
Improving Code-Injection Vulnerability
Detection and Confirmation in JS Programs

Nuno Sabino

CMU-CS-25-156

January 2026

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
-

Thesis Committee:
Limin Jia, Chair

Lujo Bauer
Ruben Martins

José Fragoso (Instituto Superior Técnico)
Pedro Adão (Instituto Superior Técnico)

Rui Abreu (Universidade do Porto)
Cristian-Alexandru Staicu (Endor Labs)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science.

Copyright © 2026 Nuno Sabino

Work supported by national funds through Fundação para a Ciência e a Tecnologia, I.P. (FCT) through the Carnegie
Mellon Portugal Program (PhD grant SFRH/BD/150692/2020), project DIVINA (CMU/TIC/0053/2021) and project
UID/50008/2025, Instituto de Telecomunicações. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Keywords: Code Injection Vulnerabilities, Exploit Synthesis, Dynamic Taint Analysis, Fuzzing,
Symbolic Execution

Abstract
JavaScript applications face serious security risks, including client-side DOM-

based Cross-Site Scripting (DOM-XSS) and server-side arbitrary command injection
(ACI) and arbitrary code execution (ACE). Exploiting these vulnerabilities can lead
to severe consequences, including unauthorized access to sensitive data and even full
server compromise.

Dynamic taint analysis (DTA) tools have been used to identify how attacker-
controlled input, such as a URL, may reach sensitive functions that lead to arbitrary
code execution. Such propagations of attacker information, termed potential flows,
can be good indicators of vulnerabilities. However, existing approaches struggle to
(1) generate concrete inputs that exercise these flows due to limited path exploration,
and (2) automatically confirm vulnerabilities, because inputs must satisfy program
constraints while also triggering the intended side effects. This thesis leverages pro-
gram analysis techniques to address these challenges, with tailored approaches for
the distinct requirements of server and client code.

Client-side analysis is complicated by program behaviors dependent on user in-
teractions and URL GET parameters. To overcome this, we developed a fuzzer to
interact with the target web page and we employ dynamic symbolic execution (DSE)
to synthesize GET parameters satisfying program constraints. Relative to our repli-
cation of prior work DOMsday, the fuzzer alone identifies 15% more vulnerabilities
in a dataset of 44,480 popular pages, and the combination of fuzzing and DSE iden-
tifies 43% more vulnerabilities than DOMsday.

On the server-side, DTA-based tools miss ACI and ACE that require inputs with
complex structure. We develop a novel type- and structure-aware fuzzing technique
to explore Node.js packages, and an enumerator to synthesize syntactically valid
payloads for ACE vulnerabilities. Extending NodeMedic with these components led
to finding 1.7x more vulnerabilities.

Finally, we find that non-exploitable potential flows can still indicate real vul-
nerabilities, but exploitation may imply extra steps, such as bypassing sanitization
or extending attacker capabilities. We introduce an exploitability metric designed
to indicate proximity to an exploitable path, and use it to guide fuzzing and confir-
mation towards paths that are more likely automatically exploitable. Integrating this
in NodeMedic-FINE results in 1% more confirmed flows, while saving 28% of the
baseline confirmation time.

iv

Acknowledgments
Many people have shaped the way I think and guided me to the conclusion of

this chapter of my life. This work would not have been possible without my advisor
Pedro’s guidance, dedication and interest in my future. His mentoring strengthened
my perseverance, determination, and methodical thinking. Still on the Portuguese
side of my advising team, I also thank Rui Maranhão for his encouragment, valuable
feedback, and steady guidance throughout my research. I am deeply grateful to my
CMU advisor, Limin Jia, who helped me get better at identifying what truly matters,
and to define clear goals in the research process. This high-level perspective has
influenced me in more ways than I can express here. Finally, a special thanks to Lujo
Bauer. Although not an official advisor, his objectivity, transparency, and scientific
rigor have inspired me to become a better researcher.

I also thank the STT cybersecurity team and its members. The practical knowl-
edge I gained there was critical both to the development of this thesis and to nurturing
my interest for cybersecurity, a passion shared by many on the team. Thank you, Fil-
ipe, for letting me write your exploits until I was ready to capture some flags on my
own.

I am grateful to my family for their patience, encouragement, and for keeping
me grounded. I also feel fortunate to have lived in Pittsburgh with a group of en-
ergetic and optimistic friends who valued both intense work and intense play. Our
philosophical discussions and shared experiences profoundly changed how I think
and how I face life.

Finally, to my partner, Filipa: anything I could write here would be a vast under-
statement of how deeply you influenced me during this time. So I will just say I am
glad I share my life with you.

vi

Contents

1 Introduction 1
1.1 Roadmap . 3
1.2 Thesis Statement . 3

2 Background and Related Work 5
2.1 Code Injection Vulnerabilities in JavaScript Programs 5

2.1.1 DOM-based cross-site scripting (DOM-XSS) 5
2.1.2 Arbitrary Command Injection (ACI) . 7
2.1.3 Arbitrary Code Execution (ACE) . 8

2.2 Attacker Model . 9
2.3 Program Analysis Techniques for Signaling Code Injection Vulnerabilities 10

2.3.1 Static Analysis . 10
2.3.2 Dynamic Analysis . 11

2.4 Program Exploration Techniques . 12
2.4.1 Fuzzing . 13
2.4.2 (Dynamic) Symbolic Execution . 14

2.5 Exploit Synthesis . 14
2.5.1 Overview . 15
2.5.2 Observing Expected Side Effects to Confirm Vulnerabilities 15
2.5.3 Use of SMT Synthesis to Generate Exploits 15
2.5.4 Existing Methodologies for DOM-XSS Vulnerability Confirmation . . . 16
2.5.5 Limitations of Synthesis Tools . 18

2.6 Vulnerability Mitigation . 19
2.6.1 OS-Level Mitigations . 19
2.6.2 JavaScript Engine-Level Mitigations . 20
2.6.3 Application-Level Mitigations . 21
2.6.4 Coding Security Practices . 21

3 Improving Client Code Exploration for DOM-XSS Detection 23
3.1 Overview . 23
3.2 SWIPE Architecture . 25

vii

3.2.1 Execution Modes . 25
3.2.2 Workflow Overview . 25
3.2.3 Flow Collection . 27
3.2.4 Flow Confirmation . 29
3.2.5 Fuzzing User Interactions . 29
3.2.6 Using DSE to Find GET parameters and fragments (PFs) 34
3.2.7 Web Archiving . 38

3.3 Evaluation . 40
3.3.1 Experimental Setup . 40
3.3.2 RQ1: Importance of User Interactions 44
3.3.3 RQ2: Synthesis and Impact of PFs . 48
3.3.4 RQ3: Comparison with other DOM-XSS Detection Tools 51
3.3.5 RQ4: DOM-XSS Detection Over the Years 53

3.4 Discussion . 57
3.4.1 Limitations of the Web Archive Component 57

3.5 Conclusions . 59

4 Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities 61
4.1 Overview . 61
4.2 Type and Structure Aware Fuzzer for Node.js Packages 62

4.2.1 Motivation . 62
4.2.2 Fuzzer Input Generation . 62
4.2.3 Fuzzer Weight Adjustment . 64
4.2.4 Fuzzer Weight Initialization . 65
4.2.5 Fuzzer Object Reconstruction . 65
4.2.6 Fuzzer Generated Values . 66

4.3 Confirming Code Injection Flows in Node.js Packages 66
4.3.1 Usage of Polyglot Exploits for both ACI and ACE 67
4.3.2 Enumerator . 68
4.3.3 Construction of an Objective Payload Obeying Syntactic Constraints . . . 68
4.3.4 Integration of the Objective Payload in Exploit Synthesis 70
4.3.5 Addressing Efficiency Concerns . 71

4.4 Evaluation . 72
4.4.1 Experimental setup . 72
4.4.2 Gathering of the Evaluation Dataset . 73
4.4.3 RQ1: Effectiveness of Type-Aware Fuzzing 74
4.4.4 RQ2: Effectiveness of Polyglots and Enumerator for ACE Synthesis . . . 76
4.4.5 RQ3: Comparison with prior work . 78
4.4.6 Responsible disclosure . 80
4.4.7 Exploring Precision in NODEMEDIC-FINE 80

4.5 Limitations and Future Work . 81
4.5.1 More Complex Drivers . 81
4.5.2 Multiple Flows in the Same Package . 82
4.5.3 Enumerator: completing prefixes with multiple lines 82

viii

4.6 Conclusions . 82

5 Confirmation-Aware Analysis 83
5.1 Overview . 83
5.2 Confirmation-Aware Analysis . 84

5.2.1 Iterative NODEMEDIC-FINE Pipeline 84
5.2.2 Feature Design . 85
5.2.3 Assigning Weights to Exploitability Metric Features 88
5.2.4 Example Analysis Run Using the Exploitability Metric. 92

5.3 Evaluation . 93
5.3.1 Experimental Setup . 93
5.3.2 RQ1: Effectiveness of the Exploitability Metric 95
5.3.3 RQ2: Comparison with Prior Work. 101

5.4 Limitations and Future Work . 107
5.5 Conclusion . 109

6 Responsibility of Input Sanitization 111
6.1 Overview . 111
6.2 LLM-Assisted Triage of Package Documentations 112
6.3 Evaluation . 115

6.3.1 RQ: Are ACI and ACE Warnings Heeded by Dependent Packages? . . . 115
6.4 Threats to Validity . 118
6.5 Conclusion . 118

7 Conclusion 119
7.1 Summary . 119
7.2 Future Directions . 120
7.3 Concluding Thoughts . 122

8 Supplementary Material 125
8.1 NODEMEDIC-FINE Supplementary Material 125

8.1.1 Supported Sinks . 125
8.1.2 Example Enumerator Completion . 126
8.1.3 Vulnerability Characteristics . 126
8.1.4 Fuzzing Timeout . 127
8.1.5 LLM Signaled Sentences in Packages Containing Warnings 127

Bibliography 153

ix

x

List of Figures

2.1 Simplified code with DOM-XSS vulnerability found in the wild. 6
2.2 An example ACI vulnerability . 7
2.3 An example exploit for ACI . 8
2.4 Simplified code with ACE vulnerability found in the wild. 8
2.5 Example exploit for ACE. 9

3.1 Core proxy and browser interactions in an end-to-end SWIPE workflow for a
single page URL. Some workflow steps depend on the SWIPE mode that is
configured. Some network requests and responses between the browser and the
web archive are expected to occur during analysis steps (7a, 7b or 7c), even
though the diagram only describes the initial requests. 26

3.2 Simplified vulnerable code found in the wild. 30
3.3 JavaScript code executed by the fuzzer after page load to collect event handlers

from each frame. 31
3.4 Pseudocode for the fuzzing algorithm. This algorithm is repeatedly executed,

mutating the pool of actions until the time budget is exhausted. The first pool is
assumed to have already been constructed as previously discussed in this section. 35

3.5 Vulnerable code requiring specific URL parameters 36
3.6 DSE instrumentation for string concatenation. 37
3.7 Randomized page behavior observed in a real page from our crawl. 40
3.8 Our crawl pipeline, main results and comparison with TalkGen’s crawl. Pipeline

stages are marked by horizontal stripes, starting from dataset collection, DSE
dataset augmentation, analysis crawls, analysis results, confirmation crawls and
confirmation results. Results are given in terms of flows/1k URLs, unique po-
tential flows/1k URLs in round brackets and loaded frame domains in square
brackets. For each crawl, we describe its name and which research question it
helps answer. 41

3.9 Unique potential flows found by Passive and Fuzzer. 45
3.10 Unique confirmed flows found by Passive and Fuzzer. 45
3.11 JavaScript bytes of code executed for Passive, Fuzzer and Fuzzer without action

combinations in the Vulnerable dataset. 46

xi

3.12 Percentage of event handlers in the Vulnerable dataset that were executed by
Passive, Fuzzer and the simpleFuzzer that does not combine actions, for the 10
supported event handlers with higher sink calls frequency. 47

3.13 Comparison of confirmed flows found across Fuzzer, Fuzzer-noPFs and Fuzzer-
DSE24 (RQ2a). 49

3.14 Categorization of vulnerable top-level URLs, frames and scripts. 56
3.15 Accumulated number of pages deemed vulnerable as analysis time increases.

Web archiving helps to rediscover more vulnerabilities and reproduce past results. 58
3.16 Fraction of responses replayed from the webarchive during fuzzing for each vul-

nerable page found by the Fuzzer. Red lines show pages where vulnerabilities
were not rediscovered. 59

4.1 Fuzzer loop and interaction with the instrumented package, for a package with
an entry point called sync, expecting an object argument params with an attribute
command. 63

4.2 Pseudocode for our driver component. Our actual driver is automatically gener-
ated specifically for the target package and its entry points, but this figure sum-
marizes what steps the driver takes and how it interacts with the fuzzer, the target
package and the taint infrastructure. 64

4.3 A section of the graph representation of JavaScript syntax used by the Enumer-
ator. Edges have labels C; U where C is a condition over the current character
in the prefix c and the context ΓV . U is a context update colored in teal. Node
ReturnStmt has 5 edges connecting it to itself, which we collapsed on a single
edge with 5 labels. The term keywords refers to the set of reserved keywords in
Node.js. 69

4.4 Pseudocode for Enumerator’s prefix completion algorithm. 70
4.5 An example template produced by the Enumerator. 71
4.6 SMT-LIB2 encoding of a synthesis constraint that integrates an enumerator tem-

plate. This particular enumerator template is described in Figure 4.5. 71
4.7 How many flows were processed by the Enumerator and how many were suc-

cessfully exploited. We consider that Enumerator is successfull when it provides
a correct completion to the given prefix. 77

5.1 Simplified excerpt of a vulnerable entry point (Template.compile) in the latest
version of ejs – version 3.1.10 at the time of writing. 87

5.2 Pseudocode for our improved driver component. It allows selection of arbitrary
entry points; does not stop at the first discovered potential flow; computes an
exploitability estimate per entry point based on the operation tree generated by
the execution of each fuzzing input. 88

5.3 Package with two exported entry points. spawncat uses spawn; execcat uses exec. . 92
5.4 Missing and extra potential flows, compared with the baseline NMFINE-NoEM. . 97
5.5 Missing and extra confirmed flows, compared with NMFINE-NoEM. 99
5.6 Missing and extra confirmed flows, compared with NMFINE-NoEM, but only

within the set of packages where all conditions discovered a potential flow. 100

xii

5.7 Missing and extra potential flows for conditions using the exploitability metric,
compared with the baseline NMFINE-long-NoEM. This was using a large time
budget of 1800 seconds per package (including 1080 seconds allocated to fuzzing).102

5.8 Missing and extra confirmed flows, compared with NMFINE-long-NoEM. 103
5.9 Missing and extra confirmed flows, compared with NMFINE-long-NoEM, but

only within the set of packages where all conditions discovered a potential flow. . 104
5.10 Set of Random120k packages that are valid for each tool. We focus our analysis

on the intersection of 10,942 packages that are valid for all tools. 106
5.11 ACI potential flows discovered by NMFINE-EM, Explode.js and FAST, within

the set of 10,942 valid packages. 107
5.12 ACE potential flows discovered by NMFINE-EM, Explode.js and FAST, within

the set of 10,942 valid packages. 108
5.13 ACI confirmed flows discovered by NMFINE-EM, Explode.js and FAST, within

the set of 10,942 valid packages. 109
5.14 ACE confirmed flows discovered by NMFINE-EM, Explode.js and FAST, within

the set of 10,942 valid packages. 110

6.1 Prompt for gemma3:12b model described in the chat ML language. We had to
specifically request the model not to provide a summarization of the documenta-
tion: without that instruction, it tended to summarize the documentation instead
of actually answering yes or not. Two examples are passed, one positive (de-
scribed in Figure 6.2) and one negative (Figure 6.3). We filtered out packages for
which the model output was EXACTLY "no", and preserved all other outputs for
further analysis with a larger model, even those that did not start with "yes". . . . 113

6.2 Positive example of a warning: Responsibility of sanitizing the input for some of
the entry points is delegated to the dependent packages. 114

6.3 Negative example of a warning. It uses red-herring words like "sanitization"
and "exec_command" but it is actually not warning users to sanitize the inputs;
executing arbitrary commands is legitimate functionality. 114

8.1 Core ACE and ACI sinks supported by NODEMEDIC-FINE. 125
8.2 Prefix, completion, and exploit synthesized for a real-world prefix. 126
8.3 Frequency of packages within ranges of download counts, split into "with sinks",

"with potential flows" and "with confirmed flows". 127
8.4 Frequency of packages within ranges of lines of code counts, split into "with

sinks", "with potential flows" and with "confirmed flows". 149
8.5 Frequency of packages within ranges of package size, split into "with sinks",

"with potential flows" and with "confirmed flows". 149
8.6 Frequency of packages within ranges of tree depth size, split into "with sinks",

"with potential flows" and with "confirmed flows". 150
8.7 Frequency of packages within ranges of unique dependency numbers, split into

"with sinks", "with potential flows" and with "confirmed flows". 150
8.8 How many flows are discovered (y-axis) when we set the fuzzing timeout to

(x-axis in seconds). 151

xiii

xiv

List of Tables

2.1 Confirmation URLs from existing methodologies. 17

3.1 Attacker-controlled sources supported by SWIPE. 28
3.2 Sensitive sinks supported by SWIPE. The descriptions illustrate common cases

but do not exhaustively enumerate all possible flow-generating operations. 28
3.3 Event handlers supported by the fuzzer. 32
3.4 Event handlers not supported by the Fuzzer and the reasons. 33
3.5 Number of confirmed flows and vulnerable domains detected by SWIPE-Fuzzer

and CrawlJax on the Vulnerable dataset. Numbers in () indicate how many flows
and domains are unique to each tool. CrawlJax+Taint-tracking Chromium refers
to CrawlJax using our browser to detect DOM-XSS flows. 48

3.6 Number of vulnerable flows and domains detected by Fuzzer-DSE24 (the fuzzing
by SWIPE-Fuzzer of pages augmented by SWIPE-DSE with a 24-hour timeout)
and Wapiti + SWIPE-Fuzzer. Numbers in parentheses indicate the number of
flows unique to each tool. 51

3.7 Number of pages from the Vulnerable dataset that were deemed vulnerable by
ZAP, SWIPE and FoxHound-ENC. 52

3.8 Crawling comparison between Passive and results reported by TalkGen [17]
(FoxHound-2021, encoding disabled), DOMsday [91], 25mFlows [75] and FoxHound-
ENC (encoding enabled), including number of flows, which include all source
sink pairs considered by DOMsday, potential flows (Pot.), which only include
URL sources to JavaScript or HTML sinks, and confirmed flows (Conf.). 53

3.9 URL encoding differences between our browser version (Chromium 126) and
the one used by DOMsday. We found no differences between ours and the latest
version. 55

4.1 Comparison of detected versus confirmed ACI and ACE flows across analysis
tools. 67

4.2 Number of packages discarded at each stage, with initial and remaining counts. . 73
4.3 Potential flows found by the fuzzer with varied configurations. Extra and missing

flows are relative to the ones found by NODEMEDIC-FINE. 74

xv

4.4 Potential flows missed by the fuzzer when we prevent it from generating inputs
of a given type. 75

4.5 ACE confirmed flows found by the fuzzer with and without the Enumerator.
These conditions only differ in the confirmation methodology; all conditions are
attempting to confirm the same 469 potential ACE flows discovered by NODEMEDIC-
FINE’s analysis. 77

4.6 Overall results and comparison to other Node.js dynamic taint analysis tools. *

Packages in the dataset did not necessarily have sink calls. 79
4.7 SecBench.js evaluation results comparing NODEMEDIC-FINE with FAST in

terms of potential and confirmed flows. Valid packages are downloadable, have a
main executable file defined, and the vulnerability fits in the attacker model that
we share with FAST. Executable are packages that are valid and can be installed
and run. 79

4.8 A true positive is a flow that is manually validated to be a vulnerability. False
positives include flows (potential or confirmed), in entry points that are actually
just wrappers around ACI or ACE sinks. This table reports the true and false
positives for both confirmed flows and potential flows that NODEMEDIC-FINE
fails to confirm on NPM-DATASET. Numbers inside parenthesis represent how
many of the true positives were previously unreported vulnerabilities. 81

5.1 fsinkcall feature value, assigned to a provenance tree, depending on what sink is
called. 90

5.2 Exploitability metric weights computed via logistic regression on a set of 141
packages. We also show Cohen’s d value for each feature in the training dataset,
showing a small correlation between each feature and exploitability. 91

5.3 Exploitability metric accuracy in pair-wise distinguishing confirmed versus un-
confirmed flows in two datasets. 91

5.4 Experimental conditions for EM ablation and timeout studies. 94
5.5 Summary of results for short-timeout evaluation on the 33,021 packages of the

WithSinks dataset. For each NodeMedic-FINE-2025 configuration, we show the
number of packages with discovered potential flows, the number of packages
with confirmed flows, the number of packages with confirmed flows among the
2279 packages with potential flows found in common by all conditions, the av-
erage number of rounds to confirm a flow, and the average time to confirm a flow
within the 784 packages where a confirmed flow was found by all conditions. . . 96

5.6 Summary of results for long-timeout evaluation on the 3,938 packages of the
Potentials dataset. For each NodeMedic-FINE-2025 configuration, we show the
number of packages with discovered potential flows, the number of packages
with confirmed flows, the number of packages with confirmed flows among the
3248 packages with potential flows found in common by all conditions, the av-
erage number of rounds to confirm a flow, and the average time to confirm a flow
within the 1,620 packages where a confirmed flow was found by all conditions. . 101

xvi

5.7 Overall results of evaluating NMFINE-EM, Explode.js and FAST against all
packages from the Random120k dataset, in terms of potential and confirmed
flows separated by vulnerability type. 105

6.1 Categorization of 338 potential (pot.) and confirmed (conf.) flows discovered
by FAST, Explode.js and NODEMEDIC-FINE (NM-FINE) in the DepWarnings
dataset. Confirmed flows are always a subset of potential flows. 116

8.1 Packages with warnings, and the sentence that was signaled by the smaller LLM. 148

xvii

xviii

Chapter 1
Introduction

A recent survey by Stack Overflow found that JavaScript is the most commonly used program-
ming language [105]. While originally developed as a language for client-side web scripting,
JavaScript became popular as a server-side language thanks to the Node.js platform, being used
by companies like Microsoft [3], Cloudflare [2] and Netflix [114]. JavaScript dominates both
client- and server-side ecosystems: it is used by the majority of the world’s web pages [131],
estimated to number more than 1.2 billion [100], while on the server side the npm registry hosts
over three million packages [6], making it one of the largest public package registries across all
programming languages.

The JavaScript ecosystem is also very interconnected, meaning that code reuse and depen-
dency chains link many projects together. Web pages often import vulnerable dependencies [73],
e.g., outdated versions of jQuery. Similarly, packages in the npm ecosystem struggle with vul-
nerabilities, to the point where a single vulnerable npm package can affect a large number of
dependents [147]. Each npm package typically has a set of public APIs, or entry points, speci-
fying functions that can be called from other packages. Developers can build applications that
depend on multiple npm packages and use their public APIs. In 2019, the average dependency
tree size of a npm package was 86.55 [118], meaning that the average npm package depended on
about 87 other packages. Since developers often compose applications from multiple JavaScript
libraries, this amplifies the frequency and impact of security vulnerabilities.

Web applications written in JavaScript are vulnerable to code injection attacks, where an
attacker can illegitimately execute arbitrary code either in the browser of a user of the web page
or the server hosting the web application. Approximately 5.5% of pages in 2020 were reported
to be vulnerable to DOM-XSS [12], a vulnerability in client-side code where user inputs like
the URL influence what code gets executed. On the server side, NodeMedic [24] found that at
least 1.55% of the analyzed packages are affected by code injection vulnerabilities, while further
studies corroborate the prevalence of such issues across the ecosystem [40, 60, 63, 69, 77, 78,
80, 83, 121, 122, 141]. These vulnerabilities include ACI [25] and ACE [26], which allow an
attacker to execute arbitrary code or commands on the system that runs the application.

DOM-XSS vulnerabilities in the client, and ACE and ACI on the server side, are not only
pervasive but dangerous when exploited. The complexity of these JavaScript ecosystems makes
it hard for humans to go through every piece of code and find all vulnerabilities, highlighting

1

the need for automatic measures to detect code injection vulnerabilities. One way to detect these
vulnerabilities automatically is by finding evidence of information propagations from certain
insecure inputs to dangerous functions in the program, known as taint flows. An example of such
a dangerous JavaScript function is eval, which takes a string as an argument and dynamically
executes JavaScript code written on that string.

Taint flows can be detected at runtime by tracking how attacker-controlled information (i.e.,
represented as "taint") influences program variables as operations are performed until the data
reaches a sensitive function. Prior work has used these dynamic taint tracking approaches for
finding flows [17, 24, 40, 63, 75, 91] but these tools often fail to thoroughly explore the appli-
cation. Exploring a program thoroughly is challenging because it often requires triggering code
paths that depend on highly specific inputs or interactions with the application. This general
limitation manifests differently depending on whether we are looking at server or client code.

User interaction simulation and URL component synthesis. On the client side, prior work
that found DOM-XSS vulnerabilities at scale in the wild, such as DOMsday [91] and others[17,
75], used a modified Chromium to find flows as code executes. However, those approaches were
limited to passively navigating to each page and therefore miss vulnerabilities that require user
interactions to be exploited. Furthermore, the relevance of including in the target URL keys and
values of GET parameters to trigger vulnerabilities was not explored. These parameters may
influence the behavior of the page, and their inclusion is key to exploring the client code more
thoroughly and to triggering more vulnerabilities. In this thesis, we introduce SWIPE, a tool
capable of simulating user interactions, which improved the number of DOM-XSS vulnerabil-
ities found by 15% compared with our replication of prior work. SWIPE can also synthesize
URL components like GET parameters, allowing it to find previously undiscovered DOM-XSS
vulnerabilities.

Finding Node.js package inputs with complex structure. Prior work that detects ACI and
ACE fails to find vulnerabilities that require input with complex structure. For example, pack-
ages often expect inputs to be objects with specific attributes [24]. To address this limitation,
we develop a fuzzer capable of reconstructing input types and object structure. Our fuzzer in-
creases the ACI and ACE potential flows by 70% compared to prior work. Furthermore, current
approaches have difficulty exploiting ACE vulnerabilities as they require the final payload to be
syntactically valid JavaScript. To address this gap, we introduce an enumerator component de-
signed to aid the synthesis of ACE payloads that are syntactically valid. This component enabled
confirmation of 21% more ACE vulnerabilities.

