��
� DISCUSSION ��

Using transformations also lets us de	ne each relaxation separately in terms of a transfor�

mation� We 	nd separating the relaxations to be a very important factor in our approach�

Which match de	nition is appropriate varies depending on the application� For example� the

match needed to retrieve a function in the library to concatenate strings is not the same as

the match needed to 	nd out how many functions in the library have a two�element tuple as

their input� In the 	rst case� we do not care about curriedness� but we know we cannot use a

more general function� so we use uncurry match with the query string � string � string
 in the

second case� we do not care about the actual types� only the form� so we use specialized match

with the query � � � � ��

Using transformations and de	ning each relaxation separately within a generic form also

allows us to consider new relaxations easily� There were some other relaxed matches that we

considered but do not include because they did not generate wrappers that would allow one

function to be used directly in place of the matching function� One such relaxation is to allow

matches where two tuples have a di�erent number of arguments� For example� a function get�n

that returns n elements of a list starting with the mth element� of type int � int � � list �

� list� would match with a function �rst�n that returns the 	rst n elements of a list� of type

int � � list � � list � We can easily de	ne this in a manner similar to reorder match� where the

permutation is not required to be a bijection� However� a wrapper that removes an element

from a tuple or adds an element to a tuple would also need to know something more about

the relationship between the two types in order to work properly �e�g�� to implement �rst�n

using get�n� the wrapper would need to instantiate the 	rst argument to get�n with ��� This

knowledge cannot be determined from just the signatures� Note that a user of a retrieval

system could still 	nd matches like this with a small sequence of queries� which allows the user

far greater control in determining which arguments are essential and which can be dropped�

Another relaxed match we did not include was one that ��attens� nested tuples� With this

match� the type ��int � bool� � int� would match �int � bool � int�� We do not include this match

because in actual code� tuples are usually nested for a reason� and thus� it would be unusual to

want to treat them as being the same�

The examples of relaxed matches we did not include illustrates a disadvantage to our ap�

proach
 there will always be more relaxations that we could consider� An alternative ap�

proach to de	ning function signature match uses category theory to de	ne isomorphisms of

types �Rit��� DC�� � The advantage to this approach is that the theory is complete� However�

the approach is not as �exible as using transformations� since it does not allow each relaxation

to be selected separately � there is a single match de	nition� Additionally� some of the axioms

required for completeness give rise to unintuitive isomorphisms �e�g�� unit � � is isomorphic to

���

�� CHAPTER �� FUNCTION SIGNATURE MATCHING

Chapter �

Function Speci�cation Matching

In this chapter� we de	ne function speci	cation matching� We begin by brie�y describing

Larch�ML� the speci	cation language we use� in Section ���� Section ��� presents the various

exact and relaxed speci	cation match de	nitions� We summarize properties of the matches and

how they relate to each other in Section ���� and describe our implementation of a function

speci	cation matcher in Section ����

��� Larch�ML Speci�cations

We use Larch�ML �WRZ�� � a Larch interface language for the ML programming language� to

specify ML functions and ML modules� Larch provides a �two�tiered� approach to speci	cation

�GH�� � In one tier� the speci	er writes traits in the Larch Shared Language �LSL� to assert

state�independent properties� Each trait introduces sorts and operators and de	nes equality

between terms composed of the operators �and variables of the appropriate sorts�� Appendix A

shows the Container trait� which de	nes operators to generate containers �empty and insert��

to return the element or container resulting from deleting an element from the beginning or end

��rst� last� butFirst� and butLast�� to return the length of a container �length�� and to determine

whether a container is empty �isEmpty��

In the second tier� the speci	er writes interfaces in a Larch interface language to describe

state�dependent e�ects of a program �see Figure ����� The Larch�ML interface language extends

ML by adding speci	cation information in special comments delimited by ��!� � �!��� The using

and based on clauses link interfaces to LSL traits by specifying a correspondence between

�programming�language speci	c� types and LSL sorts� For polymorphic sorts� there must be

an associated sort for both the polymorphic variable �e�g�� �� and the type constructor �e�g��

T � in the based on clause� The speci	cation for each function begins with a call pattern

consisting of the function name followed by a pattern for each parameter� optionally followed

by an equal sign ��� and a pattern for the result� In ML� patterns are used in binding constructs

to associate names to parts of values� For example�
x� y� names x as the 	rst of a pair and

��

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

signature Stack � sig
��! using Container !��
type � T ��! based on

Container�E Container�C !��

val create
 unit � � T
��! create � � � s

ensures s � empty !��

val push
 � T � �� � T
��! push �s� e� � s�
ensures s� � insert �e� s� !��

val pop
 � T � � T
��! pop s � s�
requires not �isEmpty �s��
ensures s� � butLast �s� !��

val top
 � T � �
��! top s � e

requires not �isEmpty �s��
ensures e � last �s� !��

end

signature Queue � sig
��! using Container !��
type � T ��! based on

Container�E Container�C !��

val create
 unit � � T
��! create � � � q

ensures q � empty !��

val enq
 � T � �� � T
��! enq � q� e � � q�
ensures q� � insert �e� q � !��

val rest
 � T � � T
��! rest q � q�
requires not �isEmpty �q��
ensures q� � butFirst �q� !��

val deq
 � T � �
��! deq q � e

requires not �isEmpty �q��
ensures e � �rst �q� !��

end

Figure ���
 The Toy Speci	cation Library �Larch�ML modules�

y as the second� The requires clause speci	es the function"s pre�condition as a predicate in

terms of trait operators and names introduced by the call pattern� Similarly� the ensures

clause speci	es the function"s post�condition� If a function does not have an explicit requires

clause� the default pre�condition is true� A function speci	cation may also include a modi�es

clause� which lists those objects whose values may change as a result of executing the function�

Larch�ML also includes rudimentary support for specifying higher�order functions�

The Larch�ML interface speci	cations in Figure ��� are the Toy Speci	cation Library� which

we use in our examples of speci	cation matching� The library contains two module speci	ca�

tions
 one for Stack with the functions create� push� pop� and top� and one for Queue� with

the functions create� enq� rest� and deq� We specify each function"s pre� and post�conditions in

terms of operators from the Container trait�

���� MATCH DEFINITIONS ��

��� Match De�nitions

For a function speci	cation� S� we denote the pre� and post�conditions as Spre and Spost �

respectively� Spred de	nes the interpretation of the function"s speci	cation as an implication

between the two
 Spred � Spre � Spost � Intuitively� this interpretation means that if Spre
holds when the function speci	ed by S is called� Spost will hold after the function has executed

�assuming the function terminates�� If Spre does not hold� there are no guarantees about the

behavior of the function� This interpretation of a pre� and post�condition speci	cation is the

most common and natural for functions in the standard programming model� For example� for

the Stack top function in Figure ���

� The pre�condition� toppre� is not �isEmpty �s���

� The post�condition� toppost� is e � last �s��

� The speci	cation predicate� toppred� is �not �isEmpty �s��� � �e � last �s���

To be consistent in terminology with Chapter �� we present function speci	cation matching

in the context of a retrieval application� Example matches are between a speci	cation S from

the Toy Speci	cation Library in Figure ��� and a query speci	cation Q� We assume that

variables in S and Q have been renamed consistently� This renaming is easily provided by the

signature matcher� and we are assuming that the signatures of S and Q match� For example�

if we compare the Stack pop function with the Queue rest function� we must rename q to s and

q� to s�� In this section we examine several de	nitions of the speci	cation match predicate�

We characterize de	nitions as either grouping pre�conditions Spre and Qpre together and post�

conditions Spost and Qpost together� or relating predicates Spred and Qpred � Both of these kinds

of matches have a general form�

De�nition �
�
� �Generic Pre�Post Match�

matchpre�post �S�Q� � �Qpre R� Spre� R� �Spost R� Qpost�

Pre�post matches relate the pre�conditions of each component and the post�conditions of each

component� Post�conditions of related functions are often similar� For example� they may

specify related properties of the return values� Similarly� pre�conditions of related functions

may specify related bounds conditions of input values� The relations R� and R� relate pre�

conditions and post�conditions respectively� and hence are either equivalence �
� or implication

���� but need not be the same� In most cases we require that both relations �R� and R�� hold�

and so R� is usually conjunction ��� but may also be implication ���� The matches may vary

from this form by dropping some of the terms� Table ��� summarizes how R�� R�� and R� are

instantiated for each of the matches in Section ������ For example� matchplug�in � �Qpre �

Spre� � �Spost � Qpost�� For matchplug�in�post and matchweak�post � R� is not instantiated

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

Match R� R� R�

Exact Pre�Post
 �

Plug�in � � �

Plug�in Post drop Spre % �
and Qpre

Weak Post drop Qpre � �

Table ���
 Instantiations of generic pre�post match ��Qpre R� Spre � R� �Spost R� Qpost��

because one or both of its arguments are dropped� Similarly� for matchplug�in�post � R� is not

instantiated because both Qpre and Spre are dropped�

De�nition �
�
� �Generic Predicate Match�

matchpred �S�Q� � Spred R Qpred

Predicate matches relate the entire speci	cation predicates� Spred and Qpred � of the two compo�

nents� The relation R is either equivalence �
�� implication ���� or reverse implication ����

Table ��� summarizes how R is instantiated for each of the matches in Section ������ Predicate

matches are useful in cases where we need to consider the relationship of the speci	cations as a

whole rather than relationships of the parts� for example� when we need to assume something

from the pre�condition in order to reason about post�conditions�

Match R

Exact Predicate

Generalized �

Specialized �

Table ���
 Instantiations of generic predicate match �Spred R Qpred �

It is important to look at both kinds of match� Which kind of match is appropriate may

depend on the context in which the match is being used or on the speci	cations being compared�

We present the pre�post matches in Section ����� and the predicate matches in Section ������

For each� we present a notion of exact match as well as relaxed matches�

���� MATCH DEFINITIONS ��

����� Pre�Post Matches

Pre�post matches on speci	cations S and Q relate Spre to Qpre and Spost to Qpost � We consider

four kinds of pre�post matches� beginning with the strongest match and progressively weakening

the match by relaxing the relations R� and R� from
 to �� by relaxing R� from � to �� or

by dropping one or more terms�

Exact Pre�Post Match

We begin by instantiating both R� and R� to
 and R� to � in the generic pre�post match

of De	nition ������ Two function speci	cations satisfy the exact pre�post match if their pre�

conditions are equivalent and their post�conditions are equivalent� If exact pre�post match

holds for two speci	cations� they are essentially equivalent and thus completely interchangeable�

Anywhere that one is used� it could be replaced by the other with no change in observable

behavior�

De�nition �
�
� �Exact Pre�Post Match�

matchE�pre�post �S�Q� � �Qpre
 Spre� � �Spost
 Qpost �

Exact pre�post match is a strict relation� yet two di�erent�looking speci	cations can still satisfy

the match� Consider for example the following query Q�� based on the Container trait� Q�

speci	es a function that returns a container whose size is zero� one way of specifying a function

to create a new container�

signature Q� � sig Q�

��! using Container !��

type � T ��! based on Container�E Container�C !��

val qCreate
 unit � � T

��! qCreate � � � c

ensures length �c� � � !��

end

Under exact pre�post match� Q� is matched by both the Stack and Queue create functions

in the Toy Speci	cation Library� �The speci	cations of Stack and Queue create are identical

except for the name of the return value��

Let us look in more detail at how the Stack create speci	cation matches with Q�� Let

S be the speci	cation for Stack create and Q� be the query speci	cation with c renamed to

s� Spre � true� Spost � �s � empty�� Q�pre � true� Q�post � �length�s� � ��� Since both

Spre and Q�pre are true� showing matchE�pre�post �S�Q�� reduces to proving Spost
 Q�post �

or �s � empty�
 �length�s� � ��� The �if� case ��s � empty� � �length�s� � ��� follows

immediately from the axioms in the Container trait about length� Proving the �only�if� case

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

Figure ���
 Idea behind plug�in match

��length�s� � �� � �s � empty�� requires only basic knowledge about integers and the fact that

for any container� s� length�s�
 �� which is provable from the Container trait�

Plug�in Match

Equivalence is a strong requirement� For plug�in match� we relax both R� and R� to � and keep

R� as � in the generic pre�post match of De	nition ������ Under plug�in match� Q is matched

by any speci	cation S whose pre�condition is weaker �to allow at least all the conditions that

Q allows� and whose post�condition is stronger �to provide a guarantee at least as strong as Q

provides��

De�nition �
�
	 �Plug�in Match�

matchplug�in�S�Q� � �Qpre � Spre�� �Spost � Qpost�

Plug�in match captures the notion of being able to �plug�in� S for Q� as illustrated in Figure ����

A speci	er writes a query Q saying essentially

I need a function such that if Qpre holds before the function executes� then Qpost

holds after it executes
assuming the function terminates��

With plug�in match� if Qpre holds �the assumption made by the speci	er� then Spre holds

�because of the 	rst conjunct of plug�in match�� Since we interpret S to guarantee that Spre �

Spost � we can assume that Spost will hold after executing the plugged�in S� Finally� since

Spost � Qpost from the second conjunct of plug�in match� Qpost must hold� as the speci	er

���� MATCH DEFINITIONS ��

desired� We say that S is behaviorally equivalent to Q� since we can plug�in S for Q and have

the same observable behavior� but this is not a true equivalence because it is not symmetric

we cannot necessarily plug�in Q for S and get the same guarantees�

Consider the following query� Q� is fairly weak speci	cation of an add function� It requires

that an input container has less than �� elements� and guarantees that the resulting container

is one element longer than the input container�

signature Q� � sig Q�

��! using Container !��

type � T ��! based on Container�E Container�C !��

val add
 � T � �� � T

��! add �q�� e� � q�

requires length �q��
 ��

ensures length �q�� � �length �q�� !�� !��

end

Under exact pre�post match� Q� is not matched by any function in the Toy Speci	cation

Library� but under plug�in match� Q� is matched by both the Stack push and the Queue enq

functions� Since push and enq are identical except for their names and the names of the variables�

the proof of the match is the same for both�

The pre�condition requirement� Qpre � Spre � holds� since Spre � true � To show that

Spost � Qpost � we assume Spost �q� � insert�e� q��� and try to show Qpost �length�q�� �

length�q�!��� Substituting for q� in Qpost � we have length�insert�e� q�� � length�q�!�� which

follows immediately from the equations for length�

Plug�in Post Match

Often we are concerned with only the e�ects of functions� thus a useful relaxation of the plug�in

match is to consider only the post�condition part of the conjunction� Most pre�conditions could

be satis	ed by adding an additional check before calling the function� Plug�in post match is

also an instance of the generic pre�post match of De	nition ������ with R� instantiated to �

but dropping Qpre and Spre �

De�nition �
�
� �Plug�in Post Match�

matchplug�in�post �S�Q� � �Spost � Qpost�

Consider the following query� Q� is identical to Stack top except that Q� has no requires

clause�

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

signature Q� � sig Q�

��! using Container !��

type � T ��! based on Container�E Container�C !��

val delete
 � T � �

��! delete s � e

ensures e � last �s� !��

end

Stack top does not match with Q� under either exact pre�post or plug�in match� since Q�"s

pre�condition is weaker than Stack top"s� Since the post�conditions are equivalent� Stack top

does match with Q� under plug�in post match�

Weak Post Match

Finally� consider this even weaker match� weak post match� We instantiate R� to �� as with

the plug�in matches� but relax R� to � and drop Qpre �

De�nition �
�

 �Weak Post Match �

matchweak�post�S�Q� � Spre � �Spost � Qpost�

A more intuitive� equivalent� predicate is �Spre � Spost� � Qpost � Sometimes assuming the pre�

condition of S helps in proving the relationship between Spost and Qpost � We use Spre and not

Qpre since Spre is likely to be necessary to limit the conditions under which we try to prove

Spost � Qpost � The additional assumption also means that we will have to provide an additional

�wrapper� in our code to guarantee Spre before we call the function speci	ed by S�

For example� suppose we wish to 	nd a function to delete from a container using the following

query Q�

signature Q� � sig Q�

��! using Container !��

type � T ��! based on Container�E Container�C !��

val remainder
 � T � � T

��! remainder s � s�

ensures length �s�� � �length �s� 	�� !��

end

Q� describes a function that returns a container whose size is one less than the size of the

input container� This is a fairly weak way of describing deletion� since it does not specify which

element is removed� But it still gives us a big gain in precision over signature matching� Q�

���� MATCH DEFINITIONS ��

Assume not�isEmpty�s�� Assume Spre ���
Assume s� � butLast�s� Assume Spost ���
length�s�� � length�s�	 � Attempt to prove Qpost ���
length�butLast�s�� � length�s�	 � Apply ��� to ��� ���

Let s � insert�ec� sc� Since s is not empty ���� and
s generated by empty and insert ���

length�butLast�insert�ec� sc��� � Substitute ��� for s in ��� ���
length�insert�ec� sc��	 �

length�sc� � length�insert�ec� sc��	 � Axioms for butLast ���
length�sc� � �length�sc� ! ��	 � Axioms for length ���
length�sc� � length�sc� Axioms for !� 	 ���

Figure ���
 Proof sketch of matchweak�post�pop� Q��

would not retrieve other functions with the signature � t � � t� for example� a function that

reverses or sorts the elements in the container� or removes duplicates��

While intuitively Q� would seem related to Stack pop and Queue rest� neither pop nor rest

match with Q� under either plug�in or plug�in post match� Consider Stack pop �the reasoning

is similar for Queue rest�� We cannot prove Spost � Qpost �i�e�� �s� � butLast�s�� � �length�s��

� length�s� 	��� for the case where s � empty � However� by adding the assumption Spre
�not�isEmpty�s���� we are able to show that Stack pop matches with Q� under weak post

match� as we see in the proof sketch in Figure ����

����� Predicate Matches

Recall the generic predicate match �De	nition ������

matchpred �S�Q� � Spred R Qpred

where the relation R is equivalence �
�� implication ���� or reverse implication ����

Note that this general form allows alternative de	nitions of the speci	cation predicates�

One alternative is Spred � Spre � Spost � which is stronger than Spred � Spre � Spost � This

interpretation is reasonable in the context of state machines� where the pre�condition serves as

a guard so that a state transition occurs only if the pre�condition holds�

As we did with the generic pre�post match� we consider instantiations of the generic predi�

cate match including an exact match and various relaxations�

Exact Predicate Match

We begin with exact predicate match� Two function speci	cations match exactly if their pred�

icates are logically equivalent �i�e�� R is instantiated to
�� This is less strict than exact

�We used Beagle� the signature	based retrieval tool� to �nd these examples� See Browsing � in Section �����
for details�

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

pre�post match �De	nition ������� since there can be some interaction between the pre� and

post�conditions �i�e�� matchE�pre�post � matchE�pred �� In fact� in cases where Spre � Qpre �

true� exact pre�post and exact predicate matches are equivalent�

De�nition �
�
� �Exact Predicate Match�

matchE�pred �S�Q� � Spred
 Qpred

Our example Q� is still matched by Stack and Queue create under exact predicate match� since

Spred
 Qpred � �true � �s � empty��
 �true � �length�s� � ���

� �s � empty�
 �length�s� � ��

which is exactly what we proved to show that Q� is matched by Stack and Queue create under

exact pre�post match�

Generalized Match

For generalized match� we relax R in the generic predicate match to �� Generalized match

works well in the context of queries and libraries
 speci	cations of library functions will be

detailed� describing the behavior of the functions completely� but we would like to be able to

write simple queries that focus only on the aspect of the behavior that we are most interested

in or that we think is most likely to di�erentiate among functions in the library� Generalized

match allows the library speci	cation to be stronger �more general� than the query� Note that

generalized match is a weaker match than plug�in match� Also� if we drop the pre�conditions

in generalized match� we get plug�in post match�

De�nition �
�
� �Generalized Match�

matchgen�pred �S�Q� � Spred � Qpred

For example� consider the following query� which is the same as Q� but with a requires clause�

signature Q� � sig Q�

��! using Container !��

type � T ��! based on Container�E Container�C !��

val remainder
 � T � � T

��! remainder s � s�

requires not �isEmpty �s��

ensures length �s�� � �length �s� 	�� !��

end

���� MATCH DEFINITIONS ��

Under exact predicate match� neither the Stack pop nor the Queue rest speci	cations

match with this query� Plug�in match does not work either because we need to assume Qpre

�not�isEmpty�s��� to show Spost � Qpost � However� under generalized match� Q� is matched by

both of these� The proofs are very similar to that for Q� in the weak post match �Figure �����

Consider another example specifying a function that removes the most recently inserted

element of a container� This query does not require that the speci	er knows the axiomatization

of containers� since the query uses only the container constructor� insert� The post�condition

speci	es that the input container� s� is the result of inserting the returned element� e� into

another container ss� The existential quanti	er �there exists� is a way of being able to name

ss�

signature Q� � sig Q�

��! using Container !��

type � T ��! based on Container�E Container�C !��

val delete
 � T � �

��! delete s � e

requires not �isEmpty �s��

ensures there exists ss�Container�C

s � insert �e� ss� !��

end

Again� under exact or plug�in matches� Q� does not retrieve any functions� Under gener�

alized match� the query retrieves the Stack top function� but not Queue deq� since the query

speci	es that the most recently inserted element is returned� To show matchgen �Stack �top� Q���

we consider two cases
 s �empty and s �insert
ec�sc�� In the 	rst case� the pre�condition for

both top and qTop are false� and thus the match predicate is vacuously true� In the second

case� the pre�conditions are both true� so we need to prove that Spost � Qpost � If we instantiate

ss to sc� the proof goes through�

Specialized Match

For specialized match� we instantiate R in the generic predicate match to �� Specialized match

is the converse of generalized match
 matchspcl�pred �S�Q� � matchgen�pred �Q� S�� A function

whose speci	cation is weaker than the query might still be of interest as a base from which to

implement the desired function� Specialized match allows the library speci	cation to be weaker

than the query�

De�nition �
�
� �Specialized Match�

matchspcl�pred �S�Q� � Qpred � Spred

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

Consider again the query Q�� which is the same as Stack top but without the pre�condition�

Stack top is thus weaker than Q�� but we can show that Q� implies Stack top and hence that