Finding exploitable potential flows. A significant fraction of the reported potential flows can-
not be automatically exploited by the tools that find them [17, 24, 91]. In many cases, the
vulnerability is not automatically exploited because of the high complexity of synthesizing a
candidate exploit that works in practice. In other cases, the vulnerable program path that was
found is impossible to exploit, for example because the attacker has very limited control over
the code that is executed. In this thesis, we design and implement an exploitability metric to
estimate the automatic exploitability of a program path in npm packages, i.e., how easy it is to

2

confirm flows following that program path, using NODEMEDIC-FINE’s synthesis engine. We
find that integrating this exploitability metric in the NODEMEDIC-FINE’s fuzzer only slightly
improves the number of confirmed flows over the baseline of not using it (+1%), though it sig-
nificantly decreases confirmation time by a reduction of up to 28%. Our analysis shows that
while the exploitability metric allows NODEMEDIC-FINE to discover flows in deeper parts of
the application, it can also overprioritize analysis of unexploitable entry points that prematurely
show promise of exploitability. Thus, we discuss future measures to address this limitation.

Studying dependents of packages with security warnings in their documentation. Instead
of providing built-in input sanitization, we find 301 packages prefer to include a security warning
in the documentation of their packages, delegating the responsibility of input sanitization to their
dependents. But some of these packages have thousands of dependents that need to respect those
warnings or risk being vulnerable. In this thesis, we study whether package developers heed
warnings in the documentation of their dependencies, propagate those warnings, or simply pass
unsanitized inputs to the vulnerable dependency entry points. This resulted in the discovery of
23 previously unknown vulnerabilities, most of which were in dependents of two particularly
popular packages with warnings.

1.1 Roadmap
In Chapter 3, we present our work on automatically simulating user interactions on web pages
and finding GET parameters through symbolic execution which helps uncover more DOM-XSS
vulnerabilities. This work was accepted in NDSS 2026 [10].

In Chapter 4, we present our approach to overcoming the challenge of generating inputs with
complex types and structure for Node.js packages. In that section, we also describe a component
that automatically synthesizes syntactically valid JavaScript payloads for ACE vulnerabilities.
These contributions were introduced in our NDSS 2025 [9] paper, NODEMEDIC-FINE [23].

In Chapter 5, we describe our approach to guide fuzzing towards exploitable program paths.
Finally, in Chapter 6, we study whether package developers respect security warnings con-

tained in the documentation of their dependencies.

1.2 Thesis Statement
In this thesis, we study how to effectively detect and confirm flows for code injection vulnera-
bilities in JavaScript applications. We propose methods leveraging program analysis techniques
to explore applications more thoroughly, e.g., by generating Node.js package inputs of complex
structure or by simulating user interactions on a web page. Finally, we leverage a set of features
of program paths to indicate their exploitability, and study whether fuzzing can be efficiently
directed towards exploitable paths by prioritizing inputs that maximize those features.

3

4

Chapter 2
Background and Related Work

This chapter provides an overview of the techniques, concepts, and prior work this thesis builds
on. We begin by reviewing the vulnerabilities of interest and illustrate them with real-world
cases. Next, Section 2.3 surveys established approaches for detecting code injection flaws, while
Section 2.4 introduces program analysis techniques for exploring multiple execution paths that
help uncover vulnerabilities hidden deep within the code. We then turn to related work on exploit
synthesis in Section 2.5. Finally, Section 2.6 examines vulnerability mitigation strategies.

2.1 Code Injection Vulnerabilities in JavaScript Programs

In this section, we illustrate the vulnerabilities under study, namely DOM-XSS, arbitrary com-
mand injection, and arbitrary code execution, by providing instances of real-world code that we
identified to be vulnerable to each vulnerability.

2.1.1 DOM-XSS

The Document Object Model (DOM) is a representation of the structure of a web document
and its content. DOM-XSS is a cross-site scripting variant that occurs entirely within the DOM
of a web page. Unlike traditional XSS vulnerabilities, where malicious scripts are injected into
the HTML response generated by the server, DOM-XSS vulnerabilities are present on the client
side, typically after the web page has loaded. This also means that the server hosting the website
may not even detect such attacks, specially if the malicious payload is inserted on the hash part
of the URL, which is not even directly transmitted to the server and thus can be used to bypass
Web Application Firewall (WAF)s [91].

DOM-XSS vulnerabilities arise when a web application manipulates the DOM in an insecure
manner, allowing data from attacker-controlled sources to be inserted directly into a sensitive
function within the DOM, also called a sink. Common examples of sensitive sinks include func-
tions like innerHTML, eval, document.write, and setTimeout, which can dynamically execute
JavaScript or result in dynamic rendering of HTML code.

5

1 var mapping = { // Allowed GET parameters
2 'custom1': 'key1',
3 ...
4 'custom10': 'key2'
5 };
6
7 function getJsonFromUrl() {
8 var result = {};
9 location.search.substr(1).split("&").forEach(function (part) {

10 var item = part.split("=");
11 result[item[0]] = decodeURIComponent(item[1]);
12 });
13 return result;
14 }
15
16 var params = getJsonFromUrl();
17
18 function buildUrl(baseUrl) {
19 for (var k in mapping) {
20 if (!mapping.hasOwnProperty(k)) continue;
21 if (params[k] == undefined) continue;
22 ...
23 baseUrl += encodeURI(mapping[k]) + "=" + encodeURI(params[k]);
24 }
25 return baseUrl;
26 }
27
28 var basePostback = "https://abc.com/abc/" + params.custom1 + "?";
29 var postback = buildUrl(basePostback);
30 ...
31
32 document.write('');

Figure 2.1: Simplified code with DOM-XSS vulnerability found in the wild.

In Figure 2.1 we show an example of real-world code1 that is vulnerable to DOM-XSS.
Overall, the dangerous document.write sink is called on line 32 and the argument depends on
values that originate from the URL and therefore can be influenced by an attacker. Still, it is
worth looking at the code in Figure 2.1 in depth, as it illustrates multiple challenges that need to
be overcome before the vulnerability can be successfully detected and confirmed automatically.
Lines 7–16 extract GET parameters from the URL and decode them, making it possible for
an attacker to pass special characters that would otherwise be encoded naturally by modern
browsers. Lines 18–29 construct a link based on the GET parameters provided by the user but all
parameters are encoded again (line 23), except the one with key custom1, which is injected into

1For each real-world example we show, we anonymize it by renaming variables and simplifying the code, so as
to not reveal information about unpatched vulnerabilities.

6

1 module.exports = {
2 sync: function(params, callback) {
3 var exec = require('child_process').exec;
4 var cmd = 'rsync';
5 if(params.flags !== undefined) {
6 cmd += ' -' + params.flags;
7 }
8 ...
9 exec(cmd, function(error, stdout, stderr) {

10 ... // call callback
11 });
12 }
13 }

Figure 2.2: An example ACI vulnerability

the link without any sanitization on line 28. Finally, on line 32, that link is inserted into the DOM
as the src attribute of an img tag in HTML. Therefore, an attacker can craft a malicious value
for the custom1 GET parameter that escapes the src attribute context and eventually execute
arbitrary JavaScript. An example of a final link that an attacker may craft to execute arbitrary
JavaScript in this case is: https://vulnerable_page.com/?custom1=invalid" onerror="alert(1);.
The first part of the value of custom1 makes the src attribute point to an invalid location, followed
by double quotes, which escape the src context and allows the attacker to insert more attributes
in the img tag. The rest of the value defines an onerror attribute in the img tag, which will
be executed like normal JavaScript when the browser fails to load the image, in this case the
attacker chooses to pop up an alert dialog.

2.1.2 ACI
In the context of Node.js applications, ACI is a serious security vulnerability that allows an

attacker to execute arbitrary commands on a server hosting the package. ACI vulnerabilities
typically arise when attacker-controlled input (i.e., entry point arguments) are used as part of the
arguments of functions like child_process.exec or child_process.spawn, which are designed to
execute arbitrary commands given as arguments. Exploitation of an ACI vulnerability allows an
attacker to execute arbitrary commands on the server under the same privileges as the Node.js
application, potentially enabling privilege escalation leading to full system compromise.

An example of an ACI vulnerability is given in Figure 2.2. That figure shows an entry point
called sync, which takes two arguments, assumed by our attacker model to be attacker-controlled.
If an attacker calls the sync API with a carefully constructed first argument params, then they are
able to execute arbitrary commands when line 9 is reached. This is because line 6 extends the
command cmd with arbitrary data coming from the attacker. Note that for line 6 to execute, the
attacker has to pass an object with the key flags as the params argument.

A proof-of-concept exploit that triggers this vulnerability is given in Figure 2.3. It simply
imports the package and calls the vulnerable entry point sync with an appropriate object as an
argument. The flags attribute is injected in the final command that is executed, containing a

7

1 var package = require('vulnerable_package_name');
2 package.sync({"flags": "$(touch success)"});

Figure 2.3: An example exploit for ACI

1 class Handler {
2 constructor(handler, router) {
3 this.handler = handler
4 }
5 ...
6 when(cond) {
7 if (typeof cond === 'string') {
8 this.cond = new Function('m', 'with(m) {return ' + cond + ';}')
9 }

10 ...
11 return this
12 }
13
14 test(message) {
15 return (!this.cond || this.cond(message))
16 }
17 ...
18 }
19 ...
20 module.exports = Handler

Figure 2.4: Simplified code with ACE vulnerability found in the wild.

payload that causes the creation of a file called success in the filesystem, using the touch com-
mand. Note that the attacker used the $(subcommand) syntax which allows to run arbitrary shell
commands inside other commands.

2.1.3 ACE

Still in the context of Node.js packages, ACE allows an attacker to control what JavaScript
code is executed. This vulnerability occurs when attacker-controlled input reaches the arguments
of dangerous Node.js functions that are designed to execute arbitrary JavaScript code, like eval
or Function. By exploiting an ACE vulnerability, an attacker gains the capability of executing
arbitrary JavaScript. If sandboxing is inadequate or can be escaped, this capability allows access
to program state, and, via Node.js APIs (e.g., require('child_process')), escalation to arbitrary
command execution on the host.

In Figure 2.4 we show an example of a real-world npm package that we found to be vulnerable
to arbitrary code execution. The package exports, on line 20, at least two methods of a class:

1. when (lines 6–12), which dynamically generates code based on the cond argument. This
argument is assumed to be controlled by the attacker, based on our attacker model.

8

1 var package = require('vulnerable_package_name');
2 package.when("console.log('exploited')"); // Injects payload in local var
3 package.test("irrelevant"); // Calls payload

Figure 2.5: Example exploit for ACE.

2. test (lines 14–16), calls the constructed function if it is defined. This function is intended
to be a boolean condition.

This package is vulnerable to ACE: an attacker could call when and construct a function con-
taining arbitrary code instead of a simple boolean formula as the package expects. A concrete
exploit for this example is shown in Figure 2.5, in which an attacker imports the vulnerable pack-
age and calls the when API with a especially crafted argument. That argument contains code that
the package appends to return before executing. Finally, once the test API is called, the follow-
ing attacker-controlled JavaScript will be executed: with (m) return console.log('exploited');
which, in this case, simply prints a message to the console.

2.2 Attacker Model
This section specifies the assumptions about what an attacker can control on the client and server
sides, in order to exploit code injection vulnerabilities. These assumptions define the scope of
the threat model and establish the basis for how we evaluate vulnerabilities in later chapters.

In this thesis, we often refer to situations where an attacker-controlled input can influence
sensitive parts of the application. We will often refer to this input as a payload. An attacker
is defined as some entity that is attempting to illegitimately execute arbitrary code either on the
server running a Node.js application or in the browser of a user of a web application. Depending
on whether we refer to the client or the server side, there are different requirements for the
payload to successfully exploit a code injection vulnerability.

Attacker Model on the Client Side. On the client side, we follow prior work in assuming that
an attacker can influence all parts of the URL. This assumption originates in the relative ease
for an attacker to send arbitrary links to victims, e.g., via email. This scheme is widely used in
phishing attacks [51].

This work focuses on vulnerabilities found in a target web page that is not owned by the
attacker. Thus, it is important to note, for accuracy, that there are parts of a URL that are difficult
to control for an attacker. Examples of parts of the URL that are challenging to control are the
protocol [91] (usually http or https), and the host, since they must point to the vulnerable web
page, and have therefore a very strict set of possible values that the attacker can set. However,
GET parameters and the hash part of the URL are more flexible sources of attacker input and are
the most frequent vectors of attack.

To leverage a vulnerability in a website and attack a user, the attacker typically constructs
a link containing malicious data in the GET parameters or hash value. The goal of the attacker
is for that malicious data to be interpreted as code by the vulnerable website code when it is
loaded by the browser of the victim. The attacker sends that link to a victim and once the

9

victim clicks on the link, their browser opens the vulnerable web page, which causes execution
of attacker-controlled JavaScript contained in the link. Other sources like the cookies, referrer,
local storage and the window.name variable were also considered by previous work on detecting
code injection attacks as potential sources of attacker-controlled input, although when it comes
to DOM-XSS, current approaches only automatically synthesize DOM-XSS exploits for URL-
based sources [17, 75, 91].

Attacker Model on the Server Side. On the server side, similarly to existing work [24, 60, 83],
we assume that the attacker can control the inputs to the APIs of the JavaScript packages. Such
control by the attacker is reasonable because most packages (dependencies) can be used by any
other package (dependent), which can import them and invoke their public APIs with arbitrary
inputs. Consequently, even if no such dependent package exists today, at some point in the future
another package could conceivably import the vulnerable package and use its insecure API with
unsafe inputs.

Note that some packages may come with documentation stating that some of the package en-
try points are vulnerable to code injection unless input is sanitized prior to calling it. Typically,
when a code injection detection tool flags such packages as vulnerable, they are manually clas-
sified as false positives after review of the documentation. More information regarding this type
of false positives can be found in Section 4.4.7; additionally, we study in Section 6.3.1 whether
developers heed such warnings in dependency documentations.

2.3 Program Analysis Techniques for Signaling Code Injec-
tion Vulnerabilities

This section outlines program analysis techniques used to detect code injection vulnerabili-
ties. These techniques are typically separated into two categories: static analysis tools exam-
ine code without executing it, while dynamic analysis tools require program execution. While
some previous works used dynamic taint tracking techniques [40, 63, 116], others used static
approaches [21, 60, 69, 77, 78, 80, 121, 122].

2.3.1 Static Analysis
Static approaches detect code injection vulnerabilities by inspecting the program without execut-
ing it. They typically parse JavaScript code, build a high-level representation (e.g., call graphs
or dependency graphs), and then, by querying those graphs, they attempt to determine whether
attacker-controlled data may flow into dangerous APIs such as eval or child_process.exec.
These graph representations have become more complete, and their construction more scalable
over time [80, 121, 122]. An overview of some of the more recent static analysis approaches
follows, with particular focus on those relevant to the detection of code injection vulnerabilities.

Synode [122] (2018) used an intraprocedural analysis to detect API calls that are possibly
unsafe, starting from the call itself and backward propagating information about the set of string
values that might be passed to that call, also known as templates, by following control flow edges

10

in the inverse order. ODGEN [78] (2022) builds an Object Dependency Graph (ODG) which rep-
resents objects as nodes and links them via program AST relations (e.g., property definitions and
lookups). This is done using abstract interpretation, a technique that replicates code execution in
an abstract domain. ODGEN’s ODG graph is flexible enough to enable vulnerability detection
(i.e., through querying the graph) for 13 known vulnerability types in Node.js, not limited to
code injection vulnerabilities.

However, ODGEN possesses several scalability issues, as studied by a later work FAST [60].
FAST improves ODGEN’s analysis by performing a bottom-up analysis that resolves dynamic
call edges more coarsely by analyzing functions in isolation and then a top-down phase se-
lectively follows promising control-flow paths from sources to sinks, pruning away irrelevant
branches of the program. FAST’s bottom-up analysis is responsible for constructing a control-
flow graph and discovering paths from entry points to sinks. FAST’s top-down phase takes each
of those paths and scalably constructs a data-flow graph by focusing on the set of statements with
control and data dependencies with the sink.

Recently, Graph.js [36] (2024) merged the abstract syntax tree, the control-flow graph and
the data dependency graph into a new structure called Multiversion Dependency Graph (MDG).
Importantly, that work shows that MDGs can be constructed in a way that soundly overapproxi-
mates the concrete execution traces. Explode.js [83] (2025) used this MDG to determine whether
each sink call in the target package is reachable from an entry point and to check the existence
of a data flow connecting the arguments of entry points to the arguments of a relevant sink.

2.3.2 Dynamic Analysis

We call an approach dynamic if it executes the code and observes its behavior. Many of the
above mentioned static tools have some dynamic component. For example, Synode constructs a
grammar from collected templates on packages that it cannot statically deem safe, and uses that
grammar in a dynamic enforcement mechanism to block malicious input being sent to sensitive
sinks during execution. Taser [121] instead generates summaries of how data propagates through
library functions, including callbacks and class methods using dynamic analysis of test cases.

Dynamic taint analysis

Dynamic Taint Analysis (DTA) is a powerful technique used to identify security vulnerabili-
ties [40, 63, 116] by tracking the propagation of potentially attacker-controlled data through a
program execution, until it reaches a sink. The core idea behind DTA is to mark (or "taint") data
that originates from untrusted sources, such as user inputs, and then monitor how this tainted
data propagates through the program execution. By examining how tainted data reaches sensi-
tive operations or sinks, such as dynamic code generation functions, DTA can reveal potential
vulnerabilities that could be exploitable by attackers.

DTA operates by instrumenting the program to propagate taint labels alongside the data as it
moves through different functions and operations. Once the instrumented program calls a dan-
gerous function like eval, it can then check whether the arguments of that function are labeled
as tainted, which signifies that they may depend on initially tainted variables. In such a scenario,

11

the tool would report what is called a flow. Since we consider initially tainted variables to be con-
trollable by an attacker, a flow represents a propagation of information from attacker-controlled
variables to arguments of dangerous functions that we do not want attackers to control.

Detecting code injection vulnerabilities using dynamic taint analysis

To analyze the client code, several prior works on DOM-XSS detection used DTA to detect and
confirm code injection vulnerabilities. We abbreviate the project names of the three most relevant
DOM-XSS detection works as follows: 25mFlows [75], DOMsday [91] and TalkGen [17]. All
three implemented DTA similarly in the respective JavaScript engines, but differed on the breadth
and depth of their analysis and their confirmation methodologies. 25mFlows applied byte-level
taint tracking to JavaScript code and demonstrated the prevalence of DOM-XSS vulnerabilities
in the wild. While 25mFlows attempted to crawl all subpages of the Alexa Top 5000 domains in
2013, DOMsday targeted a maximum of 5 subpages for each of the Alexa Top 10,000 websites
in 2018. More recently in 2020, TalkGen instead used the top 100,000 domains in Tranco,
targeting a maximum of 10 subpages each. We will discuss methodological differences between
these works in Section 2.5.4.

Instrumenting JavaScript code vs. JavaScript interpreter

An alternative way to implement DTA is by instrumenting the JavaScript code itself. But in-
strumenting the interpreter (e.g., the browsers’ V8 engine) has lower time and memory overhead
and avoids the need to bypass page integrity checks [63, 134]. However, Chromium updates
may break the taint analysis engine [62], which makes it challenging for academic researchers
to keep their tools usable by others. DOMsday’s original taint-enabled browser used Chromium
54, which was released in 2016 and no longer supports the latest ECMA versions used by web
pages. This makes direct comparison with DOMsday very difficult. Our tool SWIPE instead
uses Chromium 126 as the base browser, which was upgraded from DOMsday’s original browser
with substantial engineering effort.2

2.4 Program Exploration Techniques

Dynamic taint analysis alone acts upon a single execution path of the program. In this section,
we review several techniques that are used in combination with dynamic taint analysis to explore
multiple executions, such as fuzzing [38], symbolic execution [52] and even a combination of
both [107]. In short, fuzzing generates and executes diverse inputs to discover unexpected be-
haviors, whereas symbolic execution reasons about program paths by treating inputs as symbolic
variables.

2Credit goes to Michael Stroucken for upgrading DOMsday’s browser.

12

2.4.1 Fuzzing

Fuzzing is a widely-used software testing technique designed to identify bugs by randomly gen-
erating diverse inputs, feeding them to the target program and observing their effect. This tech-
nique has proven to be effective at detecting a variety of issues, including those related to memory
corruption, input validation, and code execution [146]. Fuzzing works by systematically feeding
malformed or random data into an application and observing how it handles these inputs. The
specific method for generating inputs usually varies according to the context.

Guided fuzzing Evolutionary fuzzing is a class of fuzzing techniques that iteratively refine in-
puts based on their effectiveness [112]. Inputs that achieve desirable outcomes, such as triggering
new program behaviors, are selected and mutated to produce new candidates. Some approaches
also recombine fragments of high-performing inputs to create new test cases that may inherit
beneficial traits from both "parents" [112], a technique known as cross-over.

The notion of effectiveness or fitness varies across fuzzers, but code coverage (i.e., the amount
of program code executed by a given input) is the most common heuristic. Coverage-guided
fuzzers therefore prioritize and refine inputs that exercise previously unexplored or extensive
portions of the application’s codebase.

Fuzzing on the client side. There are fuzzers to discover GET parameters used by a target web
page [54, 84, 136] but they usually simply iterate over fixed inputs stored in a wordlist. There
is also work on generating user interactions on the web page but these tools limit themselves
to filling forms [85, 130, 132] or are very restricted in the actions they produce, e.g., by only
being able to produce clicks, keyboard inputs or fill forms automatically [32, 82, 93, 120, 140].
Furthermore, web scanners like CrawlJax [93] and jÄk [110] fire most of their supported event
handlers programmatically via JavaScript. This might lead to false positives, in situations where
there is no way for a real user to execute some of the simulated interactions (e.g., the associated
DOM element might be invisible). LOAD-AND-ACT [140] was the first to perform realistic
simulation of user interactions on web pages although, like prior work, it only supports generat-
ing keyboard and mouse events. In Chapter 3, we introduce a systematic approach to synthesize
GET parameters expected by each target page, along with a fuzzer that supports realistic simu-
lation of a wide range of user interactions, and scaled to run against thousands of pages in the
wild.

Fuzzing the server side. For the server side, fuzzing tools like AFL [144] have been adapted
for Node.js fuzzing [13]. These generate mostly byte sequences or strings and lack knowledge
of JavaScript’s rich type system. However, we find that searching the string space only is not
sufficient to uncover a significant number of vulnerabilities. Other approaches for input gen-
eration rely on tests from the target package or one of its dependents [125], though such tests
do not always exist. JsFuzz [58] makes it easier to generate inputs more suitable for JavaScript
environments but their approach still relies on string-based input generation and a manual cre-
ation of a fuzzing target. A fuzzing target is a program that imports the target package and the
fuzzer and manages their interaction, including obtaining inputs from a fuzzer and passing them

13

to the package entry points. Some Node.js packages have entry points that expect other specific
JavaScript types like objects, arrays and especially functions, as we will show in Chapter 4. In
that same chapter, we introduce a type- and structure-aware fuzzer, capable of generating inputs
of a variety of types and with complex structures, e.g., objects with specific attributes that have
to be themselves objects.

2.4.2 (Dynamic) Symbolic Execution
In this section, we review another technique for exploring code called symbolic execution. In
contrast to fuzzing, symbolic execution is effective at exploring deep program paths requiring
inputs that satisfy complex constraints, though it does not typically scale as well as fuzzing
to large programs [16]. Symbolic execution represents some application inputs as symbolic
variables, and gathers constraints while executing the program. It is then possible to feed those
constraints to theorem solvers like Z3 [29] and obtain an input that satisfies the restrictions. This
technique is used by several works in the context of JavaScript [79, 83, 115, 141]. To analyze the
client code, this technique may be implemented by instrumenting the program (e.g., a JavaScript
resource on the web) to track symbolic variables (e.g., the URL) and the operations that are
performed on them, so as to accurately build the constraints.

One common variant of symbolic execution is Dynamic Symbolic Execution (DSE), which
may instrument the program as described above, and then runs it with a starting input, for ex-
ample by loading a page that uses that instrumented JavaScript resource. Once the page finishes
executing and in order to generate new inputs, DSE collects the final list of constraints, negates
one of them and passes the resulting constraints to Z3. This way, the technique can successfully
find inputs that explore a different branch of the program compared with the original input that
produced the initial list of constraints.

In theory, by searching all combinations of constraints and their negated variants, symbolic
execution could get full coverage in the target application. In practice, this technique suffers from
scalability problems [16], not only because there might be too many different program paths to
explore but also the SMT solvers may have difficulty solving certain constraints. ExpoSE [79]
focuses on modelling JavaScript regular expression semantics, which takes some of the heavy
lifting from the SMT solver, resulting in increased code coverage. Our tool, SWIPE (Section 3),
focuses on modeling string operations that are often used in URL component parsing, a common
operation in web pages. Another way to address the large space of possible program paths is to
create heuristics to prioritize which program paths to explore first. For example, the buggy-path-
first heuristic [129] prioritizes paths that seem to contain small but unexploitable bugs.

2.5 Exploit Synthesis
Dynamic taint analysis suffers from false positives: the presence of a flow does not guarantee the
presence of a vulnerability. In this section, we review approaches to confirm the exploitability
of vulnerabilities. We start by motivating exploit synthesis in Section 2.5.1. In Section 2.5.2,
we study how vulnerability confirmation can be reduced to synthesizing proof-of-concept ex-
ploits that exhibit particular side effects depending on the vulnerability type. On one hand,

14

Section 2.5.3 surveys approaches to exploit synthesis that rely on collecting and solving SMT
constraints, which is particularly relevant for server-side analysis where complex backend logic
is common. On the other hand, Section 2.5.4 covers approaches for exploit synthesis focused on
client-side vulnerabilities. Finally, Section 2.5.5 overviews limitations of these approaches.

2.5.1 Overview

False positives can originate when the propagation of taint is too relaxed, also known as overtaint-
ing [59]. Thus, when DTA discovers a flow from an attacker-controllable source to a sensitive
sink, we call it a potential flow, since it is unknown if the flow can be exploited. This high-
lights the importance of confirming whether the program path represented by the flow is actually
vulnerable. Once we determine that a flow is exploitable, we call it a confirmed flow.

2.5.2 Observing Expected Side Effects to Confirm Vulnerabilities

A potential flow can be confirmed by proving that an attacker can indeed execute arbitrary code.
This is often done by producing a concrete proof-of-concept exploit, whose goal slightly differs
depending on the vulnerability type.

Arbitrary command injection vulnerabilities can be demonstrated by making the application
create a specific file on the file system using the touch Linux command [19, 24, 83]. With respect
to arbitrary code execution, NodeMedic [24] leverages the vulnerability to print a specific mes-
sage to the console using the console.log function. SecBench.js [19] and Vulcan [21] are datasets
of Node.js vulnerabilities, providing proof-of-concept exploits accompanying each vulnerability.
Unlike NodeMedic, SecBench.js proves arbitrary code execution vulnerabilities similarly to code
injection by creating a file in the file system. This is usually done by having the exploit require
the fs module and create a file using the writeFileSync function. For automatic exploit synthe-
sis, it is simpler to synthesize an exploit that uses a console.log function call to prove that the
attacker has arbitrary JavaScript execution capabilities, which is what our tool NODEMEDIC-
FINE does. Vulcan is not as uniform in the method to confirm code injection vulnerabilities but
overall, in its exploits, it attempts to show that the attacker can execute commands outside of the
original functionality of the package.