Q� is matched by Stack top under specialized match�

��� Properties of the Matches

����� Equivalence and Partial Order

Name of Match Predicate Symbol Match Form Kind of Match M�

�if Partial Order�

Exact Pre�Post matchE�pre�post Pre�Post Equivalence
Plug�in matchplug�in Pre�Post Partial Order Exact Pre�Post

Plug�in Post matchplug�in�post Pre�Post Partial Order Spost
 Qpost

Weak Post matchweak�post Pre�Post Neither
Exact Predicate matchE�pred Predicate Equivalence

Generalized matchgen�pred Predicate Partial Order Exact Predicate
Specialized matchspcl�pred Predicate Partial Order Exact Predicate

Table ���
 Summary of predicate symbol� match form� and kind of match for each function
speci	cation match�

In addition to distinguishing between instances of the generic pre�post matches and in�

stances of the generic predicate matches� we classify the function speci	cation matches by

whether they are equivalence matches� partial order matches� or neither� Recall from Chap�

ter � that both equivalence and partial order matches must be re�exive and transitive� In

addition� equivalence matches are symmetric and partial order matches are antisymmetric� Of

the seven matches de	ned in this chapter� only exact pre�post �De	nition ������ and exact pred�

icate �De	nition ������ are equivalence matches� The other matches are all partial order matches

except weak post match� which cannot be classi	ed as either because it is not transitive� Partial

order matches require an equivalence match �M�� to prove they are antisymmetric� For gener�

alized and specialized match� M� � matchE�pred
 for plug�in match M� � matchE�pre�post
 and

plug�in post match uses the match M� � Spost
 Qpost �essentially� dropping the pre�condition

match in exact pre�post�� Table ��� summarizes both classi	cations �Pre�Post or Predicate

Equivalence or Partial Order� and the equivalence match �M�� used by each partial order

match� as well as summarizing the names and predicate symbols for all the matches de	ned in

this chapter�

Proving that the matches are equivalences or partial orders is straightforward and based on

���� PROPERTIES OF THE MATCHES ��

�� Re�exive

matchplug�in�S� S� � �Spre � Spre� � �Spost � Spost�

� true � true
� true �

�� Transitive

Given ��� matchplug�in�S�Q� � �Qpre � Spre �� �Spost � Qpost�

��� matchplug�in�Q� T � � �Tpre � Qpre� � �Qpost � Tpost�

Show matchplug�in�S� T � � �Tpre � Spre� � �Spost � Tpost�

�a� Show Tpre � Spre

Tpre
���
� Qpre

���
� Spre

�b� Show Spost � Tpost

Spost
���
� Qpost

���
� Tpost �

�� Antisymmetric

Given ��� matchplug�in�S�Q� � �Qpre � Spre� � �Spost � Qpost�

��� matchplug�in�Q� S� � �Spre � Qpre �� �Qpost � Spost�

Then �Qpre
 Spre� and �Spost
 Qpost�

So matchE�pre�post �S�Q� �

Figure ���
 Properties of plug�in match�

the properties of
 and �� Consider� for example� plug�in match �De	nition ������� Figure ���

shows the proof sketches of the re�exivity� transitivity� and antisymmetry of plug�in match�

����� Relating the Matches

We relate all the function speci	cation match de	nitions in a lattice �Figure ����� An arrow

from a match M� to another match M� indicates that M� is stronger than M� �M��S�Q� �

M��S�Q� for all S�Q�� We also say that M� is more relaxed than M�� The rightmost path in

the lattice shows the pre�post matches
 the remainder of the matches are predicate matches�

Table ��� summarizes which of the functions in the Toy Speci	cation Library matches with

each of the six example queries under each of the seven function speci	cation matches we

have de	ned� For example� under generalized match� Q� is matched by both Queue�rest and

Stack�pop� but under plug�in post match� Q� is not matched by any functions in the library�

Parentheses around a function indicates that the match is implied by a stronger match �e�g��

matchplug�in�Q��Queue�enq� � matchgen �Q��Queue�enq���

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

Figure ���
 Lattice of function speci	cation matches

Exact Exact Plug�in Specialized Generalized Plug�in Post Weak Post
Pre�Post Predicate

Q� Q�create
Q�create�
Q�create�
Q�create�
Q�create�
Q�create�
Q�create�
S�create
S�create�
S�create�
S�create�
S�create�
S�create�
S�create�

Q� % % Q�enq %
Q�enq�
Q�enq�
Q�enq�
% % S�push %
S�push�
S�push�
S�push�

Q� % % % S�top % S�top
S�top�

Q� % % % % % % Q�rest
% % % % % % S�pop

Q� % % % % Q�rest % Q�rest
% % % % S�pop % S�pop

Q� % % % % S�top % S�top

Table ���
 Which functions match which queries �Q � Queue module and S � Stack module�

���� IMPLEMENTATION ��

��� Implementation

We use LP� the Larch Prover �GG�� � to attempt to prove that a match holds between two

speci	cations� LP is a theorem prover for a subset of multisorted 	rst�order logic� We have

implemented tools to translate Larch�ML speci	cations and match predicates into LP input�

Each of the speci	cation match examples given in this chapter �i�e�� all entries in Table ����

and in Section ��� have been speci	ed in Larch�ML� translated automatically to LP input� and

proven using LP�

For each speci	cation 	le �e�g�� Stack�sig�� we check the syntax of the speci	cation and

then translate it into a form acceptable to LP� Namely� we generate a corresponding �lp 	le

�e�g�� Stack�lp�� which includes the axioms from the appropriate LSL trait and contains the

appropriate declarations of variables� operators� and assertions �axioms� for the pre� and post�

conditions of each function speci	ed� Each function foo generates two operators� fooPre and

fooPost
 the axioms for fooPre and fooPost are the bodies of the requires and ensures clauses of

foo� Figure ��� shows Stack�lp and Q��lp� the result of translating the Stack speci	cation from

the Toy Speci	cation Library and the query Q� into LP format� The thaw Container Axioms

command loads the state resulting from executing the commands in Container Axioms�lp� We

use the lsl tool to generate the 	le Container Axioms�lp from the LSL trait Container�lsl�

We comment out the thaw command in Q��lp� since we assume that the query �Q�� uses the

same trait as the library speci	cation �Stack�� The command set name Q� tells LP to use

Q� as the pre	x for names of facts and conjectures� Commands declare var and declare op

declare variables and operators that will be used in the axioms� In particular� Q��lp declares

the element variable e� container variables q� and q�� and operators addPre and addPost� The

assert clause adds axioms to the logical system for addPre and addPost� corresponding to the

requires and ensures clauses of add� respectively�

Given the names of two function speci	cations� their corresponding speci	cation 	les� and

which match de	nition to use� we also generate the appropriate LP input to initiate an attempt

to show the match between those two functions� For example� Figure ��� shows the LP input to

prove the plug�in match of Stack push with Q�� The input to LP for the proof consists simply

of commands to load the theories for the library and query �execute Stack and execute Q���

and the proof statement �prove � � ���

We could alternatively have chosen to generate the LP axioms on a per�query basis rather

than generating axioms for each �sig 	le �i�e�� given a particular pair of functions� generate

only the necessary axioms for that particular pair�� However� we assume that generating an �lp

	le from a �sig 	le will happen only once and that there may be several queries on a library

speci	cation or several match de	nitions for a particular query� This approach enables us to

consider module�level matches as well�

Since LP is designed as a proof assistant� rather than an automatic theorem prover� some of

the proofs require user assistance� Each of the �� entries in Table ��� corresponds to a match

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

& Stack�lp
&& Using Container
thaw Container Axioms
&& signature Stack
set name Stack
declare var

e
 E
s
 C
s�
 C
��

declare op
createPre
 	�Bool
createPost
 C 	�Bool
pushPre
 	�Bool
pushPost
 C� E� C 	�Bool
popPre
 C� C 	�Bool
popPost
 C� C 	�Bool
topPre
 C� E 	�Bool
topPost
 C� E 	�Bool
��

assert
createPre � true

createPost�s� � �s � empty�

pushPre � true

pushPost�s� e� s�� � �s� � insert�e�s��

popPre�s� s�� � ���isEmpty�s���

popPost�s� s�� � �s� � butLast�s��

topPre�s� e� � ���isEmpty�s���

topPost�s� e� � �e � last�s��
��

& Q��lp
&& Using Container
&&& thaw Container Axioms
&& signature Q�
set name Q�
declare var

e
 E
q�
 C
q�
 C
��

declare op
addPre
 C� E� C 	�Bool
addPost
 C� E� C 	�Bool
��

assert
addPre�q�� e� q�� � �length�q��
 ���

addPost�q�� e� q�� �

�length�q�� � length�q�� ! ��
��

Figure ���
 LP input for Stack and Q�

that we have used LP to prove� In characterizing how much assistance the proofs require� we

consider only the �� entries in the table that are not in parentheses �call these the primary

matches�� since the proofs for entries in parentheses follow automatically from an entry to the

left in the same row� Table ��� summarizes the level of user assistance required for the primary

matches� None means the proof went through with no user assistance� guidance means that the

proof required user input to apply the appropriate proof strategies� and lemma means that the

user had to prove additional lemmas to complete the proof�

���� IMPLEMENTATION ��

& PlugIn�Q��Stack�lp
&& Load library and query specs
execute Stack
execute Q�

&& Plug�in Match
 �Qpre �� Spre� �n �Spost �� Qpost�
prove �addPre�s� e� s�� �� pushPre� �n �pushPost�s� e� s�� �� addPost�s� e� s���

Figure ���
 LP input for plug�in match of Stack�push with Q�

Query Library Match User Assistance

Q� Queue�create Exact Pre�Post lemma
Q� Stack�create Exact Pre�Post lemma

Q� Queue�enq Plug�in none
Q� Stack�push Plug�in none

Q� Stack�top Specialized none
Q� Stack�top Plug�in Post none

Q� Queue�rest Weak Post lemma
Q� Stack�pop Weak Post guidance

Q� Queue�rest Generalized lemma
Q� Stack�pop Generalized guidance
Q� Queue�rest Weak Post lemma
Q� Stack�pop Weak Post guidance

Q� Stack�top Generalized guidance
Q� Stack�top Weak Post guidance

Table ���
 Level of user assistance required for LP proofs of queries

Four of the proofs needed no assistance from the user
 plug�in match of Stack�push and

Queue�enq with Q�� and plug�in post and specialized matches of Stack�top with Q�� Plug�in

match of Stack�push with Q� is the example shown in Figure ���
 executing the statements in

Figure ��� results in the response from LP that the match conjecture was proved by normal�

ization
 no user assistance was required�

Generalized match of Stack�pop with Q� is an example of a match that requires some user

assistance to LP� The user must tell the prover to use induction in the proof� and then how to

instantiate the existential variables� Figure ��� shows an LP�annotated script for this proof�

The lines with boldface are user input

� and � are proof notes from LP
 and & is the

comment character� The line � � conjecture indicates that LP completed the proof� We

classify the user assistance for this proof as simply guidance � telling LP what proof strategy

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

& exec M�Gen�Q��Stack
&& Load library and query specs
execute Stack
execute Q�

&& Generalized Match
 �Spre �� Spost� �� �Qpre �� Qpost�
prove �topPre�c� e� �� topPost�c� e�� �� �deletePre�c� e� �� deletePost�c� e��

& Additional user input
resume by induction

� basis subgoal
� basis subgoal

� induction subgoal
resume by specializing cc to cc�

� specialization subgoal
� specialization subgoal

� induction subgoal
� conjecture
&& End of input from 	le 'Gen�Q��Stack�lp"�

Figure ���
 LP output for generalized match of Stack�pop with Q�

to use next in cases where the default strategies do not complete the proof� A total of 	ve

proofs require guidance
 generalized and weak post matches of Stack�top with Q�� generalized

and weak post matches of Stack�pop with Q�� and weak post match of Stack�pop with Q��

The remainder of the proofs �exact pre�post match of Queue�create and Stack�create with

Q�� weak post match of Queue�rest with Q�� and generalized and weak post matches of

Queue�rest with Q�� required not only guidance but also additional lemmas in order to prove

the match� In all 	ve cases� one of the additional lemmas is �
insert
e�q� 	 empty� �some�

thing that might reasonably be included in a more complete theory of containers�� The proofs

for Queue�rest with Q� and Q� additionally need the lemma length
butFirst
insert
e�q��� 	

length
q�� which falls out directly from the axioms for Stack but not Queue� The proofs for

Q� need additional lemmas about the lengths of containers� Figure ��� shows an LP�annotated

script for the proof of weak post match of Queue�rest with Q��

���� IMPLEMENTATION ��

& exec M�Weak�Q��Queue
&& Load library and query specs
execute Queue
execute Q�

set name Lemma
prove ��insert�e�q� � empty� by contradiction

� contradiction subgoal
critical�pair (Hyp with Container
� contradiction subgoal

� conjecture

prove length�butFirst�insert�e�q��� � length�q� by induction on q

� basis subgoal
� basis subgoal

� induction subgoal
� induction subgoal

� conjecture

set name Query
prove restPre�q� q�� �n restPost�q� q�� �� remainderPost�q� q��
resume by induction on q

� basis subgoal
� basis subgoal

� induction subgoal
� induction subgoal

� conjecture
&& End of input from 	le 'Weak�Q��Queue�lp"�

Figure ���
 LP output for weak post match of Queue�rest with Q�

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

��	 Discussion

In this section� we discuss the advantages and disadvantages of speci	cation matching� why we

chose to de	ne the particular matches we did� and our implementation choices�

����� Speci�cation Matching

Speci	cations provide a much richer description of a component� and thus speci	cation matching

is more discriminating than signature matching� For example� speci	cation matching allows us

to distinguish between functions for set union and set intersection� or between stacks and

bags� which we cannot do with signature matching� If two component speci	cations match� we

know that certain guarantees about the behavior of the system will hold if we substitute one

component for the other� The particular guarantees depend on which match we use� Section ���

describes how to use speci	cation matching to show substitution and subtyping relationships�

Speci	cation matching is far more �expensive� in two respects
 ��� the non�trivial overhead

of writing the speci	cations and ��� the necessity of using theorem proving to show a match�

Fortunately� we can use theorem proving technology to automate the match process rather than

proving the match by hand� The additional overhead of speci	cation matching is acceptable

for applications where signatures are not descriptive enough and we are willing to expend a

little extra e�ort to specify and prove that a match holds� For example� if we want to replace

a component in a safety�critical system with an updated� veri	ed library component� we would

want to prove we could substitute the library component for the existing component�

����� Match De�nitions

We de	ne a variety of matches� As with signature matching� which match is most appropriate

to use will depend on the particular situation� First� the choice of match depends on the context

in which the match is used � how strong of a guarantee is needed about the relation between the

two speci	cations� If we want to know that we can substitute one function for the other and

still have the same behavior� we would use plug�in match or an exact match� In contrast� if we

are only interested in whether the functions have the same e�ects and we are willing to check

pre�conditions separately� we can use weak post match� Which match is most appropriate also

depends on the actual form of the predicates� In some cases� pre�post matches will be easier to

prove with a theorem prover since the pre�post matches relate pre�conditions to pre�conditions

and post�conditions to post�conditions� and for two speci	cations� S and Q� it is likely that

Spre and Qpre are related and hence we can reason about that relation �and similarly for Spost
and Qpost �� In other cases� however� it is necessary to make some assumptions about the pre�

condition in order to prove a relation between the post�conditions� In these cases� the predicate

matches are easier to prove�

There are� of course� many other variations of logical operators connecting Spre � Spost � Qpre �

��	� DISCUSSION ��

and Qpost � but they do not have the same correspondence to an intuitive relation between

S and Q that the de	nitions presented here do� We should also note that not all of these

other variations would 	t into the two generic de	nitions we present in Section ��� since the

generic de	nitions restrict the way terms are combined and which logical operators can be used�

However� all would 	t in the lattice of Figure ��� since the lattice has no such restrictions�

Another class of relaxed speci	cation match de	nitions takes advantage of the structure of a

particular predicate and relaxes the match in some way based on that structure� For example�

if post�conditions were always in conjunctive normal form� we could de	ne a relaxed match that

allowed some of the conjuncts of either the library or the query to be dropped�

����� Choice of Language and Theorem Prover

There are two features of Larch�ML that a�ect the ease with which we can prove a speci	cation

match� The 	rst feature is separate pre� and post�condition clauses� The matches in which

we are interested are easy to express using this kind of speci	cation� particularly the pre�post

matches �Section ������� The pre�post matches best describe substitutability� We can substitute

S for Q if S"s pre�condition is weaker that Q"s and S"s post�condition is stronger than Q"s

�i�e�� S works under at least as many conditions as Q and guarantees at least as much�� We

cannot express this notion without separating the pre� and post�conditions in the de	nition�

Using a speci	cation language with explicit pre� and post�conditions makes it easy to use

pre�post matches� That does not preclude the use of speci	cation matching on speci	cation

languages that do not explicitly separate the pre�condition� however� The predicate matches

�Section ������ are still easy to use with such languages� and� with some additional work� we

could also derive the pre� and post�conditions of the speci	cations to use the pre�post matches�

A second feature of Larch�ML is its use of the Larch two�tiered approach� We use the

LSL tier to address the problem of needing a theory of common base terms when matching

two speci	cations� In most speci	cation languages �e�g�� Z �Spi�� � VDM �Jon�� �� we would

rely on the built�in expression language as the base theory� LSL makes it possible to de	ne

an extensible collection of general traits �e�g�� Container�� upon which Larch�ML speci	cations

are built� The traits provide a common vocabulary for operators in two speci	cations that we

want to match� each of which may be speci	ed by di�erent people� We assume that the number

of such general traits would be relatively small� and thus speci	ers could easily become familiar

with them� We discuss how to prove a match between two speci	cations based on di�erent

traits in Section ������

The disadvantage of the two�tiered approach is that it is� in some ways� twice the work� A

user must learn not just one but two speci	cation languages�� which adds to the already big

e�ort required to use formal speci	cations at all�

�Even assuming that a set of general traits already exists� the user must learn enough about LSL to be able
to use the traits�

�� CHAPTER �� FUNCTION SPECIFICATION MATCHING

Choosing Larch led naturally to using LP to prove speci	cation matches� There is al�

ready a tool to translate LSL speci	cations to LP input� and implementing a translator for

Larch�ML speci	cations was straightforward� LP is designed to be a proof assistant rather

than a completely automatic theorem prover� Thus� it is not surprising that a number of our

proofs required user guidance� Since our main concerns with the implementation of function

speci	cation match were to do some examples to demonstrate the validity of the approach and

to compare the various match de	nitions� the need for user assistance was not a particular

problem� However� it does raise questions about how hard it would be to prove match between

signi	cantly larger or more complex speci	cations�

Additionally� although our 	nal proofs were not ultimately long or complex� we did spend

quite a while to arrive at some of those proofs
 theorem proving is like programming in that there

is some �art� involved after all the theory and syntax are learned� An example of something

that requires an artful touch in LP is the use of the critical�pairs command� Deciding when to

apply the technique and to which pairs requires some experience� While this problem is not

unique to speci	cation matching� it is still worth noting that some of the same problems arise

with speci	cation matching as are found in other applications that use theorem provers�

Chapter �

Module Matching

The previous two chapters address the problem of matching functions using signature and

speci	cation matching� However� a programmer may need to compare collections of functions�

e�g�� sets of operations on abstract data types� This chapter moves up a level in granularity to

describe matching of modules�

Most modern programming languages explicitly support the de	nition of abstract data types

through a separate modules facility� e�g�� ML modules� CLU clusters� Ada packages� or C!!

classes� Modules are also often used to group sets of related functions� like I�O routines� As with

functions� providing the signature for a module is no additional work for the programmer� since

either the programmer must provide the signature anyway for type checking� or the signature

is generated automatically by type inference� Although speci	cations do require additional

work� we hope that this thesis provides additional motivation for programmers to use formal

speci	cations�

In this chapter� we de	ne module interfaces �signatures and speci	cations at the module

level� and module matching� At its core� a match between two modules requires a match

between pairs of functions in the modules� The interesting thing about our module match

de	nitions is that they have the function match as an explicit parameter� Thus� whether a

module match is a signature match or a speci	cation match depends only on whether the

function match parameter is a function signature match �i�e�� any match from Chapter �� or a

function speci	cation match �i�e�� any match from Chapter ��

We begin the chapter with our de	nitions of module match �Section ����� As with the

function match predicates� we de	ne an exact match and various relaxations� Section ���

discusses the various properties of the matches � how they relate� which matches are equivalence

or partial order matches� and various potential extensions to the match� Section ��� describes

the implementation of module�signature�match�based retrieval� using the function signature

match implementation from Section ��� and some shell scripts�

��

�� CHAPTER �� MODULE MATCHING

��� Match De�nitions

A module interface is a pair� � � h�T ��F i� where

� �T is a set of user�de	ned types� and

� �F is a set of function abstracts�

�T introduces the names of user�de	ned type constructors that may appear in �F � A

function abstract is the function name together with either a function signature or a function

speci	cation� We include the function name both as useful feedback to the user and to dis�

tinguish between abstracts that would otherwise be the same �thus �F is a set rather than a

multiset�� Within a given interface� all abstracts must be the same kind� If the abstracts are

signatures� the interface is a signature interface
 if the abstracts are speci	cations� the interface

is a speci�cation interface� We use � to denote function abstracts� Since we can think of a

signature as a very rudimentary speci	cation� it is reasonable to use the same notation for

both�

For the examples in this chapter� we use the Toy Signature Library in Chapter � as the

library� This library contains three module signature interfaces
 List� Set� and Queue� The Set

interface has one user�de	ned type ��T � f� Tg� and seven signatures in �F � For consistency�

we assume that the List interface has a type declaration for � list� even though list is a built�in

type� Since our library for the examples consists of signature interfaces� we give examples of

module signature matching� However� the de	nitions of module match apply for both signature

and speci	cation interfaces� Section ����� provides an example of module speci	cation matching�

For a library interface� �L � h�LT ��LF i� to match a query interface� �Q � h�QT ��QF i�

there must be correspondences both between �LT and �QT and between �LF and �QF � These

correspondences vary for the exact and relaxed module matches�

����� Exact Match

De�nition 	
�
� �Exact Module Match�

M�matchE��L��Q�matchfn� �

� total functions

UF
 �QF � �LF and

UTC
 UserOp��QT � � UserOp��LT � �with corresponding renaming TC�

such that ��� UTC and UF are one�to�one and onto

��� � � � �QT �matchE ��� TC ��

��� � �q � �QF �matchfn�UF ��q�� TC �q�

UTC and TC ensure that user�de	ned types are named consistently in the two interfaces�

For a set of user�de	ned types �T � UserOp��T � extracts the set of type constructor variables in

���� MATCH DEFINITIONS ��

�T �e�g�� for �T � f� T� int Xg� UserOp��T � � fT�Xg�� The domain of function UTC is a set

of type constructor variables
 from it we construct the type constructor renaming sequence TC�

which is applied to function signatures or to the signature part of function speci	cations� For

each uq � UserOp��T �� the renaming �UTC�uq��uq appears in TC� To avoid potential naming

con�icts� we assume that UserOp��QT� and UserOp��LT � are disjoint �if they are not� we can

easily make them so��

UF maps each query function abstract �q to a corresponding library function abstract�

UF ��q�� Since any user�de	ned types in UF ��q� come from �LT � we apply TC to �q to ensure

consistent naming of type constructors� The correspondence between each TC �q and UF ��q�

is that they satisfy the function match� matchfn � Since UF is total� one�to�one� and onto� the

number of functions in the two interfaces must be the same �i�e�� j�LF j � j�QF j�� and likewise

for UTC � �LT � and �QT �

The function match parameter �matchfn� gives us a great deal of �exibility� allowing any of

the function matches de	ned in Chapters � or � to be used in matching the individual function

abstracts in a module interface� For the matches to work� of course� the two interfaces and the

function match must all be signatures �module signature match� or must all be speci	cations

�module speci�cation match��

Let us consider an example� Suppose we want a module that implements a functional

abstract container� We describe it with the signature interface M�� shown below

M�
 �QT � f � C g

�QF � f create
 unit � � C�

add
 � C � �� � C�

delete
 � C � ��

remainder
 � C � � C g

If we use exact module match with exact function match� M� is matched by the Queue

interface in the Toy Signature Library �i�e�� M�matchE�Queue�M��matchE�� with UTC�T � � C

and the obvious mapping of functions� Note that even allowing more relaxed function matches�

exact module match of M� with List or Set will never be true because both of these interfaces

have more functions than M�� and UF must be one�to�one and onto�

����� Partial Matches

Generalized Match

Should a querier really have to specify all the functions provided in a module in order to 	nd

the module� A more reasonable alternative is to allow the querier to specify only the functions

of interest and match a module that is more general in the sense that its set of functions may

properly contain the query"s set�

�� CHAPTER �� MODULE MATCHING

De�nition 	
�
� �Generalized Module Match�

M�matchgen ��L��Q�matchfn� is the same as M�matchE��L��Q�matchfn� except

UTC and UF need not be onto�

Thus� whereas with M�matchE��L��Q�matchfn�� j�LF j � j�QF j� with M�matchgen ��L��Q�matchfn��

j�LF j
 j�QF j� and �LF � TC �QF �where TC �QF is a shorthand for applying TC to each

element of �QF ��

In Standard ML� the notion of signature matching is applied in determining when a structure

�code module� matches a signature� We can de	ne this in terms of generalized module match�

There are two conditions for a structure to match a signature� First� the structure must provide

at least all the values �types and functions� declared in the signature� Second� the type of a

function in the structure must be at least as general as that function"s type in the signature�

Let �Q be an ML signature� and �S be the actual signature of an ML structure S� Then the

structure S matches the signature �Q if M�matchgen ��S ��Q�matchgen��

Generalized module match is also the module match we expect to be most useful in practice�

Library interfaces will typically provide a range of functions� A querier is likely to need only

some of them and should have to specify as little as possible� Consider query M� again� but with

generalized module match� If we instantiate matchfn with matchE � M� is still only matched by

Queue� However� if we use matchtycon �matchreorder as the function match� M� is matched by

the List interface as well� However� it is not matched by Set� since Set does not have a function

that matches with the delete or remainder functions in M��

The following very simple query eliminates the distinction between modules that remove

a speci	ed object �like Set� and modules that remove a pre�determined object �like List and

Queue�

M�
 �QT � f � C g

�QF � f create
 unit � � C�

add
 � C � �� � C g

M� itself is a subset of M� �i�e�� M�matchgen �M��M��matchE��� In addition� with the

function match matchtycon � matchreorder � M� is matched by all three interfaces in the Toy

Signature Library� Table ��� summarizes the examples� showing which library interfaces match

with which queries under exact and generalized module match and various function matches�

Specialized Match

Specialized module match is the opposite of generalized module match� With specialized module

match� a library need not have all the functions de	ned in the query� This is useful in practice�

���� MATCH DEFINITIONS ��

matchfn
Query Module Match matchE matchreorder matchtycon �matchreorder
M� Exact Queue Queue Queue

M� Generalized Queue Queue Queue
List

M� Generalized M� M� M�
Queue Queue Queue

Set Set
List

Table ���
 Which modules match which queries

If a library module has most of the functionality you need� it may be possible to implement the

remaining functions using the ones provided� or to use existing ones as prototypes�

De�nition 	
�
� �Specialized Module Match�

M�matchspcl��L��Q�matchfn� � M�matchgen ��Q��L�matchfn�

where matchfn ��q� �l� � matchfn��l� �q�

matchfn reverses the order of the arguments to matchfn � In particular� matchgen � matchspcl �

We cannot simply use M�matchgen��Q��L�matchfn� because partial order matches are antisym�

metric� so the order of arguments to matchfn matters� For example� consider the following query

M�

M�
 �QT � f string C g

�QF � f create
 unit � string C�

add
 string C � string � string C�

delete
 string C � string�

remainder
 string C � string C�

length
 string � int g

M� is like Queue except that it uses a more speci	c type� string C� and has an extra

function� length� Suppose we use the function match matchgen with specialized module match�

Then M�matchspcl �Queue �M��matchgen� � M�matchgen �M��Queue�matchspcl �� which is true

the functions in Queue are matched by a subset of the functions in M� under specialized

function match� If we did not reverse the order of arguments to matchfn � the match would not

hold �i�e�� M�matchgen �M��Queue�matchgen � is false� because the function signatures in M�

are not more general than those in Queue�

�� CHAPTER �� MODULE MATCHING

��� Properties of the Matches

����� Distinctions Between the Matches

The key di�erence between the three module match de	nitions lies in the relation between the

sets of function abstract �QF and �LF � All three de	nitions use the same two mappings� UTC
and UF � to draw correspondences between two interfaces
 what varies is whether all functions

in a particular interface are required to have a corresponding function in the other interface�

That is� what varies is the relation between the sets �QF and �LF � Table ��� summarizes the

set relation R for each match�

Match �QF R �LF

Exact �

Generalized �

Specialized �

Table ���
 Relation between �QF and �LF for the module matches�

����� Equivalence and Partial Order Matches

As with function matches� we classify module matches by whether they are equivalence matches

or partial matches �Section ������ pg� ���� The classi	cation is dependent to some extent

on whether the function match used as a parameter to the module match �matchfn � is an

equivalence match or a partial order match� Exact module match is an equivalence match

when matchfn is instantiated with an equivalence match� a partial order match when matchfn
is instantiated with a partial order match� and neither if matchfn is neither� Because the subset

relation is antisymmetric� generalized and specialized module match are partial order matches

when matchfn is either an equivalence match or a partial order match and neither if matchfn is

neither�

��� Implementation

We used Beagle� the retrieval tool for functions described in Section ���� and some shell scripts

to implement M�Beagle� a signature�based retrieval tool for modules using generalized module

match� We make two simplifying assumptions
 ��� any type constructor renamings are handled

by matchfn �thus we ignore �QT and �LT � and ��� there are not two function signatures in �QF

���� DISCUSSION ��

that match the same function signature in �LF � Given a query interface �Q � h�QT ��QF i

�where �QF � f��� � � � �ng� and a library of interfaces L� we do the following

��� For each �i � �QF � create a set of modules Mi � L�

�L �Mi i� � �l � �LF such that matchfn��l� �i��

��� M � M� � � � � �Mn

Mi is the set of module interfaces that contain a function signature that matches �i� M is the

intersection of the Mi"s� and is the set of interfaces that match �Q� That is� for �L � L
 �L �M

i� M�matchgen ��L��Q�matchfn��

If we eliminate our two simplifying assumptions� it would be necessary to write a slightly

more complex tool that calculates TC and that tries several potential function mappings in

the cases where multiple query function signatures match a library function signature �i�e�� we

would need to be able to try various permutations of the function mapping�� In practice� such a

tool should not be signi	cantly more complex than our current implementation� We can reduce

the search space for permutations with a few simple heuristics� One such heuristic would be to

consider a mapping from �q to �l only if they have the same number of input arguments �if the

function match is an uncurry match� do the uncurrying 	rst�� Another heuristic for the case

where matchfn does not include matchgen or matchspcl would be to check for occurrences of the

same base types in �q and �l�

In the case where we simply wish to compare a particular pair of interfaces �e�g�� for sub�

typing�� it is also reasonable to require the user to supply the mappings UTC and UF � For

example� for speci	cation interfaces� if the user supplies a pairing of function names� we auto�

matically generate the LP assertions for the match �we assume UTC is the identity function��

See Section ����� for details�

��� Discussion

The module matches are highly parameterized and extensible� The function match relation

between the pairs of functions is completely orthogonal to the module match de	nitions
 we

can instantiate matchfn with any of the signature or speci	cation function matches� In fact�

we could easily de	ne another relaxed module match where the function match can vary on a

per�function�abstract basis�

Most generally� a module interface consists of some global information ��T � and a set of

functions ��F �� This framework allows the potential to extend the module interface to contain

even more information� One such instance is the way the de	nitions allow not only signatures

but also speci	cations� Additionally� we could extend module speci	cation interfaces to include

information about shared types or global invariants in �T � A new module match de	nition

including global invariants would be similar to De	nition ����� of exact module match� but

�� CHAPTER �� MODULE MATCHING

UTC would change and point ��� of the de	nition would require some kind of consistency

between invariants�

We are able to use module matching to relate two modules� Section ����� contains an

example of how we use module speci	cation match to show that one type is a behavioral

subtype of another� When comparing two modules to show they are related �e�g�� one is a

subtype of another�� the focus is on the relations between the types and functions provided by

the modules� i�e�� their interfaces� which is exactly the focus of these module matches�

In cases where we want to locate a set of functions with particular types� module match can

be used for retrieval� but it is less e�ective for this� One problem is that whereas with function

matching� it is very easy for a user to �tweak� their query and relaxations based on previous

results� the tweaking in a module must be done on a per�function basis� which increases the

number of queries exponentially� Consider a simple example� Suppose we need to create a

container and use the query unit � � C� Suppose that does not retrieve a satisfactory result�

so we use the query � C to try to 	nd initial values for empty containers� Next� suppose

we want to 	nd a function to add an element to a container� We are not sure whether we

need an additional argument for the location of the element in the container� so we try both

��� C � � C and ��� �� C � � C� In both these cases� there is very little overhead involved

in trying two queries rather than one� But if this were a module match� we would have to try

all four combinations of create and insert signatures in order to cover all the possibilities�

The problem here is that the focus of the module matches is the interface of a component

�the types and functions provided by the module�� but the conceptual goal of someone who

wants to retrieve a component is likely to be more abstract� for example� �I need a container�

rather than �I need a component that has a create function and an add function�� So what we

need is a more abstract notion of the type of a module� in addition to the interface� With such

a module type system� we could then use function signature matching to search for what we

want� for example� for a program that takes a 	le in dvi format and converts it to Postscript�

or we could search for a container or a parser� in a type system that contains those things as

basic types�

Chapter �

Applications

This chapter describes applications of both signature and speci	cation matching� We discuss

three main kinds of applications
 retrieval �Section ����� indexing �Section ����� and substitution

�Section ����� Retrieval applications return the subset of components in a library that match

a query by the user� These subsets are useful in locating components for reuse or in analyzing�

browsing� or 	ltering the library� Indexing applications de	ne an index on the library for e�cient

storage and retrieval of components and for browsing the library� Substitution applications

compare two components using a signature or speci	cation match� Depending on the match�

we can guarantee various properties will hold when we substitute one component for the other�

For each application� we illustrate with examples from signature or speci	cation matching as

appropriate� using the implementations described in Sections ���� ���� and ����

	�� Retrieval

One of the central problems with software libraries is the need to search for and retrieve com�

ponents from the library� At the heart of any solution to the retrieval problem is some way of

comparing a description of what is desired from the library �the query� with each component

in the library� to see whether it matches� We use abstracts �signatures or speci	cations� to de�

scribe the components� and any of the signature or speci	cation matches to do the comparison�

Formally� we de	ne the retrieval problem as follows

De�nition �
�
� �Retrieve�

Retrieve
 �Component � Set of Components � �Component � Component � Bool��

� Set of Components

Retrieve�Q�L�M� � fC � L
 M�C�Q�g

��

�� CHAPTER 	� APPLICATIONS

Figure ���
 The retrieval problem

Figure ��� illustrates this de	nition� Given a query component Q� a signature or speci	cation

match M � and a library �set of components� L� Retrieve returns the set of components in

L that match with Q under M � The components may be either functions or modules and

components may contain either signature or speci	cation abstracts �or both�� provided that M

is instantiated with an appropriate match� Parameterizing the de	nition by M also gives the

user the �exibility to choose the degree of relaxation in the match� Retrieval is signature�based

when M is instantiated with a signature match� and speci�cation�based when M is instantiated

with a speci	cation match�

There are many reasons we might want to describe or retrieve a subset of library components�

These include

� To locate a particular component for reuse

� To analyze the library

� To browse the library

� To use the resulting subset as the library for another retrieval or to combine it with the

result of another retrieval �i�e�� to do compound retrieval�

	��� RETRIEVAL ��

The following examples are drawn from actual use of the signature�based retrieval tools

Beagle and M�Beagle on the Community Library by ourselves and our colleagues� They illus�

trate the usefulness of allowing the user to specify which relaxations to use for a match� as well

as showing successful use of signature�based retrieval for reuse� for analysis� for browsing� and

in compound retrieval� In the reuse examples� we also include explanations of some cases where

functions matched but were not what we wanted� since they help us understand more about

how retrieval works in practice�

����� Reuse

The most obvious and widely discussed application of retrieval is to locate components for

reuse� Components may be reused directly or may need to be modi	ed slightly�

Reuse �

As part of the implementation of a version of Beagle� we needed to generate a list of �tag bits�

�all initialized to false� to track which elements of a list have already been used� Thus� we

needed a function that takes a boolean b and an integer n and generates a list of length n where

each element has value b� Since it seemed likely that a library function would be more general in

the list"s element type we used the query ���int� � � list with relaxations reorder and uncurry

on an earlier implementation of Beagle� This search results in exactly one match� the function

create �with type int � �� � list� from the List module in the Edinburgh sub�library�� which

does exactly what we want� If we do not take the step of generalizing from bool to � on our

own� but instead use the query �bool � int� � bool list with relaxations reorder� uncurry� and

generalized� we retrieve �� functions instead of just create� since any of bool� int� bool list� and

the tuple bool � int can be generalized� Of the �� functions retrieved by the more general match�

�� have type � � �� � have type � � � � �� and � �create� has type int � � � � list � This

second query illustrates the tradeo�s in using relaxed matches� such as generalized match and

specialized match� that instantiate type variables
 increasing recall may reduce precision� so

the query may retrieve more useless components�

Reuse �

A colleague of ours needed a function to take two lists and create a list of pairs of elements

from those lists� He used the query � list � � list � ����� list with relaxation uncurry� which

retrieves three functions
 the zip function in all three sub�libraries� The code for all three

functions is the same �except that the zip from the CMU sub�library is curried while those in

the other two libraries are uncurried�� and all three do exactly what he wanted�

�� CHAPTER 	� APPLICATIONS

Reuse �

In another case� we needed to convert the representation of a type constructor name from a

list of strings to a single string with the elements of the list separated by ���s �e�g�� convert

��Parser�� �Table�� �T� to �Parser�Table�T��� We used the query string list � string with

no relaxations� Notice that in this case we do not want to allow generalization� since we are

implicitly assuming that the function will use string concatenation� which would not generalize�

This query retrieves six functions� including pathImplode and implodePath� from the SML�NJ

and CMU sub�libraries respectively� Both of these functions take a list of strings and returns

a string which is the concatenation of those strings with ���s between the strings �to form a

path name� and both are easy to modify to do what we want by replacing ���s with ���s� The

other four functions out of the six retrieved include implode from the Edinburgh sub�library�

which does not put a separator between the strings� and three functions that perform other

manipulations on a list of strings that form a directory pathname�

Another reasonable query to use for this example is one that also includes the separator

string as a parameter� The query �string list � string� � string with relaxations reorder and

uncurry retrieves only the function �rstLine �in both the execute and getwd modules in the

CMU sub�library�� which does something completely di�erent �it takes a program name and

list of arguments as input� and returns the 	rst line of program output as its output string��

This example shows that a relaxation to allow more or fewer arguments in a tuple would be

useful�

A third approach to this example is to assume that there is a more general function that

takes as input a function on strings in addition to the list of strings� One might try a query like

string list � ��string � string� � string� � string� This query with just reorder and uncurry

relaxations does not match anything� Adding the generalized relaxation results in �� matches�

the majority of which have type � � � or � � � � � and are not useful� Two of the results�

foldL
 and foldR
 �from the Edinburgh sub�library�� have type �� � � � �� � � list � ��

The function foldL
 is like the built�in function fold except that foldL
 uses the 	rst element of

the list as the initial value� whereas fold requires an initial value as an additional input �foldR

is similarly related to the built�in function revfold�� We write a function� specialConcat� to

concatenate two strings with a ��� in between� and call foldR
 with specialConcat and the list

of strings to achieve our goal�

Reuse 	

An example that gives a somewhat surprising result is the query � list � � using specialized

match� We might expect this query to 	nd functions that return an element from the list� like

hd �although built�in functions are not in the library� so hd itself is not returned�� This query

results in nine matches� six of which have type string list � string �the same ones described

in Reuse ��� Of the other three functions� two are �atten functions from di�erent sub�libraries

	��� RETRIEVAL ��

�type � list list � � list�� and the only one like hd is last from the Edinburgh sub�library�

Reuse � �Module Reuse�

Retrieval for reuse also occurs at the module level� Recall the module signature query M�

presented in Chapter �� The query de	nes an abstract container type and functions to create

and add to a container�

M�
 �QT � f � C g

�QF � f create
 unit � � C�

add
 � C � �� � C g

Using M�Beagle and the function signature match with type constructor� reorder� and un�

curry relaxations� M� retrieves two modules
 the sortableQueue module �with functions empty

and enq� and the lstream �lazy stream� module �with functions empty and cons�� both from the

CMU sub�library�

A more common way to initialize a container is to de	ne a constant that is the value of the

empty container �e�g�� � on lists�� M� shows a module signature query for this approach�

M�
 �QT � f � C g

�QF � fcreate
 � C�

add
 � C � �� � C g

Using the same match instantiations as for M�� M� retrieves four modules for sets� queues�

and lists from the Community Library� Table ��� summarizes details of the four modules�

showing the name of the module� the names of the constants and functions matching the

function signatures� and which sub�library the module is in� The two queries� M� and M�� 	nd

most of the immutable containers in the library� They do not� however� retrieve the IntSet and

BinarySet modules from the SML�NJ sub�library because the set type in these modules does

not use a polymorphic variable� For example� the BinarySet module contains the value empty

� set and the function add
 set � item � set �

Even with just two functions in the query module� using module signatures rather than

function signatures signi	cantly reduces the number of matches� Using function�signature�

based retrieval with the same relaxations �type constructor� reorder� and uncurry�� the query

unit � � C �M��create� retrieves twelve functions� the query � C �M��create� retrieves nine

functions� and the query � C � �� � C �add� retrieves nine functions�

�� CHAPTER 	� APPLICATIONS

Module � C � C � �� � C Sub�library

EqSet empty insert Edinburgh
�fo empty enqueue SML�NJ
�fo� empty enq CMU
List empty updateLast Edinburgh

Table ���
 Results of module library query M�

����� Statistical Analysis

Another use of retrieval is to analyze a software library� We can characterize properties of the

library� make general statements about the types of the functions in the library� or generate a

set of components we then further analyze by hand� Consider the following examples�

Analysis �

We can use retrieval to gather statistical information about the size of a library� For example�

to 	nd the total number of functions in the library� we use the query � � � with specialized

match� When applied to the Community Library� this query retrieves ���� functions� Note

that the query � with specialized match is matched by constants as well as functions� If we use

� as the query with specialized match �i�e�� count both constants and functions�� we 	nd ����

components in the Community Library�

Similarly� we can use module match to count the number of modules in a library� The

module query consists of just one function of type � � � and the match uses generalized

module match with specialized function match� Using this query� M�Beagle 	nds ��� modules

in the Community Library�

Analysis �

A fellow graduate student wanted to gather statistics about what percentage of functions in

the libraries have a curried form �i�e�� return a function�� Under specialized match� the query

� � � � � retrieves ��� functions out of ���� ���&�� Using the same query� we observe a

distinction among the sub�libraries
 ��& of the functions in the Edinburgh sub�library have

this form ���� out of ����� compared with ��& of the SML�NJ sub�library ��� out of ���� and

��& of the CMU sub�library ���� out of �����

To 	nd out more about the form of curried functions� we use the queries q� � � � � �

� � �� q	 � �� � � � � � � �� q
 � �� � � � � � � ��
� and q� � �� � � � � � �

��
 � �� Using these queries with relaxation specialized retrieves ���� ��� �� and � functions�

respectively�

Each query qn�� � v� � � � �� vn � vn�� retrieves a subset of the functions retrieved by

	��� RETRIEVAL ��

the query qn � v� � � � � � vn� since qn�� is itself a specialization of qn �by instantiating vn
in qn to vn � vn���� Thus� when we reach q�� which retrieves no functions� we know that the

longest curried functions in the library are instantiations of q
� We use this fact in the next

analysis�

Analysis �

We wanted to see how the various base types �bool� int� real� string� and unit� are used in the

library� For each base type� bt� we used the query �� bt with relaxations specialized� uncurry�

and reorder to 	nd out which functions return a value of type bt�

To 	nd out how many functions take a type bt as one of the inputs is more di�cult because

there is no single query that can match functions with an arbitrary number of inputs� one

of which is type bt� However� the number of inputs to a function is 	nite and usually fairly

small� We know from Analysis � that the uncurried versions of curried functions in the library

have no more than 	ve elements in the input tuple� A scan of the library types with grep

shows that the largest tuple in the library has four elements� Thus� we use queries of the form

bt � v� � � � � � vn�� � vn� where the vi"s are type variables and n ranges from two to 	ve� We

use the relaxations specialized� uncurry� and reorder
 specialized match allows instantiation

of the vi"s� uncurry allows us to also count curried functions� and reorder allows bt to occur

anywhere in the tuple� We must use the uncurry relaxation on the query bt � � to avoid

matching functions of the form bt � X � Y � since these are counted in the matches for the

query bt � �� ��

Table ��� shows the results of the sequence of queries to 	nd usage of the various base types

and for a variable� Each query was run with relaxations specialized� reorder� and uncurry�

Each entry shows the number of functions retrieved by that query� where bt in the query is

instantiated by the base type shown at the top of each column� For example� for the base type

real �fourth column�� the library contains �� functions that return a real number �i�e�� the query

� � real with relaxations specialized� uncurry� and reorder retrieves �� functions�� There are

�� functions that take a real number as their only input
 �� functions that either take a real

Query bool int real string unit variable

�� bt ��� �� �� ��� ��� ����
bt � � � �� �� ��� �� ����
bt � �� � � ��� �� ��� � ���
bt � � � � � � � �� � �� � ���
bt � � � � � � � � � �� � �� � ��
bt � � � � � � � � � � � � � � � �

Table ���
 Usage of various base types �bt stands for the base type used in each column�

�� CHAPTER 	� APPLICATIONS

number as part of an input pair or are curried functions of the form X � Y � Z� where X

or Y is real
 and � function that either takes a real number as part of its three�element input

tuple or has an equivalent curried form� Thus� a total of �� functions �the sum of all entries

in the column but the 	rst� have the type real as one of the inputs� The rightmost column

in Table ��� uses a type variable rather than a base type for bt in the queries� and thus answers

more general questions about the number of input elements to functions in the library� For

example� the query � � � � � � � retrieves ��� functions� each of which has a three�element

input tuple �or an equivalent curried form��

Alternatively� we could have used something like grep to count the total number of functions

that use a particular base type� but we could not have broken down the results based on the

number of arguments or whether the base type is part of the input or part of the output�

Analysis 	

We can also use retrieval to 	nd out how many functions have n elements in the input tuple�

for n ranging from two to four �we know we can stop at four from the results of Analysis ���

For each n� we use the query v� � � � � � vn � vn�� and specialized match� Table ��� shows the

results of the queries� These results are the number of matches with the queries using only the

specialized relaxation� For each query qn� the number of functions retrieved by qn in Table ���

is less than the number of functions retrieved by qn in Table ��� because we do not include the

uncurry relaxation here� since we do not want to include curried functions in these counts�

Query Number of matches

� � � � � ���
� � � � � � � ��
� � � � � � � � � �

Table ���
 Number of functions with input tuples of various sizes

����� Retrieval
based Browsing

Although having a structure on top of the library to browse through is generally preferable

�see Section ����� retrieval is also useful for browsing� Retrieval provides a way to �break up�

the library into more manageable pieces� or focus on a subset of functions that are likely to be

of interest� Browsing through what has been retrieved allows a user to learn about the style

of a particular programming language or library� 	nd out what is available in the library� see

examples of how to program using a particular data structure or kind of function� or simply

become more familiar with the contents of a library� In fact� using retrieval to browse a library

can also help a user become familiar with a retrieval tool as well� by simply performing queries

	��� RETRIEVAL ��

with various relaxations and browsing through the results to see what matched�

Browsing �

We wanted to see whether naming conventions for user�de	ned types in ML were the same

for each sub�library� Most user�de	ned types are likely to have at least one function that

returns an object of that type� so we used the query � � � X with relaxations specialized

and type constructor� Browsing through the results of using this query on the SML�NJ and

Edinburgh sub�libraries� we found that user�de	ned types tend to have meaningful names and

to be lowercase �e�g�� array� �fo� splay� and intmap in the SML�NJ sub�library� and array

and vector in the Edinburgh sub�library�� We also found some inconsistencies in naming� For

example� in the SML�NJ sub�library� the hash table type is hash table while the integer map

type is intmap �i�e�� one compound word uses an underscore and the other does not�
 in the

Edinburgh sub�library� some of the user�de	ned types are lowercase �array and vector� while

others are not �Set and Const�� Looking through the results of using the same query on the

CMU sub�library� we noticed that many of the functions name the user�de	ned type constructor

T � This is not because they are the meant to be the same type� but rather simply a naming

convention adopted by many ML programmers�

Browsing �

We can also use browsing to learn something about how to use a particular data structure�

For example� to learn how to use higher�order functions� we begin by looking at the results of

Analysis �� which shows the percentage of higher�order functions for each of the sub�libraries�

The Edinburgh sub�library has the highest percentage of higher�order functions� so we browse

through the results of the query � � � � � with specialized match on the Edinburgh sub�

library to 	nd examples of higher�order functions� To really see the power of making a function

like nth �int � � list � �� higher�order� we would also have to 	nd uses of it �e�g�� a function

second
� list � � � nth ��� We also 	nd functions such as iterate �int � �� � �� � � � ��

and exists ��� � bool� � � list � bool�� which take a function as a parameter and apply the

function either a certain number of times �iterate� or to each element of a list �exists�� another

common use of higher�order functions�

Browsing �

Suppose we are interested in seeing how side�e�ecting functions work� These functions often

return unit since the actual work in the function is in modifying an object rather than creating

a new value� The query � � unit with specialized match retrieves ��� functions from the

Community Library� Browsing through some of these� we 	nd a few general kinds of functions

I�O functions that close or write to an I�O stream� print functions� operating system functions

�� CHAPTER 	� APPLICATIONS

�e�g�� pwd� cd�� thread control �ow� and updates on array�like data structures� We could browse

speci	c functions to see more details of how to implement each of these kinds of functions�

Browsing 	

When motivating the weak post speci	cation match �De	nition ������ pg� ���� we gave examples

of functions that match the signature but not the speci	cation of the query Q� �shown again

below��

signature Q� � sig Q�

��! using Container !��

type � T ��! based on Container�E Container�C !��

val remainder
 � T � � T

��! remainder s � s�

ensures length �s�� � �length �s� 	�� !��

end

To 	nd these examples� we use the query � T � � T with relaxation type constructor to

retrieve �� functions that match with Q�"s signature� We then characterize the functions by

browsing through them� and looking at the code if the function name does not clearly indicate

the general purpose of the function� We classify the retrieved functions as follows

� Four functions return the container that results from removing an element from the input

container �i�e�� they informally match with Q� under weak post match�� Those functions

are dropLast and tl �on lists�� tail �on lazy streams�� and deq �on queues��

� Four other functions also return a subpart of the input container� but do not necessar�

ily decrease the size of the container by one �and hence do not match with Q��� The

dropRepeats function on lists removes duplicate elements from the list
 the rootptr func�

tion returns the root of a mergeable reference �which is itself a mergeable reference� �

there are two di�erent versions of this function in the library
 and the copy function

returns a full copy of a hash table�

� Three functions reverse an ordered container
 rev on lists� vectors� and arrays�

� The remaining two functions also permute or transform the container in some way� The

lrotate function rotates splay trees� and the mkblk function marks a red�black tree as black�

All of the functions in the last three groups are examples of functions that match the

signature but not the speci	cation of Q��

	��� RETRIEVAL ��

����� Compound Retrieval

The result of retrieval is a set of components� Compound retrieval combines the results of two

retrievals using set operations �intersection� union� set di�erence�� If R� � Retrieve�Q�� L�M��

and R� � Retrieve�Q�� L�M��� then

� R�� R� � fC � L
 �M��C�Q���M��C�Q���g

The union is the set of components in L that match with Q� under M� or match with

Q� under M��

� R�	 R� � fC � L
 M��C�Q��� �M��C�Q��g

The set di�erence is the set of components in L that match with Q� under M� but do

not match with Q� under M��

� R�� R� � fC � L
 M��C�Q���M��C�Q��g

The intersection is the set of components in L that match both with Q� under M� and

with Q� under M��

The library �L� need not even be the same in the two retrievals� but must have the same

granularity �i�e�� functions or modules�� M� and M� may be matches that require di�erent

retrieval tools �e�g�� M� is a signature match and M� is a speci	cation match�� providing that

the components in the library include both kinds of abstracts�

In the case where two retrievals use the same library and the set operation between them

is � or 	� we can pipeline the retrievals� We form a pipeline by using the result of the 	rst

retrieval� R�� as the library of the second retrieval� Pipelining increases the e�ciency of a

compound retrieval by reducing the number of components that must be checked by M�� This

is particularly useful if M� is a faster match than M�
 we use M� to �weed out� obvious

non�matches before applying M�� For example� M� might be a signature match and M� a

speci	cation match�

The result of a pipelined pair of retrievals is equivalent to the intersection of the re�

trievals if both are done on the original library� That is� if R� � Retrieve�Q�� L�M���

R� � Retrieve�Q�� L�M��� and R�� � Retrieve�Q�� R��M�� �i�e�� the pipelined result�� then

R�� � R� � R�� Further� the results of set di�erence of R� with R� and of R� with R�� are

equivalent �i�e�� R�	 R� � R�	 R����

Figure ��� illustrates how pipelining works� The boxes represent the Retrieve function� Ar�

rows entering the box represent inputs to the function �the query� components� and match�� and

the arrow leaving the box represents the output �i�e�� the result of the retrieval�� Figure ����a il�

lustrates the general notion� where R� � Retrieve�Q�� L�M�� and R�� � Retrieve�Q�� R��M���

Figure ����b shows an example of pipelining a signature match and a speci	cation match� The

	rst retrieval uses the function signature query � T � � and exact function signature match

on the Toy Speci	cation Library with the result R� � fStack�top� Queue�deqg� The second

�� CHAPTER 	� APPLICATIONS

Figure ���
 The idea behind pipelining

retrieval then uses the speci	cation query Q� from Section ����� �pg� ��
 Q� speci	es that the

function returns the most recently inserted element of the input container�� and generalized

predicate match to retrieve Stack�top from R�� The advantage to using pipelining here is that

we only had to apply the speci	cation match to the two functions in R� rather than to all eight

functions in the Toy Speci	cation Library�

We now consider examples of compound retrieval using set union� di�erence� and intersec�

tion� All examples in this section were obtained by using Beagle on the Community Library

and doing the set operations by editing the search results and using various Unix tools �e�g��

diff� cat��

Compound � �using ��

We use set union to answer disjunctive queries� Suppose we want to look at functions that

return a path name of a 	le� but are unsure whether the path name is represented as a string

or a list of strings where each element in the list is a directory in the path� To 	nd all functions

that return either a string or a list of strings� we cannot use just one query� Instead� we use two

separate signature�based retrievals and combine the results� as shown in the following sequence

of queries and library manipulations

	��� RETRIEVAL ��

�� Let R� be the result of the query � � string on the library with specialized match� i�e��

R� � Retrieve��� string�Community�matchspcl ��

�� Let R� be the result of the query � � string list on the library with specialized match�

i�e�� R� � Retrieve��� string list�Community �matchspcl��

�� Let R� � R� � R�� R� contains the functions that return either a string or a list of

strings�

When we perform these queries� R� contains ��� functions� R� contains �� functions� and

thus� R� contains ��� functions that return either a string or a list of strings� For example�

in R� we 	nd the function getwd� unit � string� from the cshellDir module in the CMU sub�

library� which returns the current working directory �as a string�� In R� we 	nd the function

clearPath
� string list � string list� from the pathname module in the CMU sub�library� which

processes the ���� and ��� components of a path to create a �clear� path �as a list of strings��

Additionally� we 	nd the functions pathImplode �in R�� and pathExplode �in R��� which convert

between the list of string and string formats for path names�

Compound � �using 	�

We use set di�erence to 	nd the components that match one query but not another� Suppose we

want to 	nd functions that take two inputs� of which one is a real number and the other is not�

We use the query real��� � with relaxations specialized� uncurry and reorder to 	nd functions

that take a real number as one of its inputs� but this may include functions with real numbers

as both inputs� We then use a second query� real � real � �� again with relaxations specialized�

uncurry and reorder to 	nd and 	lter out those functions that have two real numbers as inputs�

as we show in the following sequence of queries and library manipulations

�� Let R� be the result of the query real � �� � on the library� L� with specialized match�

i�e�� R� � Retrieve�real � �� ��Community �matchspcl��

�� Let R� be the result of the query real � real � � on R� with specialized match� i�e��

R� � Retrieve�real � real � ��Community �matchspcl��

�� Let R� � R�	R�� R� contains the functions that take two inputs� of which one is a real

number and the other is not�

As previously noted� if we use L rather than R� to create R�� the result of R� is still the

same� but using R� is more e�cient� The 	rst query retrieves �� functions and the second

query retrieves ��� Thus� R� contains �� functions with a real number as only one of its two

inputs� for example ��
 �real � int� � real and mkRandom
 real � �unit � real��

�� CHAPTER 	� APPLICATIONS

Compound � �using 	�

Suppose we want to 	nd functions of the form real � X � where X is not a function type� The

query real � � with specialized match will retrieve functions of that form� but may also retrieve

functions of the form real � Y � Z� where Y and Z are type expressions� since � could be

instantiated with a function type� We 	lter out the functions of the form real � Y � Z with

the following sequence of queries and library manipulations

�� Let R� be the result of the query real � � on the library with specialized match� i�e��

�R� � Retrieve�real � ��Community �matchspcl��

�� Let R� be the result of the query real � � � � on R� with specialized match� i�e��

�R� � Retrieve�real � �� ��R��matchspcl��

�� Let R� � R� 	 R�� R� contains the functions of the form real � X � where X is not a

function type�

When we perform these queries� R� contains �� functions� and R� contains ��� leaving us

with �� functions in R�� Ten of those have type real � real � four have type real � int � and one

has type real � �real � real�� An alternative way to get this same result is to use a single query

with the uncurry relaxation in addition to specialized� since this will 	rst uncurry functions of

the form real � Y � Z to �real � Y � � Z� and hence will not match the query�

Compound 	 �Using ��

We use set intersection to do conjunctive queries� even when we use di�erent retrieval tools for

di�erent parts of the query� Suppose we want a function that returns the length or size of an

object� We could look for functions with signature �� int using signature�based retrieval� or

for the string �length� in the text of the code using grep� or we can look for things that match

both queries� Because grep does not distinguish between di�erent functions in a module �	le��

we do both queries at the module level� Also� grep searches the full text� so �length� may be

function name� may be a called function� or may occur in the comments�

�� Let R� be the result of the query �� int on the module library with specialized match�

i�e��� R� � Retrieve��� int �Community�matchspcl ��

�� Let R� be the result of a string search for the word �length� in modules in the library�

i�e�� R� � grep length ��sml�

�� Let R� � R� �R��

These queries result in �� modules in R�� �� modules in R�� and �� modules in R�� Nine

of the modules contain functions that do what we want� named either length �three functions��

	��� RETRIEVAL ��

size �	ve functions�� or len �one function�� The tenth module contains the function skipBlanks�

which returns an integer position in a string �after skipping blanks� and uses string length in

its calculations�

Whereas R� and R� both have many modules that do not match our intent� R� contains

only one �wrong� match� Thus� using conjunctive queries can increase the precision of the

match�

Compound � �Using ��

The implementation of M�Beagle� the module�signature�based retrieval tool described in Sec�

tion ���� is also an example of compound function retrieval� Assume the following

� Retrieve ��Q�L�M�

�Function � Set of Modules � �Function � Function � Bool�� � Set of Modules

Retrieve ��Q�L�M� � fC � L
 � � � C
 M��� Q�g

� Mmod�Q�L� � M�matchgen �Q�L�M� �where M is a function match�

� �Q � h�QT ��QF i where �QF � f��� � � � � �ng

Then we de	ne module retrieval as follows

M�Retrieve�Q�L�Mmod� �
n�
i��

Retrieve���i� L�M�

Retrieve ��Q�L�M� is a modi	ed function�based retrieval that returns the set of modules in L

that contain functions that match with Q under M � Module retrieval �M�Retrieve�Q�L�Mmod��

is then a compound retrieval using set intersection on the results of Retrieve� for each function

in Q�

����� Discussion

The examples in this section demonstrate how signature�based retrieval is used to locate func�

tions for reuse� statistical analysis� and browsing� Most of the examples were actual uses of

Beagle by ourselves and our colleagues� We were able to use Beagle to retrieve the functions

we wanted� In fact� for some cases �e�g�� the statistical analysis examples�� the queries could

not have been answered without a signature matcher�

Retrieval for reuse is useful if it is fast and easy to retrieve� select� and reuse a component�

We consider each factor �retrieval� selection� and reuse� in turn to see how using function

signatures helps the reuse process�

First� signature�based retrieval is fast and easy� Function signatures are easy to write� and

retrieval using Beagle is reasonably fast� The search is linear in the size of the library� or better

�� CHAPTER 	� APPLICATIONS

if we use an indexed library� For libraries of thousands or tens of thousands of functions� we

can expect search times of a few seconds or less� �The average search time for the Community

Library of ���� functions is ��� seconds��

Whether or not it is easy to select an appropriate component from those retrieved by a

query depends upon the contents of the library and the kind of query� The library should be

large enough so that there is a high likelihood of 	nding something useful �and also too large

for random browsing to be e�ective�� For queries that use generalized match� it is particularly

bad to have a large number of functions with very general signatures like �� � or �� � � ��

The Edinburgh library� for example� has �� functions of type � � �� including functions on

streams and functions for systems calls like cd or pwd� These functions will match any function

query that uses the generalized relaxation� and yet they are not likely to be appropriate for

most queries� so a library with a lot of these types of functions will have poor precision for any

queries using generalized match� Queries for certain kinds of functions are particularly good

for signature�based retrieval� The include queries for functions that are data oriented� such as

functions on abstract data types and iterators �like fold and map on lists��

The third factor a�ecting the usefulness of retrieval for reuse is how easy it is to reuse a

component once it is found� There are three general ways that a component can be reused�

First� it may be reused exactly� For example� using the zip function to create a list of pairs of

functions �Reuse ��� A function requiring no modi	cation is very easy to reuse by simply calling

the function �and linking the appropriate library� if necessary�� Second� it may be possible to

modify a retrieved function slightly and then reuse it� For example� modifying the pathImplode

function to separate strings with a ��� rather than a ��� �Reuse ��� Third� it may be possible

to use a very general program� perhaps by writing a smaller �helper� function� For example�

using foldR
 with the helper function specialConcat to concatenate a list of strings �Reuse ���

This last class of appropriate functions are ones that are not likely to be found by string�based

retrieval� since they are usually very general functions�

Even for relatively small libraries� such as the set of built�in functions for a language�

signature�based retrieval is useful for 	nding functions whose names are not known or for helping

a programmer learn a new language� For example� a functional programmer who is familiar

with SML knows that the function fold applies a function to a list accumulating a result �type

�� � � � �� � � list � � � ��� but this function is called reduce in Hope �FH�� � it list

in the CAML Light core library �Ler��a � and fold left in the CAML Special Light standard

library �Ler��b �

As another example consider Lisp� which has over ��� functions listed in the manual in�

dex �Ste�� � A signature�based retrieval tool would have been useful to have had when we

used Lisp to implement the gnu�emacs interface for Beagle� even though gnu�emacs has a good

keyword search facility �apropos� and we had a reasonable manual� To 	nd the function to

write a string to an output 	le� for example� we could use apropos on �	le� or �string� and

get too many functions ��� for �	le� and �� for �string��� or we could look up �	le� or �string�

	��� RETRIEVAL ��

in the manual index� and again be overwhelmed� What we really wanted was to be able to ask

for the functions that take a string and a 	le as input� i�e�� signature match with the query

string � �le � unit � It turns out there is not such a function� but we could have spent far less

time discovering that fact�

Signatures vs
 Text

Signature�based retrieval provides some advantages over text�based retrieval� First� signature�

based retrieval enables us to do statistical analysis on the type of library functions� which we

could not do with text�based retrieval� Second� using generalized match� we can 	nd more

general functions that can be instantiated to satisfy the query� The names of these more

general functions are unlikely to be related to any keywords used by a text�based retrieval� For

example� in the third approach to Reuse �� keywords for a function with type string list �

��string � string� � string� � string might be �implode�� �compress�� or �convert�� but are

unlikely to be �fold� or any of the other keywords from the documentation that would retrieve

the foldL
 and foldR
 functions� A third advantage of signature�based retrieval is that� unlike

text�based retrieval� we know that any function retrieved by a signature query �using any

relaxations but specialized�� we are able to transform the type of the retrieved function into

the query type� This makes it easier to use the function and could allow us to automate the

reuse of a library function�

For cases where these advantages of signature�based retrieval are not important� other fac�

tors in deciding whether to use signature�based retrieval or text�based retrieval include how

easy it is to express a query for either method and how easy the tools are to use� In many

cases� a programmer initially thinks of a function in terms of its parameters� Thus� it is most

natural to express the query in terms of the signature
 there is no need to �translate� from

thinking in terms of the programming language to thinking in terms of descriptive words for

text�based retrieval� In some cases� there is an obvious word to express the desired function�

such as �sort� or �create�� and text�based retrieval is thus most appropriate� In other cases�

there are several possible words for a function� such as �add�� �insert�� and �enqueue�� or there

is no obvious word to use for text�based search� but the type of the function is easy to describe�

so signature�based retrieval is most appropriate� For those unfamiliar with certain program�

ming terminology� the function names �zip� �Reuse ��� �implode� �Reuse ��� or �fold� �Reuse