2.5.3 Use of SMT Synthesis to Generate Exploits

Automatic exploit synthesis in JavaScript is an active field [17, 24, 37, 39, 75, 109]. Prior work on
JavaScript exploit synthesis mostly targets cross-site scripting vulnerabilities [17, 37, 39, 75, 109]
by parsing the AST of the sink call. This works well in web pages because input sources are
often global (e.g., location.search variable, containing the GET parameters) and accessed near
the sink [22]. In the case of Node.js packages, inputs are local and frequently transformed before
being passed to the sink. In that situation, it is useful to produce, during dynamic taint analysis,
a taint provenance graph, which has a node for each operation performed on tainted values.

Provenance graphs allow for a full reconstruction of what transformations the taint values
suffered and where they came from. NodeMedic [24] used provenance graphs to build constraints

15

and used Z3 to produce the final exploit. FAST [60] has also used synthesis to generate proof-
of-concept exploits, but, unlike NodeMedic, it is a static analysis tool and it collected control-
flow constraints via abstract interpretation. FAST starts by generating an object dependence
and control-flow graph through abstract interpretation and finds a path between entry points and
sink functions. Then, it constructs a data flow following that path. FAST proceeds to generate
an exploit by solving constraints collected from both the data flow, the control flow and the
object dependence graph. Thus, FAST’s constraints use only information from static analysis and
therefore may miss important dynamic information. More than 90% of FAST’s false negatives
come from the lack of modeling of built-in functions [60], which comes free in NODEMEDIC-
FINE and other dynamic analyses since they involve executing the package. Notably, by not
having to install and execute a package, static approaches may be able to analyze packages that
are challenging to install automatically, e.g., packages that require extra installation steps that are
only described in their documentation. But that also means that not all vulnerabilities reported
by FAST are necessarily exploitable, since FAST ends up not testing the exploit concretely.

PMForce [123] synthesizes ACE exploits delivered via the postMessage API’s event object.
PMForce gathers path constraints and uses them to fill exploit templates used for event.data.
PMForce does not handle ACE-specific breakouts, unlike our tool NODEMEDIC-FINE which
attempts to parse the constant parts of the ACE sink argument, and synthesize an attacker-
controlled portion of the argument that properly completes that constraint prefix. PMForce is
similar to NAVEX [15] in that they both model path constraints, although NAVEX constraints
inputs to include strings from an attack dictionary, instead of using exploit templates. Unlike
PMForce or NAVEX, NODEMEDIC-FINE uses provenance graphs, which encode constraints
on operations, instead of on path constraints. This allows NODEMEDIC-FINE to solve for
structured inputs with more ease.

One limitation of NODEMEDIC-FINE is that it fails to find vulnerabilities that require more
than just a direct call to a package entry point. Explode.js [83] is a very recent work that leverages
static analysis using Graph.js to construct drivers composed of sequences of calls. Explode.js
then symbolically executes each driver, and collects the necessary constraints for attacker pay-
load to reach the sink. Even more recently, PocGen [117] integrates Large Language Models
(LLMs) in exploit synthesis pipelines. To do this, PocGen collects usage examples of the vul-
nerable function from the application code, and constructs prompts in natural language based on
those examples, the vulnerability type, a description of the vulnerability and a high-level descrip-
tion of how the exploit should look like, including examples of exploits of similar vulnerabilities.

2.5.4 Existing Methodologies for DOM-XSS Vulnerability Confirmation
A flow is considered potential by 25mFlows, DOMsday, TalkGen and our work, if the source is
URL-based, the sink is JavaScript or HTML-based, and if tainted bytes reach the sink without
any encoding. All these works share a generic recipe for confirming DOM-XSS potential flows:
(1) Collect the URL of the resource where the potential flow was uncovered. This step is the
same for each work in theory, but implemented in a different browser instrumented to use DTA.
(2) Locate within that URL where exactly the attacker payload should be injected. (3) Inject the
payload at the location identified in the previous step, such that when the final URL is visited, it
allows to validate whether the vulnerability is real.

16

Tainted URL http :// example.com/page?q=tainted&a=b

Prior work Example confirmation URL

25mFlows [75] http :// example.com/page?q=tainted&a=b#PAYLOAD
DOMsday [91] http :// example.com/page?a=b#&q=PAYLOAD
TalkGen [17] http :// example.com/page?q=PAYLOAD&a=b

Table 2.1: Confirmation URLs from existing methodologies.

It is on step (2) that previous works start to differ methodologically. This is evidenced in
Table 2.1, which shows where each previous work injects the PAYLOAD, in a scenario where
the value of the GET parameter q is injected on a sink argument. While DOMsday used a similar
approach for DOM-XSS detection compared with 25mFlows, they improved the precision of the
confirmation methodology. DOMsday uses taint provenance information to determine the exact
bytes in the URL that reach the sink, maps them to a GET parameter value and injects the payload
as the new value for that parameter on the final URL. While DOMsday restricted their payloads
to the hash part of the URL, TalkGen improved the accuracy even further, allowing payloads on
the GET parameters before the hash.

Regarding step (3), 25mFlows uses a breakout method where the abstract syntax tree (AST)
of the final argument to the sink is parsed and analyzed to determine what characters an at-
tacker needs to inject so as to escape the current context. To illustrate this process, suppose a
web application had the following vulnerable sink call: eval('"hey"+"'+location.search+'";').
25mFlows method can automatically reason that the context where the attacker payload is in-
jected into is a JavaScript string on an eval call, and thus it inserts a double quote and a semi
collon to enter a context where the rest of the attacker payload is executed. Such an exploit
would look like this: ";report_domxss()//. Note that report_domxss is a personalized function
implemented in 25mFlows’s modified browser that tracks confirmed flows. TalkGen improved
the analysis of the AST to support more contexts.

However, DOMsday always injects the same payload: marker<>'" instead of trying to execute
real code to confirm vulnerabilities. This is because they considered executing actual code to be
dangerous, since, unlike testing exploits in self-hosted Node.js packages, exploits on live web
pages affect more than the researcher’s devices. It should be noted that the special characters
on that payload (i.e., the opening and closing tags, and the single and double quotes) allow
to determine whether the attacker has the ability to escape the necessary context and execute
JavaScript code. This is because to confirm a vulnerability, the final synthesized URL (containing
the payload) is visited and then DOMsday checks whether the substring marker<>'" is present on
the sink argument as is, without any encoding. If that happens, it is evidence that the attacker can
indeed escape most contexts and insert arbitrary code to be executed, without being sanitized by
application code. DOMsday authors sampled 40 cases that were flagged as vulnerabilities, and
confirmed that all 40 were true positives, thus we use the same payload in this work.

17

Automatic URL-encoding and its impact on DOM-XSS exploitability

To be exploitable, the sink argument cannot be URL encoded, otherwise the attacker will not be
able to inject the necessary special characters (e.g., quotes) to escape the context and execute
arbitrary JavaScript code. Over the years, browsers started applying their built-in mechanisms
for URL encoding on more parts of the URL.

In 2013, when 25mFlows validated exploits, they tested one third of the potential flows
against Internet Explorer, purposely because that browser did not have many of these built-in
URL encoding mechanisms. In 2018, DOMsday injected their payloads on the hash value, and
the Chromium version used by DOMsday did not yet URL encode the hash. In 2020, TalkGen
was using a modified version of Firefox for taint tracking, which purposely disabled URL en-
coding. TalkGen authors argued that at least one browser (Internet Explorer) still had no URL
encoding mechanism built-in, and vulnerabilities that are not exploitable because of this mecha-
nism should still be counted as true positives. This argument was reasonable in 2020, but nowa-
days, Internet Explorer is discontinued and the latest version of all modern browsers enforces
URL encoding on both the GET parameters and the fragment value. We discuss these and other
insights regarding impactful evolutions of the web for DOM-XSS detection in Chapter 3.

Detection and confirmation of other client-side JavaScript vulnerabilities

Vulnerabilities such as client-side prototype pollution [61] and client-side CSRF [66] can be de-
tected using similar techniques as for DOM-XSS. While SWIPE’s instrumented browser could
be extended to include more sinks, prototype pollution requires more effort for detection and con-
firmation. There are detection approaches based on code-property graphs [61], but all existing
work resorts to manual confirmation to the best of our knowledge.

2.5.5 Limitations of Synthesis Tools

Synthesizing exploits for arbitrary code execution is more difficult than for arbitrary command
injection [24]. Exploit synthesis for ACE is harder because the final argument needs to satisfy
difficult constraints, originating from the need of the final payload to be valid JavaScript code in
eval and Function sinks. Our tool NODEMEDIC-FINE uses a JavaScript-syntax aware enumer-
ator to aid in the construction of syntactically valid payloads.

Interestingly, there are several possible scenarios of program paths that are signaled as poten-
tially vulnerable by code injection detection tools but for which no available tool can synthesize
a working exploit. For example, a vulnerability may only be triggered under very specific and
complex constraints that a SMT solver like Z3 may have trouble solving. Another possibility is
when the final argument to an ACE sink has a fixed prefix, followed by attacker-controlled data.
The combination of the need of ACE sinks to require the whole argument to be syntactically
valid JavaScript, and the need of the attacker to execute arbitrary code, makes it challenging for
an exploit synthesis framework to create a working proof-of-concept in those cases. In Chap-
ter 5 we study this problem in more depth, and provide a solution that mitigates it. Instead of
improving the ability of exploit synthesis frameworks to handle such cases, we instead propose

18

to modify detection heuristics to prioritize confirmation of potentially vulnerable program paths
that appear easier to exploit.

All exploit synthesis tools still have false positives. Not every confirmed flow is a vulnerabil-
ity. We define true positive as a confirmed flow that does not correspond to a legitimate, intended
behavior of the application. There are plenty of examples of Node.js packages whose sole pur-
pose is to execute arbitrary commands.3 In those cases, it is possible to discover and confirm a
flow while staying within the intended functionality of the package. Such cases are usually con-
sidered false positives and undeserving of CVEs. There are also packages with dangerous entry
points (e.g., allowing arbitrary command execution) but at some point in their documentation
maintainers state that other developers using such entry points are responsible for sanitizing their
inputs. While developers may miss that warning in the documentation (an issue that we study in
Chapter 6), we still consider confirmed flows in such packages to be false positives. All available
exploit synthesis tools are prone to finding confirmed flows that are not actually vulnerabilities,
which usually leads authors to manually analyze any findings. Independently of the context (i.e.,
server or client side), when reporting vulnerabilities, we follow responsible disclosure guidelines
to contact package or website maintainers.

Estimating the exploitability of flows. It might be useful to estimate the exploitability of
flows, for example, to justify the allocation of project budget to fix security issues. In Chap-
ter 5 we instead estimate the automatic exploitability of flows discovered by fuzzing, to guide it
towards flows that are more likely to be confirmed by a synthesis engine.

While NodeMedic [24] previously addressed the problem of assigning exploitability values to
provenance trees, their approach relies on stochastic sampling, which is prohibitively expensive
to integrate into NODEMEDIC-FINE’s fuzzing engine.

Another work [72] recently studied how an estimate of the attacker control over a vulnerabil-
ity’s parameters might impact its exploitability, but their method, similarly to NodeMedic’s, was
designed to rank potential vulnerabilities for manual inspection by human analysts rather than
for use in an automated confirmation engine. It therefore fails to account for factors such as the
varying difficulty faced by the SMT solver when handling different operations.

2.6 Vulnerability Mitigation

In this section, we cover mitigation techniques for code injection vulnerabilities. Mitigation
strategies can be categorized by the system level at which they operate:

• OS-level (Section 2.6.1).
• Engine-level (Section 2.6.2), covering V8 modifications and browser security mechanisms.
• Application-level instrumentation (Section 2.6.3).
• Coding security practices (Section 2.6.4).

3For example, @travist/async-shell or node-async-exec

19

https://www.npmjs.com/package/
https://www.npmjs.com/package/node-async-exec

2.6.1 OS-Level Mitigations
Unlike browser-based JavaScript, Node.js code executes without a sandbox and has unrestricted
access to the operating system. As a result, ACI and ACE vulnerabilities in Node.js can more
easily escalate to full remote code execution [122]. Recent work has introduced OS-level mech-
anisms to protect Node.js applications against code injection attacks [11, 133].

Hodor [133] provides lightweight runtime protection by leveraging Linux kernel security
mechanisms, specifically seccomp [119] system call filtering. It combines static and dynamic
analyses of both JavaScript (application) and C/C++ (Node.js framework) code to identify the
minimal set of system calls required for benign execution. At runtime, Hodor enforces this
set using seccomp filters, effectively whitelisting allowed system calls. This design yields
negligible runtime overhead and a low false-positive rate, with most false positives stemming
from legitimate dynamic code generation. However, Hodor cannot fully eliminate the attack
surface because certain system calls are used by the Node.js engine itself.

NatiSand [11] offers finer-grained control by additionally using newer Linux security primi-
tives such as Landlock [28] and eBPF [20]. While these features allow the specification of more
precise security policies, NatiSand requires the developers to provide a policy file specifying
what resources the application is allowed to access. Furthermore, requiring an operating system
supporting these kernel capabilities introduces another friction to the adoption of these systems.

2.6.2 JavaScript Engine-Level Mitigations
In contrast to OS-level mitigations, engine-level mitigations operate within the JavaScript run-
time itself. This allows for finer-grained control over the behavior of executing code without
relying on operating-system support for advanced security mechanisms.

COINDEF [143] exemplifies this approach in the context of Electron [104] applications.
COINDEF operates in two phases: a learning phase and an enforcement phase. During the
learning phase, COINDEF statically identifies the JavaScript code that should be protected and
constructs a set of baseline AST profiles representing the legitimate, expected code structure. In
the enforcement phase, it dynamically intercepts code at runtime and compares its AST against
these precomputed profiles. If an executing script deviates from the expected structure, COIN-
DEF blocks its execution. To accommodate benign dynamic behavior, COINDEF offers a con-
figurable "usability-first" mode, which permits new code execution under strict sandboxing con-
straints. However, adopting COINDEF requires replacing the official runtime with a modified
one, which limits its practical deployment.

Several mitigation mechanisms are now integrated into mainstream JavaScript runtimes. For
instance, Deno [30] introduces a built-in permission system that enables developers to explicitly
declare which resources (e.g., filesystem, network, environment variables) an application can
access. Similarly, recent versions of Node.js include permission flags that provide compara-
ble functionality [128]. In the browser context, modern engines implement a range of security
mechanisms to mitigate code injection attacks such as XSS [137, 138], discussed next.

Content Security Policy Content Security Policy (CSP) [137] is a web security standard that
enables a website to instruct the browser about which resources can be loaded and how scripts

20

may execute. CSP directives can, for example, prohibit inline event handlers or entirely disable
the use of eval. Proper configuration of CSP is, however, the responsibility of web developers,
and misconfigurations are common in practice [139].

Trusted Types Trusted types [138] is a security feature in browsers that aims to protect clients
from DOM-XSS. It was first introduced in 2018, with initial support in Chromium 83. Now, it is
also supported in Edge and, as of February 2025, in Firefox 135 (and can be enabled with the flag
dom.security.trusted_types.enabled). Trusted types, when enabled via a CSP directive, enforce
the use of a trusted type policy in the creation of trusted type objects. Then, it ensures that only
objects of the trusted type can be passed to dangerous sinks. Trusted types are unfortunately
not a complete solution to DOM-XSS, as they require developers to create policies, and their
security is only as good as the policy that was defined. With respect to usage, Chrome Platform
Status reports that approximately 13.3% of pages enforce TT as of 2025 (up from 5.8% in 2021,
when TalkGen performed their crawl [1]).

2.6.3 Application-Level Mitigations
Application-level defenses mitigate code injection vulnerabilities by instrumenting the JavaScript
application itself. As previously mentioned, Synode statically constructs a grammar that de-
fines valid input structures and, at runtime, enforces this policy by blocking inputs that deviate
from the grammar before they reach sensitive sinks. XGuard [142] generates a security policy
that specifies which modules may invoke which APIs and with what data. A runtime monitor
then tracks data provenance to ensure that sensitive operations conform to the predefined policy.
Mininode [70] reduces the attack surface by removing unused code and dependencies.

2.6.4 Coding Security Practices
Many of the code injection vulnerabilities discovered in our study can be mitigated by enforc-
ing proper sanitization of user input. In the Node.js ecosystem, developers can reduce the risk
of ACI by using safer alternatives to command execution APIs. For instance, execFile does
not invoke a shell by default [24] and explicitly separates the executable from its (potentially
attacker-controlled) arguments [102]. Regarding ACE, packages should avoid dynamic code ex-
ecution functions such as eval. The authors of Synode reported that approximately 80% of the
examined uses of eval and exec could be easily refactored to eliminate these dangerous APIs
altogether [122]. While the remaining exec usages could rely on third-party libraries to sanitize
input, there is no standard sanitization method for eval [122].

21

22

Chapter 3
Improving Client Code Exploration for
DOM-XSS Detection

In this chapter we study methods to explore client code and improve DOM-XSS detection. We
develop novel approaches for client code exploration and study their effectiveness on a large
scale experiment against real-world web pages.

The research described in this chapter was published at NDSS 2026, and we have open-
sourced our end-to-end DOM-XSS detection tool SWIPE [113].

3.1 Overview
Prior work has measured the prevalence of DOM-XSS in the wild by analyzing web pages with
modified browsers that implement dynamic taint analysis (DTA) [17, 75, 91]. However, the
effectiveness of DTA for detecting code injection vulnerabilities is limited by how extensively
we trigger alternative execution paths in the web application.

Existing client-side approaches fall short in this respect, as they overlook vulnerabilities with
two critical features that: (i) require explicit user interaction, and (ii) depend on parameters em-
bedded in the target URL. To address this gap, we introduce an end-to-end DOM-XSS detection
tool that we call SWIPE (Simulator of Webpage Interactions and Parameter Explorer), which
leverages two complementary techniques: active page navigation and URL component synthe-
sis.

Active navigation. Prior approaches for DOM-XSS detection rely on what we term passive
navigation: the system visits a target URL, waits for the page to finish loading, and then closes
the browser to process the results. While straightforward, passive navigation fails to discover
vulnerabilities that require explicit user interaction before the relevant JavaScript code executes.
To address this challenge, SWIPE integrates a fuzzer that actively executes event handlers by
simulating user interactions on web pages (Section 3.2.5). This fuzzer substantially improves
DOM-XSS detection compared to passive navigation: it increases the number of potential flows
from 2,023 to 2,449, and confirmed flows from 72 to 83, when analyzing 44,480 real-world

23

pages. Furthermore, our fuzzing approach is able to discover vulnerabilities in 34 domains that
are not detected by CrawlJax [93], an off-the-shelf tool that produces mouse clicks and keyboard
events. These findings highlight the importance of simulating a wide range of user interactions
when detecting DOM-XSS in the wild.

URL component synthesis. We find that failing to include URL components such as GET pa-
rameters and fragments (PFs) significantly hinders DOM-XSS detection effectiveness. Indeed,
these PFs are not sufficiently explored in existing works that have measured the prevalence of
DOM-XSS at scale. To overcome this limitation, SWIPE leverages a dynamic symbolic ex-
ecution (DSE) tool [22] (Section 3.2.6) to synthesize URL elements referenced by client-side
JavaScript code. When the original URL components are stripped from each target URL, DSE
successfully rediscovers 26% of confirmed flows that depend on those components. Beyond
rediscovery, DSE also identifies new vulnerabilities: applied to pages without known vulner-
abilities, it discovers URL parameters that trigger 10 previously unseen confirmed DOM-XSS
flows. Furthermore, we find that none of the PFs relevant for these 10 new confirmed flows are
discovered by Wapiti [135], a web scanner that can discover GET parameters by parsing forms
or links present on a target page.

Web archiving. In addition to leveraging fuzzing to simulate user actions and dynamic sym-
bolic execution (DSE) to synthesize PFs, SWIPE takes steps to increase reproducibility and
fairness in comparisons across detection approaches. This is achieved by leveraging web archiv-
ing approaches [41] to archive the page resources and replay them during analysis. While prior
work has previously studied archiving for web security measurements, we address new repro-
ducibility challenges in DOM-XSS detection, namely how web requests are modified based on
user interactions or different PFs.

Contributions. To summarize, this chapter discusses the following contributions:
1. A systematic analysis of limitations in prior DOM-XSS detection techniques, focusing on

passive navigation and insufficient exploration of URL parameters and fragments.

2. The development of a novel fuzzer that simulates diverse user behaviors, uncovering vul-
nerabilities that depend on the execution of event handlers.

3. The integration of DSE for automated URL parameter synthesis, enabling exploration of
additional program paths and consequently the detection of new vulnerabilities.

4. A discussion of the main challenges when comparing current DOM-XSS detection ap-
proaches with prior work, with special focus on how the evolution of the web and browsers
impacts DOM-XSS detection. One key finding is that improved URL encoding mecha-
nisms substantially impact exploitability of confirmed flows.

5. The design and implementation of a web archiving approach for fair and reproducible
comparison across DOM-XSS detection approaches.

6. A large-scale evaluation across 44,480 URLs, offering empirical evidence of the effec-
tiveness of SWIPE components and insights into the prevalence and characteristics of
DOM-XSS vulnerabilities in the wild.

24

3.2 SWIPE Architecture
This section presents the architecture of SWIPE and its main components. We begin by de-
scribing the end-to-end SWIPE execution workflow for a target URL and proceed to detail each
SWIPE component, namely the modified browser implementing DTA, the fuzzing and DSE
engines and the web archiving mechanism.

3.2.1 Execution Modes
SWIPE operates in one of three modes, which we refer to as analysis conditions:

• Passive: Replicates prior work. The browser navigates to the target page and remains idle
until the allocated time budget expires.

• Fuzzer: After the page loads, SWIPE activates the fuzzing module (Section 3.2.5) to
simulate user interactions with the page.

• DSE: Executes dynamic symbolic execution (Section 3.2.6) against the target page.
SWIPE can be launched against a list of pages, specified as a set of URLs. Each target URL

is analyzed independently inside a dedicated Docker container, with one container per page and
per analysis condition.

3.2.2 Workflow Overview
Figure 3.1 illustrates the end-to-end execution of SWIPE for a target URL. SWIPE’s execu-
tion begins by launching an instance of our modified Chromium browser (Section 3.2.3) that
navigates to the target URL (step 1). Chromium is configured to use a proxy that mediates all
resource fetches (e.g., JavaScript, HTML, CSS) between the browser and the live page (step 2).

The proxy serves two purposes: (i). It enables reproducible analysis by archiving resources
(Section 3.2.7). (ii). It can optionally instrument resources to support DSE. If a requested re-
source has not yet been archived, the proxy retrieves it from the live web page (steps 3 - 5).
Otherwise, the resource is loaded from the archive.

Since SWIPE’s behavior depends on the analysis condition, Figure 3.1 distinguishes these
differences across conditions using different letters for arrow labels:

• Passive (a): The proxy archives and serves unmodified resources (steps 5a , 6a), after
which the browser remains idle until the time budget is exhausted (step 7a).

• Fuzzer (b): Resources are also archived and served unmodified (steps 5b , 6b), but then
the fuzzer component is launched to simulate user actions (step 7b , Section 3.2.5).

• DSE (c): The proxy archives and instruments HTML and JavaScript files with logic for col-
lecting the constraints on URL variables (step 5c). These instrumented resources are then
served to Chromium (6c). Once constraints are collected and solved, new variant URLs
are generated, and the system returns to step 1 for analysis of those synthesized URLs.
We refer to this iterative process as the DSE loop, described in detail in Section 3.2.6.

Execution under any condition terminates once the time budget is exhausted. At that point,
final JavaScript code coverage is collected (steps 8 , 9). There are additional outputs that differ

25

Figure 3.1: Core proxy and browser interactions in an end-to-end SWIPE workflow for a single
page URL. Some workflow steps depend on the SWIPE mode that is configured. Some network
requests and responses between the browser and the web archive are expected to occur during
analysis steps (7a, 7b or 7c), even though the diagram only describes the initial requests.26

across conditions: DSE returns a list of synthesized URLs, whereas Passive and Fuzzer return a
list of flows observed by the modified Chromium, in steps 10a , 11a and 10b , 11b respectively.

3.2.3 Flow Collection
DOMsday [91] introduced a Chromium browser (based on Chromium version 54, released in
2016) with a V8 engine modified to track taint propagation across strings at runtime. SWIPE
uses an updated version of DOMsday’s browser, based on Chromium 126.0.6478.264, released
February 7th, 2025. This instrumented browser records taint flows as JavaScript executes.

A flow can be seen as a structured object with the following fields:
• source: The origin of attacker-controlled input (e.g., the full URL).
• sink: The sensitive function or operation invoked (e.g., eval).
• argument: The final string argument passed to the sink containing at least 1 byte (charac-

ter) of attacker-controlled data.
• encoding: Whether the source data was URL-encoded, either by Chromium’s builtin URL-

encoding mechanism or by the target application.
• frame: The URL of the frame containing the potentially vulnerable script, or containing

the sink call itself in the case of an inline script.
• script: The URL of the script that contains the sink call. For convenience, in case the

script is inline this will be the same URL as in the frame field.
• location: The position of the sink call within the script, given as a (line, column) pair. For

inline scripts, this reduces to a column offset.
Whenever a tainted value reaches a sensitive sink, the modified browser logs a flow instance

with the above attributes. After analyzing a target URL, all recorded flows are collected and
aggregated in a database.

It should be noted that the raw count of flows does not directly correspond to the number
of distinct vulnerabilities, since multiple flows may arise from repeated executions of the same
vulnerable program path. To avoid overcounting, we apply deduplication following 25mFlows’
methodology [75]. Each flow is reduced to a deduplication tuple:
(flow.source, flow.sink, domain(flow.frame), stripPFs(flow.script), flow.location)
where domain extracts the second-level domain of the frame URL, and stripPFs removes the
query parameters and fragment from the script URL.

Two flows are considered distinct if their tuples differ. We may also use the term unique
flows to specify a set of flows that all have distinct deduplication tuples. We will discuss in
Section 3.3.2 how this approach is imperfect and may occasionally classify flows referring to the
same vulnerability as distinct, but we consider improvements on the deduplication methodology
to be out of scope for this work.

Tables 3.1 and 3.2 summarize the supported attacker-controlled sources and sensitive sinks,
which are actually the same as the ones supported by DOMsday [91]. Sources represent val-
ues plausibly influenced by an attacker, such as the full URL accessed via document.location.
Sinks represent security-sensitive operations that must not be attacker-controlled. These in-
clude JavaScript primitives such as eval or new Function, HTML insertion functions such as

27

document.write, and assignments to DOM properties like innerHTML or to event handler proper-
ties such as onclick.

Source JavaScript property name / Description

Cookie document.cookie
Message postMessage event data
Message Origin postMessage event origin
Referrer document.referrer
Storage Storage.getItem
URL location, location.href, document.URL

document.documentURI, document.baseURI
URL hash location.hash
URL host location.host
URL hostname location.hostname
URL origin location.origin
URL pathname location.pathname
URL search location.search
URL port location.port
URL protocol location.protocol
window.name window.name

Table 3.1: Attacker-controlled sources supported by SWIPE.

Sink Description

HTML document.write, document.writeln function call.
Assignment to innerHTML, outerHTML,
insertAdjacentHTML.

JavaScript eval, Function function call.
Event Handler Assignment to any event handler attribute, e.g., onclick
Anchor src Assignment to <a> element href property.
Cookie Assignment to document.cookie.
CSS Assignment to element.style.
Embed src Assignment to <embed> element src property.
Iframe src Assignment to <iframe> element src property.
IMG src Assignment to element src property.
setTimeout/setInterval setTimeout,setInterval function call.
Location Assignment to the location object.
Script src Assignment to <script> element src property.

Table 3.2: Sensitive sinks supported by SWIPE. The descriptions illustrate common cases but
do not exhaustively enumerate all possible flow-generating operations.

28

3.2.4 Flow Confirmation

This section describes how we confirm the exploitability of potential flows. We validate each
potential flow individually, following prior work methodology [17, 75, 91].

As outlined in Section 2.5.4, prior work confirms a potential flow by identifying a URL loca-
tion suitable for payload injection and then inserting a payload at that location. The details of this
process vary across studies, particularly in how the injection position is calculated. TalkGen [17]
demonstrated that while its placement algorithm outperformed prior work, each methodology
uniquely confirms flows that others miss. Thus, for each potential flow, we compute not one, but
three different URLs, one for each injection position algorithm of the three relevant prior works.

With regard to the specific payload construction algorithm, we use DOMsday’s methodol-
ogy since it is open-source, which consists of simply injecting the substring marker<>'" in the
appropriate location.

We navigate to each resulting URL containing a marker, and validate whether that marker
appears unencoded on an argument to a DOM-XSS sink. This can be done by iterating over the
flows found during confirmation and inspecting the argument and encoding properties of these
flows. If the unencoded marker is there, we call the respective flow (found during confirmation)
a confirmed flow and the original potential flow an exploitable flow.

3.2.5 Fuzzing User Interactions

Event handlers are used to define page behavior in response to user interactions. In this section,
we describe our fuzzer which triggers event handlers by simulating realistic user actions.

Web scanners such as CrawlJax [93] and jÄk [110] fire most of their supported event handlers
programmatically via JavaScript. However, forcefully executing event handlers can lead to false
positives, e.g., vulnerabilities that appear exploitable but cannot be reached by real users. This
can happen for example when a triggered event handler is bound to an invisible DOM element.
Our fuzzer focuses on discovering vulnerabilities reproducible through realistic user interactions.

Motivating example for fuzzing

Figure 3.2 shows an anonymized code sample collected during our crawl of real websites.1

The function renderResult (lines 1–10) is vulnerable to DOM-XSS. It extracts the q query pa-
rameter (line 3), decodes it (line 4), and assigns the resulting value to the href attribute of a new
HTML link element (lines 6–7). The element is then appended to the DOM (line 9). Because the
q parameter can be controlled by an attacker, the function enables injection of attacker-controlled
URLs. To leverage this vulnerability and demonstrate code execution capabilities, an attacker
could supply q=javascript:alert() in the GET parameters. Once renderResult is invoked and
the created link is clicked, the attacker’s code is executed, opening an alert window.

Crucially, renderResult is never invoked during page load. It is only executed when the
onclick event handler defined in lines 12–14 is triggered. Using passive navigation with DTA

1We anonymize all examples following the process described in Chapter 2 to avoid disclosing unpatched vulner-
abilities.

29

1 function renderResult(){
2 var search = location.search;
3 query = new RegExp(/[?&]q=([^&]*)/).exec(search);
4 query = decodeURIComponent(query[1]);
5 ...
6 var b = document.createElement("a");
7 b.href = query;
8 ...
9 element.appendChild(b)

10 }
11
12 document.addEventListener("click", (function(e) {
13 var a = e.target.closest(PAGE_LINK_SELECTOR);
14 a && renderResult()
15 }));

Figure 3.2: Simplified vulnerable code found in the wild.

would therefore miss this vulnerability. Our fuzzer addresses this gap by detecting vulnerabilities
hidden behind event-driven logic.

Collecting supported event handlers

Once a page has fully loaded, the fuzzer inspects the DOM to retrieve all registered event handlers
together with the elements to which they are bound. This inspection is performed by injecting
and executing a JavaScript function in every frame of the page, shown in Figure 3.3.

Lines 2–4 collect all DOM elements accessible within the frame, including both the document
and window objects. The code block in lines 6–27 then iterates over these elements and extracts
their associated event handlers. Specifically, for each element, line 7 invokes Chromium’s built-
in getEventListeners, which returns an object where each key corresponds to an event type (e.g.,
click), and each value is the list of functions triggered by that event. Lines 12–19 iterate over the
extracted event types, obtain the exact code of each registered function, and append these to a list
of handlers for the corresponding element. Finally, lines 21–24 aggregate these element-event
list mappings into the overall result object returned by the injected function.

After this step, the fuzzer retains only those handlers it can later trigger, discarding unsup-
ported ones. In total, the fuzzer supports 55 event handlers, which we list in Table 3.3.

Additionally, Table 3.4 describes event handlers that are not supported by our fuzzer. The
reason for not supporting events falls into several categories:

1. Events that cannot be fully controlled by the user (12 total) (e.g., onstalled is triggered by
network issues).

2. Events that terminate analysis, since triggering them implies leaving the page (4 total).

3. Events that require a complex chain of interactions (6 total). For instance, there are 4 CSS
animation events that may depend on non-trivial style transitions. It is hard to reliably
determine what interactions are needed to initiate a CSS animation.

30

1 function collect_events() {
2 const all_els = Array.prototype.slice.call(document.querySelectorAll('*'));
3 all_els.push(document);
4 all_els.push(window);
5
6 return all_els.reduce((result, element) => {
7 const event_listeners = getEventListeners(element);
8 const event_types = Object.keys(event_listeners);
9 if (event_types.length !== 0) {

10 events = {};
11
12 event_types.forEach((eventType) => {
13 events[eventType] = event_listeners[eventType].reduce(
14 (ev, eventListener) => {
15 ev.push(eventListener.listener.toString());
16 return ev;
17 }, []
18);
19 });
20
21 result.push({
22 node: element,
23 events: events,
24 });
25 }
26 return result;
27 }, []);
28 }

Figure 3.3: JavaScript code executed by the fuzzer after page load to collect event handlers from
each frame.

31

Supported Events
onclick onmousemove onscroll onchange onmouseleave
ontouchcancel ondblclick onmouseout onhashchange onfocus
oncontextmenu onfullscreenchange onfocusin ontoggle onpause
onfocusout onsearch onplay onblur onsubmit
onseeking oncopy onreset onseeked oncut
onstorage oncanplay onpaste ondrag ontimeupdate
onselect ondragstart onplaying oninput ondragend
oncanplaythrough onkeydown onresize onwaiting onkeyup
ontouchstart onafterprint onkeypress ontouchend onbeforeprint
onmousedown onpopstate onmessage onmouseup oninvalid
onfullscreenerror onmouseenter onmousewheel onmouseover onwheel

Table 3.3: Event handlers supported by the fuzzer.

4. Drag & Drop events (4 total) blocked by a Chromium DevTools Protocol (CDP) bug.2

5. A touch event (ontouchmove) that even though it seems possible to trigger using the touchMove
Chrome DevTools Protocol (CDP) API, it is not working properly for us in Chromium 126.

6. Two events that have no matching API in CDP that we could use.

7. One event (onshow) not supported by Chromium at all.

During fuzzing, unsupported event handlers can still be executed, for example, when they
are programmatically invoked by the page’s JavaScript code. Still, we consider an event handler
unsupported if the fuzzer lacks a mapping from that handler to a sequence of high-level actions
that would trigger it.

Generating high-level actions

The fuzzer operates on a set of primitive operations, which we denote as High-level actions
(HLA). An example is ClickElement, which clicks on a specific DOM element. This HLA is
implemented via CDP by obtaining the element’s coordinates, moving the mouse, and pressing
and releasing the left button.

The fuzzer constructs an initial action pool by mapping supported event handlers to sets of
HLAs that trigger them.

For instance, when encountering an onclick handler, it adds the composite action:
SequenceActions(MakeVisible(element), ClickElement(element))
Here, MakeVisible scrolls the page to ensure the element is visible. Without it, the ClickElement
action could try to move the mouse to coordinates that are not in the visible area, deviating from
what users can realistically do.

2https://issues.chromium.org/issues/40579554

32

https://issues.chromium.org/issues/40579554

Event Name Supported Reason
ondurationchange No No user control
onprogress No No user control
onstalled No No user control
onsuspend No No user control
onloadstart No No user control
onload No No user control
onloadeddata No No user control
onloadedmetadata No No user control
onabort No No user control
onopen No No user control
onended No No user control
onerror No No user control
onbeforeunload No Terminates analysis
onunload No Terminates analysis
onpagehide No Terminates analysis
onpageshow No Terminates analysis
ontransitionend No Complex interaction
onanimationend No Complex interaction
onanimationiteration No Complex interaction
onanimationstart No Complex interaction
onratechange No Complex interaction
onvolumechange No Complex interaction
ondrop No Drag & Drop bug in CDP
ondragenter No Drag & Drop bug in CDP
ondragleave No Drag & Drop bug in CDP
ondragover No Drag & Drop bug in CDP
ontouchmove No Bug in CDP
onoffline No CDP insufficient
ononline No CDP insufficient
onshow No Unsupported in Chrome

Table 3.4: Event handlers not supported by the Fuzzer and the reasons.

33

Coverage guided fuzzer

After initializing the action pool, the fuzzer enters a coverage-guided refinement loop. Each
iteration executes, mutates, and prunes candidate actions based on the coverage they achieve.
This process, summarized as pseudocode in Figure 3.4, consists of the following steps:

• Line 2 establishes a baseline coverage measurement.
• Lines 4–10 execute each high-level action on the current pool and compute its fitness score

based on the new coverage achieved.
• Lines 12–13 retain the top MAX_POPULATION actions, i.e., those yielding the most coverage.
• Lines 16–27 optionally apply crossover techniques [145]. For each action, the fuzzer se-

lects CROSS_OVERS_PER_ELEMENT peers and exchanges sub-actions between their composite
HLA. This diversifies execution sequences and enables exploration of event handlers in
alternative orders. A simplified variant of the fuzzer can be obtained by disabling this step
with config.DO_ACTION_COMBINATIONS = false.

The refinement loop is repeated until the allotted analysis budget is consumed.
During fuzzing, we prevent the fuzzer from leaving the page by assigning a value to the

window.onbeforeunload. This triggers a dialog whenever navigation is attempted. The fuzzer
automatically closes the dialog and cancels the navigation, resuming analysis as normal.

Replaying fuzzer actions to confirm vulnerabilities

For reproducibility, each fuzzer run sets a fixed seed. This seeds the PRNG that is used by all
randomized HLAs. When confirming potential vulnerabilities, the fuzzer replays the exact action
sequence to reproduce the discovered execution flow.

3.2.6 Using DSE to Find PFs
A URL consists of multiple components. Some components identify the location of the server
handling requests, while others encode additional data. The latter category primarily includes
GET parameters and fragment values (collectively referred to as PFs). These elements can be
parsed by client JavaScript code and directly influence its execution. As a result, certain execu-
tion paths may only become reachable if specific GET parameter keys and values, or fragment
values, are present.

This thesis investigates whether such PFs can be automatically synthesized using a dynamic
symbolic execution (DSE) tool for JavaScript, originally introduced in the work of Darion Cas-
sel [22]. The remainder of this section motivates the use of DSE for parameter synthesis, outlines
the methodology of DSE, and describes the differences between our SWIPE-DSE component
and the original DSE implementation.

Motivating example for DSE

A real-world vulnerable case is shown in Figure 3.5, where the execution of a vulnerable page
script depends on the presence of a specific key/value pair in its GET parameters. In this exam-
ple, the script constructs a params object (line 11) from attacker-controlled GET parameter keys

34

1 function do_fuzz_step(pool){
2 global.coverage = get_coverage();
3
4 new_pool_with_fitness = [];
5 for (hla in pool){
6 hla.execute();
7 coverage = get_coverage();
8 fitness = compute_fitness_value(global.coverage, coverage);
9 new_pool_with_fitness.append((fitness, hla));

10 }
11
12 sort(new_pool_with_fitness);
13 new_pool_with_fitness = new_pool_with_fitness[:MAX_POPULATION];
14
15
16 new_pool = [];
17 for ((fitness, hla) in new_pool_with_fitness){
18 if (config.DO_ACTION_COMBINATIONS){
19 for (i in range(CROSS_OVERS_PER_ELEMENT)){
20 hla2 = new_pool_with_fitness.get_different_elem(hla);
21 new_pool.append(cross_over(hla, hla2));
22 }
23 }
24 else{
25 new_pool.append(hla);
26 }
27 }
28
29 return new_pool;
30 }

Figure 3.4: Pseudocode for the fuzzing algorithm. This algorithm is repeatedly executed, mu-
tating the pool of actions until the time budget is exhausted. The first pool is assumed to have
already been constructed as previously discussed in this section.

35

1 function getJsonFromUrl() {
2 var result = {};
3 var query = location.search.substr(1);
4 query.split("&").forEach(function (part) {
5 var item = part.split("=");
6 result[item[0]] = decodeURIComponent(item[1]); });
7 return result; }
8 ...
9 var paramsMap = {'custom1':'GP1', 'custom2':'GP2', ...};

10 function buildUrl(baseUrl) {
11 var params = getJsonFromUrl();
12 for (var key in paramsMap) {
13 if (params[key] != undefined) {
14 baseUrl += '&';
15 baseUrl += paramsMap[key] + "=" + params[key];
16 }}
17 return baseUrl;
18 ...
19 var post = buildUrl(basePost);
20 document.write('');

Figure 3.5: Vulnerable code requiring specific URL parameters

and their URL-decoded values (lines 1-7). The code then selects only the GET parameter keys
that are also in paramsMap (line 9) and assembles the selected key-value pairs into a new URL
(lines 12-15). Finally, this URL — whose contents ultimately depend on attacker-controlled
values in params — is injected into the src attribute of a newly created img element (line 20).
Identifying this vulnerability requires generating a URL that contains one of the permitted GET
parameters in params, such as custom1. Different web applications impose different constraints on
PFs that must be satisfied to reach more program paths. We employ DSE [22] to systematically
explore client code execution and synthesize PFs that trigger previously unreachable code paths.

DSE loop

An overview of the DSE execution process is shown in Figure 3.1. Given a URL of the form
protocol://domain.tld/path/?search#fragment, Chromium loads the DSE-instrumented page and
treats location.search (query parameters) and location.hash (fragment) as concolic values. A
concolic value represents both a symbolic and a concrete variable. During execution, DSE
records constraints arising from operations that are performed on these values.

The collected constraints are translated into an SMT formula and solved with Z3. If satisfi-
able, the solver produces concrete assignments for the symbolic components. DSE then synthe-
sizes a new URL with updated query and fragment values and enqueues it for further exploration.
If the formula is unsatisfiable, no new URL is enqueued.

This process, termed the DSE loop, continues until the queue is empty or the time budget for
the page expires. Note that the same URL is never analyzed twice during the DSE loop.

36

1 function binary(op, lhs, rhs, res) {
2 if (isConcolic(lhs) || isConcolic(rhs)) {
3 res = handle(op, lhs, rhs);
4 }
5 }
6
7 function handle(op, lhs, rhs) {
8 if (op == "+") {
9 sendConstraints("str.++", lhs.smt(), rhs.smt());

10 return lhs.concrete + rhs.concrete;
11 }
12 ...
13 }

Figure 3.6: DSE instrumentation for string concatenation.

DSE instrumentation and concrete models

Lines 15 and 20 of Figure 3.5 illustrate binary operations performed on symbolic variables. Since
such operations are common for string values, we show in Figure 3.6 an example of DSE instru-
mentation for generating these constraints. Line 1 defines the instrumented function binary,
which takes as input the operation (op), the left-hand side (lhs), the right-hand side (rhs), and a
placeholder for the result (res). Line 2 checks whether either operand is concolic, i.e., a value
derived from URL parameters or fragment values that also has an associated symbolic repre-
sentation. If so, line 3 calls the handle function to process the symbolic operation. As partially
defined in lines 7-12, handle generates the corresponding SMT constraints that model the oper-
ation’s symbolic effect, and we illustrate the specific case of string concatenation (op == "+").
DSE then issues a str.++ constraint to the solver via sendConstraints (line 9), using the SMT
representations of the operands. The SMT representation of an operand is obtained through
its operand.smt() method. For instance, calling smt on the location.search property yields the
symbolic variable name associated with the GET parameters. Finally, line 10 evaluates the oper-
ation under a concrete model, which preserves the exact JavaScript semantics using the concrete
components of the concolic values. This ensures that the page’s JavaScript execution proceeds
normally with a valid concrete value, even when dealing with concolic inputs.

Differences between SWIPE-DSE and the original DSE

SWIPE-DSE builds directly on the methodology of the original DSE [22]. Beyond bug fixes, it
introduces the following extensions:

• A symbolic model for setField when the offset is concolic.
• The ability to turn any variable into a concolic variable.

37

3.2.7 Web Archiving
This section describes our web archiving component, designed to improve fairness and repro-
ducibility for DOM-XSS detection.

Sources of non-determinism

A major challenge in this work is handling the inherently dynamic nature of the web, which
significantly complicates the fair comparison of different DOM-XSS detection approaches. Re-
peated requests to the same page often yield different responses, even if only slightly different.

Web pages often exhibit nondeterministic behavior across multiple navigations of the same
page, including the loading of different advertisements, assignment of random DOM element
identifiers, and dynamic script generation based on variables such as the current timestamp.
Figure 3.7 illustrates this issue with code extracted from one of the vulnerable pages that we
found in our crawl. Here, an array of videos is defined (line 1); a video is then randomly selected
using the Math.random API (line 2); and finally, the chosen video is injected into the DOM (line
3). In summary, nondeterministic factors can influence which resources are loaded and what
JavaScript code is executed.

DOM-XSS-specific challenges for web archiving

Prior work has demonstrated that website archiving can enhance reproducibility in security anal-
ysis [41, 53]. However, our setting introduces challenges that standard archiving approaches do
not adequately handle.

DOM-XSS vulnerabilities may involve complex client-side JavaScript execution, where re-
sources are fetched or requests are modified dynamically based on user interactions or URL
components. In our case, the fuzzing engine actively interacts with the page, triggering addi-
tional resource loads beyond those observed during a passive navigation. Additionally, the DSE
engine performs repeated navigations to the same page while varying GET parameters and hash
values. These URL components frequently embed timestamps or unique identifiers, which can
influence what resources are requested.

To address these challenges, we integrate our dynamic analysis with a dedicated archiving
and replay system. Our solution involves a novel online archive expansion mechanism that re-
duces missed resources and increases repeatability.

Web archiving mechanism

We now describe the design of our archiving mechanism. SWIPE components use a Chromium
instance configured to route traffic through a proxy. The web archiving mechanism is imple-
mented as an add-on for mitmproxy [27], which enables the interception of browser requests and
manipulation over the responses delivered to the browser.

Archive creation. On the first visit to a page, SWIPE records all browser requests and cor-
responding server responses, including HTML, JavaScript, and CSS resources. These resources

38

are stored collectively in a compressed form3, which we call web archive.

Handling redirections. A browser request for a URL may result in a redirection to another
URL. Without the web archive, the final URL that is served may differ across navigations.
SWIPE’s archiving mechanism handles redirections robustly by maintaining a mapping from
requested URLs to their final redirected targets. Once a request to URL1 is observed to redirect
to URL2, the mapping is updated accordingly.

Archive replay. Once a page has been archived, subsequent analyzes (by the same or an-
other SWIPE component) are served from the archive rather than the live server. Upon each
request, the system attempts to retrieve the corresponding stored response. This step is not al-
ways straightforward, as current requests may differ from those made during archive creation.
Differences in requests may, for example, be introduced by different values of GET parameters,
which can often include timestamps or unique identifiers. Following Goel et al. [41], we compute
the similarity between current request URLs and stored request URLs. When a similar URL is
found, the corresponding archived response is served.

Similarity metric. Given a target URL, URL1, the web archive component selects the most
similar URL, URL2, from the set of archived URLs archive, such that the following 3 conditions
are satisfied:

URL2 ∈ archive, (3.1)

match(URL2,URL1) holds, (3.2)

∀URL3 ∈ archive, match(URL3,URL1)⇒ editDist(URL3,URL1)≥ editDist(URL2,URL1).
(3.3)

The predicate match returns True if the two input URLs share the same eTLD+1 (effective
top-level domain plus one additional domain label). The function editDist corresponds to the
Levenshtein distance [76] between the given string URLs.

Archive expansion during replay. If no similar request exists in the archive, we employ a
novel online archive expansion phase. The request is forwarded to the live server, and the result-
ing response is added to the archive. This approach avoids serving incorrect responses or failing
with a 404. This expansion strategy introduces a tradeoff between repeatability and realistic
preservation of page behavior, and it is particularly important for our dynamic analysis, as both
fuzzing and DSE can generate requests that would not occur during passive browsing.

Archive Exclusion During Confirmation. Prior archiving solutions cannot always perfectly
reproduce live page behavior [14, 41, 53], and our mechanism does not solve that issue either.
We expand on this and other limitations of our web archiving mechanism in Section 3.4.1. For
vulnerability confirmation, we disable the archive entirely to ensure that detected flows represent
genuine page behavior.

3We use the WARC format [7]

39

1 var vlst = ['vid_01', 'vid_02','vid_03', 'vid_04', ...];
2 var vid = vlst[Math.floor(Math.random() * vlst.length)];
3 document.write('<video poster="http://vulnerable/' + vid + '.jpg">');

Figure 3.7: Randomized page behavior observed in a real page from our crawl.

3.3 Evaluation
We evaluate the effectiveness of our dynamic analysis and answer these research questions:

RQ1: Can Fuzzer generate user interactions in real-world pages that lead to the discovery of
new DOM-XSS vulnerabilities (Section 3.3.2)?

RQ2: Can DSE uncover PFs in real-world pages, and how do they impact DOM-XSS detec-
tion (Section 3.3.3)?

RQ3: How does SWIPE compare to other end-to-end DOM-XSS detection tools (Sec-
tion 3.3.4)?

RQ4: How do SWIPE’s analysis results compare to what prior work reported, and how
does the continuous evolution of the web affect the validity and consistency of such comparisons
(Section 3.3.5)?

3.3.1 Experimental Setup
This section presents our experimental methodology. It details the evaluation steps, starting from
how we obtained each dataset, until confirmation of vulnerabilities is performed.

Setup overview

Figure 3.8 shows our experimental workflow, including our main experiments and results. In the
last row, for comparison, we have included TalkGen’s workflow and reported results.

Our experimental pipeline consists of four stages:
• Dataset collection: We collect 44,480 URLs from popular domains, in order to evaluate

SWIPE and to compare with prior work.
• Dataset augmentation: Given a target URL, DSE synthesizes new URLs by generating

additional parameters or fragments. In this stage, we apply this process to URLs of a given
input dataset.

• Analysis: A DOM-XSS detection tool analyzes URLs from a given dataset, producing a
set of potential flows.

• Confirmation: We confirm exploitability of each potential flow.

The following sections describe each stage in detail.

Dataset collection stage

We first downloaded the top 30,000 domains from the Tranco list [74]. All domains were prefixed
with https:// and crawled using a script based on the crawling library Scrapy [71]. From each

40

strip PFs strip PFs

strip PFs

Fuzzer-DSE1

RQ2*

Fuzzer

RQ1

Passive

All

FoxHound-ENC

RQ3

FoxHound-2025

RQ3

Fuzzer-noPFs

RQ2*

Fuzzer-DSE24

RQ2a

FoxHound-2021

RQ4

Pre-crawl
Tranco top 30k

X 5 subpages with PFs

Core
44480 URLs

SWIPE-DSE
1h-timeout

13,555 URLs

FoxHound

Core-DSE1
56,152 URLs

Vulnerable
194 URLs

SWIPE-DSE
24h-timeout

SWIPE
FUZZER

Vulnerable-DSE24
5417 URLs

SWIPE
FUZZER

153997 flows
(33 flows)

SWIPE
 FUZZER

32
(-)

[28]

8668130 flows
(115 flows)

SWIPE
 FUZZER

42
(-)

[29]

SWIPE
 FUZZER

975096.76
(22.26)

[2,805]

SWIPE
 PASSIVE

351792.2
(45.48)

[15,429]

SWIPE
PASSIVE

SWIPE
 FUZZER

701853.04
(55.06)

[15,498]

SWIPE
FUZZER

83
(1.87)
[73]

72
(1.62)
[64]

282123.56
(76.62)

[15,985]

FoxHound
encoding: disabled

FoxHound
encoding: enabled

347
(7.8)
[250]

68
(1.53)
[58]

SWIPE
 FUZZER

15
(1.11)

[9]

TalkGen's
Pre-crawl (2021)
Tranco top 100k
X 10 subpages

TalkGen
390092 URLs

 FoxHound

53608.14
(40.27)

FoxHound
encoding: disabled

7420
(19.02)
[711]

Crawl done in this work Dataset Crawl results Most recent prior work crawl

Figure 3.8: Our crawl pipeline, main results and comparison with TalkGen’s crawl. Pipeline
stages are marked by horizontal stripes, starting from dataset collection, DSE dataset augmenta-
tion, analysis crawls, analysis results, confirmation crawls and confirmation results. Results are
given in terms of flows/1k URLs, unique potential flows/1k URLs in round brackets and loaded
frame domains in square brackets. For each crawl, we describe its name and which research
question it helps answer.

41

page, we extracted up to five links containing non-empty GET parameters or fragment values,
and pointing to one of the 30,000 domains. Pages that timed out after 3 minutes were discarded.

This produced a dataset of 44,480 URLs, including 13,396 top-level Tranco pages (i.e., reach-
able domains with the https prefix), and 31,084 subpages with PFs. We denote this dataset as
the Core dataset.

Across all our experiments, 194 pages from the Core dataset were confirmed to contain
DOM-XSS vulnerabilities. We denote this subset as the Vulnerable dataset.

The presence of 31,084 pages with PFs provides a baseline for DSE: by stripping known PFs
from URLs and analyzing the resulting URLs with DSE, we test whether DSE can rediscover the
original PFs. Removing PFs from Core and Vulnerable yields the Core-noPFs and Vulnerable-
noPFs datasets respectively. Note that some of the PFs in URLs from the Core dataset are bound
to only be processed server-side and therefore cannot be recovered by symbolic execution of
client-side JavaScript.

Dataset augmentation stage

DSE synthesizes new URLs with additional GET parameters or fragments. By visiting these
URLs, previously unobserved page behaviors may emerge, potentially exposing vulnerabilities.

In this work, we refer to the process of synthesizing additional URLs from a given input
dataset as dataset augmentation. Augmented datasets are analyzed with Fuzzer, and differences
in vulnerability discovery between the original and the augmented datasets measure the contri-
bution of DSE (RQ2).