�� would not have been at all obvious� but we successfully used signature�based retrieval to

	nd the desired functions� Thus� the particular problem and how the user is thinking about it

in�uences which method has an easier or more obvious query� Because signature�based retrieval

is the better choice in many cases� it should be as easy to use as text�based retrieval techniques

like the search commands in emacs or the Unix grep utility� Therefore� signature�based re�

trieval should be well�integrated with the programming environment so that a user may choose

the appropriate approach based on the easiest way to express a particular query�

�� CHAPTER 	� APPLICATIONS

Limitations

Signature�based retrieval is not always the best tool for the job� In some cases� there is not

enough information in the signature to discriminate between a large number of functions� For

example� many numerical operations have the types int � int � int or real � real � real � and

many side�e�ecting functions have the general type � � unit � For these kinds of queries�

signature matching will return a lot of matches between which the user will then have to

discriminate further� Speci	cation matching is one way of helping to discriminate further

between functions with the same signatures�

Another problem with signature matching arises when using types that contain user�de	ned

type constructors� If we know� for example� that queues have the type � Q� then we can use

that in our queries� But if we are not sure of the name of the user�de	ned type� we must use

the type constructor relaxations to allow our name for the user�de	ned type to match with all

other user�de	ned types� This assures us that we do not miss anything with a di�erent type

constructor name� but may result in matches with functions we are not interested in as well�

Additionally� as we discussed in Section ���� signature�based retrieval of modules is not

e�ective in cases where the intent of the query is at a higher level of abstraction than the

module interface�

Which Relaxations are Best

Function signature�based retrieval illustrates the advantages of allowing various combinations of

relaxations� since the intended use of the retrieved component a�ects which relaxations will be

used� In the case of retrieval for reuse� there are three relaxations or combinations of relaxations

that we expect to be used most frequently �if none are used� then we are using exact match�

� Reorder and Uncurry� Use these if the format of the input does not matter� These are

likely to be used together if they are used at all�

� Type Constructor� Use this if the names of user�de	ned types are unknown�

� Generalized� Use this if a more general function might also be useful� Generalized match

may greatly increase the number of functions retrieved� often diluting the interesting hits�

so it should be used with care�

In contrast� retrieval for statistical analysis and for browsing uses type variables as query

variables� Hence� we expect to use specialized match �the only relaxation we do not expect to

be especially useful for reuse�� Whether a statistical analysis or browsing query uses any of the

other relaxations �reorder� uncurry� or type constructor� will vary depending on the particular

query� based on the same guidelines described above�

The relaxations used for compound retrieval will depend on whether the ultimate goal of

the retrieval is reuse� statistical analysis� or browsing�

	��� INDEXING ��

	�� Indexing

Another class of applications uses signature or speci	cation match de	nitions to create an index

for a component library� An index for a library is analogous to an index for a book or map in

that it is a structure over the library� We create an indexed library from a component library

by organizing the components into a graph� Each node in the graph contains a set of equivalent

components� and an edge from one node to another indicates that the 	rst node is more general

than the second� We use an index pair� which is a pair of signature or speci	cation matches� to

determine equivalence between components and to determine whether one component is more

general than another�

We use the additional information provided by an indexed library for e�cient storage and

retrieval of components and for navigation when browsing a library� To show how indexed

libraries aid in these applications� we assume for now that we have function components and

use signature matches to form the indexed library� where exact match �De	nition ������ de	nes

nodes� which contain equivalent components� and generalized match �De	nition ������ de	nes

edges� which indicate that one component is more general than another� We present the formal

de	nition of an indexed library in Section ������

Storage and Retrieval

Consider 	rst the storage of components� A user interested in one component in a node is very

likely also to be interested in equivalent components �which would be in the same node of an

indexed library�� Storing components of a node together can thus improve locality of references

and could also be useful in predictive fetching� Depending on the application� a user may also

be interested in the parents or children of a given node and thus smart storage of related nodes

could also improve performance�

Second� consider the use of indexes for retrieval from a library� Given a query� Q� we

need only check whether Q is matched by the node signature rather than by each component

signature� since all components at a node have equivalent signatures� Thus� we reduce the

number of match comparisons required to retrieve the components that match with Q�

We can use the hierarchical structure of the index to prune the retrieval search space� For

example� let Q be a query signature and suppose the retrieval match is exact match� We

traverse the indexed library� beginning with the most general node� to retrieve all components

that match with Q� Once we 	nd a node whose signature matches with Q� we are done� since

all components whose signatures match with Q must be in that node� Additionally� if we 	nd

a node� N � that Q is more general than� we prune the children of N � since none of them can

be more general than Q� By pruning in this way� we further reduce the number of match

comparisons required for a retrieval�

�� CHAPTER 	� APPLICATIONS

Structure�based Browsing

The structure of an indexed library also provides a natural framework for browsing through a

library� Given a particular function� a user could request the next most general functions� or

the functions that are equivalent modulo tuple reordering� For example� if users were looking

at the intsort function from the Toy Signature Library in Figure ��� �pg� ��� they might want to

know if there is a more general sorting function that works for arbitrary types of list elements�

With an indexed library� they could simply ask to see all functions whose types are more general

than intsort�

For function signature match� an index de	nes a type hierarchy� If we apply the same

approach to module signature or speci	cation matching� using the signature or speci	cation

notion of subtyping �Section ������� we have a class hierarchy� Thus� some aspects of object

browsers like the Smalltalk browser �Tes�� can be viewed as an instance of our more general

notion of browsing on an indexed library�

����� Indexed Library De�nition

Rather than view the index as a separate structure� we de	ne an indexed library � a single

structure that contains both the index and the contents of the library� We use the terms index

and indexed library interchangeably throughout this section�

An indexed library is a directed acyclic graph� Nodes represent equivalent components

edges order components based on their relative generality� The notions of equivalence and

generality are precisely de	ned by a pair of match predicates� �M��M��� called the index pair�

More formally

De�nition �
�
� �Indexed Library�

MakeIndex
 Library � Index Pair � Indexed Library

MakeIndex�L� �M��M��� � bL�M��M��

Given a library L and an index pair �M��M��� the indexed library bL�M��M�� is a

directed acyclic graph�

Nodes�

Each node is an equivalence class de	ned by M��

Each node n � bL�M��M�� has two parts

� n�sig � a function signature�

� n�elements � a list of library components whose signatures are equivalent

�under M�� to n�sig�

Edges�

The edges form a partial order over L�

	��� INDEXING ��

In order for indexing to work properly� the index pair �M��M�� must be instantiated

according to the following restrictions

�� M� must be an equivalence match�

�� M� must be a partial order match�

�� M� must be the corresponding equivalence match for M�� so that

M��c�� c���M��c�� c��
M��c�� c��

�� There must be a maximal node� maxNode� such that �n � bL�M��M���M��maxNode� n��

Equivalence match� partial order match� and the corresponding equivalence match are de�

	ned in Section ����� �pg� ���� The third restriction ensures that M� and M� will work together

properly� The partial order matches with which M� is instantiated are not strict
 they include

a notion of equality �as de	ned by the corresponding equivalence match of M��� We use M�

to �weed out� equal components
 hence� M� and M� must have the same notion of equality�

Thus� the partial order relation de	ned by the edges of an index is strict� and we use M� rather

than M�� The maximal node �maxNode� is the root of the graph and serves as the starting

point for any traversals of the index�

For example� if M� is matchtycon � then M� must be matchtycon �matchgen �matchspcl would

not guarantee us a maximal node�� In general� for any equivalence match M� on function

signatures� the corresponding M� is M� �matchgen and the maximal node has the signature �

�all other types are instantiations of the type variable ���

We de	ne indexed libraries for the case of function signature matching� so the index is a

type hierarchy� Replacing n�sig with a module signature or a function or module speci	cation

and using appropriate index pairs would de	ne indexes for module signatures or for function

or module speci	cations� Using module matching with a de	nition of subtyping �Section ������

creates an index that is a subtype hierarchy�

Figure ��� illustrates an indexed version of the Toy Signature Library from Figure ���

�pg� �� using index pair ��matchtycon �matchreorder �matchuncurry �� �matchtycon �matchreorder �

matchuncurry � matchgen ��� Each shaded rectangle is a node� n� with n�sig in the upper white

rectangle and n�elements in the lower white rectangle� For example� the lower rightmost

node has n�sig 	 unit � � T and n�elements � �Set�create� Queue�create� and List�empty��

Set�create
unit � � T and List�empty
unit � � list are both elements because M� on this in�

dex allows type constructor renaming� An arrow from a node n� to another node n� indicates

that M��n�� n��� For example� there is an arrow from the second node in the second column

to the lower rightmost node because M���� � T� unit � � T ��

Figure ��� includes some �special� nodes with the single element� Special
 the maximal node

of type �� and two others with types � T � � and � � � T to show more of a hierarchy� In

�� CHAPTER 	� APPLICATIONS

Figure ���
 Indexed library for the Toy Signature Library with added �special� nodes� Index
pair � �matchtycon�matchreorder �matchuncurry �matchtycon�matchreorder �matchuncurry �matchgen ��

the case of a library that does not have many polymorphic types� this is a way of adding more

depth� This structure has three levels
 the maximal node � at the 	rst level
 four nodes on the

second level �the two special nodes and two of the component nodes�
 and six of the component

nodes at the third level� The eight component nodes comprise the seventeen components in the

library� since in many cases� one node contains multiple components�

	��� INDEXING ��

����� Indexes on the Community Library

We implemented a MakeIndex function and then built and analyzed indexes for the Community

Library and each of its sub�libraries using two di�erent index pairs

�� EQ � �matchE � matchgen �

�� R�U � �matchreorder �matchuncurry � matchreorder �matchuncurry �matchgen ��

The EQ index pair is the strictest possible match
 it allows only exact matches in equivalence

classes� The R�U index pair allows reordering and uncurrying�

a� SML sub�library b� CMU sub�library c� Edinburgh sub�library

Figure ���
 Graphs of indexes for the three sub�libraries using the EQ index pair�

Figure ��� shows the resulting indexes for each of the three sub�libraries using the EQ index

pair� These graphs illustrate the general shape of the indexes for each of the sub�libraries and

point out some di�erences among them� The SML sub�library �Figure ���a� has almost no

hierarchy to it �only four nodes at the third level�� The CMU sub�library �Figure ���b� is also

shallow �three levels� but has a few more nodes with children and more nodes at the third level�

In contrast� the Edinburgh sub�library �Figure ���c� has six levels and many more nodes with

children
 since many of the function types in the Edinburgh sub�library are polymorphic� they

can be instantiated to another type in matchgen � For example� the bottom�most third level

node in Figure ���c �the one with the most children� has type � � � � �� As illustrated in

Figure ���� we could add depth to the �atter indexes by introducing special nodes�

The overall structure of the indexes for each sub�library and the combined Community

Library do not change signi	cantly between using EQ and R�U for the index pair� Figure ���

�� CHAPTER 	� APPLICATIONS

a� EQ b� R�U

Figure ���
 Graphs of indexes for the Community Library�

shows the graphs of the indexes for both the EQ and R�U index pairs for the Community

Library�

Table ��� summarizes the statistics for the indexed libraries generated by applying the EQ

and R�U index pairs to each of the sub�libraries and to the Community Library� as we have

described� Using equivalence classes roughly halves the number of nodes in an indexed library

from the number of components in the original library� There is not much further compression

gained from adding the reorder and uncurry relaxations� It is possible� however� that a more

diverse library could gain additional compression by using the R�U index pair� Because of the

limited size of the libraries in the table� we should not draw any �deep� conclusions from the

statistics on these index structures
 the information here is meant to show the results of building

such structures�

Figure ��� shows the details of some of the nodes with more than a few children and some

of the shared nodes in the index for the Community Library �using the EQ index pair�� Other

nodes are compressed into diamonds labeled with the number of other nodes not shown� The

number in a diamond node that is the child of another diamond node is the number of nodes

that are children of a node in the parent diamond �the child nodes are not necessarily children

of all nodes in the parent diamond�� �a� �b� and �c denote type variables� Let us consider

	��� INDEXING ��

SML CMU Edinburgh Community
EQ R�U EQ R�U EQ R�U EQ R�U

of elements ��� ��� ��� ��� ��� ��� ���� ����
of nodes ��� ��� ��� ��� ��� ��� ��� ���
Ave� # elements � node ��� ��� ��� ��� ��� ��� ��� ���
depth of structure � � � � � � � �

Table ���
 Statistics on indexes for the Community Library and sub�libraries�

an example of how to use this index both to improve the e�ciency of retrieval and to browse

the library� Suppose we want a function to concatenate two lists� We use the query Q �

�a list � �a list �	 �a list with exact match� Matching the query against nodes rather

than components cuts the number of attempted matches roughly in half ���� matches instead

of ������ Pruning based on M� reduces this further� For example� since neither matchgen �Q� �a

�	 �b �	 �c� nor matchgen ��a �	 �b �	 �c� Q�� there cannot be a node that is a descendant

of �a �	 �b �	 �c that matches with Q� so we prune all the descendants of the node �a �	 �b

�	 �c ���� nodes�� Using the same reasoning� we also prune descendants of all other nodes at

the third level except �a � �b �	 �a and �a � �b �	 �b �another ��� nodes�� Thus� between

combining equivalent components and pruning subtrees of the indexed library� we reduced the

number of attempted matches from ���� to only ����

The 	nal result of the query is the node with signature �a list � �a list �	 �a list�

which contains 	ve elements �functions with that signature�
 interleave and � from list modules

in the Edinburgh sub�library
 and union� intersection� and di�erence from a set module in the

CMU sub�library� Suppose we now wanted to browse other� related functions� Starting at the �a

list � �a list �	 �a list node in the graph� we could look at the next most general nodes

�i�e�� the parents of the node�� namely �a � �b �	 �a and �a � �b �	 �b� We might then

choose to look at the next most general node� or at other children of �a � �b �	 �a� Other

children of both �a � �b �	 �a and �a � �b �	 �b include nodes that contain functions to

concatenate a variety of types� including strings� vectors� arrays� sets �union�� and splay trees

�join�� Without the index� it would be much harder to 	nd functions related to our retrieval

result at all�

�� CHAPTER 	� APPLICATIONS

’a

’a -> ’b

46

’a * ’b -> ’b

string -> ’a

’a -> string

’a * ’b -> ’a

’a -> int

’a -> ’b -> ’c

’a -> ’a

unit -> ’a

’a -> bool

192 30

’a * ’a -> bool

26 1

6

13

11 3

33

16

23

12

242

(’a -> ’b) -> ’a -> ’b

’a -> ’b -> bool

’a -> ’b -> ’b

’a -> ’b -> ’a

18

22

’a -> ’a -> bool

1

7 1

6

35

1

2

5

26

’a list -> ’a list

16 4

4

29

Figure ���
 Details of some nodes in Community Library �EQ index pair��

����� Discussion

While it is not possible to assume that all libraries will have exactly the same characteristics as

the Community Library� we expect that the main characteristics of the function types will be

the same for most libraries� There will be some components with equivalent types� and hence

compression of components into nodes� There is also not likely to be more depth� so we expect

	��� SUBSTITUTION ��

most indexes to be relatively shallow� In particular� libraries with no polymorphic types at all

are completely �at� Even in shallow indexes� however� using the indexed library will reduce

the number of matches required for retrieval as a result of the compression of components into

nodes� Moreover� for queries where we can prune a large sub�branch� we reduce the number of

matches dramatically�

To take advantage of indexed libraries for these improvements in storage and retrieval� the

accesses or retrieval match must be the same as the equivalence or generality matches used to

build the index� The choice of index pair depends on the intended use of the library� If we only

expect to use exact match to retrieve from the library� for example� than we should use the EQ

index pair�

If we cannot make any assumptions about which matches will be used to retrieve from

the library� then we can use the most relaxed index pair �with relaxations type constructor�

reorder� and uncurry��� In this case� we only need one index� but also have to match against

each element in a matched node for retrievals using a stricter match� For any stricter match M

that uses a subset of the relaxations that were used to build the library �i�e�� any match that

does not use the specialized relaxation�� the elements that match a query under M will be a

subset of the elements that match the query using all the relaxations� and hence all matches

will be in the same node�

Indexing is probably not the best way to browse a library� since indexed libraries are likely

to be shallow� with a few nodes that have a lot of children �e�g�� nodes of type � � � and

� � � � � �� Adding special nodes does not improve the structure very much� We would

prefer a deeper structure with fewer children at each node� When browsing� a user needs to

be able to choose a particular node from all the children of a node� a task that is much more

di�cult if a node has ��� children than if it has �� children�

	�� Substitution

Substitution applications answer questions of the form �Can we substitute component C for

component Q��� Examples of substitution questions include

� If I replace Q with C in a piece of code� will the code still type check�

� If I replace Q with C in a piece of code� will the code still have the same observable

behavior�

� If C and Q are speci	cations of object types� is C a subtype of Q�

We use the various signature and speci	cation match de	nitions to answer these questions�

Signature matching addresses the 	rst question� speci	cation matching the second� To answer

�We did not build indexes for the Community Library using this index pair because the type constructor
relaxation was not part of our signature matcher at the time� so we used only the reorder and uncurry relaxations�

�� CHAPTER 	� APPLICATIONS

the third question� we use either signature or speci	cation module matching to model subtyping�

depending on which de	nition of subtyping we use� For a match M�C�Q�� C is the component

we would like to substitute for Q
 we treat Q as the �standard� we expect C to meet�

����� Substitution Guarantees

The match de	nitions give us a range of guarantees about what conditions hold if we substitute

a component C for another component Q�

Signature matches generally verify that we can interchange components without type errors

�potentially modulo some transformations�� In particular� consider the case where C and Q

are functions� Obviously� if C"s signature matches Q"s signature exactly� we can �plug� C in

directly �either by calling the function or by cutting and pasting the actual code�� and the code

is guaranteed to type check� In ML� the same holds for generalized match� For reorder� uncurry�

or type constructor match� we would need to change the order of tuple arguments� the form

of the arguments� or the name of the user�de	ned types� respectively� The signature matcher

actually calculates this information in determining the match� and thus could automatically

generate �wrapper� functions that would convert from the form expected by Q to the form

expected by C� The only relaxed match for which we cannot easily guarantee type correctness

is specialized match� If C matches with Q under specialized match� Q is more general than C�

Plugging in C for Q directly instantiates some of the type variables of Q� which may break the

type correctness of something else that relies on the more general type of Q�

If C and Q are modules� module signature match with function match matchfn guarantees

type checking modulo function names �and modulo whatever transformations are necessary to

ensure function type checking for matchfn��

Speci	cation matches provide a range of guarantees about a program"s behavior when sub�

stituting C for Q� In particular

� If exact pre�post match holds on C and Q� then C and Q are behaviorally equivalent

under all conditions
 using C for Q should be transparent�

� If exact predicate or plug�in match holds� then C can be substituted for Q and the behavior

speci	ed by Q will still hold� although we are not guaranteed the same behavior when

Qpre is false�

� If weak post match holds� then the speci	ed behavior holds when Spre is satis	ed� De�

pending on the context� we may be able to ensure that Spre holds and hence guarantee

the behavior speci	ed by Q�

Speci	cation matching is thus a cheap approximate method of program veri	cation
 Suppose

we have a component S that we want to use to implement something speci	ed by Q� We use

exact pre�post match to verify that S satis	es Q� If exact pre�post match is too strong� we can

	��� SUBSTITUTION ��

use one of the other matches for a weaker but still useful guarantee� Of course� we are assuming

that the implementation of S satis	es its speci	cation�

����� Subtyping

A particular case of substitution is subtyping� In object�oriented programming languages� an

object type� de	nes a collection of objects� which consist of data �state� and methods that act

on the data �Car��� Ame��� Mey�� � Intuitively� a type 	 is a subtype of another type � if an

object of type 	 can be substituted for an object of type � �

Precise de	nitions of subtyping vary in the strictness of this notion of substitutability from

simply requiring the methods" signatures to match �signature subtyping� to requiring a corre�

spondence between formal speci	cations of methods �behavioral subtyping�� In the remainder

of this section� we relate these de	nitions of subtyping to signature and speci	cation matching�

To use signature and speci	cation matching to model signature and behavioral subtyping� we

must convert object types to our context� We base our de	nition of an object type speci	cation

on that of Liskov and Wing �LW�� �� An object type speci	cation includes the following

information

� The object type"s name

� A description of the object type"s value space

� For each of the object type"s methods mi

� Its name

� mi�sig � its signature

� mi�spec � its behavior in terms of pre� and post�conditions

We model this as a module speci	cation with a type declaration for the object type� a

global variable of the object type to hold the current state of the object �an element of the

value space�� and a function speci	cation for each method�

For example� Figure ��� shows the module speci	cations for two objects� The 	rst is BagObj�

a mutable bag object with global variable b and methods put� get� and card� The clause modi�es

b in the functions put and get indicates that the value of b may be changed by the functions�

In the ensures clauses� we use b& to stand for the value of the bag in the 	nal state and b for

the value in the initial state� The second speci	cation is of a stack object� StackObj is based

on the same trait as bag� but has a stricter speci	cation for the method that removes an object

�pop top� and an additional method� swap top� In keeping with the Liskov and Wing approach�

�These are usually simply called �types�� but we need to distinguish types of objects from types in signatures�
�We di�er from Liskov and Wing in that we do not include invariants or constraints� We focus here on

modeling certain aspects of object speci�cations in our framework�

�� CHAPTER 	� APPLICATIONS

signature BagObj � sig
��! using Container� !��
type � t ��! based on

Container��E Container��C !��

val b
 � t

val put
 �� unit
��! put �e�
modi�es b
ensures b& � insert �e� b� !��

val get
 unit � �

��! get � � � e
requires not �isEmpty�b��
modi�es b

ensures �b& � delete �e� b�� and
�isIn �e� b�� !��

val card
 unit � int
��! card � � � n
ensures n � size �b� !��

end

signature StackObj � sig
��! using Container� !��
type � t ��! based on

Container��E Container��C !��

val s
 � t

val push
 �� unit
��! push �e�
modi�es s
ensures s& � insert�e� s� !��

val pop top
 unit � �

��! pop top � � � e
requires not �isEmpty �s��
modi�es s

ensures �s& � butLast �s�� and
�e � last �s�� !��

val swap top
 �� unit
��! swap top �e�
requires not �isEmpty �s��
modi�es s
ensures s& � insert �e� butLast �s�� !��

val height
 unit � int
��! height � � � i

ensures i � size�s� !��
end

Figure ���
 Larch�ML speci	cations of bag and stack object types

we assume that create methods are de	ned elsewhere� Appendix B lists the Container� trait

on which both speci	cations are based�

The StackObj speci	cation di�ers in several ways from the Stack speci	cation in Figure ���

�pg� ���� First� in StackObj� stacks are mutable� whereas in Stack they are not� Because the

Stack speci	cation in Chapter � speci	es the behavior of a typical implementation in a functional

language� its stacks are immutable� Here� however� we wish to model the speci	cation of a stack

in the object�oriented paradigm� and hence these stacks are mutable� Second� Stack has separate

functions for pop and top while StackObj combines these in pop top� Again� this is mainly a

by�product of the di�erence between a functional implementation and an object�oriented one�

	��� SUBSTITUTION ��

Third� each speci	cation has additional functions that the other does not�

We now consider how to de	ne the subtype relation between two objects �modules�� We

de	ne three di�erent subtype relations
 one based on signature matching and two based on

speci	cation matching� Let T represent the module interface of the supertype and S the module

interface of the subtype� All subtype de	nitions require a correspondence between each method

in T and a method in S but allow additional methods in S� The correspondence between

methods varies among the subtype de	nitions but is always a function match de	nition� Thus�

all three subtype de	nitions have the following general form

De�nition �
�
� �Generic Subtype�

Subtype�S� T � � M�matchgen�S� T� matchmethod �

S is a subtype of T if S matches with T under generalized module match� The particular

notion of subtyping depends on matchmethod � the match used at the method �function� level�

We instantiate matchmethod with the appropriate function match de	nition for each of the three

di�erent subtype de	nitions�

Signature Subtyping

Most de	nitions of subtyping use the contravariant and covariant rules for function �method�

signature match �Car��� Ame�� � For each method� m� � in the supertype� there is a method m�

in the subtype such that m� "s input types are subtypes of m�"s input types �contravariance�

and m�"s return type is a subtype of m� "s return type �covariance�� We assume that there

is a subtyping relation
ST � which includes an assumed subtype relation between the types

currently under consideration�

We de	ne contra�covariance subtyping of object types by instantiating matchmethod in the

generic subtype de	nition �De	nition ������ with contra�covariance function match� The con�

tra�covariance function match is similar to the specialized function signature match except that

we must reverse the ordering relation �
ST � for the return type�

De�nition �
�
� �Contra�Covariance Signature Subtype�

Subtypec�c�S� T � � M�matchgen �Ssig� Tsig� matchc�c�

where matchc�c�	� �� �

for 	 � �	� � � � 	n��� � 	n

and � � ��� � � � �n��� � �n
�i
ST 	i � � � i � n 	 � and

	n
ST �n

Under contra�covariance signature subtype� StackObj is a subtype of BagObj using the

obvious mapping of bag functions to stack functions� since for all three functions� the types

match exactly� Note that if we remove the swap top method from StackObj� BagObj is also

��� CHAPTER 	� APPLICATIONS

a subtype of StackObj� even though using the get method from BagObj does not guarantee

stack�like behavior� This illustrates the need for a stronger notion of subtyping based on the

behavior of the methods�

Speci�cation �Behavioral� Subtyping

More recent work on subtyping has focused on adding semantic information to more precisely

capture the notion of substitutability of a subtype� as de	ned by Liskov in her OOPSLA "��

keynote address �Lis��

If for each object o� of type S there is an object o� of type T such that for

all programs P de	ned in terms of T � the behavior of P is unchanged when o� is

substituted for o�� then S is a subtype of T �

Behavioral notions of subtyping that attempt to capture this substitutability property have

since been de	ned by many �Ame��� DL��� Lea��� LW��� LW��� Mey�� � There are subtle

di�erences between all these subtype de	nitions� but common to all is the use of pre��post�

condition speci	cations both to describe the behavior of types and to determine whether one

type is a subtype of another� Let mT be a method of supertype T � and mS be the corresponding

method of subtype S� Then America �Ame�� � for example� de	nes subtype in terms of the

following pre��post�condition rules� for each method of the supertype

� Pre�condition rule� mT �pre� mS �pre

� Post�condition rule� mS �post� mT �post

which is exactly our plug�in match� As with signature subtyping� behavioral subtyping requires

that each method in the supertype T have a corresponding method in the subtype S� but there

may be additional methods in S� We de	ne behavioral subtyping by instantiating matchmethod

in the generic subtype de	nition �De	nition ������ with plug�in function speci	cation match

�De	nition ������ pg� ���� We assume that the signatures match�

De�nition �
�
� �Behavioral Subtype�

Subtypebehav�S� T � � M�matchgen �Sspec� Tspec� matchplug�in�

Another� slightly weaker pair of pre��post�condition rules allows an additional assumption

about the pre�condition in the post�condition rule

� Pre�condition rule� mT �pre� mS �pre

� Post�condition rule� �mS�pre �mS �post� � mT �post

�We omit the abstraction function for simplicity�

	��� SUBSTITUTION ���

This post�condition rule is the same as our weak post function speci	cation match� and is

used for the same reason
 to allow us to prove the post�condition relation when it is necessary

to make an assumption about the pre�condition� We de	ne a new subtype de	nition that uses

the pre��post�condition rules above

De�nition �
�
	 �Weak Behavioral Subtype�

Subtypeweak�behav�S� T � � M�matchgen�Sspec� Tspec� matchweak�plug�in�

where

matchweak�plug�in�S�Q� � �Qpre � Spre� � ��Spre � Spost� � Qpost�

Consider the StackObj and BagObj speci	cations in Figure ���� We would like to show

that StackObj is a behavioral subtype of BagObj� As the objects are speci	ed� we cannot

show the stronger behavioral subtype relation �De	nition ������� because we cannot prove

matchplug�in�pop top� get�� since we cannot reason about the case where the stack or bag is

empty� However� we can show that StackObj is a weak behavioral subtype of BagObj �De	ni�

tion ������� since the weak plug�in de	nition speci	cally allows us to exclude the case where the

stack or bag is empty�

To show Subtypeweak�behav�StackObj �BagObj � �or equivalently� M�matchgen �StackObj spec�

BagObj spec� matchweak�plug�in��� we must de	ne the mappings UF and UTC to satisfy the three

requirements of module match�

There is only one user�de	ned type in both StackObj and BagObj� and it is the same �i�e��

UserOp��BagT� � UserOp��StackT � � t�� So UTC is the identity function �UTC�t� � t�� We

de	ne UF as follows
 UF �put� � push � UF �get� � pop top� and UF �card� � height � UTC and

UF satisfy the three requirements of generalized module match

��� UTC and UF are both one�to�one total functions� �UF is not onto� but does not need to

be for generalized module match��

��� matchE �� t� � t�

��� matchweak�plug�in�push� put�

matchweak�plug�in�pop top � get�

matchweak�plug�in�height � card�

We translated our speci	cations of StackObj and BagObj into LP input and were able to

prove the weak plug�in matches with very little user guidance� Figure ��� shows the LP proof

script to load the speci	cations and prove the weak plug�in match between each pair of methods�

The proofs for matchweak�plug�in�push� put� and matchweak�plug�in�height � card� are trivial� since

the speci	cations are identical modulo variable names� The proof formatchweak�plug�in�pop top� get�

requires an additional lemma and some guidance� Appendix B shows the Container� trait on

which both BagObj and StackObj are based� as well as bagobj�lp and stackobj�lp� the result

of translating BagObj and StackObj into LP input�

��� CHAPTER 	� APPLICATIONS

thaw Container� Axioms

&& execute bagobj�lp
&& execute stackobj�lp

& weak�plug�in�push� put�
prove �putPre �� pushPre� �n ��pushPre �n pushPost�b� b"� e�� �� putPost�b� b"� e��

� conjecture

& weak�plug�in�height� card�
prove �cardPre �� heightPre� �n ��heightPre �n heightPost�b� i�� �� cardPost�b� i��

� conjecture

& Additional lemma assert �
� count�e�s�
prove delete�e�insert�e�s�� � s
apply Container��� to conjecture
� conjecture

& weak�plug�in�pop� get�
prove

�getPre�b� e� �� popPre�b� e�� �n
��popPre�b�e� �n popPost�b� b"� e�� �� getPost�b� b"�e��
��
resume by induction on b

� basis subgoal
� basis subgoal

� induction subgoal
� induction subgoal

� conjecture
qed

Figure ���
 LP subtype proof script

	��� SUBSTITUTION ���

����� Discussion

Section ��� shows how to use our match de	nitions� particularly speci	cation match� to show

that one component may be substituted for another� Here are two scenarios that illustrate how

we can use substitution in practice�

Scenario �� Suppose that as part of a system implementation we need a component that

we have speci	ed with a module speci	cation �Q� Further� suppose that there is a module

in our library with speci	cation �L� and that the implementation of �L has been veri	ed to

be correct with respect to the speci	cation �L� If we can show that �Q is matched by �L

under generalized module match with plug�in function match� then we know that we can use

the library module and the behavior will be consistent with that speci	ed by �Q� Thus� we use

speci	cation match to check that using a library component will not �break� our system�

Scenario �� Suppose that we have a piece of software that includes a component speci	ed

by �Q and that as part of the maintenance of the software� we need to replace the component

with an upgrade speci	ed by �L� If we can show that �Q is matched by �L under generalized

module match with plug�in function match� then we know that replacing the component with

the upgrade will not change the observable behavior of the software� Thus� we use speci	cation

match to check that upgrading will not �break� our system� An advantage of this scenario is

that the speci	cation �Q is known to the developer of the upgrade� and thus it is reasonable to

assume that both speci	cations are based on the same trait �hence base terms are the same��

Further� the speci	cations should be very similar �assuming the functionality of the component

did not change�� and thus the match should be easy to prove�

Section ����� shows how the method rules of signature and behavioral subtyping are instances

of our more general notion of signature and speci	cation matching� Our de	nitions of behavioral

subtyping do not capture the ideas of other work in the area completely� however� First� we

do not address explicitly the use of an abstraction function for cases when the value spaces

of the subtype and supertype di�er� We could� however� include an abstraction function in

the speci	cation of the subtype and explicitly map the values� Alternatively� we could use

relaxed signature matches in some cases �for example� when the value space of the supertype

is more general than the value space of the subtype�� Second� we do not handle invariants or

constraints in our speci	cations� although it should be possible to add this in our framework by

extending �T to include constraint speci	cations in addition to user�de	ned type declarations�

A third and more important exclusion in our de	nitions is the lack of a way to model additional

methods in the subtype in terms of methods in the supertype �the extension rule in Liskov and

Wing�LW�� ��

What we have shown is how subtyping 	ts into our framework of signature and speci	cation

matching� Subtyping based on just signatures is subsumed by module match using function

signature matching� and with minor or no variation� we de	ne the core part of many behavioral

notions of subtyping with module match using function speci	cation matching� Additionally�

by using this framework� we provide tools to automate subtype checking�

��� CHAPTER 	� APPLICATIONS

Chapter �

Related Work

Related work generally divides by the application� There is no other work that applies a

uniform approach for all the applications we describe in the thesis� although a few consider

both retrieval for reuse and indexing� The primary area of related work addresses retrieval for

reuse� We divide work on retrieval for reuse further into signature�based retrieval �Section �����

speci	cation�based retrieval �Section ����� and other retrieval approaches �Section �����

Our work on signature and speci	cation matching for retrieval is unique in three ways�

First� for functions� we have identi	ed a small set of matches� each of which identify an intu�

itive correspondence between components that are similar but not identical� The matches are

presented in a general framework that allows composition of function signature matches and

allows us to describe much of the related work within our framework� Other work chooses one

�or sometimes two� matches� and is not easily extensible to other matches as ours is� We talk

more about the advantages of our match de	nitions separately for signatures and speci	cations�

Second� most related work has focused on matching at the function level �with the exception

of �CHJ��� SC�� for signatures and �JC�� for speci	cations�� We extend matching to the

module as well� Moreover� since we de	ne all our function match de	nitions to follow a common

form� we are able to use function match as a parameter to module match� and hence de	ne

both signature and speci	cation module match with one parameterized de	nition� Thus� our

de	nition of module match is more �exible than the limited treatment in the few systems that

consider modules at all�

Finally� we go beyond retrieval for reuse and present three more retrieval applications �sta�

tistical analysis� browsing� and compound retrieval�� and two other applications �indexing and

substitution�� Other work focuses primarily on retrieval for reuse� although a few have a notion

of indexing �RT��� JC��� MMM�� �

���

��� CHAPTER
� RELATED WORK

�� Signature�Based Retrieval

Signature matching for retrieval was 	rst proposed concurrently by Rittri �Rit�� and by Runci�

man and Toyn �RT�� � Most related work on signature matching has focused either on signature

matching as an application of a particular theoretical de	nition of type isomorphism or as a

very basic retrieval tool to be used in conjunction with other tools�

Our work on signature matching �initial results published in �ZW�� with an extended

version showing the new applications in �ZW��a � is unique because ��� it takes a �pick and

choose� approach to function match de	nitions� ��� it includes module matching� and ��� it

includes applications other than retrieval for reuse� The second and third points are discussed

for both signatures and speci	cations at the beginning of this chapter� We elaborate here

on the 	rst point� We have identi	ed a small set of primitive function matches based on

transformations of types� The other work identi	es and implements a single function signature

match� With our approach� we can describe related work on signature matching in terms of

our framework and de	nitions �as elaborated below�� We require one new match de	nition for

uni	cation� which allows variables to be instantiated in both types with the same substitutions

matchunify ��l� �q� � � a sequence of variable substitutions� U� such that matchE �U �l� U �q�

Our approach also supports orthogonality of concepts� allowing the user to pick and choose

whichever match is desired� perhaps through a combination of more primitive matches� Each

transformation corresponds to an intuitive relationship between two types �e�g�� reordering of

elements in a tuple�� The only other work to take the same approach as ours is that of Stringer�

Calvert �SC�� � whose work was inspired by ours� His match de	nitions are based on our

de	nitions of exact� reorder� generalized� and specialized match �he does not include uncurry

and type constructor matches�
 he de	nes an additional subset match� which is like reorder

match but allows tuple elements to be dropped� He has implemented a signature matcher for

Ada types�

An additional distinction of our signature matching approach is that we chose our framework

and de	nitions with an eye toward how the matches would be used in practice� In addition

to examples that illustrate the match de	nitions� we provide a collection of experiences from

actual use of the system on a moderately�sized library� Although other systems have been

implemented� at least as prototypes� there are few other examples of real use�

���� Category Theoretic Approaches

Research using category theory takes the approach of identifying a category and a set of axioms

that are sound and complete for the category �i�e�� the axioms 	nd an equivalence between

two types if and only if the types are isomorphic in the category�� and using the isomorphisms

de	ned by the category as the basis for function type match and retrieval� Results vary based

on the category and axioms used� and based on whether variables can be instantiated in the

��� SIGNATURE�BASED RETRIEVAL ���

query �matching�� in both the query and the library component �uni	cation�� or not at all

�equality�� This approach leverages o� the extensive work in the decidability and complexity of

uni	cation and matching of isomorphisms in various categories� but the extra axioms required

for completeness give rise to some isomorphisms that are surprising in the context of type

matching �e�g�� �� unit is isomorphic to unit��

Rittri �along with Runciman and Toyn� was the 	rst to propose using function signatures

for retrieval� In his 	rst work �Rit��� Rit�� � he implemented a system to retrieve types that

are isomorphic to the query type in Cartesian closed categories� This isomorphism allows

equivalence between types that di�er only in their currying or argument order� The match is

similar to matchreorder� � matchuncurry� � but also admits some equivalences to get soundness

and completeness that do not make much intuitive sense in the context of types� For example� in

Rittri"s system� unit�� is isomorphic to �� and �� unit is isomorphic to unit� The implemented

retrieval system was for a restricted type system �only type variables� unit� function application�

and tuples��

Rittri then extended the system to also retrieve more general types from the library modulo

the isomorphism �Rit��� Rit��b �i�e�� similar to our matchreorder� �matchuncurry� �matchgen �

and extended the type system to allow user�de	ned type constructors�

Rittri"s third system �Rit��a makes two changes from the previous system� First� he restricts

isomorphisms to linear isomorphisms� which eliminate some of the un�intuitive equivalences

�e�g�� �� unit is not linearly�isomorphic to unit�� Second� he retrieves types that are uni�able

with the query modulo linear isomorphism �rather than just those that are more general��

By allowing uni	cation� he is able to match types with di�ering numbers of tuple elements�

since a tuple element can be instantiated with unit and reduced away� For example� � � int ��

unit � int �� int �by substituting unit for � and then applying the axiom for tuples that contain

unit��

Di Cosmo extends Rittri"s approach with a theory that also handles isomorphisms of types

with let expressions�DC�� � His implementation of retrieval is the only one we know of that

is widely available
 it is distributed with the CAML�Light system �Ler��a � There are two

di�erent searches available � equality modulo isomorphism �no instantiation of variables� and

matching modulo isomorphism �which retrieves more general types��

���� In Conjunction with Speci�cation Match

Some speci	cation�based retrieval work has an explicit notion of signature match �RW���

SGS�� � We discuss the details of the signature matches for these systems along with their

speci	cation matches in Section ����

Chen� Hennicker� and Jarke �CHJ�� describe a framework for both signature and speci	ca�

tion matching� but have only implemented signature matching so far� Components are speci	ed

in the algebraic speci	cation language ASL
 modules consist of a set of sorts� a set of operations

��� CHAPTER
� RELATED WORK

on the sorts� and a set of axioms about the operations� They de	ne an implements relation

S is an implementation of Q if the signatures match and Mod�S� � Mod�Q�� Mod�S� is the

class of models in which the axioms of S are satis	ed� Two components S and Q match if

their signatures match and if Mod�S� �Mod�Q�� but currently only the signature match part

is implemented� Their signature match de	nition is the same as generalized module match

with function match matchreorder � Their implementation is interesting
 library components

are stored in a database� and a query signature is translated as into a database query to the

knowledge base management system�

���� Others

Runciman and Toyn �RT��� RT�� approach retrieval from a slightly di�erent angle� They

assume that queries are constructed by example or by inference from context of use and match

a query and component if they are uni	able �i�e�� matchunify �� There can be multiple queries

for a particular retrieval� One focus of their work is to reduce the search space for retrieval�

They use initial��nal indexes as abstractions of the type� Indexes of types form a tree over the

library� These indexes would not easily generalize to allow other matches like uncurrying�

Runciman and Toyn also de	ne the notion that one type is an applicative instance of

another�� and discuss using this �partial order� relation to explore a library �i�e�� as an in�

dex�� but they do not use it in conjunction with search�

�� Speci�cation�Based Retrieval

Work on speci	cation matching for retrieval varies widely in the kinds of speci	cations used� in

the expressiveness of the match� and in the reasoning power of the implementation� We divide

the work into approaches that use speci	cations with separate pre� and post�conditions� and

those that do not� since explicit pre� and post�conditions allow matches like plug�in� which we

feel are the most important�

As summarized in the previous section� our work �initially published in �ZW��b � di�ers in

three ways� We elaborate here on the di�erence in the function speci	cation match de	nitions�

Our general approach allows us to de	ne and relate multiple matches within the lattice of

matches� Our implementation lets us easily experiment with the di�erent de	nitions� The

matches correspond to intuitive ideas about how two components relate �indeed� plug�in match

is used as a de	nition in several of the other systems�� The intuitiveness of some of the other

match de	nitions �e�g�� �JC��� MMM�� � is not clear in some cases� We feel that this could

hamper the willingness of a user to reuse a retrieved component� if he or she cannot understand

�Intuitively� a type � is an applicative instance of another type � if � could be de�ned as an application of �
�e�g�� map� �� � �� � � list � � list is an applicative instance of map� � �� � � � �� � � list � � list �

� list��

��� SPECIFICATION�BASED RETRIEVAL ���

how the component is related to the query�

An additional distinction between the various approaches is the �power� of the match engine�

Most approaches �KYS��� KRT��� RW��� PP�� use a restricted form of reasoning about the

match for pragmatic reasons� For example� Rollins and Wing use higher�order uni	cation

to implement the match de	nition� which allows them to leverage o� �Prolog� but cannot

support equational reasoning in proving a match� Only recently �MMM��� FKS��� ZW��b

have researchers begun to push theorem proving technology to do more powerful reasoning for

speci	cation�based retrieval�

���� Pre�Post Style Speci�cations

Rollins and Wing

The inspiration for our work comes from Rollins and Wing �RW�� � who 	rst proposed the idea

of function speci	cation matching� They implemented a prototype system using �Prolog as

the speci	cation and query languages� The system provides both signature and speci	cation

matching for ML functions� using �Prolog"s higher order uni	cation for the matching�

The signature match is the same as our function signature match with relaxations uncurry�

reorder� and unify� They handle a subset of the ML type system that includes type variables

but not user�de	ned types�

Speci	cations are written in a Larch style� with a shared component and an interface com�

ponent� A function component matches a query component if their signatures match and their

speci	cations match� A function speci	cation matches a query speci	cation if the query pre�

condition implies the function pre�condition� and the function post�condition implies the query

post�condition �i�e�� plug�in match�� One limitation of this approach is that �Prolog does not

use equational reasoning� and so the search may miss some functions that match a query but

require the use of equational reasoning to determine that they match� For example� if a query

that speci	es that a function returns an empty container �s� with the clause isEmpty
s� and

a library function speci	es the same thing with length
s� 	 �� �Prolog cannot determine that

they match�

Rollins and Wing also have a rule to match a query with the composition of two library

functions� For example� the signature query int list � int list is matched by applying gensort

�� � �� bool� � �� list � � list� to lessthan
 int � int � bool �

Inquire

Perry"s Inscape system �Per�� is a speci	cation�based software development environment� Its

Inquire tool �PP�� provides predicate�based retrieval in Inscape� Components are either op�

erations� data objects� or modules� Operations are speci	ed with pre�conditions and post�

conditions in 	rst order logic� �There are two kinds of post�conditions
 predicates that are

true as a result of executing the operation� and predicates that must eventually be satis	ed

��� CHAPTER
� RELATED WORK

obligations�� For operations� match is either exact pre�post or a form of generalized match�

Inquire also allows speci	cations of data objects� and thus can retrieve data objects as well� The

prototype system has a simpli	ed and hence fairly limited inference mechanism� In Inscape�

the user must provide speci	cations for each component anyway� so the query for a retrieval

will already be written� If no existing library components match� the user will start from the

speci	cation to implement the component�

VCR

A recent project that has had encouraging practical results is the VDM�based Component