In our experiments we have augmented two datasets:
• Core-noPFs: DSE was run with a 1-hour timeout per page. We allocated 100 total hours

for this experiment, during which DSE analyzed 13,555 of the 44,480 URLs, producing
56,152 synthesized URLs, which we denote as the Core-DSE1 dataset. Analysing the
results of fuzzing pages from the Core-DSE1 dataset helped us answer whether DSE can
find new confirmed flows on pages in the wild.

• Vulnerable-noPFs: DSE was run with a 24-hour timeout per page, across all 194 pages.
This produced 5,417 new URLs, forming the Vulnerable-DSE24 dataset. Analysing the
results of fuzzing pages from the Vulnerable-DSE24 dataset helped us answer whether
DSE can rediscover confirmed flows in pages that we already know are vulnerable. Since
Vulnerable-noPFs is a much smaller dataset compared to Core-noPFs, we were able to
allocate a much higher timeout (24X) per page for this second DSE augmentation.

Both augmentations start from datasets in which all PFs are removed: Core-noPFs and
Vulnerable-noPFs. The prior stripping step is essential before augmenting Vulnerable-noPFs,
as the objective of this augmentation is to validate whether DSE rediscovers known vulnerabil-
ities. For Core-noPFs, removing PFs may reduce DSE’s effectiveness, since the original Core
dataset includes valid PFs that could have been used as a starting point for DSE. We neverthe-
less enforce stripping for two reasons. First, it allows a consistent evaluation methodology for
DSE, regardless of the dataset being augmented. Second, it generates valuable diagnostic data
for future improvement: by comparing PFs in synthesized URLs against the baseline PFs from
the original Core dataset, we can easily identify failure cases where DSE does not succeed (after

42

filtering out PFs that are only processed server-side). Such data would not be so directly available
if augmentation was performed directly on the unstripped Core dataset.

Analysis and confirmation stages

When we launch a DOM-XSS detection tool like SWIPE against pages of a given dataset, we
aim to first obtain a set of potential flows, collected using a modified browser that implements
dynamic taint analysis. All SWIPE components use the web archive component during analysis,
and an archive is created the first time each page is visited with a SWIPE component. Multiple
pages can be analyzed in parallel, and we prevented race conditions in the archive usage by
ensuring that each page is analyzed by only one condition at a time.

Each potential flow is validated as described in Section 3.2.4, a method mostly based in
DOMsday’s confirmation methodology. We apply this confirmation methodology consistently to
all conditions. The number of confirmed flows provides an approximation of true vulnerabilities.
While DOMsday sampled 40 confirmed flows and manually validated that their confirmation
methodology did not produce false positives, we also manually reviewed 10 of our confirmed
flows and successfully exploited all 10 by creating a payload that spawned an alert window.
Additionally, during the confirmation stage, the web archive is not used by any condition to
ensure that any discovered confirmed flows are not caused by the usage of the web archive.

We reported all confirmed flows, even those that we did not attempt to manually exploit. Re-
sponsible disclosure was performed following Khodayari et al. [65] methodology. We received
one reply so far, which acknowledged the vulnerability and committed to patch it.

Experiments performed

We evaluated seven main conditions:
1. Passive: Passive navigation, replicating DOMsday [91], on the Core dataset. Uncovered

72 confirmed flows hosted in pages from 64 distinct domains.

2. Fuzzer: Uses fuzzer to simulate user interactions on the Core dataset. Uncovered 83
confirmed flows in 73 domains.

3. Fuzzer-noPFs: Our fuzzer on the Vulnerable-noPFs dataset. Uncovered 32 confirmed
flows in 28 domains. To clarify, this is the exact same fuzzer method as above, but applied
on distinct datasets.

4. Fuzzer-DSE24: Our fuzzer on the Vulnerable-DSE24 dataset (i.e., the DSE augmented
version of Vulnerable-noPFs). Uncovered 42 confirmed flows in 29 domains.

5. Fuzzer-DSE1: Our fuzzer on the Core-DSE1 dataset (i.e., the DSE augmented version
of Core-noPFs). Uncovered 15 confirmed flows in 9 domains. Both Fuzzer-DSE1 and
Fuzzer-DSE24 only apply fuzzing to URLs that are not already in the original datasets
(i.e., before augmentation). This avoids duplicate work, e.g., the Fuzzer condition already
applies fuzzing to all URLs in the Core dataset. This also explains why confirmed flows
resulting from those DSE crawls are smaller than 83.

6. FoxHound-2025: We run FoxHound [68] v.126.0, a recent version (released February
2025) of the taint-enabled browser used by TalkGen in 2021, against the pages from the

43

Core dataset. While it reported 347 confirmed flows in 250 unique domains, we found
through manual analysis that the majority of these flows are not exploitable in typical
modern browsers, as URL encoding mechanisms are disabled in FoxHound by default.

7. FoxHound-ENC: This is the same version of FoxHound as above except we have re-
enabled URL encoding for fair comparison with our browser. This resulted in 68 confirmed
flows in 58 domains.

Additionally, we aim to provide information regarding the analysis time needed to discover
confirmed flows and the effectiveness of our web archive component. To this end, we performed
the following experiments three months after the above crawls. We re-analyzed the Vulnerable
dataset, using FoxHound-ENC, Passive-live (Passive analysis without the web archive), Fuzzer-
live and also Passive and Fuzzer with the web archive enabled. We measured how long each
condition took from opening the browser to rediscovering a previously found exploitable flow.

Overall, the number of detected DOM-XSS flows rises quickly at the start and plateaus a few
minutes later. FoxHound-ENC is particularly faster at converging than Passive, both reaching a
similar number of confirmed flows before timing out. This is expected considering the known
coverage tracking overhead [50] in our Chromium, which is a necessary feature for our Fuzzer
component. In this same experiment, we find that the web archive helps us rediscover exploitable
flows in 95% and 93% of pages originally found vulnerable by Passive and Fuzzer respectively.

Runtime information. We have packaged each evaluation condition in a docker image. Each
condition is run against a URL by launching a docker container based on the respective image.
This container is restricted to using 6GB of RAM and 6 cores. With respect to timeouts, we
enforce a soft analysis time budget of 3 minutes for all conditions, plus 1 minute to gracefully
exit before forced termination.

3.3.2 RQ1: Importance of User Interactions
In this section we address RQ1: can user interactions generated by our fuzzer uncover new
vulnerabilities? We refine this research question into the following sub-questions:

RQ1a: How does active navigation with simulated user interactions compare to passive nav-
igation in terms of discovered potential and confirmed flows?

RQ1b: What is the impact of combining high-level actions in fuzzing on DOM-XSS detec-
tion effectiveness?

RQ1c: How does Fuzzer compare to existing tools for user interaction simulation?

RQ1a: Potential and confirmed flows in Passive versus Fuzzer

We first measure the effect of fuzzing through an ablation study, comparing Passive (fuzzer
disabled) with Fuzzer (fuzzer enabled) on the Core dataset. We report the number of unique
potential flows and confirmed flows in each condition.

Potential flows. Figure 3.9 shows the number of unique potential flows found: Passive discov-
ers 2,023 (810+1213), whereas Fuzzer discovers 2,449 (1236+1213). Overall, simulating user

44

interactions increases the number of potential flows by 21% compared to passive analysis.

1236 8101213Fuzzer Passive

Figure 3.9: Unique potential flows found by Passive and Fuzzer.

Confirmed flows. Figure 3.10 shows the number of unique confirmed flows detected by our
instrumented browser: Passive finds 72 (5+67), while Fuzzer finds 83 (16+67), a 15% increase.

To account for randomness in both Fuzzer and Passive analysis, we repeated each condition
five times on the subset of pages containing the 21 (5+16) flows uniquely identified by one of
these conditions in the first run. The goal is to test whether the detection (or lack thereof) of
these flows are due to simulated interactions or non-determinism.

Out of the 16 flows initially unique to Fuzzer, 15 were never discovered by Passive in sub-
sequent runs. Manual inspection revealed the remaining flow was actually a duplicate vulnera-
bility: the script containing the sink call differed slightly between conditions, which caused the
deduplication method to consider these two flows as different. These differences in page con-
tent can occur for example when random or time-based requests are made to the page, but our
web archive component is disabled when confirming flows and thus the server can easily serve
different content to the browser.

16 567Fuzzer Passive

Figure 3.10: Unique confirmed flows found by Passive and Fuzzer.

For Passive, the remaining 4 of the 5 initially unique confirmed flows were eventually dis-
covered by Fuzzer in one of the 5 runs. To summarize, when running Passive and Fuzzer 5 times,
Passive finds 72 unique confirmed flows, and Fuzzer finds a superset of those, with an additional
15 confirmed flows, a 21% increase.

45

Result 1a: SWIPE’s fuzzer yields a 21% increase in potential flows and a 15% increase
in confirmed flows over a single run compared with Passive. When accounting for non-
deterministic effects over five runs, confirmed flows increase by 21% as well.

RQ1b: Impact of high-level action combinations

Fuzzer combines high-level actions into composite sequences and exchanges parts between these
sequences (cross-over technique described in Section 3.2.5). We now evaluate the impact of
action combinations on both DOM-XSS detection and JavaScript coverage.

We compare the original Fuzzer with a variant where action combinations are disabled (sim-
pleFuzzer), using the 194 pages of the Vulnerable dataset. In simpleFuzzer, only primitive
high-level actions that achieve best coverage in each round are retained. simpleFuzzer misses
7 confirmed flows detected by the original Fuzzer.

Regarding coverage, Figure 3.11 shows average executed JavaScript bytes: Passive executes
1,298,737 bytes, simpleFuzzer executes 1,364,087 bytes, and Fuzzer executes 1,468,703 bytes.
This represents a 13% increase by the original Fuzzer over Passive and an 8% increase over
simpleFuzzer.

Passive SimpleFuzzer Fuzzer
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

JS
 c

od
e

ex
ec

ut
ed

 in
 b

yt
es

1e6

Figure 3.11: JavaScript bytes of code executed for Passive, Fuzzer and Fuzzer without action
combinations in the Vulnerable dataset.

Increased code execution may originate from both direct event handler execution and indirect
resource loading. For example, additional HTML and JavaScript resources may be loaded by
event handler code. To isolate the impact of fuzzing on direct event handler execution, we added
breakpoints in event handlers. Figure 3.12 reports counts for the top 10 supported event handlers
that most frequently contained sink calls.

Passive executes a total of 291 supported event handlers, as they are triggered programmati-
cally by the page, without user interactions. simpleFuzzer executes 1,762 handlers, a 6x increase
over Passive. Fuzzing while combining high-level actions resulted in the execution of 2,920
handlers, a 10x increase over Passive.

46

0 20 40 60 80 100
Executed event handlers over total event handlers (%)

mouseover
151 (4.01%)

mousedown
115 (6.76%)

hashchange
17 (16.04%)

submit
47 (16.49%)

popstate
19 (18.1%)

fullscreenchange
6 (22.22%)

mouseenter
106 (22.51%)

resize
51 (31.29%)

focusin
651 (69.26%)

focusout
653 (71.52%)

Fuzzer
SimpleFuzzer
Passive

Figure 3.12: Percentage of event handlers in the Vulnerable dataset that were executed by Pas-
sive, Fuzzer and the simpleFuzzer that does not combine actions, for the 10 supported event
handlers with higher sink calls frequency.

We additionally report that event handlers constitute 1.56% of all JavaScript code observed
in our crawl. Supported handlers account for 1.11% of all JavaScript. Thus, in principle, our
fuzzer can simulate interactions for 71% of event handler code found in the wild. In practice,
execution may fail due to hard-to-satisfy conditions, complex interaction sequences, or dynamic
DOM changes (e.g., dynamic removal of elements containing handlers). Note that this is consis-
tent with the 13% overall coverage increase: event handlers can trigger additional functions or
resource loads.

Result 1b: Combinations of high-level actions increase coverage by 8% and execute 1.66x
more event handlers than simple fuzzing, enabling discovery of 7 additional confirmed flows.
The large fraction of unexecuted event handler code suggests further opportunities for im-
proving DOM-XSS detection through user interaction simulation.

RQ1c: Comparison with CrawlJax

We compare the performance of Fuzzer with CrawlJax [93] with respect to DOM-XSS detection.
Note that while CrawlJax systematically explores JavaScript-driven web applications through
automated interaction, it lacks the ability to detect DOM-XSS vulnerabilities. To surpass that
limitation and use a fair comparison, we replace the Chromium used by CrawlJax with the same
taint-tracking Chromium used by SWIPE. We refer to this condition as CrawlJax+Taint-tracking
Chromium. Both tools are run under the same runtime conditions against the 194 pages of the

47

Vulnerable dataset. Results are summarized in Table 3.5: CrawlJax finds 47 confirmed flows
in 40 domains, including 19 confirmed flows and 1 vulnerable domain not detected by Fuzzer.
SWIPE-Fuzzer uniquely finds 55 confirmed flows and 34 vulnerable domains, which are missed
by CrawlJax.

Component/Tool Conf Flows Domains

SWIPE-Fuzzer 83 (55) 73 (34)
CrawlJax+Taint-tracking Chromium 47 (19) 40 (1)

Table 3.5: Number of confirmed flows and vulnerable domains detected by SWIPE-Fuzzer and
CrawlJax on the Vulnerable dataset. Numbers in () indicate how many flows and domains are
unique to each tool. CrawlJax+Taint-tracking Chromium refers to CrawlJax using our browser
to detect DOM-XSS flows.

Manual analysis shows the vulnerable domain uniquely discovered by CrawlJax was missed
because SWIPE-Fuzzer resized the window to trigger an onresize handler, which hid a clickable
DOM element required for the vulnerability. We confirmed that disabling onresize allowed
SWIPE-Fuzzer to detect this flow.

The remaining 18 flows uniquely reported by CrawlJax were actually identified by Fuzzer
but were considered distinct due to minor script variations causing different sink locations. This
reflects the same deduplication issue observed in RQ1a, though it was a more frequent problem
in this analysis. Running Fuzzer with identical browser flags and window sizes as CrawlJax
recovered 5 of these 18 cases.

We suspect the slight changes in page content originate from the different way that CrawlJax
interacts with the browser, compared to our SWIPE conditions. It is challenging to isolate all
these differences, but we launched a version of the Fuzzer that passes identical browser flags and
browser window size to CrawlJax. In this last experiment, Fuzzer found 5 of the 18 confirmed
flows that used to be uniquely found by CrawlJax, as the sink location corresponded to what
CrawlJax observed. When we reverted back to running Fuzzer with the original browser flags
and window sizes, those 5 cases were again missed, as Fuzzer found the same sink location as in
our original crawl. The number of vulnerable domains is a preferable metric for this comparison,
as it is more robust against deduplication issues, ignoring exact sink locations.

Result 1c: Fuzzer discovered vulnerabilities in 18 domains not detected by CrawlJax. Crawl-
Jax uncovered one confirmed flow missed by Fuzzer due to indirect effects of supporting the
onresize handler.

3.3.3 RQ2: Synthesis and Impact of PFs
DSE aims to synthesize values for GET parameters and URL fragments (PFs) (Section 3.2.6).
To evaluate its effectiveness, we refine RQ2 into the following sub-questions:

RQ2a: How effective is DSE at synthesizing PFs that expose DOM-XSS vulnerabilities?
RQ2b: How does DSE compare in effectiveness to off-the-shelf tools for GET parameter

discovery?
We now answer each sub-question individually.

48

RQ2a: Effectiveness of DSE at synthesizing vulnerability-triggering PFs

The presence of specific GET parameters or fragment values can expose vulnerabilities that
would otherwise remain undetected. The majority (70%) of URLs in our Core dataset already
include PFs observed in the wild. One question we address is whether DSE can synthesize the
required PFs when they are absent from the target URL. This answer allows us to evaluate DSE’s
ability both to rediscover known vulnerabilities and reveal new ones through parameter synthesis.

Rediscovery of known vulnerability-triggering PFs. We use the Vulnerable-noPFs dataset,
where all PFs were removed from the original Vulnerable dataset, to assess whether DSE can
regenerate the missing parameters needed to rediscover vulnerabilities. By comparing the results
of fuzzing the Vulnerable-noPFs dataset with fuzzing the Vulnerable dataset we can obtain a
set of confirmed flows triggered only when PFs are present. We then evaluate whether DSE
can augment Vulnerable-noPFs into Vulnerable-DSE24 such that fuzzing the augmented dataset
reproduces those flows. For this augmentation we allocated a 24-hour timeout per page.

Figure 3.13 shows the number of confirmed flows obtained with Fuzzer-noPFs on the Vulnerable-
noPFs dataset, Fuzzer-DSE24 on the Vulnerable-DSE24 dataset and Fuzzer on the Vulnerable
dataset (i.e., the original 194 vulnerable URLs of the Core dataset). Results show that 57 con-
firmed flows (42+15) appear only when PFs are included in the target URL. The remaining 26
flows (14+12) were found by Fuzzer-noPFs, so parameters were not needed in those cases.

When we strip parameters and apply DSE to synthesize new ones, Fuzzer-DSE24 rediscovers
15 of the 57 flows (26%). Notably, Fuzzer-DSE24 also discovers 11 unique confirmed flows not
previously observed. To verify that these require synthesized parameters, we executed Fuzzer
and Passive three times against the corresponding pages, and 10 out of 11 flows could never be
rediscovered without DSE.

2 4214

11

4
15

12
Fuzzer-noPFs Fuzzer

Fuzzer-DSE24

Figure 3.13: Comparison of confirmed flows found across Fuzzer, Fuzzer-noPFs and Fuzzer-
DSE24 (RQ2a).

Discovery of new vulnerabilities. We next assess whether DSE can expose vulnerabilities
in Core-noPFs, consisting of URLs collected from the wild with all PFs removed. For this
experiment we allocated a 1-hour timeout per page, with a total budget of 100 hours for the full

49

augmentation crawl. During that time, DSE analyzed a subset of 13,555 URLs from Core-noPFs,
producing the augmented Core-DSE1 dataset with 56,152 synthesized URLs (see Section 3.3.1).

Running Fuzzer against the Core-DSE1 dataset yielded 15 confirmed flows. Manual in-
spection revealed that 10 correspond to previously unknown vulnerabilities across 7 pages on
5 distinct domains (4 of these new domains were not previously found to be vulnerable). The
remaining 5 confirmed flows had already been discovered in the original Core dataset.

The cost of DSE synthesis per vulnerable URL ranged between 7 and 3410 seconds, with an
average of 1048 seconds (17 minutes).

Result 2a: DSE is effective at synthesizing PFs that expose vulnerabilities. It successfully
regenerated parameters to rediscover 26% of confirmed flows requiring specific parameters
and generated new parameter combinations that revealed 10 new vulnerabilities on already
vulnerable pages, and 10 new vulnerabilities in other pages of the Core dataset.

RQ2b: Comparison with off-the-shelf GET parameter discovery tools

We compare DSE with three off-the-shelf tools designed to identify GET parameters: the fuzzers
ffuf [54] and wfuzz [5], and Wapiti [135], a web vulnerability scanner that includes parameter
discovery functionality.

DSE vs. ffuf and wfuzz. FFuf [54] automatically discovers GET parameters through fuzzing.
It constructs URL templates such as https://.../path?{fuzz}=val and enumerates candidate pa-
rameter names whose use yields valid responses. Similarly, Wfuzz [5] injects input into specified
request fields, including GET parameters. Both tools draw their candidate values from user-
supplied wordlists. We focus on the Core-DSE1 dataset, containing 6,549 unique GET parame-
ter keys synthesized by DSE. We collected the wordlists used by ffuf and wfuzz, which together
contain 50,275 unique entries, covering all GET parameters these tools attempt by default.

The overlap between these wordlists and the DSE-generated parameters is limited to 287
entries. This means that 95.6% of the parameters synthesized by DSE are absent from the ffuf
and wfuzz wordlists. Unlike static wordlists, each parameter combination generated by symbolic
execution is expected to execute a distinct execution path, thereby increasing code coverage.

DSE vs. Wapiti. Wapiti discovers GET parameters mainly by statically parsing forms or links
present in web pages. We evaluate DSE effectiveness by comparing vulnerabilities discovered in
URLs generated by Wapiti with those in DSE-generated URLs after augmenting the Vulnerable-
noPFs dataset. Both tools were given a 24-hour time budget per page. In each case, we ran
Fuzzer on the generated URLs to detect vulnerabilities.

Results are summarized in Table 3.6. Wapiti discovered at least one GET parameter in 9 of
the 194 pages, whereas DSE discovered at least one GET parameter in 101 of the 194 pages.
Although Wapiti identified some parameters missed by DSE, none of the vulnerabilities enabled
by Wapiti+SWIPE-fuzzer were new, as they had already been discovered by Fuzzer alone.

50

Component/Tool Conf Flows Domains

SWIPE-Fuzzer (baseline) 83 73

SWIPE-DSE-24 + SWIPE-Fuzzer 98 (15) 78 (5)
Wapiti + SWIPE-Fuzzer 87 (4) 73 (0)

Table 3.6: Number of vulnerable flows and domains detected by Fuzzer-DSE24 (the fuzzing
by SWIPE-Fuzzer of pages augmented by SWIPE-DSE with a 24-hour timeout) and Wapiti +
SWIPE-Fuzzer. Numbers in parentheses indicate the number of flows unique to each tool.

Result 2b: DSE uncovers GET parameters that off-the-shelf tools miss. ffuf and wfuzz fail
to recover 95.6% of the unique parameters synthesized by DSE when augmenting 13,555
pages. Parameters generated by DSE enable more confirmed flows to be discovered than
those found by Wapiti. However, because Wapiti and DSE identify different parameters, the
two tools are complementary.

3.3.4 RQ3: Comparison with other DOM-XSS Detection Tools

We compare SWIPE with two other DOM-XSS detection tools: ZAP [106] and FoxHound [68].
ZAP is a web application security scanner that performs automated crawling and active scanning
for vulnerabilities, including DOM-XSS. FoxHound is conceptually closer to Passive, relying on
dynamic taint analysis in a modified browser and using passive navigation. Table 3.7 summarizes
the results of running ZAP and FoxHound against the Vulnerable dataset and compares them with
SWIPE’s results.

SWIPE vs. ZAP. ZAP was executed under runtime conditions similar to Fuzzer. We config-
ured ZAP to run the AJAX spider and DOM-XSS active scan modules. We measured the number
of vulnerable pages where ZAP raised Cross-site scripting (XSS) alerts and included those results
in Table 3.7. Overall, ZAP identified vulnerabilities in 2 of the 194 vulnerable pages.

Note that ZAP reports a vulnerability only when it can successfully exploit it, i.e., when an
injected payload opens an alert window. ZAP prioritizes injecting payloads in the URL fragment
to bypass WAFs, but many vulnerabilities are not exploitable through this vector. Regardless,
the results we have obtained are in line with what prior work DOMsday [91] reported regarding
Burp [136], another web application scanner. We suspect the performance gap between ZAP and
SWIPE is due to the advantages of dynamic taint analysis: Dynamic taint analysis tracks flows
even when attacker input is transformed by JavaScript, and the provenance information recorded
by our browser allows precise identification of where payloads must be injected.

Passive versus FoxHound. We run FoxHound, a taint-enabled Firefox browser used by Talk-
Gen, against the pages in the Core dataset (FoxHound-ENC). For fair comparison with Passive,
we re-enabled URL encoding, a feature that was disabled in the original work TalkGen [17]. Note
that Passive also has URL encoding enabled, as it is the current standard for modern browsers.

51

Component/Tool #Vuln. pages (%)

SWIPE + FoxHound-ENC 194 100%
SWIPE-DSE + SWIPE-Fuzzer 146 75.26%
SWIPE-Passive 127 65.46%
FoxHound-ENC 120 61.86%
ZAP 2 1.03%

Table 3.7: Number of pages from the Vulnerable dataset that were deemed vulnerable by ZAP,
SWIPE and FoxHound-ENC.

Results of running Passive and FoxHound-ENC against the Core dataset are reported in the first
two columns of Table 3.8.

FoxHound supports sources and sinks beyond those related to DOM-XSS, but Table 3.8 only
includes results for DOM-XSS flows.

Flows. While confirmed flows aim to approximate unique vulnerabilities, the same cannot be
said to normal flows (fifth row on Table 3.8) which aim to simply represent a propagation of
information from an attacker-controlled source to a sensitive sink. Passive reports 15.6M flows
compared to 3.8M in FoxHound-ENC. This discrepancy stems from different flow definitions:
Passive emits multiple flows when all parts of the URL (i.e., protocol, host, path, query and
fragment) propagate to a sink, while FoxHound aggregates them as a single flow.

Potential flows. Passive detects 2,023 potential flows, while FoxHound-ENC reports 3,408.
We manually investigated 2 potential flows that only FoxHound-ENC attempted to exploit,

and found that both were false positives. FoxHound treats the entire URL as a single source,
including the protocol and host sources which are not attacker-controllable. By contrast, SWIPE
distinguishes URL components and discards flows with harmless sources before confirmation.

In one of the 2 manually inspected flows, a script extracted the host from location.href and
inserted it into innerHTML. Since altering the host forces navigation to another site, this flow is not
exploitable. In the second example, the protocol component (e.g., https) was inserted in a sink.
Both flows were considered potential by both tools, but only FoxHound attempted exploitation.

Note that the above is not meant to indicate a limitation of FoxHound. We used the reporting
mechanism for potential flows provided by FoxHound, but FoxHound additionally provides an
operation tree for each flow, representing the operations that were performed on the source until
it reaches the sink. Parsing the operation tree would allow us to filter unexploitable potential
flows, similarly to what SWIPE does.

Confirmed flows. Passive and FoxHound-ENC found 57 confirmed flows in common, but
Passive uniquely found 15 confirmed flows, whereas FoxHound-ENC uniquely found 11 con-
firmed flows. At the domain level, Passive detects vulnerabilities in 64 domains versus 58 for
FoxHound-ENC.

52

Metric Passive
FoxHound

ENC
(2025)

FoxHound
No ENC

(2021) [17]

DOMsday
[91]

25m Flows
[75]

Date 04/2025 04/2025 09/2020 08/2017 11/2013
Domains 30,000 30,000 100,000 10,000 5,000
Sub-pages 5 5 10 5 all depth 1
Web pages 44,480 44,480 390,092 44,722 504,275
Flows 15,647,717 3,826,017 20,912,107 4,140,873 24,474,873
Flows/1k pages 351,792 86,017 53,608 92,591 48,534
Potential 2,023 3,408 15,710 5,217 ?
Pot./1k pages 45.48 76.62 40.27 116.65 ?
Confirmed 72 68 7,199 3,219 8,163
Conf./1k pages 1.62 1.53 18.45 71.98 16.19
Vuln. domains 64 58 711 364 480

Table 3.8: Crawling comparison between Passive and results reported by TalkGen [17]
(FoxHound-2021, encoding disabled), DOMsday [91], 25mFlows [75] and FoxHound-ENC (en-
coding enabled), including number of flows, which include all source sink pairs considered by
DOMsday, potential flows (Pot.), which only include URL sources to JavaScript or HTML sinks,
and confirmed flows (Conf.).

We sampled 5 confirmed flows that only Passive finds. Undertainting issues in FoxHound
were the cause of four of these cases. The remaining case was due to overtainting: some bytes
in the final sink argument were being wrongly reported by FoxHound-ENC as originating from
the URL. This caused the injection algorithm to fail to locate a good position where the payload
should be injected.

We also manually sampled 5 confirmed flows that only FoxHound-ENC finds. Undertainting
issues in the underlying Chromium of Passive caused all 5 missing cases. These findings high-
light the inherent difficulty of capturing all potential flows, given the complexity of modifying
browser engines to implement taint tracking.

Result 3: Passive and FoxHound share common methodology of passively navigating to
the page, although they use different modified browsers for taint-tracking, finding a simi-
lar number of confirmed flows. Out of the 194 vulnerable pages discovered by SWIPE or
FoxHound, ZAP only signals 2 as vulnerable.

3.3.5 RQ4: DOM-XSS Detection Over the Years

This section compares our results with major prior studies on the prevalence of DOM-XSS in the
wild. Table 3.8 aggregates results for SWIPE (2025), our replication of FoxHound (2025), and
results reported by TalkGen [17] (2021), DOMsday [91] (2017), and 25mFlows [75] (2013). We
highlight how the evolution of the web impacts the results and complicates direct comparisons.

53

SWIPE and FoxHound-ENC versus prior work. We first compared the results of SWIPE
and our FoxHound replication (first two columns of Table 3.8) against the numbers reported in
earlier studies (last three columns). Since the number of analyzed pages differs across studies,
we normalize results by reporting confirmed flows per thousand pages (Conf./1k pages). At first
glance, Table 3.8 indicates a substantial decline: Passive and FoxHound-ENC detected 1.62 and
1.53 confirmed flows per thousand pages respectively, whereas prior work reported values at
least one order of magnitude higher. However, this apparent decrease is influenced by multiple
factors, including dataset selection, methodological choices, and changes of browser behavior
over time.

Impact of URL encoding. Modern browsers encode certain URL characters before navigation
(RFC 1738 [18]). We refer to this as native URL encoding, as browsers do it natively in contrast
to application-level encoding (e.g., via the use of encodeURIComponent by the web application).
Although originally not a security feature, native URL encoding strongly affects the exploitabil-
ity of DOM-XSS vulnerabilities. To quantify its impact on DOM-XSS detection, we re-ran Fox-
Hound’s confirmation stage with URL encoding disabled, which we call FoxHound-2025 (fifth
row of Figure 3.8). Whereas FoxHound-ENC finds 68 confirmed flows, FoxHound-2025 quintu-
ples that number to 347 (7.8 confirmed flows/1k pages). Critically, FoxHound-2025’s uniquely
discovered flows are not exploitable in modern browsers, as all major browsers now enforce URL
encoding. This is important to discuss because while both recent results reported in Table 3.8
have URL encoding enabled, the remaining reported results from prior work disabled it one way
or another:

• FoxHound-2021 completely disabled URL encoding in their browser.
• DOMsday used Chromium 54, a version that did not yet encode the hash part of the URL,

and DOMSday always injected their payloads in the hash. As a result, all their payloads
bypassed native URL encoding. Table 3.9 summarizes differences between Chromium 126
(used in our study) and Chromium 54 (DOMsday’s). The key change is that the fragment
(i.e., the value of window.location.hash) is now encoded, whereas previously it was not.

• 25mflows typically used Chromium to confirm vulnerabilities that were injected via the
fragment (which, again, at the time it did not use URL encoding), but to confirm flows that
used other sources, 25mFlows used Internet Explorer [75], which performed no encoding
anywhere at that time.

Given that URL encoding is now ubiquitous, the lower numbers in our results (Table 3.8)
reflect real-world exploitability today better.

Impact of deduplication definitions. All prior work claims to follow the deduplication method
of 25mFlows, yet that method is ambiguously defined in the original paper [75], described only
in a few short natural-language statements. Our experience suggests that inconsistent interpreta-
tions likely contributed to differences across studies. 25mFlows specifies that the sink location
should be used for deduplication, but the meaning of sink location, beyond including the line and
column locations of the sink, is underspecified.

One interpretation is that the full vulnerable script URL should be included as part of the

54

Input Chromium 54 Chromium 126

window.location.href Partial Yes
window.location.hash No Yes
document.referrer Partial Yes
window.location.search Yes Yes

Table 3.9: URL encoding differences between our browser version (Chromium 126) and the one
used by DOMsday. We found no differences between ours and the latest version.

sink location. This raises a key question: should GET parameters in the script URL be included?
Including GET parameters may cause two flows in the same script (i.e., URLs with different GET
parameters but same script content) to be counted as multiple distinct vulnerabilities. Excluding
them risks underestimating diversity of flows when the server truly differentiates responses by
GET parameters.

In this work, we exclude GET parameters (and fragments) from the sink location during
deduplication. This decision was motivated by our DSE, which generates many new PFs. In-
cluding GET parameters when deduplicating DSE flows leads to severe inflation in confirmed
flow counts. More importantly, if we include parameters in the sink location when deduplicating
the confirmed flows of FoxHound-2025, the number of confirmed flows grows from 347 to 612
(13.76/1k URLs). We find that GET parameters often result in the loading of the same page, thus
we argue that these 612 flows are unlikely to be truly unique. Notably, DOMsday reported that
62% of all confirmed flows were concentrated in a single domain, and the top 10 domains ac-
counted for 84% of 3,219 confirmed flows [91]. This raises the question of whether their results
would shrink under a deduplication method with parameter-agnostic sink location.

Impact of analyzing web advertisements. DOMsday reported that 82% of vulnerabilities
originated in advertisement or analytics content. Since then, in-browser advertisement filter-
ing advanced considerably. Compared to when they ran their crawls, a wider range of ads and
trackers are now blocked by Chromium [43, 44, 46, 47, 48, 49] and Firefox [95, 96, 97, 98, 99].

DOMsday observed that 44.3% of all frames loaded were advertisements. In contrast, Passive
flagged only 26.3% of loaded frames as advertisements.

Figure 3.14 categorizes vulnerable websites, frames, and scripts in our dataset, using the IAB
taxonomy [57] (since Blue Coat K9, used by DOMsday, is discontinued). Our results show that
advertisements are no longer the most vulnerable category of scripts. Instead, the "Technology
& Computing" category ranks highest, with advertisements ranking second. We hypothesize
that this difference stems from improved browser-level ad filtering. For example, DOMsday’s
Chromium did not filter intrusive ads, whereas current Chromium versions do [44, 46, 48]. We
chose not to disable filtering, for the same reason we did not disable URL encoding: we aim for
experiments to reflect modern browser behavior.

Impact of dataset differences. Dataset composition may further contribute to observed differ-
ences. We tested the Tranco top 30,000 domains, adding an https:// prefix. DOMsday used

55

0 10 20 30 40 50 60 70 80
Vulnerable count

Tech & Computing

News

Shopping

Advertising

Job Search

Education

Personal Finance

Hobbies & Interests

Automotive

Business

Politics

Arts & Entertainment

Science

Travel

Religion & Spirituality

Adult Content

Food & Drink

Style & Fashion

Social Networking

Sports

Real Estate

Home & Garden

Health & Fitness

Uncategorized

23

27

10

14

14

14

14

11

4

9

11

6

6

5

8

5

3

3

2

3

1

1

29

6

8

6

10

6

4

3

5

6

4

4

3

2

3

1

2

2

2

2

2

1

2

1

32

3

11

19

1

3

4

3

4

9

3

2

3

2

1

1

2

2

2

1

1

Top-level Navigation Topic
Frame Topic
Script Topic

Figure 3.14: Categorization of vulnerable top-level URLs, frames and scripts.

56

HTTP instead, while TalkGen did not specify which protocol they used. This matters because
since 2018 Chromium has labeled plain HTTP sites as insecure [45]. Mixed-content blocking
prevents non-HTTPS advertisement frames from loading within HTTPS pages. In our Passive
crawl, Chromium blocked 8,967 resources due to mixed content, affecting 931 pages (2% of the
Core dataset). To better understand differences with DOMsday, we obtained from the DOMsday
authors a dataset of 849 confirmed flows that DOMsdsay found in 2018. Passive confirmed only
25 of them. It failed to confirm flows in the remaining 824 cases for the following reasons:

• 104 pages are no longer reachable
• 448 pages no longer load the vulnerable script.
• Of the remaining 272, we manually examined 10:

In 7 cases, the vulnerable script no longer contained the sink call that it did in 2018.
This was verified using the Wayback machine [4].

In other 3 cases, the previously vulnerable script was considerably different from the
2018 version, and we could not manually find vulnerabilities in the current version.

Result 4: We discussed how the declining number of confirmed flows across studies reflects
changes in the web ecosystem. Our evidence suggests that default browser mechanisms
(e.g., URL encoding, advertisement filtering, and mixed-content blocking) prevent many
vulnerabilities from being exploitable in practice. Combined with the widespread adoption
of HTTPS, these factors may explain the marked decrease in DOM-XSS prevalence over the
past decade. Unfortunately, it is difficult to identify with certainty all the reasons for the
disparity between the number of flows across all the studies over the past decade, as datasets
of confirmed flows are not usually made public for ethical reasons.

3.4 Discussion
This section discusses the limitations of our web archiving approach and the time efficiency of
our dynamic analysis.

3.4.1 Limitations of the Web Archive Component

We evaluated the impact of our web archive on the reproducibility of experimental results.
Specifically, we re-analyzed the Vulnerable dataset three months after the original crawl, using
the same runtime conditions as before. In this experiment, we launched the following conditions:

• Passive: SWIPE passive navigation condition using the previously created web archive.
• Fuzzer: SWIPE fuzzing condition using the previously created web archive.
• Passive-live: Passive navigation without the web archive, i.e., against the live page.
• Fuzzer-live: Fuzzing without the web archive.
• FoxHound-ENC: Typical FoxHound condition without the web archive, for comparison

with Passive-live in terms of flow detection efficiency.
For each condition, we measured (i) the number of previously exploitable flows rediscovered

57

0 50 100 150 200
Time (seconds)

0

20

40

60

80

100

120

140

Ac
cu

m
ul

at
ed

 p
ag

es
 d

ee
m

ed
 v

ul
ne

ra
bl

e Passive-live
Passive

Fuzzer-live
Fuzzer

FoxHound-ENC

Figure 3.15: Accumulated number of pages deemed vulnerable as analysis time increases. Web
archiving helps to rediscover more vulnerabilities and reproduce past results.

and (ii) the time elapsed between browser startup and flow detection. The results are summarized
in Figure 3.15, where the Y-axis shows the cumulative number of rediscovered vulnerable pages
(pages with at least one exploitable flow) and the X-axis shows detection time. Both Passive
and Fuzzer, which rely on the archive, rediscovered substantially more vulnerabilities than their
live counterparts, but not all vulnerabilities. This demonstrates that web archiving improves
reproducibility of past vulnerabilities, but it is not a perfect solution.

Six pages under Passive and nine under Fuzzer were no longer found vulnerable, even when
using the web archive. Some sources of non-determinism are challenging to handle and can
contribute to this outcome, for example the use of the Math.random API, or differences in server
load causing differences in page loading times.

To examine this further, we focus on the 133 pages that Fuzzer originally flagged as vulner-
able. For each page, we computed the fraction of responses replayed from the archive compared
to total responses during fuzzing. Figure 3.16 reports these results, with red vertical lines mark-
ing the nine pages no longer vulnerable under Fuzzer with the archive. In seven of these cases,
at least one resource was served from the live server instead of the archive. These responses may
have been removed (404), changed, or no longer vulnerable.

The remaining two cases highlight a different limitation: even though all requested resources
were archived, vulnerabilities were not rediscovered. This suggests that reproducibility depends
not only on complete archiving but also on runtime conditions and interaction patterns that our
current solution does not fully capture.

58

1 21 41 61 81 101 121 133
Visit (ranked by replay proportion)

30

40

50

60

70

80

90

100

Fr
ac

tio
n

of
 re

sp
on

se
s r

ep
la

ye
d

fro
m

 a
rc

hi
ve

 (%
)

Figure 3.16: Fraction of responses replayed from the webarchive during fuzzing for each vulnera-
ble page found by the Fuzzer. Red lines show pages where vulnerabilities were not rediscovered.

3.5 Conclusions
This chapter presented SWIPE, a new infrastructure for detecting DOM-XSS, which advances
prior work in three main respects. First, SWIPE incorporates a novel fuzzer that actively sim-
ulates user interactions to trigger event handlers. This fuzzing approach identified 15% more
confirmed flows than passive navigation. Second, SWIPE integrates a dynamic symbolic exe-
cution tool (DSE) to systematically extract GET parameters from target pages. DSE enabled the
discovery of confirmed flows that were missed by all other existing methods. Third, we analyzed
how the co-evolution of web content and browsers presents significant challenges that compli-
cate the reproducibility of prior DOM-XSS measurement studies. One example is the effect of
evolving URL-encoding practices on the exploitability of DOM-XSS flows. We found that this
factor is a critical variable that future studies must account for when comparing the prevalence
of DOM-XSS vulnerabilities with earlier reports. SWIPE addresses several of these challenges
and achieves more reliable detection results.

59

60

Chapter 4
Automatic Detection and Exploit Synthesis
for Node.js Vulnerabilities

While the previous chapter emphasizes analysis on client code, this section will get us started on
our goal to study how to effectively detect and confirm flows for code injection vulnerabilities in
Node.js packages. The work described in this section was published at NDSS 2025 [23].

4.1 Overview

One limitation of DTA is that the detection of a flow requires execution of the application with an
input that specifically triggers the vulnerable program path. Current fuzzing tools for JavaScript
input generation are limited in that they either generate only string-based inputs [13, 58], or
depend on the availability of test cases from the target package or its dependencies [125]. How-
ever, many packages lack comprehensive test suites [125], and some may even require in-
puts with complex or nested structures. To address these limitations, we extend a prior tool
NODEMEDIC [24] with a type and object-structure aware fuzzer, which we describe in detail in
Section 4.2. We show that our fuzzer significantly improves the number of detected potential
Arbitrary Code Execution (ACE) and Arbitrary Command Injection (ACI) flows (Section 4.4.3).

Prior tool NODEMEDIC additionally attempts to synthesize exploits for potential flows, so as
to confirm their exploitability, but it has special difficulties when confirming ACE flows. This
problem arises because exploiting ACE vulnerabilities typically involves the construction of an
input that, after it is transformed by the package, results in the execution of valid JavaScript code
via a ACE sink like eval or the Function constructor. To overcome this limitation, we developed
a confirmation component, which we refer to as Enumerator (Section 4.3.2). The Enumerator
takes as input a prefix, which is a string of code that precedes the attacker-controlled portion
of the final sink argument, and completes that prefix with placeholders for arbitrary JavaScript
statements, thereby representing the statements that an attacker could inject for code execution.
Once integrated in NODEMEDIC, the Enumerator completed the majority of real-world prefixes
that it encountered, resulting in a 21% increase in the total number of confirmed ACE flows.

From this point onward, we refer to the modified NODEMEDIC tool, augmented with our

61

novel components, as NODEMEDIC-FINE.

4.2 Type and Structure Aware Fuzzer for Node.js Packages
NODEMEDIC-FINE utilizes the original NODEMEDIC instrumentation, which tracks taint prop-
agation from package entry point arguments to dangerous sinks like eval. In this section we detail
our coverage-guided fuzzer that is aware of input types and object structure, the first new com-
ponent in NODEMEDIC-FINE. This fuzzer aims to improve vulnerability detection in Node.js
packages by exploring a broader range of execution paths.

4.2.1 Motivation
Recall Figure 2.2 which illustrated an example of an ACI vulnerability. Line 5 in this figure
introduces a condition on the entry point arguments if(params.flags !== undefined). That line,
albeit apparently simple, imposes a series of constraints on the entry point argument params. To
satisfy that condition, params needs to be able to hold properties, i.e. it needs to be an object.
This example highlights a situation in which the attacker must construct an object payload with
a particular attribute flags. More generally, package entry points may require inputs of diverse
types and structure. Ideally, a detection system would efficiently infer these types and structures
for each argument of a target entry point; however, the absence of explicit type information in
JavaScript makes it challenging to do this using static analysis. We instead design a fuzzer that
concretely interacts with the target Node.js package and its entry points to dynamically discover
inputs that satisfy these requirements.

Originally, NODEMEDIC instruments packages to enable taint propagation from sources to
sinks, thereby implementing dynamic taint analysis. We extend this base instrumentation to
additionally track which attributes are accessed on tainted variables. Doing this is useful to
reconstruct what keys are expected by the package when the input must be an object.

4.2.2 Fuzzer Input Generation
Our fuzzer operates in conjunction with other components of NODEMEDIC-FINE as illustrated
in Figure 4.1. Note the mention of a driver in that figure, which is an automatically generated
JavaScript program that imports both the fuzzer and the target library, managing their interaction.
We provide pseudocode describing the driver in Figure 4.2. Overall, for each entry point, this
driver is mainly responsible for doing the following: Collect inputs from the fuzzer (lines 5–9);
Mark those inputs as tainted, by leveraging our DTA instrumentation (line 7); Invoke the entry
point with the tainted inputs (line 10); Stop analysis when our taint infrastructure finds a flow
(lines 11–14); Collect coverage information to provide as feedback to the fuzzer (lines 15–19).

During the input collection phase of the driver, the fuzzer is responsible for generating candi-
date inputs to be later supplied to the package under analysis. These inputs are generated based
on a specification that the fuzzer maintains for each entry point argument. This specification was
initialized in the same manner for all packages that we have analyzed in our experiments, though
it can be personalized at will.

62

Figure 4.1: Fuzzer loop and interaction with the instrumented package, for a package with an
entry point called sync, expecting an object argument params with an attribute command.

Consider the previously mentioned example package (Figure 2.2) which has an entry point
sync expecting an object argument params with an attribute flags. In Figure 4.1 we describe
an example input specification that the fuzzer creates when analyzing such a package. Input
specifications generally define the set of types that should be generated for each argument, as
well as the frequency with which each type should be selected. That frequency is dynamically
computed using two lists:

1. sampled: This list tracks how many times an input of each type has been generated already.
It is initialized with all 1’s to prevent a division-by-zero error during frequency calculation.

2. reward: This accumulates the total reward obtained from generating inputs of each type.
This is initialized as described in Section 4.2.3 and is updated with the coverage that was
achieved when the entry point is executed with the generated input.

Each round, the fuzzer randomly generates an input based on the current specification, and refines
that specification in three ways:

63

1 start_time = time()
2 while (time() - start_time < TIME_BUDGET){
3 for (entrypoint in target_package.entrypoints()) {
4 inputs = [];
5 for (argument in entrypoint.arguments()) {
6 input = fuzzer.get_input(entrypoint, argument);
7 taint_infrastructure.set_taint(input);
8 inputs.append(input);
9 }

10 target_package.call_entrypoint(*inputs)
11 if (taint_infrastructure.flow_found()){
12 confirm_flow();
13 exit();
14 }
15 for ((index, input) in enumerate(inputs)){
16 feedback = taint_infrastructure.structure_feedback(input);
17 fuzzer.refine_specification(entrypoint, index, feedback);
18 taint_infrastructure.remove_taint(input);
19 }
20 }
21 }

Figure 4.2: Pseudocode for our driver component. Our actual driver is automatically generated
specifically for the target package and its entry points, but this figure summarizes what steps the
driver takes and how it interacts with the fuzzer, the target package and the taint infrastructure.

1. It increments the appropriate value in the sampled list to reflect the newly generated input
of that type.

2. It adds the newly obtained coverage to the appropriate value in the reward list.

3. It records the attributes that were accessed by the package and adds them to the recur-
sive specification in the structure component. This information is essential for accurately
reconstructing expected object structure.

4.2.3 Fuzzer Weight Adjustment
Our fuzzer is coverage-guided, meaning that the coverage obtained using previous inputs influ-
ences the generation of future inputs. When deciding which new type to explore, we employ a
simple yet effective method. We generate an array representing the expected coverage rewardt

sampledt
for

each type t. The elements of this array are normalized and then used as probability weights. Each
fuzzing round dynamically refines these weights by updating coverage measurements. Thus, in-
puts that have achieved high coverage will also have higher expected future coverage.

It is important to note though that the fuzzer does not know how effective each type is at
improving coverage until it generates inputs of all types. The tradeoff between continuing to
generate inputs with types that seem promising versus generating inputs that were not explored
much in the past is known as the exploration-exploitation dilemma [81]. Our weight adjustment

64

method not only prioritizes input types that have executed a significant amount of code in the
past, but also makes it possible for types with little prior exploration to be eventually chosen,
even if they did not show much promise in the few times they were chosen in the past.

4.2.4 Fuzzer Weight Initialization

The initial values of the reward list were set based on the observation that some types are more
commonly expected by Node.js package APIs with potential flows. To compute this, we per-
formed a small scale experiment on 12k packages sampled from npm to identify the frequency
of each JavaScript type that resulted in a potential flow. In this experiment, we assigned equal
weight to each type and launched the fuzzer using that specification. We then measured which
types were generated in inputs that caused the detection of a potential flow in any package.

Notably, just because one type is specifically prevalent in inputs that generated potential
flows, it does not necessarily mean that it will also be prevalent in inputs that generate confirmed
flows. Since actual vulnerabilities detected is the most important metric to measure in our con-
text, one may wonder why we did not measure the frequency of types that were generated in
inputs that caused the detection of confirmed flows, not just potential flows. The reason for that
is two-fold. First, potential flows may still signal real vulnerabilities, even though they could
not be confirmed by NODEMEDIC or other tools. Secondly and most importantly, NODEMEDIC

and other ACI and ACE vulnerability detection tools at the time when NODEMEDIC-FINE was
implemented are biased to only confirm vulnerabilities with inputs that use certain types. Case in
point, NODEMEDIC uses a confirmation methodology that is optimized for string solving, since
that type is so commonly expected by Node.js packages. This bias is not significant during anal-
ysis, when potential flows are detected. Therefore, we aimed to produce a default specification
that is not optimized for the current confirmation methodology of our tool, and instead it more
generally attempts to maximize the number of potential flows.

Overall, we found that object inputs are most likely to result in potential flows, followed by
strings, booleans and functions. It should also be noted that this specific initialization to fuzzer
weights does not have to be followed by developers that use NODEMEDIC-FINE, as it can be
personalized to individual cases. For example, one may assign higher generation probability
to types that are known to be expected by a target package. In Section 4.4.3 we evaluate how
supporting different input types influences the number of discovered potential flows.

4.2.5 Fuzzer Object Reconstruction

Our fuzzer aims to reconstruct the expected structure of Node.js package entry point arguments.
For this, we modify NODEMEDIC’s original taint instrumentation so that it also keeps track of
the property names that were accessed whenever a getField operation is performed on a tainted
variable. This constitutes relevant feedback that we integrate in the fuzzer: At the end of each
fuzzing round, the current input specification is refined so that it includes information about the
attributes that were accessed in that round.

For example, in Figure 4.1, we illustrate these accessed properties that are given as feed-
back to the fuzzer in the Accessed field of the "Feedback round 1" box. In that specific example,

65

not only 117 lines of code were executed, the command field was also accessed on a tainted vari-
able. This leads to a refinement of the first specification. Thus, the next specification, which
we call "New specification", now has an updated reward list with 200+ 117 = 317 being as-
signed to the Object type, as well as an incremented first element of sampled. Importantly for
this section, the structure field now contains a recursive specification, which is initialized in the
usual way. Whenever the fuzzer generates values that have a reconstructed attribute, the feed-
back is used to refine the respective recursive specification, as well as the parent specification.
Thus, even if the target application accesses a chain of attributes from an entry point argument
argument.attrX.attrY.attrZ all attributes will be reconstructed using recursive specifications.

Using this process, the fuzzer is able to generate an input with the field command set to a
random type/value. The input specification, together with the recursive specification for the
command attribute, will be updated in future rounds, accordingly to what types are generated for
the command attribute and depending on the overall coverage improvements.

4.2.6 Fuzzer Generated Values
Our fuzzer generates inputs over 12 built-in JavaScript types: String, Number, Function, Boolean,
Array, BigInt, Symbol, Null, Undefined, Date, RegExp, and Object. We use a seeded pseudorandom
number generator to ensure reproducibility of test cases. Some types have trivial values, for
example the type Undefined only has the value "undefined", similarly to Null. Simple values such
as numbers and booleans are drawn from standard distributions, while strings have size ranging
from 0 to the maximum integer attribute that we have seen accessed by the package. Complex
types such as arrays and objects are constructed recursively according to specifications, allowing
nested and structured inputs. Function types are chosen from only two values, a normal and an
async function with no arguments and no return value. This satisfies a very common situation
that we have observed in Node.js where packages expect a callback function and simply call it
with no arguments. It could be interesting future work to study what kind of arguments packages
expect and how they use any possible return values, and adapt the fuzzer accordingly.

4.3 Confirming Code Injection Flows in Node.js Packages
Prior tool NODEMEDIC already has the ability to automatically synthesize proof-of-concept ex-
ploits that demonstrate the presence of vulnerabilities. Thus, once a potential flow is found,
NODEMEDIC creates a JavaScript program (known as the exploit) that imports the package
and interacts with its entry points, in a way that proves that a vulnerable entry point exists.
For ACI vulnerabilities, it verifies the existence of a vulnerability by checking whether the file
/tmp/success was created after the exploit execution. This demonstrates that the attacker can
leverage the package to create files on the filesystem, even if that was not supposed to be part of
the legitimate set of functionalities. For ACE, we can verify their presence by checking whether
the exploit calls the global.CTF function. This is a function that is globally defined by the exploit
and is never supposed to be called by the package, only through illegitimate means.

Synthesizing ACE exploits is challenging, not just for NODEMEDIC but for all prior ap-
proaches in this area. In Table 4.1 we describe the potential and confirmed flows and the ex-

66

ploitability rate of reported ACI versus ACE flows for several code injection vulnerability detec-
tion tools for Node.js. The key takeaway from that table is that code injection detection tools
for Node.js have a harder time synthesizing exploits for ACE than for ACI vulnerabilities, in all
datasets that were used. This is because ACE exploits must lead to a sink call with an argument
that not only it is syntactically valid JavaScript, but also executes a specific statement. In the
following sections, we will describe the novel components that we integrate in NODEMEDIC’s
confirmation methodology. Motivated by the above discussion, our improvements aim to address
the limited effectiveness of NODEMEDIC when synthesizing exploits for ACE vulnerabilities.

Tool Dataset ACE ACI
Potential Confirmed Potential Confirmed

NodeMedic RealWorld1 22 6 (27%) 133 102 (77%)
FAST Vulnerable1 42 13 (31%) 169 86 (51%)
FAST RealWorld2 16+5 6 (29%) 56+4 35 (58%)
Explode.js Vulnerable2 24 13 (54%) 112 70 (63%)
Explode.js RealWorld3 45 2 (4%) 151 51 (34%)
PoCGen Vulnerable3 15+49+20 15 (18%) 99+67+14 99 (55%)
PoCGen Vulnerable4 12+7+16 12 (34%) 85+6+1 85 (92%)

Table 4.1: Comparison of detected versus confirmed ACI and ACE flows across analysis tools.

4.3.1 Usage of Polyglot Exploits for both ACI and ACE
We discovered that a significant number of packages have potential flows that can be exploited
using simple polyglot input strings, which are constructed in such a way that they work under
multiple different scenarios. We used the following polyglot for ACI vulnerabilities:

$(touch /tmp/success) #" || touch /tmp/success #' || touch /tmp/success

This polyglot can be separated in three parts. The first part $(touch /tmp/success) # accounts
for situations when the package fails to sanitize certain shell metacharacters. This part of the ACI
polyglot uses shell expansion metacharacters $(command) which can execute arbitrary commands
in many situations. The second part " || touch /tmp/success # handles situations where the at-
tacker injects input inside a double quoted string context. The final part ' || touch /tmp/success
handles single quoted string contexts. It is important to remember that for ACI, the final argu-
ment to the sink does not have to be completely syntactically valid in order to execute arbitrary
commands. With respect to ACE, we use the following polyglot:

global.CTF();//" +global.CTF();//' +global.CTF();//

This polyglot is constructed similarly to the ACI polyglot, for double quotes and single quotes
so that the final argument is syntactically valid regardless of the string context, which is an impor-

67

tant property for ACE vulnerabilities. There is no convenient shortcut like "shell metacharacters"
for the ACE case.

4.3.2 Enumerator

In this section we describe the inner workings of our Enumerator, which can handle more com-
plex ACE vulnerabilities for which the polyglot does not work. Once an ACE potential flow is
found, NODEMEDIC-FINE has to come up with an input that proves the attacker has JavaScript
execution capabilities. We call the final argument to the sink objective payload. In this case, a
potential flow is assumed to have been found, and the objective payload is expected to be at least
partially controlled by the attacker. Thus, whatever value is chosen for the attacker input, it must
result in an objective payload that obeys all syntactic constraints of JavaScript and also executes
the intended statement: console.log('VULN FOUND') to prove the existence of the vulnerability.

We find that many of the ACE potential flows that were not being confirmed by the original
version of NODEMEDIC were in packages where attacker input is injected after a constant prefix.
Once a potential flow is found, we can find what was the prefix by parsing the initial part of the
sink argument that does not depend on tainted inputs. We provide this prefix to our Enumerator,
which together with the remaining synthesis components has the responsibility of completing it
with reasonable attacker input that may confirm the potential flow is exploitable. Note that we
ignore anything that is placed after the attacker-controlled part because our payload will attempt
to introduce a comment symbol (//) at the end. While effective in most situations, this may not
work when the final sink argument has multiple lines. We discuss future work to improve this in
Section 4.5.3.

4.3.3 Construction of an Objective Payload Obeying Syntactic Constraints

The objective payload must be valid JavaScript code, otherwise eval or the new Function con-
structor will fail with a SyntaxError. To this end, we manually constructed a graph, partly il-
lustrated in Figure 4.3, encoding the syntax of common JavaScript primitives. Each node in the
graph represents a JavaScript primitive, like a variable or a binary operation.

Overall, the task of prefix completion is divided in two stages. We provide pseudocode for
both of these tasks in Figure 4.4.

The first stage is described in the non_det_traversal function in Figure 4.4. In this first
stage, we non-deterministically traverse the Enumerator graph by starting on the Root node and
iteratively moving to the appropriate adjacent node or nodes for each character c in the prefix.
The edges of the Enumerator graph not only encode constraints on that current character c, but
they also specify rules to handle an additional structure ΓV which is used to hold the current
token as if we were parsing the code with a lexer. For example, if our prefix is "return " then we
would first transition from Root to the ReturnStmt node, where we would stay reading characters
from the prefix until the return token is fully seen, and we would finally end this traversal in the
Expression node.

In another scenario, context ΓV can, when we exit the Variable node, hold the actual vari-
able name, which is important to encode certain constraints in JavaScript syntax. For example,

68

Root Variable BinaryOp

ReturnStmt Expression

c ∈ {A...Z, a...z, , $} ; Γv ← c c ∈ {+,−, ∗, /}, Γv /∈ keywords ; Γv ← ∅

c ∈ {A...Z, a...z} ; Γv ← Γv + c

c = r ; Γv ← r

c = e, Γv = r; Γv ← re

c = t, Γv = re; Γv ← ret

c = u, Γv = ret; Γv ← retu

c = r, Γv = retu; Γv ← retun

c = n, Γv = retur; Γv ← return

c = space, Γv = return ; Γv ← ∅

Figure 4.3: A section of the graph representation of JavaScript syntax used by the Enumerator.
Edges have labels C; U where C is a condition over the current character in the prefix c and the
context ΓV . U is a context update colored in teal. Node ReturnStmt has 5 edges connecting it to
itself, which we collapsed on a single edge with 5 labels. The term keywords refers to the set of
reserved keywords in Node.js.

Node.js forbids declaring a variable called function, as that is a reserved keyword. Thus, we for-
bid in our graph the possibility of transitioning out of the Variable node, if the currently parsed
variable name is one among a list of keywords. This can be done using the following constraint
on the current context, in edges leaving the Variable node: ΓV /∈ keywords. Once all characters
in the prefix are seen, our non-deterministic graph traversal will result in a list of possible end
nodes. This list of end nodes is the output of the first stage of our prefix completion algorithm.

The second stage is responsible for synthesizing what comes after the prefix. For each end
node, we find a shortest path back to Root, which will give us a syntactically valid completion,
as long as the graph is well constructed. During that path, or at the limit, at the Root node in the
path’s end, we may run into nodes that allow execution of arbitrary statements and this is where
we will try to inject the attacker payload. For example, if on our way back to the Root node we
encounter an Expression node, the Enumerator can then include a placeholder for the attacker
payload. This is because Expression nodes represent situations where any JavaScript expression
is expected, and execution will be successful as long as the whole code is syntactically valid.

In summary, for each node along the path, one of possibly many completions can be it-
eratively constructed by concatenating each node value, or, for special nodes, we can insert a
placeholder for exploits. A node value is a value that would be allowed during non-deterministic
traversal and would cause a transition to that node, from the previous node in the path. This
can be efficiently computed from a source node (i.e., previous node in the path), the destination
node (i.e., current node under consideration), the context ΓV and the edge that was followed,
by ensuring that all edge context constraints are satisfied and by choosing one prefix character
that satisfies prefix constraints for that edge. Thus, even one path could theoretically be used
to construct multiple completions for a prefix, not just one, corresponding to all possible prefix
character values that satisfy prefix constraints on the edge that was followed.

69

1 def non_det_traversal(graph, prefix):
2 end_nodes = set()
3 end_nodes.add((empty_context, Root(context)))
4
5 for c in prefix:
6 new_nodes = set()
7 for context, node in end_nodes:
8 for updated_context, next_node in graph.transitions(node, context, c):
9 new_nodes.add((updated_context, next_node))

10
11 end_nodes = new_nodes
12
13 return end_nodes
14
15 def complete_prefix(graph, prefix):
16 end_nodes = non_det_traversal(graph, prefix)
17 for context, node in end_nodes:
18 path = graph.shortest_path_to_root(node, context)
19 completion = []
20 for source, dest, edge, context in path:
21 if can_hold_arbitrary_statement(dest):
22 completion.append(EXPLOIT_PLACEHOLDER)
23 else:
24 completion.append(dest.get_value(source, edge, context))
25 yield completion
26

Figure 4.4: Pseudocode for Enumerator’s prefix completion algorithm.

4.3.4 Integration of the Objective Payload in Exploit Synthesis

This graph does not directly help us find payloads that bypass sanitization or other constraints
on the input, but by properly designing and non-deterministically traversing it we have a way
to search over multiple payloads that are at least syntactically correct. Suffice to say that when
NODEMEDIC-FINE attempts to synthesize an exploit for ACE vulnerabilities, it takes the com-
pletions of the Enumerator and integrates them in a SMT statement that is passed to Z3. This
SMT statement considers the placeholders for the attacker payload to be symbolic and encodes
the sanitization constraints that were missing earlier while using the advantages of the Enumer-
ator in building syntactically valid payloads.

As a minimal example of Enumerator’s effect on synthesis, consider a vulnerable entry point
that takes an argument x and executes eval("var f = function "+ x + "(){}"), dangerously al-
lowing a user to choose a random name for a function. The entry point makes no effort to
sanitize user input or block it from executing other code. To produce an exploit, the original
NODEMEDIC attempts to synthesize a concrete x that embeds the payload global.CTF();// to call
the global.CTF function. This fails with a SyntaxError, since var f = function global.CTF();//(){}
is not valid JavaScript. With the Enumerator, the prefix is completed with an Enumerator tem-

70

1 [[<literal: '(){}+'>, <payload>]]

Figure 4.5: An example template produced by the Enumerator.

1 (declare -fun x () String)
2 (declare -fun fresh () String)
3 (define -fun payload () String "global.CTF ();//")
4 (assert (= x (str.++ "(){}+" fresh)))
5 (assert (str.contains fresh payload))
6 (check -sat)
7 (get -model)

Figure 4.6: SMT-LIB2 encoding of a synthesis constraint that integrates an enumerator template.
This particular enumerator template is described in Figure 4.5.

plate, containing a placeholder for the attacker payload. Figure 4.5 shows the template produced
by the Enumerator in this case. Overall, the completion specifies that the attacker input should
start with a constant literal (){}, followed by an arbitrary JavaScript statement. This lets the syn-
thesis algorithm assert x = "(){}+"+ freshvar and inject the payload into freshvar. Figure 4.6
shows the synthesized SMT-LIB2 program that uses the Enumerator template. By solving it, Z3
produces a model that makes the final payload syntactically valid and run the intended statement:
var f = function (){}+global.CTF();//(){}.

4.3.5 Addressing Efficiency Concerns

Since we are non-deterministically traversing a graph, this approach may seem like it requires
intractable space usage. On the contrary, we find that the space used during traversal con-
verges rather quickly as it iterates over each character of the prefix. Take the following prefix:
"return 1+", which will add 1 to whatever comes after (i.e., the attacker input). During traversal,
once the return part of the prefix is seen, we are left with two intermediate nodes: Variable and
ReturnStmt. This is because the prefix might be referring to a variable which name starts with
return, e.g., return_value, or it might be the start of a return statement. The Enumerator has not
seen the characters that come after return in the prefix, so it needs to consider all these possible
situations. As soon as the space character between return and 1+ is seen by the Enumerator, the
traversal converges on a single intermediate state: ReturnStmt. This is because variable names
can not be reserved keywords, and so the Variable node can not transition to any node, including
to itself. Thus, Variable is removed from the list of intermediate states.

All completed prefixes that were discovered in the wild were successfully completed in well
under 1 second, and the space usage of the Enumerator was insignificant compared to the rest of
NODEMEDIC-FINE’s components. While it remains possible that the Enumerator will eventu-
ally find cases that inflate the memory usage to intractable levels, that does not seem to be the
common case in npm packages.

71

4.4 Evaluation

In this section, we evaluate how effective NODEMEDIC-FINE is at uncovering code injection
vulnerabilities in Node.js packages that require attacker-controlled inputs with complex types
and structure. We then evaluate NODEMEDIC-FINE’s effectiveness at confirming vulnerabili-
ties, specifically focusing on how effectively our Enumerator aids the synthesis of working ACE
exploits. Finally, we compare NODEMEDIC-FINE with prior DTA tools for Node.js and a static
analysis tool with exploit generation capabilities called FAST. In summary, we aim to answer the
following research questions:

RQ1: How effective is type and structure-aware fuzzing (Section 4.2) at uncovering potential
ACE and ACI flows?

RQ2: How much does the usage of polyglots (Section 4.3.1) and the Enumerator (Sec-
tion 4.3.2) contribute to the confirmation of ACE flows?

RQ3: How does NODEMEDIC-FINE compare to other code injection vulnerability detection
approaches?

4.4.1 Experimental setup

Conditions. To evaluate the impact of each novel component in NODEMEDIC-FINE, we per-
formed a series of ablation studies. We now enumerate all variations of NODEMEDIC-FINE that
we have evaluated:

1. NODEMEDIC-FINE: Full version of our tool. This includes our Fuzzer, polyglots and
Enumerator components.

2. NO-POLYGLOT: Disables the polyglots.

3. NO-ENUMERATOR: Disables the Enumerator.

4. NO-OBJRECON: Disables object reconstruction capabilities in the Fuzzer.

5. NO-TYPES: Only generates string inputs during fuzzing, similarly to prior work on fuzzing
JavaScript programs.

6. NODEMEDIC-MC: Baseline. Disables the Fuzzer, Enumerator and the polyglots.

NODEMEDIC-FINE does not just include the novel components that we have integrated in
the analysis (the addition of the fuzzer) or the confirmation infrastructure (the polyglots and the
Enumerator). It also includes engineering improvements to the original NODEMEDIC tool which
significantly impact results. This includes bug fixes, support for additional SMT models and
support for implicit coercion. Our NODEMEDIC-MC condition includes those improvements
and we use it as the baseline to evaluate our novel components.

Datasets. To answer the above research questions, we use the following two datasets: (1) A
dataset of real-world packages that we have collected from npm, which we call NPM-DATASET.
(2) The 101 ACI and 40 ACE vulnerabilities in SecBench.js, which is a popular dataset for
server-side JavaScript vulnerabilities commonly used in prior work. We use this dataset in our
comparison with FAST.

72

Stage Initial Discarded Remaining

setupPackage 1732115 7630 1724485
filterByMain 1724485 411115 1313370
filterBrowserAPIs 1313370 459865 853505
filterSinks 853505 776288 77217
setupDependencies 77217 17173 60044
getEntryPoints 60044 27010 33034
annotateNoInstrument 33034 23 33011
runJalangiBabel 33011 0 33011

Table 4.2: Number of packages discarded at each stage, with initial and remaining counts.

In order to obtain NPM-DATASET (1), we gathered all packages from npm with 1 or more
weekly downloads, which amounted to 1,732,536 packages in total; Then, we kept only packages
that contained calls to sinks that NODEMEDIC-FINE supports (described in Section 8.1.1). That
process resulted in our NPM-DATASET dataset: a list of 33,011 packages, with size ranging from
56 bytes to 236 MB, weekly download counts from 1 to 171,158,063 and between 1 and 1366
dependencies. In Section 4.4.2 we describe the gathering process for NPM-DATASET.

Runtime details. All experiments were performed on two Ubuntu 20.04 VMs with 12 cores
each, using one Docker container per condition and per package analyzed. Packages were ana-
lyzed in parallel, each restricted to using 4GB of RAM. We analyze a package with NODEMEDIC-
FINE, or a variation, by following a sequence of steps, split by analysis and confirmation stages.

With respect to analysis, we first generate a driver (see Section 4.2.2) and then we run it. The
driver will keep going until it either times out, crashes or finds a potential flow. The total timeout
per package is 5 minutes. We allocate 2 minutes for fuzzing, as justified in Section 8.1.4. Note
that the NODEMEDIC-MC condition does not use the fuzzer in this stage. Instead, it follows
NODEMEDIC’s original analysis methodology that consists of passing a single input to each of
the package entry points. If a potential flow is discovered, we move on to the confirmation stage.

To confirm a potential flow, we first test the polyglots (Section 4.3.1) depending on the vari-
ant. If the polyglot is unsuccessful or if we are running the NO-POLYGLOT condition, we pro-
ceed to the next step, which is to run our synthesis algorithm. The synthesis algorithm includes
the Enumerator depending on the condition and will regardless attempt to produce a proof-of-
concept exploit. We run this exploit and, in order to confirm the potential flow, we validate
whether the necessary side effect is observed (Section 4.3).

4.4.2 Gathering of the Evaluation Dataset

Gathering consisted of collecting a list of packages and saving each and their dependencies
locally using Verdaccio. This is done to save up bandwidth, as inevitably some packages will
share dependencies. From the (> 2M) packages in npm at the time, we gathered those that have
at least 1 weekly download (1,732,536 packages).

73

Condition Extra Missing All Potential flows
ACI ACE Total ACI ACE Total ACI ACE Total

NODEMEDIC-FINE - - - - - - 1788 469 2257

NO-OBJRECON 15 19 34 181 47 228 1622 441 2063

NO-TYPES 12 23 35 306 85 391 1494 407 1901

NODEMEDIC-MC 0 0 0 625 294 919 1163 175 1338

Table 4.3: Potential flows found by the fuzzer with varied configurations. Extra and missing
flows are relative to the ones found by NODEMEDIC-FINE.

In Table 4.2 we show the number of packages that get filtered out at each stage of the gath-
ering pipeline, until we are left with 33,011 usable packages, our finished dataset. We show all
steps of our pipeline in the same order as they run. A package stops at the setupPackage if it
can not be downloaded; The filterByMain stage filters out packages that can not be imported
because they do not define a main file; A package stops in the filterBrowserAPIs stage when
it is not intended for client-side usage as it is the case for the ones that require a browser; The
filterSinks stage discards packages that do not contain calls to ACE or ACI sinks visible to static
analysis (i.e., a grep usage). Note that we also check if any of the dependencies have calls to
sinks. We proceed to install the dependencies in the setupDependencies stage, which may error
if we fail to download or install one of the dependencies; In the getEntryPoints stage we discard
packages that do not have any public entry points defined; Finally, we gather useful metrics for
characterizing the dataset in the annotateNoInstrument stage. The last stage is the runJalan-
giBabel where we instrument the package code using Jalangi. We analyze all packages that get
through to this last stage. We store the package and dependencies, together with its instrumented
counterpart for all popular packages with calls to sinks. A study of the characteristics of this
dataset is given in Section 8.1.3.

4.4.3 RQ1: Effectiveness of Type-Aware Fuzzing
In this section we evaluate the fuzzer’s impact on identifying potential flows. We launched
NODEMEDIC-FINE, NO-OBJRECON, NO-TYPES and NODEMEDIC-MC against the NPM-
DATASET dataset and show the results in Table 4.3. Overall, the full fuzzer performs much
better than not using the fuzzer at all, resulting in 919 additional potential flows. These are flows
that benefited from exploring more execution paths with the fuzzer.

Type-awareness in the fuzzer is responsible for finding 391 extra potential flows compared
to a version of our fuzzer that only generates strings. Anecdotally, we found that disabling
generation of inputs of all types except strings makes the fuzzer faster at finding flows that only
require strings, which explains the 35 extra flows. We validated that most of those flows would
have been found by the normal fuzzer given a sufficiently longer timeout, except for 5 that crash
due to out of memory.

However, object reconstruction helped find 228 extra potential flows. These were cases where
packages required inputs to have a certain structure. Once again, disabling this capability makes

74

Type disabled # Potential flows missed

Strings 609
Objects 243
Arrays 62

Functions 34
Numbers 25
Regexes 24

Booleans 20
BigInts 19

Nulls 17
Undefined 16

Symbols 16
Total 1085

Table 4.4: Potential flows missed by the fuzzer when we prevent it from generating inputs of a
given type.

the fuzzer faster at finding flows in packages that do not require complex objects, explaining the
34 extra flows. We validated that 26 out of these 34 extra flows are found by the full fuzzer as
long as the timeout is sufficiently increased, but the remaining 8 of the 34 flows crash due to out
of memory. During further analysis of these 8 cases, we have also observed that in at least 2
of them the object reconstruction capability was leading the fuzzer away from inputs that would
trigger the potential flow. In one such package, having a specific attribute in one of the entry
point’s arguments resulted in an error instead of a sink call. During that execution, our modified
instrumentation sees that a GetField operation is performed on a tainted input and the object
reconstruction feature of the fuzzer will take that into consideration and start generating inputs
that are likely (though not guaranteed) to have that attribute. Thus, even though we believe that
given sufficiently long timeout and sufficient memory all 34 flows could be discovered using
the full fuzzer, there are situations where the object reconstruction ability actually hinders flow
detection and it could be worth it to run a version of the fuzzer that disables object reconstruction.

Result 1a: Type- and object-structure aware fuzzing uncovers 2257 potential flows; 1.7x
the flows of prior tool NODEMEDIC. Object reconstruction is necessary to find 228 flows.
Generating diverse types yields 391 more flows compared to only generating strings.

In the following experiment, we investigate how impactful the generation of each input type
is during fuzzing. For that, we launch variations of NODEMEDIC-FINE’s fuzzer disabling its
ability to generate inputs of a given type. We tested it against the set of packages where we
previously discovered a potential flow and summarize the results in Table 4.4. Rows in the table
indicate input types that the fuzzer is no longer able to generate and the respective number of
potential flows that were no longer found.

Overall, the majority of flows can be triggered by more than a single input type, which is
why the total goes up only to 1085, and not 2257 (i.e., the total potential flows that we have
previously discovered). This highlights how loosely typed JavaScript is and how that impacts

75

fuzzing to detect ACI and ACE flows. Furthermore, Strings and Objects clearly seem to be the
most important types that our fuzzer supports, or else we would have not discovered 609 and 243
flows respectively.

The contribution of the support for each of the other types ends up amounting to a significant
number of flows discovered. For example, Node.js package entry points often receive a callback
function as an argument, which can be called when an error happens during execution of that
function, among other purposes. A subset of those packages really check whether the above
argument is of type function, and a sink is called only after that check is successfull. Thus,
potential flows can be missed if the fuzzer is unable to generate function types.

Result 1b: The support for a variety of types is important in the fuzzer for ACI and ACE
flow detection, especially for Strings, Objects and Arrays types.

4.4.4 RQ2: Effectiveness of Polyglots and Enumerator for ACE Synthesis
In this section, we evaluate the impact of using polyglots and the inclusion of the Enumera-
tor in the exploit synthesis pipeline of ACE vulnerabilities. We summarize in Table 4.5 the
results of running an ablation study on NODEMEDIC-FINE’s ACE confirmation components:
NODEMEDIC-FINE, NO-ENUMERATOR and NO-POLYGLOT. For each condition, we report
the number of extra, missing and total number of ACE potential flows that were confirmed using
that condition. We separately discuss the impact of the polyglots and Enumerator components.

ACE polyglot. When confirming ACE potential flows, our NO-POLYGLOT condition reverts
back to using the same pre-synthesis algorithm of the original NODEMEDIC: it first attempts a
simple exploit global.CTF();// to avoid spending time performing synthesis on cases that can be
exploited trivially. We improved that using our ACE polyglot (as described in Section 4.3.1) and
evaluate its impact by comparing NO-POLYGLOT with NODEMEDIC-FINE which uses the new
polyglot. The only difference between NO-POLYGLOT and NODEMEDIC-FINE is that NO-
POLYGLOT disables the polyglot usage. Overall, not using the polyglot decreases the number of
confirmed flows from 154 to 128. These improvements happen mostly in packages where the
payload is inside a single or double quoted string context and at the same time the attacker input
is not sufficiently sanitized by the package.

Result 2a: Our ACE polyglot was necessary to confirm 26 potential flows, increasing ACE
confirmation by 20%.

Enumerator effectiveness in completing prefixes and confirming ACE flows. We include a
breakdown of Enumerator results in Figure 4.7. Overall, the Enumerator was called by NODEMEDIC-
FINE to complete 328 prefixes (205 unique) and came up with a valid prefix completion for
191 (58%) of those cases. The Enumerator was used to successfully confirm 38 ACE flows in
NODEMEDIC-FINE, although it should be noted that the Enumerator is a completely necessary
component for 27 cases, according to Table 4.5. We verified that if the Enumerator is disabled,
NODEMEDIC-FINE can not automatically exploit those 27 ACE flows. Note that these are nec-
essarily cases where the ACE polyglot is not sufficient, since synthesis is only performed when
polyglots fail. Instead, all 27 flows required the construction of a complex payload, which had

76

469ACE potential flows

328Enumerator attempted

191Enumerator succeeded

38Confirmed ACE flows
(with Enumerator template)

Figure 4.7: How many flows were processed by the Enumerator and how many were successfully
exploited. We consider that Enumerator is successfull when it provides a correct completion to
the given prefix.

Condition Extra Missing Total confirmed ACE
NODEMEDIC-FINE - - 154

NO-ENUMERATOR 0 27 127
NO-POLYGLOT 0 26 128

Table 4.5: ACE confirmed flows found by the fuzzer with and without the Enumerator. These
conditions only differ in the confirmation methodology; all conditions are attempting to confirm
the same 469 potential ACE flows discovered by NODEMEDIC-FINE’s analysis.

to be injected in the right place and escape the necessary contexts appropriately. An example of
one of these flows is given in Section 8.1.2.

Result 2b: The Enumerator helped NODEMEDIC-FINE complete the majority of real-world
prefixes that we found in our experiments, increasing the number of total confirmed ACE
flows by 21%

Manual analysis of flows where Enumerator was insufficient. There were 153 (191-38)
packages that our Enumerator managed to complete the prefix, but NODEMEDIC-FINE still
could not automatically exploit. We now manually investigate a random sample of 8 of those 153
cases. Four of these cases were not exploitable at all, representing false positives of the potential
flow detection engine. Of the remaining four cases, two had very complex constraints which
caused Z3 to timeout; 1 case used the slice operation with a symbolic value for the length, for
which we did not implement a model; the last case required an extra step to get code execution.
In that last case, the entry point returned a function that had to be called with an object argument
in order for the attacker payload to be triggered. Regardless, in all these cases the Enumerator
synthesized a valid completion for the given prefix, but NODEMEDIC-FINE needed to overcome
additional challenges to successfully synthesize a working exploit.

Limitations of the Enumerator. There are also flows where our Enumerator did not help at all.
In 137 packages with ACE potential flows, our Enumerator was unable to complete the prefix.

77

This can happen mostly when the prefix contains JavaScript primitives that are not supported by
our Enumerator. For example, 63 of these 137 failures were due to the lack of support for loops,
nested objects, boolean expressions or the += operator in the Enumerator’s graph. In another 62
cases the Enumerator failed to support a diverse set of other JavaScript primitives, including but
not limited to class definitions, try/catch statements and generator functions. In the remaining 12
cases, the prefix that was given to the Enumerator was impossible to complete. These last cases
originated in a limitation of NODEMEDIC and NODEMEDIC-FINE of handling flows requiring
manipulation of multiple attacker-controlled arguments to trigger the vulnerability [23].

4.4.5 RQ3: Comparison with prior work

In Table 4.6 we show a comparison between NODEMEDIC-FINE1 and prior tools for code
injection vulnerability detection NODEMEDIC [24], Ichnaea [63] and AFFOGATO [40]. The
table also indicates the results for NODEMEDIC-MC, which includes small improvements on
NODEMEDIC infrastructure that significantly impacted results but not our main novel compo-
nents. As metrics, we use the potential flows discovered by each tool — separated by vulnera-
bility type ACE versus ACI — and the confirmed flows that were automatically synthesized by
each tool. Ichnaea and AFFOGATO numbers come from the respective reported results, which
have limited scale mainly because both tools require the manual creation of a driver to analyze
packages and do not support automatic confirmation of flows. Still, to the best of our knowledge,
the evaluation performed for NODEMEDIC-FINE is the largest scale experiment in the Node.js
ecosystem measuring ACI and ACE flows. NODEMEDIC-FINE discovered 1788 ACI and 469
ACE potential flows, for a total of 2257 flows. With respect to confirmation, NODEMEDIC-
FINE successfully created proof-of-concept exploits that demonstrated the exploitability of 612
ACI flows and 154 ACE flows.

Result 3a: NODEMEDIC-FINE discovered 2257 potential flows and automatically con-
firmed the exploitability of 766 of those flows, in a dataset with 33,011 Node.js pack-
ages; This amounts to 1.7x the potential and 1.6x the automatically confirmed flows by
NODEMEDIC-MC.

Comparison with FAST. We now compare NODEMEDIC-FINE with FAST [60] and report in
Table 4.7 the flows that were discovered by running each tool on the SecBench.js dataset. From
the 101 ACI and 40 ACE vulnerabilities in the SecBench.js, we consider a vulnerable package to
be valid if all the following conditions are satisfied: it fits our attacker model; it is downloadable
from a public repository like npm or GitHub; and it has a main executable file defined in the
package.json file. Examples of invalid packages include one case that required command-line
arguments to be attacker-controlled and, more commonly, cases that are not exploitable from the
main package entry points. While there are 91 ACI and 34 ACE packages that we consider valid
for this comparison, only 87 ACI and 25 ACE could be installed and run. Regardless, being
executable is not a prerequisite for FAST to find potential flows, so we report all results of FAST

1Our focus in this thesis is improving ACE detection and confirmation, and ACI detection. Improvements on
ACI confirmation were done as part of another thesis [22].

78

Year Packages Potential Auto-conf.

Tool ACI ACE Total ACI ACE Total

NODEMEDIC-FINE 2025 33011 1788 469 2257 612 154 766
NODEMEDIC-MC 2025 33011 1163 175 1338 396 67 463
NODEMEDIC [24] 2023 10000 133 22 155 102 6 108
Ichnaea [63] 2018 22 9 6 15 - - -
AFFOGATO [40] 2018 21 - - 17 - - -
Explode.js [83] 2025 32137* 151 45 196 51 2 53

Table 4.6: Overall results and comparison to other Node.js dynamic taint analysis tools.
* Packages in the dataset did not necessarily have sink calls.

Type Valid Executable Potential Confirmed
NODEMEDIC-FINE FAST NODEMEDIC-FINE FAST

ACI 91 87 51 65 44 41

ACE 34 25 17 10 5 0

Total 125 112 68 75 49 41

Table 4.7: SecBench.js evaluation results comparing NODEMEDIC-FINE with FAST in terms
of potential and confirmed flows. Valid packages are downloadable, have a main executable file
defined, and the vulnerability fits in the attacker model that we share with FAST. Executable are
packages that are valid and can be installed and run.

on valid packages, not just executable packages. However, NODEMEDIC-FINE is a dynamic
analysis tool and therefore needs to execute a package to analyze it.

As can be seen in Table 4.7, FAST finds a superior number of potential vulnerabilities, which
is expected considering FAST is a static analysis tool and does not have to come up with an
input that follows the potentially vulnerable path to signal the vulnerability. There were 3 cases
where FAST found a potential flow but NODEMEDIC-FINE did not due to an undertainting
issue. Still, NODEMEDIC-FINE can use dynamic information to synthesize exploits, which
allowed it to perform well with respect to confirmed flows. When we focus on ACE potential
flows, NODEMEDIC-FINE performs especially well. FAST generated candidate exploits for
4 ACE flows that did not work because the final argument to the sink ended up not being valid
JavaScript. In those 4 cases, the Enumerator was critical to handle that challenging constraint and
came up with a working completion for all respective prefixes. Another example was the package
macaddress@0.2.8, for which the vulnerable entry point required one of the arguments to be
a function. FAST failed to synthesize the right type for that argument, while NODEMEDIC-
FINE’s fuzzer eventually generated a function input for that argument and was able to create a
working proof-of-concept exploit.

Result 3b: NODEMEDIC-FINE exclusively synthesized 5 working proof-of-concept ex-
ploits for ACE vulnerabilities with the help of Enumerator.

79

https://www.npmjs.com/package/macaddress

4.4.6 Responsible disclosure

Within the 766 confirmed flows found by NODEMEDIC-FINE, 1 ACE and 25 ACI were already
known vulnerabilities. We have responsibly disclosed all vulnerabilities in stages. We have
first triaged 567 ACI and 55 ACE confirmed flows, for a total of 622 confirmed flows. Within
those, we have manually validated that 270 ACI and 19 ACE were true positives. Besides ex-
ploitability, a true positive is an actual vulnerability. This excludes cases of packages that simply
have wrappers around exec for example, as executing arbitrary commands is part of the legiti-
mate functionality of the package. In this triage batch, we received responses for 50 ACI and
6 ACE vulnerabilities. Two developers disagreed that the respective reported ACI vulnerability
was real because the attacker model did not apply to them; they considered that an attacker could
not possibly control the entry point’s arguments. The remaining 54 developers agreed that the
vulnerabilities were real. So far, 35 of these cases were patched and a new version of the package
has since been published.

4.4.7 Exploring Precision in NODEMEDIC-FINE

One might expect that a system with automatic confirmation of vulnerabilities has no false pos-
itives. While that certainly is not true for FAST, since FAST exploits are not tested and can
therefore not function correctly, it is not true for NODEMEDIC-FINE either. In reality, true
positives correspond to flows that not only are exploitable but also must represent illegitimate
behavior according to the package functionality. Identifying which potential flows are true pos-
itives provides an indication of the precision of our analysis infrastructure, including the Fuzzer
and the taint instrumentation. We sorted the list of packages by their weekly downloads, and
manually validated whether the 29 unconfirmed potential flows and 113 confirmed flows in the
most popular packages were truly vulnerable. Results are summarized in Table 4.8.

False positives in confirmed flows. Overall, 70 out of the 113 flows are truly vulnerable (62%).
In two cases with false positives, packages had a warning in the documentation pointing out that
users should not pass unsanitized inputs to a certain entry point. While we have considered con-
firmed flows in those two cases to be false positives, we study in Section 6 whether dependents of
such packages heed such warnings. Two other false positives were deprecated packages. The re-
maining 39 false positives were packages that either exposed a sink directly as one of their entry
points, or the entry point that we found to be vulnerable was legitimately intended for arbitrary
command execution.

True positives in confirmed flows. With respect to true positives, most are vulnerable due
to a lack of input sanitization. Out of 54 vulnerabilities acknowledged by developers, 10 have
between 100 and 3000 weekly downloads and 10 have more than 3000 weekly downloads. We
submitted packages in this last group to Snyk. So far, we were assigned 1 high severity CVE [8].

True positives in unconfirmed flows. Among the 4 unconfirmed ACE vulnerabilities, 1 re-
quires a more complex exploit driver with multiple interactions with the API to exploit the flow;

80

Confirmed Not confirmed
Sink Type TP FP Total analyzed TP FP Total analyzed

ACI 64 (50) 40 104 0 14 14
ACE 6 (6) 3 9 4 (3) 11 15

Table 4.8: A true positive is a flow that is manually validated to be a vulnerability. False positives
include flows (potential or confirmed), in entry points that are actually just wrappers around
ACI or ACE sinks. This table reports the true and false positives for both confirmed flows and
potential flows that NODEMEDIC-FINE fails to confirm on NPM-DATASET. Numbers inside
parenthesis represent how many of the true positives were previously unreported vulnerabilities.

Another has complex SMT constraints and Z3 outputs unknown; The 2 others needed the Enu-
merator to support more JavaScript syntax: class definitions and passing object arguments in
function calls.

False positives in unconfirmed flows. Out of 11 ACE false positives, 1 resulted from over-
tainting; 5 from proper sanitization; 2 packages were deprecated; 1 package called the new Function
sink but then it did not call the resulting function, which means that the attacker input could never
be triggered; The remaining 2 cases were packages where the attacker did not have sufficient con-
trol to execute arbitrary code, as it only controlled boolean and number inputs. Similarly, there
was 1 ACI false positive due to overtainting; 1 with insufficient attacker control (only an attacker-
controlled integer is processed), and all other ACI false positives result from the need to pass the
shell flag in spawn sinks to execute arbitrary commands but the attacker only has control of the
command argument to spawn.

4.5 Limitations and Future Work
We now discuss limitations of NODEMEDIC-FINE and future work to improve its techniques.

4.5.1 More Complex Drivers
The drivers and exploits generated by NODEMEDIC-FINE are limited to producing, per entry
point, a simple invocation of that entry point with tainted arguments. This can miss vulnera-
bilities requiring a chain of interactions between different package API calls, handlers or even
external interactions like using databases, the file system or network communication. While
prior work on JavaScript taint analysis has encountered similar limitations [40, 63, 108, 109],
Explode.js is a recent work, published after NODEMEDIC-FINE, that addresses some of these
limitations. Explode.js computes what they call a set of vulnerable interaction schemes (VISes),
which are chains of calls (together with the types of the respective function arguments) to en-
try points or other functions returned by previous calls. While Explode.js performs symbolic
execution on the VISes, we see no reason why NODEMEDIC-FINE could not integrate these
in the fuzzing process instead. Regardless, this limitation is still not completely addressed by

81

Explode.js, which only considers linear VISes, i.e., those where each call in the chain is either
a call to an entry point or to a function returned by the previous call in the chain. Furthermore,
interactions with the network, databases or the file system in-between calls to entry points are
not considered.

4.5.2 Multiple Flows in the Same Package
Once NODEMEDIC-FINE finds a first potential flow, it moves on to confirmation. If confirma-
tion fails, NODEMEDIC-FINE just stops. One example where this misses real vulnerabilities in
a package, is if the package has multiple flows but the easiest flow to find is not exploitable. This
is not a fundamental limitation of NODEMEDIC-FINE, as in Chapter 5 we describe further work
on NODEMEDIC-FINE that implements this functionality.

4.5.3 Enumerator: completing prefixes with multiple lines
Our Enumerator can not currently handle ACE sink calls that concatenate a multi-line string to
the user input. Such sink calls might look like this: eval("prefix "+ userinput + "\n + 1").
The Enumerator can not simply put a comment character "//" after the payload, as it will not
cause the following statement to be ignored, since it is in a newline. The attacker can not insert
a multiline comment either, as even if the payload ends with "/*", there is no way to insert the
"*/" terminating comment token at the end of the eval argument. The solution here seems to be
to have the Enumerator synthesize completions that are compatible with the suffix. We think it
is feasible to adapt our Enumerator approach to do this, but we leave it for future work.

4.6 Conclusions
By leveraging type and object-structure information gathered at runtime, NODEMEDIC-FINE
is able to explore more execution paths and consequently identify more potential flows. With
respect to confirmed flows, the Enumerator helped significantly improve the number of success-
ful exploits synthesized for ACE vulnerabilities, a particularly challenging vulnerability type to
exploit due to its syntactic requirements. Still, 42% of prefixes could not be completed by our
Enumerator. In Chapter 5 we study how some unconfirmed potential flows may still hint towards
real vulnerabilities. In that chapter, we also explore how analysis can be optimized for finding
flows that have higher likelihood of confirmation, e.g., by prioritizing paths that have ACE sink
calls with shorter prefixes.

82

Chapter 5
Confirmation-Aware Analysis

In this chapter we describe our work on guiding NODEMEDIC-FINE’s fuzzing engine towards
paths that are more likely for the synthesis engine to generate an exploit.

5.1 Overview

In previous chapters, we examined how to integrate dynamic taint analysis (DTA) with program
exploration techniques to identify code injection flows in JavaScript applications. The fuzzing
engines of both NODEMEDIC-FINE and SWIPE are coverage-guided, meaning that they aim
to increase the amount of JavaScript code executed as they explore the application. Coverage
has been widely used by fuzzers (e.g., AFL [144] and Honggfuzz [42]) as an important metric to
measure progress during program exploration to find vulnerabilities. However, even with large
timeouts, fuzzers may never achieve full coverage, especially for complex npm packages. Given
limited analysis time, selecting which parts of an application to prioritize becomes essential.

Our main goal in this chapter is to guide fuzzing towards program paths that are more likely to
be automatically exploitable, i.e., the discovered potential flow can be confirmed by the synthesis
engine. We refer to this strategy as confirmation-aware analysis. This idea is related to earlier
heuristics, such as Thanassis et al.’s buggy-path-first approach [129] for prioritizing symbolic
execution paths. The challenge here is that it remains unclear which path features best predict
automatic exploitability in npm packages.

To investigate this, we sampled 63 packages from a dataset of a total of 630 vulnerable pack-
ages where NODEMEDIC-FINE detected a Arbitrary Command Injection (ACI) or Arbitrary
Code Execution (ACE) potential flow but failed to confirm it. We identified five features of
NODEMEDIC-FINE’s provenance tree that correlate with automatic exploitability (sink type,
flow presence, ACE prefix length, path complexity and attacker input amount).

We leverage logistic regression models to combine these features into a single exploitability
metric (EM) to guide fuzzing, and use it to sort any discovered flows by their exploitability
estimate, before confirmation.

To evaluate EM-guided analysis, we performed an ablation study against the same 33,021
packages with sinks, as analyzed in NODEMEDIC-FINE’s dataset, and the same 5 minute time-

83

out per package. Our evaluation shows that using EM-guided fuzzing improves the number of
confirmed flows detected by 1% (from 803 without EM to 812), while preserving the number of
packages with discovered potential flows (from 2314 without EM to 2319). While the overall
confirmation time savings are not significant (94% of the original time required by the baseline
of not using the exploitability metric when looking at the set of packages with confirmed flows
found in common, t=0.68, p=0.25) they become significant when the time budget per package
is increased to 1800 seconds, with 1080 seconds allocated for fuzzing (EM used 72% of the
original confirmation time used by the baseline, t=2.68, p=0.004). Manual analysis reveals that,
under this longer timeout, the EM-guided fuzzer is able to discover the large majority of potential
flows discovered by the baseline, while uniquely discovering a number of deep flows, i.e., flows
requiring inputs that satisfy difficult constraints, which the fuzzer arrives at only after a focused
analysis on the vulnerable entry point.

Finally, we discuss limitations and future work in Section 5.4.

5.2 Confirmation-Aware Analysis
In this section, we detail how we guide fuzzing towards paths that seem more likely to be
automatically exploitable. First, in Section 5.2.1 we provide an overview of the changes in
NODEMEDIC-FINE pipeline, compared to our original work described in Chapter 4. Then, in
Section 5.2.2 we motivate the features of provenance trees that we are going to use as a signal
of exploitability. Finally, in Section 5.2.3 we rigorously specify the process of assigning an ex-
ploitability value to package entry points and explain how we combine the features into a single
exploitability metric that can be used to adjust the probability of selecting each package entry
point for analysis in a fuzzing round, depending on their exploitability estimate.

5.2.1 Iterative NODEMEDIC-FINE Pipeline
In this section, we describe the pipeline of NodeMedic-FINE-2025, which is an updated ver-
sion of NODEMEDIC-FINE. In addition to bug fixing and better handling of asynchronous entry
points, the analysis and confirmation pipelines have improved compared to what was described
in Chapter 4. The most meaningful change was the implementation of a circular pipeline. Previ-
ously, NODEMEDIC-FINE would stop analysis at the first discovered potential flow and then
it would attempt to confirm that flow. Regardless of confirmation being successful or not,
NODEMEDIC-FINE stopped after testing one candidate exploit, if any. Instead, NodeMedic-
FINE-2025 keeps fuzzing for a fixed time to allow discovery of multiple potential flows.

It is not always the case that the first input passed to an entry point results in a potential flow.
The longer the timeout, the more likely it is that the fuzzer will discover (multiple) potential
flows. This is because some entry points require complex inputs to reach vulnerable code paths,
and fuzzing may take time to generate such inputs.

Once the fuzzing time budget is exhausted, NodeMedic-FINE-2025 attempts to confirm the
first discovered potential flow, and what happens next depends on the success of the candidate
proof-of-concept exploit that was produced:

1. If NodeMedic-FINE-2025 is successful at confirming the current flow, it stops.

84

2. If the allocated time budget is exhausted for the current package, it stops.

3. Otherwise, NodeMedic-FINE-2025 fails to confirm the current flow and goes back to the
start of the confirmation pipeline to test the next potential flow.

The ability to detect and attempt to confirm multiple flows is necessary for the successful inte-
gration of an exploitability metric to guide analysis and confirmation, as we aim to more quickly
find an exploitable flow but the first tested candidate flow may not always work.

5.2.2 Feature Design
NODEMEDIC-FINE’s operation tree, also called provenance tree, is a recursive structure speci-
fying what operations were performed on sink arguments until they reached the sink. This section
describes the features we selected to estimate the exploitability of a provenance tree.

As discussed in Chapter 4, many potential flows reported by NODEMEDIC-FINE for Node.js
were not automatically confirmed (see Table 4.1). However, failure to automatically confirm a
flow does not imply it is unexploitable. For the set of potential flows that NODEMEDIC-FINE
did not confirm, manual verification found that 47% (521/1106) of ACI and 62% (149/239) of
ACE flows were actually exploitable. Typical reasons why NODEMEDIC-FINE fails to produce
a successful proof-of-concept exploit include:

1. The package is indeed not exploitable.

2. Missing support for a program operation when building the SMT formula.

3. The SMT solver (i.e., Z3) cannot solve the constraints, often due to complex operations on
tainted variables, for example, regex-based primitives.

4. Insufficient attacker control at the sink call. For example, some program paths may only
allow a single byte of attacker input to go into the sink. Another example is that in order
for the spawn sink to be exploitable, it requires the shell argument to be set to true. This
attribute might not be attacker-controlled in the originally discovered potential flow.

5. Failure to synthesize a syntactically valid completion for ACE prefixes (see Section 4.4.4).

Manual analysis of unconfirmed potential flows. To identify features that signal exploitabil-
ity, we manually analyzed a stratified sample of 63 packages drawn from the 630 vulnerable
packages where NODEMEDIC-FINE reported a potential flow but failed to confirm it. Strat-
ification considered vulnerability type and package size. For each package, we inspected the
discovered potential flow and the inputs that triggered it. We then compared the flow discovered
by NODEMEDIC-FINE with the flow that was exploitable, with special focus on the case where
those flows differ. A flow differs from another if their respective program traces differ, i.e., they
execute different program instructions or in a different order, which may impact exploitability
even if both traces start from the same entry point and reach the same sink call.

Our goal was to not only define flow properties that contribute to ease of automatic ex-
ploitability, but also ascertain whether NODEMEDIC-FINE can trigger a different, exploitable
flow, by mutating the original inputs that triggered the non-exploitable flows which exhibited
such properties.

1. In 17.5% (11/63) of cases, the discovered flow is not exploitable. Among these:

85

(a) In 81.8% (9/11) of flows, the exploitable path is in the same entry point as the original
flow, and the input that triggers it can be derived from the original input. For example,
in some cases, an exploitable flow can be triggered by adding a single extra attribute
to the object input that triggered the originally discovered flow. One case required
calling an additional entry point after the original entry point to trigger the attacker-
controlled code.

(b) In 18.2% (2/11) of flows, the exploitable path is in a different entry point.

2. In 82.5% (52/63) of cases, the discovered flow was directly exploitable. Among these:

(a) 38.5% (20/52) involved the spawn sink, which requires shell=true to be exploitable.
While NODEMEDIC-FINE confirmation could be adapted to support the synthesis
of this attribute, these flows are not the focus in this work, as they typically do not
require a different exploration strategy.

(b) In 19.2% (10/52) of potential flows, there is a different, simpler exploitable path
whose input can be derived from the original. When comparing to the originally
discovered paths, we refer to simpler paths as those where either the constraints are
easier for Z3 to handle or the ACE prefix, if any, is easier to complete. This includes
an overlapping case with the above item, where the exploitable path already passes
the parameter shell=true in the spawn call, which simplifies the final exploit.

(c) The remaining 44.2% (23/52) of cases were not automatically confirmed due to un-
supported operations (missing symbolic models) or complex constraints (for exam-
ple, requiring the payload to match a real filename).

Example of an exploitable potential flow which inputs can be derived from the originally
discovered flow’s. Figure 5.1 shows a simplified excerpt from an exploitable entry point in the
popular ejs template engine [33]. The originally discovered potential flow calls a sink with a
value sanitized via JSON.stringify. A small change to the options argument (adding debug, pro-
cessed in lines 3-5) causes the sink to be invoked with unsanitized input and becomes exploitable.

Although this flow is technically exploitable, we classify it as a false positive because the
ejs documentation delegates responsibility of input sanitization to its dependents. Still, we use
ejs as an illustrative example here because it does not require anonymization and one of the
manually analyzed packages reuses the vulnerable part of the ejs code, while failing to provide
a matching security warning in their documentation. This case also typifies a broader pattern
observed across some of the 63 packages that we manually analyzed: minimal changes to flow-
triggering inputs discovered by NODEMEDIC-FINE fuzzer may result in confirmed flows, even
when the original flows are not directly exploitable.

High-level feature description. Given the results of the manual analysis, especially on the
potential flows in groups 1.(a) and 2.(b), we designed the following features as potential signals
of fuzzing progress toward automatically exploitable paths:

• fsinkcall: Which sink, if any, is being called in the operation tree. All cases of exploitable
potential flows that are related to the originally discovered potential flows use the same
sink but different inputs. Importantly, some sinks are harder to exploit than others: spawn

86

https://www.npmjs.com/package/ejs

1 module.exports.compile = function compile(str, options){
2 var argument = JSON.stringify(str);
3 if (options.debug){
4 argument = str;
5 }
6 var fn = new Function(argument);
7 return fn.call(this);
8 }

Figure 5.1: Simplified excerpt of a vulnerable entry point (Template.compile) in the latest version
of ejs – version 3.1.10 at the time of writing.

implies the additional constraint of setting the parameter shell=true in the sink call; eval
and the Function constructor both require the final argument to be syntactically correct, but
we also noticed that prefixes for eval are usually simpler than those for Function sink calls.

• ftaintedarg: Whether one of the sink arguments is tainted. Even though the discovered flow
may not be directly exploitable, or the tainted argument is not the necessary one for ex-
ploitation, there might be a simpler, exploitable path that is reachable via small differences
in the input (e.g., an additional attribute in object arguments).

• fpre f ixlength: The length of the prefix that needs to be completed in the case of ACE flows.
In 3 out of 63 packages, there was another exploitable path that needed a smaller, less
complex ACE prefix to be completed to synthesize the final payload, compared with the
path traversed by the originally discovered flow. Again, that exploitable path could be
reached by slightly modifying the input that triggered the original potential flow.

• fopcomplexity: The complexity of the operations performed on tainted variables until the sink
is reached. The effectiveness of FAST, NODEMEDIC-FINE and Explode.js’s confirmation
pipelines is limited by the effectiveness of the SMT solver in use (Z3 in all three tools).
By confirming flows involving simpler constraints we aim to unburden the SMT solver in
use, and increase the likelihood of producing successful exploits.

• fatkdata: The amount of unsanitized attacker-controlled data in the final sink argument. In
4 out of 63 packages, there was an exploitable path (again, related to the original) that
allowed more attacker-controlled input to be passed to the sink. Additionally, in 3 out of
63 packages, a simpler path existed in which the attacker input was not sanitized.

We will rigorously specify these features in the next section, and in Section 5.3 we evaluate the
hypothesis that these features generalize to other packages as signals indicating exploitability of
an operation tree.

Ideally, a dynamic analysis tool for ACI and ACE detection should maximize both the number
of confirmed flows (automatically synthesized exploits) and the number of true positive potential
flows. We show in Section 5.3 that, by following paths optimizing these features, we are not
losing more potential flows than we are gaining, which is an important concern to address when
optimizing analysis to discover confirmed flows.

87

1 start_time = time()
2 while (time() - start_time < TIME_BUDGET){
3 entrypoint = fuzzer.select_entrypoint(target_package);
4 inputs = [];
5 for (argument in entrypoint.arguments()) {
6 input = fuzzer.get_input(entrypoint, argument);
7 taint_infrastructure.set_taint(input);
8 inputs.append(input);
9 }

10 target_package.call_entrypoint(*inputs);
11 if (taint_infrastructure.flow_found()){
12 save_flow();
13 }
14 var op = taint_infrastructure.get_operation_tree();
15 fuzzer.estimate_exploitability(entrypoint, op);
16 for (input in inputs){
17 feedback = taint_infrastructure.structure_feedback(input);
18 fuzzer.refine_specification(entrypoint, argument, feedback);
19 taint_infrastructure.remove_taint(input);
20 }
21 }

Figure 5.2: Pseudocode for our improved driver component. It allows selection of arbitrary entry
points; does not stop at the first discovered potential flow; computes an exploitability estimate
per entry point based on the operation tree generated by the execution of each fuzzing input.

5.2.3 Assigning Weights to Exploitability Metric Features

This section describes how we assign feature values to operation trees and how we combine them
into a single exploitability metric used to steer fuzzing toward more easily exploitable paths.

As noted in Section 5.2.1, we modified NODEMEDIC-FINE’s fuzzer so analysis does not
stop at the first discovered potential flow. Pseudocode describing the newly generated fuzzing
driver is shown in Figure 5.2 (updated from Figure 4.2).

As before, the fuzzing driver receives as input the target package and its entrypoints, and
outputs a set of flows to confirm. We now summarize the driver changes and then rigorously
define the exploitability metric.

Entry point selection policy. Line 3 of the generated driver permits selection of any exported
entry point of the target package on each fuzzing round. When exploitability-guided sampling
is disabled, selection reduces to round-robin over exported entry points, similarly to the original
NODEMEDIC-FINE. When enabled, each entry point is sampled with a probability weight that
depends on the entry point’s estimated exploitability. Because no prior information exists at start-
up, select_entrypoint chooses each entry point once in round-robin fashion to collect initial
exploitability observations.

88

Estimating an entry point’s exploitability. Let T be the set of all possible operation trees.
We define an exploitability metric:

EM : T → R≥0,

so that larger values indicate less estimated difficulty in exploiting the respective flow.
For a fixed entry point e, let T r

e denote the multiset of provenance trees produced by all calls
to e observed since analysis began until round r.

ÊM
r
(e) =

1
|T r

e | ∑
t∈T r

e

EM(t).

Our entry point-level exploitability estimate is the empirical mean of EM over T r
e : The

higher the value of the exploitability metric for a provenance tree, the more easily exploitable
we consider that tree to be. Our estimate of the exploitability of an entry point is based on
the average exploitability for the provenance trees produced by calling that entry point, since
analysis started. When fuzzing begins round r+1 (i.e., the r+1th iteration of the loop in line 2
of the driver), select_entrypoint uses the exploitability estimate computed from previous rounds
ÊM

r
(e) to decide what entry point is chosen.

Structure of the exploitability metric. Each feature fi is a nonnegative real-valued function
on provenance trees:

fi : T → R≥0.

Let F = { fsinkcall, ftaintedarg, fprefixlength, fopcomplexity, fatkdata} denote the feature set defined in the
previous section. Empirically, a linear combination of these features produced a useful signal.
We found that multiplying the flow indicator by the prefix-length feature increases correlation
with automatic exploitability on our design set. Concretely, for a provenance tree t ∈T :

EM(t) = wsinkcall