Retrieval System �VCR� �FKS�� � which is part of the NORA software development environ�

ment �SGS�� � This system is closest to ours in approach� Components are Modula�� functions

that are speci	ed in VDM� The library is the Lins Modula�� library ��� modules� ���� proce�

dures�� of which they have speci	ed about half� Match is a multi�step process� The 	rst step

is signature matching� They use matchreorder � matchunify as the signature match �they allow

variables in the query types to allow incomplete speci	cations��

Speci	cation matching uses the matchplug�in de	nition� A focus of this work is on e�ciency of

proving match
 the tool performs a series of 	ltering steps before doing the speci	cation match�

In addition to the signature match� there is also a model checking step� which eliminates obvious

non�matches� The model checker tests the match obligations in 	nite models � for example�

they report good results from modeling integers as either � or �� and lists as either nul or a list

of one element� For the actual proof of plug�in match� they use the OTTER theorem prover�

They are very selective about the axioms provided with each proof obligation in order to keep

the search space tractable�

Jeng and Cheng

Jeng and Cheng �JC��� JC�� de	ne two di�erent matches where components are speci	ed using

order�sorted predicate logic �OSPL�� Components are modules that consist of inherit clauses

and a set of function speci	cations� A function speci	cation consists of a pre��post�condition

pair where terms are in OSPL� Both matches are instances of our generalized module match�

In the 	rst case �relaxed exact match�� the function match is primarily syntactic� The user

supplies a renaming of predicates� terms can be reordered in some cases �but not all�� and a

conjunction is matched if any of its subterms are matched�

The second match �logical match� is based on the subsumption relation between clauses�

But the example indicates that most of the increased �exibility in the match �compared with

relaxed exact match� comes from the type hierarchy �e�g�� int � real� and from user�supplied

relationships between terms �e�g�� size �pred card �� Neither of these matches seem to correspond

to any of the intuitive ideas about when two speci	cations should match�

Logical match is a partial order� Jeng and Cheng also describe how to use the match to

��� SPECIFICATION�BASED RETRIEVAL ���

build a hierarchy of library components� They have a prototype system� but do not describe

their library or how they use the hierarchy�

���� Other Systems

Mili� Mili� and Mittermeir

Mili� Mili and Mittermeir �MMM�� de	ne a speci	cation as a binary relation that contains

all the pairs of input and output that are correct for a function� A speci	cation S re�nes

another speci	cation Q if S has information about more inputs and assigns fewer images to

each argument� This is like plug�in match except that the match is in terms of relations rather

than predicates� They use the re	nes relation to build a lattice of the library components and

as the primary match de	nition� They de	ne a relaxed match for the case where there is not

a library speci	cation that re	nes the query� Relaxed match returns the functions that satisfy

�the largest portion of the requirements of the search key�� by computing the meet of library

speci	cations with the query speci	cation� and 	nding the ones among those that re	ne all the

other meets�

They describe an implementation of the match using the Otter theorem prover� and show

results of building a lattice and doing a query over a library of twelve speci	cations of di�erent

Pascal compilers� We 	nd that because the match de	nitions and lattice are all in terms of

binary relations� it can be hard to get an intuitive feel for what the match means in terms of

what the functions actually do�

Preliminary Approaches

Two earlier works have the same �avor as speci	cation�based retrieval� but come at it from

slightly di�erent angles�

Katoh� Yoshida� and Sugimoto �KYS�� propose using English�like speci	cations and queries

that are translated into 	rst�order predicate logic formulas� They use �ordered linear resolution�

to determine matching between a query and speci	cation� and include relaxations for changing

the order of parameters� making some parameters constants� or renaming subroutines� However�

the match does not verify that the subroutines match and checks only for equivalence� not

permitting any inference� and is hence closer in expressiveness to our signature matches�

The PARIS system �KRT�� maintains a library of partially interpreted schemas� Each

schema includes a speci	cation of assertions about the input and results of the schema and

about how the abstract parts of the schema can be instantiated� Matching corresponds to

determining whether a partial library schema could be instantiated to satisfy a query� The

system does some reasoning about the schemas but with a limited logic�

��� CHAPTER
� RELATED WORK

�� Other Approaches

We view signature and speci	cation matching as complementary approaches to more traditional

information retrieval techniques� A user chooses the most appropriate tool for a task based on

what information he or she has available and which tool is expected to give the best results

for that particular task� A user can also use one tool as a 	lter for another� We categorize

additional less closely related work based on the kind of information being matched �i�e�� the

kind of abstract��

Text�based Retrieval

The most common approach to software retrieval is text�based� Research in this area has

applied techniques from information retrieval and relational databases to software retrieval�

Queries and information on components are typically in a restricted keyword or attribute�value

approach �often called facets�� Matching corresponds to locating components in the system

with the same or similar keyword�value pairs �AS��� FN��� PD��� MF��� SSS��� CE��� Pou���

MFCS�� � Another information retrieval approach extracts attributes from natural language

documentation associated with each component �MBK�� �

In some cases� additional structural information can be added in AI�based semantic net

classi	cations� Information is either extracted from components and their documentation or

generated by domain experts �HM��� FHR��� OHPDB��� FF��� Hen�� �

The advantage to these approaches is that many e�cient tools are available to do the

search and match in these structures� A well�structured faceted classi	cation also forms an

index that can be used to browse the library� The disadvantage is that the characterization of

the component"s behavior is completely informal�

All of these other approaches require at the very least that the user learn the keyword

language �except for the natural language�based approach in �MBK�� �� Except for �MBK��

and �PP�� � the information about the library components must be created by hand as well� Our

work on signature matching uses a query language with which software engineers are already

familiar � the programming language"s type system�

Code�based Retrieval

Another class of matches �PP��� CMR�� allow queries over a representation of the component"s

actual code� e�g�� abstract syntax trees� Such queries are useful for determining mainly struc�

tural characteristics of a component� e�g�� nested loops or circular dependencies� but provide no

support for browsing or indexing�

��� OTHER APPROACHES ���

Example�based Retrieval

Another interesting approach to retrieval is a query�by�example technique �PP��� Hal�� � The

user forms a query by giving examples of correct output for an input �or set of inputs�� Matching

involves executing library components to 	nd one that generates the same outputs for those

inputs �usually involving a basic notion of signature matching as a 	lter�� In a sense� this is a

form of speci	cation matching� since the set of inputs and outputs specify the behavior of the

component on at least some inputs�

Protocol�based Match �Interoperability�

There is a growing body of work about how to connect modules and determining whether

two modules are interoperable� The notion of match is slightly di�erent
 looking at whether

two components can be connected �i�e�� plugged together� rather than whether one can be

substituted for the other �i�e�� plugged in�� But the basic notions of a signature or speci	cation

to describe the module are the same�

Wileden et� al� survey speci�cation�level interoperability �WWRT�� � Most work thus far

has focused on signature�based interoperability� and how to convert types in a heterogeneous

environment� Of particular interest is the ability to automatically generate the adapters that

will interface between two components �Kon��� YS��� Tha�� � An additional concern when

connecting modules is how the modules communicate or interact with one another� Allen and

Garlan �AG�� use a subset of CSP to specify protocols for modules �ports� and the connections

between modules �roles�� A port matches a role �port�role compatibility� if the behaviors of the

role include those of the port �within the context of the port"s connection to the role�� In our

work� we assume that all communication is achieved with procedure calls� so we do not have a

notion of protocol match�

The focus of each of these approaches is slightly di�erent� Information retrieval approaches

�with or without semantic nets� and query�by�example retrieval typically only address reuse

as an application
 code�based approaches focus mostly on browsing or analyzing the actual

code
 protocol�based approaches are concerned with interoperability� which is comparable to

substitution� Of these approaches� only protocol matching could address all the applications

covered by signature and speci	cation matching� Text�based approaches lack the ability to

express relations between the semantic properties of two components in order to do substitution�

Code�based retrieval is not easily extensible to indexing or browsing� Example�based retrieval

does not yield a relation between components other than exact match� so there is no relaxed

retrieval and no way to generate an index� Protocol matching has a di�erent focus� since

two components are connected rather than substituting one for the other� But protocols are

essentially an extended form of speci	cation and hence 	t within our general framework�

��� CHAPTER
� RELATED WORK

Chapter �

Conclusions and Future Work

�� Conclusions

This dissertation lays the foundation for using semantic information to match software com�

ponents and for using semantic matches for a variety of applications� particularly to utilize

libraries of components more e�ectively� We present precise de	nitions of a variety of matches

for signatures and speci	cations of functions and modules
 we have implemented the various

matches to use as a testbed for our ideas
 and we show how the matches are used for a variety

of applications�

Function signature matching provides a way to retrieve components� Function speci	cation

match addresses the problem of knowing when we can substitute one component for another�

Module matching is good for cases where we are concerned with details of the interface of

a module� The limitations of our approach to module matching indicate a need for a more

abstract type system for modules�

Conclusion �� Function signature matching should be a part of every software development

environment and every software library interface�

Signature�based retrieval is an e�cient� easy to use tool for locating functions of interest in a

library� Using an indexed library makes retrieval even more e�cient� Signature�based retrieval

provides a way to locate functions for reuse in terms of the programmer"s existing conception

of the function� since programmers often think of a function in terms of what is input to the

function and what the function returns� Further� signature�based retrieval is the only way to

	nd functions whose types are more general than or are instances of another type� This is what

makes browsing and statistical analysis possible�

An important factor in signature�based retrieval is controlling the number of functions

retrieved by a query� If there are too many� a user will have di�culty choosing the relevant one

�or ones�� If there are none or no relevant ones� the user must try again� The key to controlling

���

��� CHAPTER �� CONCLUSIONS AND FUTURE WORK

the number of matches is the appropriate use of relaxations� We can either allow the user

to pick and choose relaxations �as we do in Beagle� and thus control the number of matches

himself or herself� or we can use metrics about the ideal number of matches and automatically

add or drop relaxations to get within a desired range of number of matches�

Conclusion �� If cost is not a factor� speci�cation matching is useful for determining when one

component can be substituted for another�

The case for speci	cation matching is less conclusive� With our approach� the cost of

proving a match is too high to use speci	cation matching for retrieval� Given a particular

pair of functions or modules� however� speci	cation match can prove that the behavior of a

program will not change if we substitute one component for another� a property that can be

used when deciding whether to use a library component� when determining subtype relations�

or when upgrading an existing system with a new version of a component� Thus� the bene	ts

of doing speci	cation match indicate that the general approach has merit� However� to become

commonly used� we must reduce the cost of doing the match� We discuss some ways of doing

that in Section ������

Conclusion �� Match frameworks provide a general� highly extensible� and modular approach to

the problem of matching�

Each kind of matching �function signature� function speci	cation� and module� has a generic

form that we instantiate for each particular match de	nition� These frameworks make it possible

for use to compose function signature matches easily� relate the matches within each kind of

match� de	ne module match independent of the function match used� and extend the systems

�e�g�� with some of the things we discuss in Section �����

Conclusion �� De�ning multiple matches provides necessary �exibility to address a range of

applications�

Given a particular component granularity and kind of abstract �e�g�� function signature��

we de	ne multiple matches rather than a single match� Initially� the reason for having multiple

match de	nitions was to explore which relaxation �or combination of relaxations� is most useful�

What we discovered� however� is that which match de	nition is the �right� one depends on the

application and the context� and thus the right approach is to provide multiple matches and

allow the user the freedom to specify which notion of match he or she wants�

Having multiple de	nitions is not uncommon� On a general level� signature and speci	ca�

tion matching are multiple de	nitions of semantic matching� and semantic matching and text

matching are multiple de	nitions of component matching� Even focusing on a particular de�

���� FUTURE WORK ���

scription language� multiple notions of match abound� Consider the case of text matching�

Notions of match include exact match� match using a thesaurus to identify similar terms� and

regular expression match to 	nd patterns� Even within regular expression matching� there

is disagreement over what the �right� match is� The Unix commands grep and egrep have

di�erent regular expression languages� which is analogous to having di�erent kinds of relaxed

matches� Another indication that we need multiple match de	nitions comes from related work

in function signature matching that attempts to de	ne match as an isomorphism with or with�

out uni	cation� Rittri �Rit��� Rit��b� Rit��a and DiCosmo �DC�� take this approach and

have now identi	ed four di�erent matches� each time claiming to have found the right one�

Tools that manage the use of multiple de	nitions alleviate the problem of users being unable

to decide which match to use� Such tools order the results by the closeness of the match �e�g��

how many variable substitutions did we have to make� or set a range of acceptable number of

hits and either relax or strengthen the match automatically until the number of components

retrieved is within the range�

�� Future Work

Directions for future work include considering various ways of making both signature and spec�

i	cation matching more practical� exploring new applications of signature and speci	cation

matching� and applying our ideas to matching larger components� We consider future work

	rst in signature matching �Section ������� then in speci	cation matching �Section ������� work

applicable to both signatures and speci	cations �Section ������� and approaches for matching

larger components �Section �������

����� Function Signature Matching

Practical Use

Function signature matching applies for any statically�typed programming language� If we built

a signature�based retrieval tool for more commonly used languages and libraries� then we would

be able to show the e�ectiveness of signature matching in a more widely accepted environment

with larger libraries and more users� Examples of larger libraries include the C!! library from

NIH �Gor�� or some of the growing number of software repositories available on the World

Wide Web �BDGM��� PW�� �

Given a real library and active users� we would then be able to do a variety of user studies

to learn more about how signature matching is used in practice� Beagle� the signature�based

retrieval tool for SML� includes the means to log what queries users made� which match re�

laxations they used� and which results they looked at further� Due to a limited library and

user community� however� we did not have enough other users to reach any conclusions about

its practicality� Implementing a tool for a larger library� publicizing the tool� and making it

��� CHAPTER �� CONCLUSIONS AND FUTURE WORK

available on the World Wide Web should generate a lot more data about how a signature�based

retrieval tool is used�

An alternative approach would be to gather a collection of programming tasks and then do

a controlled comparative study that measures how long it takes users to complete the tasks

with signature�based retrieval versus text�based retrieval�

For any retrieval system� an important factor is the way that relaxations are controlled and

how the results are presented� With Beagle� we allow the user to control which relaxations are

used for the match� As we discussed in Chapter �� which relaxations are appropriate depends

on the application� For statistical analysis� the user usually wants complete control over which

relaxations are used� For retrieval for reuse� it may be more appropriate to focus on providing

the user with a reasonable number of matches from which to choose� In this case� we could

extend the system to add or remove relaxations until it gets a reasonable number of matches �if

possible�� For example� suppose a user speci	es that he or she would like to choose from between

	ve and �� matches� Given a query� the system would start with the most relaxed match� If

that retrieves more than �� matches� the system would try again with all but one relaxation

�using heuristics to determine which relaxation to remove�� This process would repeat until the

results are either within the range or as close as possible�

The main relaxations a�ecting the number of matches are usually generalized and specialized

match� Another potential addition to a signature�based retrieval system would be to provide

the user with more control over the way in which type variables are instantiated� In particular

the user could specify that the instantiation of a variable should be limited to either just

base types or to anything but functional types� Such a limitation would be useful in reducing

unwanted matches� For example� we could extend the Analysis � example �pg� ��� by also

	nding out how many functions are instances of � � � but not � � � � � by requiring that

� in the 	rst query not be instantiated by a function type� Similarly� in Reuse � �pg� ����

we could eliminate the �� library functions of type � � � from the results of the query

string list � ��string � string� � string� � string by limiting instantiation of type variables to

non�functional types� Thus� instead of two useful functions out of �� matches� we would 	nd

two useful functions out of only six matches�

Another approach to managing the results of a retrieval is to try to order the results of a

retrieval so that the matches that are most likely to be useful are listed 	rst� Other systems

�e�g�� Rittri �Rit��a � have reported that in the presence of variable substitution or uni	cation�

ordering results by the number of substitutions required tended to put the most useful functions

	rst� Their experience is consistent with our examples in Section ����� �e�g�� Reuse � and Reuse

��� where using generalized match included not only useful functions �which in these cases

contained only one variable� but also non�useful functions with the very general types � � �

and �� � � � �hence two or three variables��

���� FUTURE WORK ���

Signature Matching and Type Checking

Another direction for future work on signature matching is to consider other applications� One

example would be to integrate function signature matching with a language"s type checking

system to provide additional feedback when a type checking error is found� Relaxed matches

would detect problems with the order or format of arguments to a function� and retrieval would

suggest other functions in cases where the programmer has gotten the name of the function

wrong�

Consider the following scenario of how such a system would work� Suppose the code being

checked contains the function application foo x� where x
 �� and
foo x�
 �� by type inference�

and foo has type � �� � � ��� Suppose there is a type checking error because �� �� � �� or �� �� � ��
�or because �� � �� �� � �� � � �� in a polymorphic system�� With signature matching� we

check whether � �� � � �� is matched by �� � �� under relaxations reorder� uncurry� and type

constructor� If they match� we print an error message suggesting how to reformat the input

�e�g�� �foo
y�z� does not type check� but foo
z�y� would��� Second� we use signature�based

retrieval to search for functions in the environment that match the query �� � ��� If we

	nd such a function bar� then in addition to the regular error message� we add a suggestion

�Perhaps you meant bar rather than foo�� or we provide a way for the user to see a list of

functions that matched �� � ���

����� Function Speci�cation Matching

Other Speci�cations

One direction for future work on function speci	cation matching is to ask whether there is some

middle ground between signature matching and matching of full�blown formal speci	cations�

By constraining the speci	cation language� we improve the tractability of the match� For

example� rather than allowing unrestricted predicate logic terms in pre� and post�conditions�

we could restrict the clauses to conjunctions of attribute�value pairs �e�g�� ensures operation

	 add � ordering 	 increasing�� The set of possible attribute and value terms would be de	ned

in advance
 there may be relations between values of a particular attribute� e�g�� �ordering 	

increasing� � �ordering 	 nondecreasing�� Matching is a matter of checking a 	nite number of

attributes to see whether their values match �or are related�� Most of the same match de	nitions

still apply� but the match is always decidable� An additional advantage to this approach is that

the speci	cations might be easier for users to write and understand� Relaxing speci	cations

to conjunctions of attribute�value pairs is similar to keyword text�based matching approaches

�Section ����� but doing it within the framework of speci	cation match might enable us to

draw correspondences between attribute�value speci	cations and an underlying more formal

speci	cation so that we still get some of the same substitution behavior guarantees that we get

with the formal speci	cation matching approach�

Another example of reduced speci	cation match speci	es a function with a set of legal

��� CHAPTER �� CONCLUSIONS AND FUTURE WORK

input�output pairs �like the query�by�example approach in Section ����� A function S can be

substituted for a function Q if S"s set of input�output pairs is a superset of Q"s�

Better Practical Results

Another direction for future work on speci	cation matching is to make it easier to prove the

matches presented in Chapter �� Many of the proofs that we did for the examples in Chapter �

��� out of ��� required at least some user guidance� With further experience� we might 	nd

that adding a few more default proof strategies would eliminate much of the user guidance�

For example� three of the proofs that required guidance needed only the additional command

resume by induction� If induction is added as a default proof strategy� those matches go

through without additional guidance�

With further experience� we will also be able to determine how often in practice a component

S matches with a component Q under weak post match but not under plug�in match or plug�in

post match� Recall that weak post match allows us to assume that Spre holds� thus allowing us

to exclude cases for which we might not be able to show a relation between the post�conditions

�e�g�� the case where a container is empty on a delete operation��

One of the issues with speci	cation matching is knowing which base terms to use in the spec�

i	cation clauses� Currently we assume that the two speci	cations we are attempting to match

are based on the same LSL trait and thus use the same operator names� This is a reasonable

assumption for applications like maintenance� where we are matching the speci	cation of an

upgraded component with the speci	cation of the old component� and the speci	cation of the

old component was probably known to the speci	er of the upgraded component� If we want to

match two components that were speci	ed independently� however� we will need to relate non�

equivalent base terms� One way of identifying base terms that have di�erent names but might

intend the same thing is to use signature matching� Sorts would correspond to user�de	ned

types and operators would correspond to functions� Matching would use the type constructor

and reorder relaxations� So for example� an operator add � C� E � C in trait Container�

would match an operator insert � E� S � S in trait Container�� Once signature matching has

identi	ed a correspondence between sorts and operators in the two traits� we would then have

to prove that� under the correspondence� the theory of one trait contains the theory of the other

�with the appropriate renamings�� which we could do with LP �GGH�� �

����� Signatures and Speci�cations

Automatic Programming

A potential application of both signature and speci	cation matching is automatic program

generation from library components� We would need to extend signature�based retrieval with

a notion of a composite match� Given a query �� � ��� 	nd two components f�
 �� � �� and

f�
 �� � �� �or use relaxed signature matching so that the types need not match exactly��

���� FUTURE WORK ���

Then use speci	cation matching to check that the speci	cation of f� � f� matches with the

query speci	cation� If necessary� recurse to get a chain of functions to be composed� Note that

this is very similar to the planning task in AI �IJC�� �

Mismatch

For both signature and speci	cation matching our focus so far has been on when two components

match� We could just as easily consider the question of when two components do not match�

Depending on the components� identifying mismatches may be faster or easier than showing a

match�

Pruning an indexed library is an example of using signature mismatch� Let �q be the query�

�� and �� are in the indexed library� and �� is a child of �� �i�e�� �� � ���� Then if �q
 ��� we

know that �� �
 �q �i�e�� there is a mismatch between �� and �q�� and hence we are able to prune

�� �and all other children of ����

For speci	cation matching� suppose we want to substitute S for Q� and Q modi	es nothing�

If S modi	es anything at all� we cannot substitute and get the same observable behavior� so

there is a mismatch between S and Q� Identifying other such mismatches might even make

speci	cation matching practical for retrieval�

����� Larger Components

In order to build really large systems� we need building blocks that are bigger than the functions

and modules we have considered so far� The higher�level design of a software system is described

by a software architecture �GS�� � which consists of descriptions of the components of a system

and of the way that components interact�

Components are like our modules in that they contain information about the functionality

of the component �i�e�� an interface�� However� components also include information about how

the component communicates with the rest of the world� Thus� there are two factors to consider

in order to do signature or speci	cation matching of these kinds of components
 matching the

interface and matching the communication protocols� We believe that the solution to the 	rst

problem is the use of a type system at the module level� as described in Section ���� There

are formal descriptions of protocols and protocol matching �AG�� � Our approach would be to

try to combine this notion of protocol match with signature or speci	cation match �e�g�� two

components match if their speci	cations match and their protocols match�� It is also possible

that we could apply some aspects of our approach to matching to protocol matching� For

example� we could consider whether there are any forms of relaxed protocol matches�

There are two di�erent kinds of match to consider� First� matching to determine when we

can replace one component with another �such as the matches we have considered in this thesis��

A second kind of match is to determine when two components can be connected together� This

is the kind of match that other work on interoperability has focused on �AG��� WWRT���

��� CHAPTER �� CONCLUSIONS AND FUTURE WORK

Kon��� YS��� Tha�� � The same techniques apply to both� but the actual match de	nitions

are di�erent� In the 	rst case� the functionality of the two components should be similar
 in

the second case� the results �e�g�� output� of the 	rst component should be compatible with the

expectations �e�g�� input� of the second component� Both kinds of match are important and

both are amenable to signature and speci	cation matching and to checking for mismatch�

�� Epilogue

We envision a world where semantic abstracts and semantic�based matching provide tools that

greatly improve the tasks of creating and managing software� At the function level� a retrieval

system like Beagle should be a part of every software development environment� At higher levels�

we imagine the development of richer type systems to capture the important abstractions about

components� Moving beyond software components� we use the same approach to address the

issue of managing the increasing amounts of information
 type systems and speci	cations to

describe the data� various notions of relaxed matches to compare the data� and tools based on

the matches to help us manage the data�

Appendix A

The Container Trait

The Container trait de	nes operators to generate containers �empty and insert�� to return the

element or container resulting from deleting an element from the beginning or end ��rst� last�

butFirst� and butLast�� to return the length of a container �length�� and to determine whether

a container is empty �isEmpty��

Container�E�C�
 trait

includes Integer

introduces

empty
� C butFirst
 C � C

insert
 E�C � C butLast
 C � C

�rst
 C � E isEmpty
 C � Bool

last
 C � E length
 C � Int

asserts

C generated by empty � insert

C partitioned by isEmpty � length

� e
 E� c
 C

�rst�insert�e� c�� �� e

butFirst�insert�e� c�� �� c

last�insert�e� c�� �� if c � empty then e else last�c�

butLast�insert�e� c�� �� if c � empty then empty else insert�e� butLast�c��

isEmpty�empty�

�isEmpty�insert�e� c��

length�empty� �� �

length�insert�e� c�� �� length�c� ! �

���

��� APPENDIX A� THE CONTAINER TRAIT

Appendix B

Subtype Speci�cation

Figure B�� shows the Container� trait on which object speci	cations BagObj and StackObj are

based� This speci	cation is di�erent from the Container trait in Appendix A in that it has

additional operators delete� isIn� and count� Figures B�� and B�� show the results of translating

the speci	cations to LP input�

���

��� APPENDIX B� SUBTYPE SPECIFICATION

Container� � E � C �
 trait
includes Integer
introduces

empty
 � C butFirst
 C � C
insert
 E�C� C butLast
 C � C

delete
 E�C � C isEmpty
 C � Bool
�rst
 C � E isIn
 E�C � Bool

last
 C � E count
 E�C� Int
size
 C � Int

asserts
C generated by empty� insert
C partitioned by count
� e� e�
 E� c
 C

last�insert�e� c�� �� e

butLast�insert�e� c�� �� c
�rst�insert�e� c�� �� if c � empty then e else �rst�c�
butFirst�insert�e� c�� �� if c � empty then empty else insert�e� butFirst�c��
isEmpty�empty�
�isEmpty�insert�e� c��
�isIn�e� empty�
isIn�e� insert�e�� c�� �� �e � e�� � �isIn�e� c��
size�empty� �� �
size�insert�e� c�� �� size�c� ! �
count�e� empty� �� �
count�e� insert�e�� c�� �� count�e� c� ! � if e � e� then � else ��
count�e� delete�e�� c�� �� if e � e� then max ��� count�e� c�	 �� else count�e� c�

Figure B��
 Container� trait

���

&& signature BagObj
set name BagObj

&& type "a t based on Container��E Container��C

&& Variable declarations
declare var

b
 C
b"
 C
e
 E
n
 Int
��

&& Speci	cation declarations
declare op

putPre
 �� Bool
putPost
 C� C� E �� Bool
getPre
 C� E�� Bool
getPost
 C� C� E�� Bool
cardPre
 �� Bool
cardPost
 C� Int�� Bool
��

&& Speci	cation assertions
assert

putPre � true

putPost�b� b"� e� � �b" � insert�e�b��

getPre�b� e� � ���isEmpty�b���

getPost�b� b"� e� � �b" � delete�e�b� �n isIn�e�b��

cardPre � true

cardPost�b� n� � �n � size�b��
��

Figure B��
 Bag speci	cation translated to LP input

��� APPENDIX B� SUBTYPE SPECIFICATION

&& signature StackObj
set name StackObj

&& type "a t based on Container��E Container��C

&& Variable declarations
declare var

s
 C
s"
 C
e
 E
i
 Int
��

&& Speci	cation declarations
declare op

pushPre
 �� Bool
pushPost
 C� C� E �� Bool
popPre
 C� E�� Bool
popPost
 C� C� E�� Bool
swap topPre
 C� E �� Bool
swap topPost
 C� C� E �� Bool
heightPre
 �� Bool
heightPost
 C� Int�� Bool
��

&& Speci	cation assertions
assert

pushPre � true

pushPost�s� s"� e� � �s" � insert�e�s��

popPre�s� e� � ���isEmpty�s���

popPost�s� s"� e� � �s" � butLast�s� �n e � last�s��

swap topPre�s� e� � ���isEmpty�s���

swap topPost�s� s"� e� � �s" � insert�e�butLast�s���

heightPre � true

heightPost�s� i� � �i � size�s��
��

Figure B��
 Stack speci	cation translated to LP input

Bibliography

�AG�� Robert Allen and David Garlan� Formalizing architectural connection� In Proceed�

ings of the ��th International Conference on Software Engineering� pages ������

Sorrento� Italy� May �����

�AM�� William W� Agresti and Frank E� McGarry� The Minnowbrook workshop on

software reuse
 A summary report� In Will Tracz� editor� Tutorial� Software

Reuse� Emerging Technology� pages ������ Computer Society Press� �����

�Ame�� Pierre America� Designing an object�oriented programming language with be�

havioural subtyping� In J� W� de Bakker� W� P� de Roever� and G� Rozenberg�

editors� Foundations of Object�Oriented Languages� REX School�Workshop� No�

ordwijkerhout� The Netherlands� May�June ����� volume ��� of LNCS� pages

������ Springer�Verlag� NY� �����

�AS�� Susan P� Arnold and Stephen L� Stepoway� The REUSE system
 Cataloging and

retrieval of reusable software� In Will Tracz� editor� Tutorial� Software Reuse�

Emerging Technology� pages �������� Computer Society Press� �����

�ATT�� The Standard ML of New Jersey library reference manual� Technical report� AT)T

Bell Laboratories� February �����

�BDGM�� Shirley Brown� Jack Dongarra� Stan Green� and Keith Moore� Location�

independent naming for virtual distributed software repositories� In Proceedings of

the ACM SIGSOFT Symposium on Software Reusability
SSR
���� pages ��������

April �����

�Ber�� Dave Berry� The Edinburgh SML library� Technical Report ECS�LFCS��������

University of Edinburgh� April �����

�Bis�� Walter R� Bischofberger� Sni� � a pragmatic approach to a C!! programming

environment� In USENIX C�� Conference� pages ������ August �����

�BP�� Ted J� Biggersta� and Alan J� Perlis� editors� Software Reusability Vol� �� Concepts

and Models� ACM Press� N�Y�� �����

���

��� BIBLIOGRAPHY

�Car�� Luca Cardelli� Typeful programming� Report ��� DEC Systems Research Center�

Palo Alto� CA� May �����

�CE�� Yuk Fung Chang and Caroline M� Eastman� An information retrieval system for

reusable software� Information Processing and Management� �����
�������� �����

�CHJ�� P� S� Chen� R� Hennicker� and M� Jarke� On the retrieval of reusable software com�

ponents� In Proceedings of the �nd International Workshop on Software Reusability�

pages ������� IEEE Computer Society Press� March �����

�CMR�� Mariano Consens� Alberto Mendelzon� and Arthur Ryman� Visualizing and query�

ing software structures� In Proceedings of the ��th International Conference on

Software Engineering� pages �������� May �����

�Cor�� InfoSeek Corporation� Infoseek home page� Santa Clara� California�

http
��www�infoseek�com� �����

�DC�� Roberto Di Cosmo� Type isomorphisms in a type�assignment framework� In Pro�

ceedings of the ��th Annual Symposium on Principles of Programming Languages�

pages �������� January �����

�DL�� Krishna Kishore Dhara and Gary T� Leavens� Subtyping for mutable types in

object�oriented programming languages� Technical Report ������ Department of

Computer Science� Iowa State University� Ames� Iowa� November �����

�FF�� M� G� Fugini and S� Faustle� Retrieval of reusable components in a development

information system� In Proceedings of the �nd International Workshop on Software

Reusability� pages ������ IEEE Computer Society Press� March �����

�FH�� Anthony J� Field and Peter G� Harrison� Functional Programming� Addison�

Wesley� �����

�FHR�� Gerhard Fischer� Scott Henninger� and David Redmiles� Cognitive tools for lo�

cating and comprehending software objects for reuse� In Proceedings of the ��th

International Conference on Software Engineering� May �����

�FKS�� B� Fischer� M� Kievernagel� and W� Struckmann� VCR
 A VDM�based software

component retrieval tool� Technical Report ������ Technical University of Braun�

schweig� Germany� November �����

�FN�� W� B� Frakes and B� A� Nejmeh� Software reuse through information retrieval�

In Proceedings of the ��th Annual Hawaii International Conference on System

Sciences
HICSS�� Volume II� pages �������� �����

BIBLIOGRAPHY ���

�GG�� Stephen J� Garland and John V� Guttag� A guide to LP� the Larch Prover�

Report ��� DEC Systems Research Center� Palo Alto� CA� December �����

�GGH�� Stephen J� Garland� John V� Guttag� and James J� Horning� Debugging Larch

Shared Language speci	cations� Report ��� DEC Systems Research Center� Palo

Alto� CA� July �����

�GH�� John V� Guttag and James J� Horning� editors� Larch� Languages and Tools

for Formal Speci�cation� Texts and Monographs in Computer Science� Springer�

Verlag� ����� With Stephen J� Garland� Kevin D� Jones� Andr�es Modet� and

Jeannette M� Wing�

�Gor�� Keith E� Gorlen� An object�oriented class library for C!! programs� Software �

Practice and Experience� ������
�������� December �����

�GS�� David Garlan and Mary Shaw� An introduction to software architecture� In V� Am�

briola and G� Tortora� editors� Advances in Software Engineering and Knowledge

Engineering� Volume �� World Scienti	c Publishing Company� N�J�� �����

�Hal�� Robert J� Hall� Generalized behavior�based retrieval� In ��th International Con�

ference on Software Engineering� pages �������� �����

�Hen�� Scott Henninger� Supporting the process of satisfying information needs with

reusable libraries
 An empirical study� In Proceedings of the ACM SIGSOFT

Symposium on Software Reusability
SSR
���� pages �������� April �����

�HM�� Richard Helm and Yo*elle S� Maarek� Integrating information retrieval and domain

speci	c approaches for browsing and retrieval in object�oriented class libraries� In

OOPSLA Conference Proceedings� pages ������ �����

�IEE�� IEEE Transactions on Software Engineering� September ����� SE�������

�IJC�� Working notes� IJCAI workshop on formal approches to the reuse of plans� proofs�

and programs� August �����

�JC�� J��J� Jeng and B� H� C� Cheng� Formal methods applied to reuse� In Proceedings

of the �th Workshop in Software Reuse� �����

�JC�� J��J� Jeng and B� H� C� Cheng� Speci	cation matching for software reuse
 A foun�

dation� In Proceedings of the ACM SIGSOFT Symposium on Software Reusability

SSR
���� pages �� ����� April �����

�Jon�� C� B� Jones� Systematic Software Development Using VDM� Prentice Hall Inter�

national� �����

��� BIBLIOGRAPHY

�Kon�� Dimitri Konstantas� Object�oriented interoperability� In Oscar M� Nierstrasz�

editor� ECOOP
�� � �th European Conference on Object�Oriented Program�

ming� Kaiserslautern� Germany� July ����� volume ��� of LNCS� pages �������

Springer�Verlag� NY� �����

�KR�� Brian W� Kernighan and Dennis M� Ritchie� The C Programming Language�

Prentice�Hall� �����

�KRT�� Shmuel Katz� Charles A� Richter� and Khe�Sing The� PARIS
 A system for reusing

partially interpreted schemas� In Proceedings of the �th International Conference

on Software Engineering� pages �������� March �����

�Kru�� C� W� Krueger� Software reuse� ACM Computing Surveys� �����
�������� June

�����

�KYS�� Hideki Katoh� Hiroyuki Yoshida� and Masakatsu Sugimoto� Logic�based retrieval

and reuse of software� Technical Report TR����� Institute for New Generation

Computer Technology� October �����

�Lea�� Gary Leavens� Verifying object�oriented programs that use subtypes� Technical

Report ���� MIT Laboratory for Computer Science� February ����� Ph�D� thesis�

�Ler��a Xavier Leroy� CAML light manual� Technical report� INRIA� July �����

�Ler��b Xavier Leroy� The Caml Special Light system� release ����� documentation and

user"s manual� Technical report� INRIA� September �����

�Lis�� Barbara Liskov� Data abstraction and hierarchy� In OOPSLA
��� Addendum to

the Proceedings� pages ������ �����

�LW�� Gary T� Leavens and William E� Weihl� Reasoning about object�oriented programs

that use subtypes� In ECOOP�OOPSLA
�� Proceedings� �����

�LW�� Barbara H� Liskov and Jeannette M� Wing� A behavioral notion of subtyping�

ACM Transactions on Programming Languages and Systems� November �����

�MBK�� Yo*elle S� Maarek� Daniel M� Berry� and Gail E� Kaiser� An information retrieval

approach for automatically constructing software libraries� IEEE Transactions on

Software Engineering� �����
�������� August �����

�Mey�� Bertrand Meyer� Object�oriented Software Construction� Prentice Hall� New York�

�����

�MF�� Jean�Marc Morel and Jean Faget� The REBOOT enviornment� In Proceedings

of the �nd International Workshop on Software Reusability� pages ������ IEEE

Computer Society Press� March �����

BIBLIOGRAPHY ���

�MFCS�� Eliseo Mambella� Roberto Ferrari� Francesca De Carli� and Angela Lo Surdo�

An integrated approach to software reuse practice� In Proceedings of the ACM

SIGSOFT Symposium on Software Reusability
SSR
���� pages ������ April �����

�Mil�� Robin Milner� A theory of type polymorphism in programming� Journal of Com�

puter and System Sciences� �����
�������� December �����

�ML�� M� Mauldin and J� Leavitt� Web�agent related research at the CMT� In ACM Spe�

cial Interest Group on Networked Information Discovery and Retrieval
SIGNIDR�

���� August �����

�MMM�� A� Mili� R� Mili� and R� Mittermeir� Storing and retrieving software components

A re	nement�based approach� In Proceedings of the ��th International Conference

on Software Engineering� May �����

�MMM�� Hafedh Mili� Fatma Mili� and Ali Mili� Reusing software
 Issues and research

directions� IEEE Transactions on Software Engineering� �����
�������� June �����

�MTH�� Robin Milner� Mads Tofte� and Robert Harper� The De�nition of Standard ML�

MIT Press� �����

�OHPDB�� Eduardo Ostertag� James Hendler� Rub�en Prieto�D�iaz� and Christine Braun� Com�

puting similarity in a reuse library system
 An AI�based approach� ACM Trans�

actions on Software Engineering and Methodology� ����
�������� July �����

�PD�� Rub�en Prieto�D�iaz� Classi	cation of reusable modules� In Ted J� Biggersta� and

Alan J� Perlis� editors� Software Reusability Vol� �� Concepts and Models� pages

������� ACM Press� N�Y�� �����

�Per�� Dewayne E� Perry� The Inscape environment� In Proceedings of the ��th Interna�

tional Conference on Software Engineering� pages ����� �����

�Pou�� Je�ery S� Poulin� Integrated support for software reuse in computer�aided software

engineering �CASE�� ACM SIGSOFT Software Engineering Notes� �����
������

October �����

�PP�� Andy Podgurski and Lynn Pierce� Behavior sampling
 A technique for automated

retrieval of reusable components� In ��th International Conference on Software

Engineering� pages ��� � ���� �����

�PP�� Dewayne E� Perry and Steven S� Popovich� Inquire
 Predicate�based use and reuse�

In Proceedings of the �th Knowledge�Based Software Engineering Conference� pages

�������� September �����

��� BIBLIOGRAPHY

�PP�� Santanu Paul and Atul Prakash� A framework for source code search using program

patterns� IEEE Transactions on Software Engineering� �����
�������� June �����

�PW�� Je�ery S� Poulin and Keith J� Werkman� Melding structured abstracts and the

world wide web for retrieval of reusable components� In Proceedings of the ACM

SIGSOFT Symposium on Software Reusability
SSR
���� pages �������� April

�����

�Rit�� Mikael Rittri� Using types as search keys in function libraries� Conference on

Functional Programming Languages and Computer Architectures� pages ��������

September �����

�Rit�� Mikael Rittri� Retrieving library identi	ers via equational matching of types� In

��th International Conference on Automated Deduction� Lecture Notes in Arti	cial

Intelligence� Number ���� pages �������� Springer�Verlag� July �����

�Rit�� Mikael Rittri� Using types as search keys in function libraries� Journal of Func�

tional Programming� ����
������ January �����

�Rit��a Mikael Rittri� Retrieving library functions by unifying types modulo linear iso�

morphism� Technical Report ��� Programming Methodology Group� Depart�

ment of Computer Sciences� Chalmers University of Technology and University

of G*oteborg� �����

�Rit��b Mikael Rittri� Retrieving library identi	ers via equational matching of types�

Technical Report ��� Programming Methodology Group� Department of Computer

Sciences� Chalmers University of Technology and University of G*oteborg� May

�����

�RT�� Colin Runciman and Ian Toyn� Retrieving re�usable software components by poly�

morphic type� Conference on Functional Programming Languages and Computer

Architectures� pages �������� September �����

�RT�� Colin Runciman and Ian Toyn� Retrieving reusable software components by poly�

morphic type� Journal of Functional Programming� ����
�������� April �����

�RW�� Eugene J� Rollins and Jeannette M� Wing� Speci	cations as search keys for soft�

ware libraries� In Proceedings of the Eighth International Conference on Logic

Programming� June �����

�SC�� David W�J� Stringer�Calvert� Signature matching for Ada software reuse� Master"s

thesis� University of York� �����

BIBLIOGRAPHY ���

�SGS�� Gregor Snelting� Franz�Josef Grosch� and Ulrik Schroeder� Inference�based support

for programming in the large� In A� van Lamsweerde and A� Fugetta� editors�

�rd European Software Engineering Conference� number ��� in Lecture Notes in

Computer Science� pages �������� Springer Verlag� October �����

�SM�� G� Salton and M� J� McGill� Introduction to Modern Information Retrieval�

McGraw�Hill� �����

�Spi�� J� M� Spivey� Understanding Z� A Speci�cation Language and its Formal Seman�

tics� Cambridge University Press� �����

�SSS�� Lars Sivert S+rumg,ard� Guttorm Sindre� and Frode Stokke� Experiences from ap�

plication of a faceted classi	cation scheme� In Proceedings of the �nd International

Workshop on Software Reusability� pages �������� IEEE Computer Society Press�

March �����

�Sta�� Richard Stallman� GNU Emacs Manual� �����

�Ste�� Guy L� Steele Jr� Common Lisp� The Language� Digital Press� �����

�Tes�� Larry Tessler� The Smalltalk environment� BYTE� pages ������� August �����

�Tha�� Satish R� Thatt�e� Automated synthesis of interface adapters for reusable classes�

In Proceedings of the ��st Annual Symposium on Principles of Programming Lan�

guages� pages �������� January �����

�TR�� David Tarditi and Gene Rollins� Local guide to Standard ML� Technical report�

CMU� March �����

�Wad�� Philip Wadler� Theorems for free- In Fourth International Conference on Func�

tional Programming Languages and Computer Architecture� pages �������� ACM

Press� September �����

�WRZ�� J�M� Wing� E� Rollins� and A� Moormann Zaremski� Thoughts on a Larch�ML

and a new application for LP� In Ursula Martin and Jeannette M� Wing� editors�

First International Workshop on Larch� Springer Verlag� �����

�WWRT�� Jack C� Wileden� Alexander L� Wolf� William R� Rosenblatt� and Peri L� Tarr�

Speci	cation�level interoperability� CACM� �����
������ May �����

�YS�� Daniel M� Yellin and Robert E� Strom� Interfaces� protocols� and the semi�

automatic construction of software adaptors� OOPSLA Conference Proceedings�

ACM SIGPLAN Notices� ������
�������� October �����

��� BIBLIOGRAPHY

�ZW�� Amy Moormann Zaremski and Jeannette M� Wing� Signature Matching
 A Key

to Reuse� In Proceedings of SIGSOFT
�� First ACM SIGSOFT Symposium on

the Foundations of Software Engineering� ACM SIGSOFT Software Engineering

Notes� ������ pages �������� December ����� Also CMU�CS�������� May� �����

�ZW��a Amy Moormann Zaremski and Jeannette M� Wing� Signature Matching
 a Tool

for Using Software Libraries� ACM Transactions on Software Engineering and

Methodology� ����
�������� April �����

�ZW��b Amy Moormann Zaremski and Jeannette M� Wing� Speci	cation Matching of

Software Components� In Proceedings of SIGSOFT
�� Third ACM SIGSOFT

Symposium on the Foundations of Software Engineering� ACM SIGSOFT Soft�

ware Engineering Notes� ������ pages ����� October ����� Also CMU�CS��������

March� �����

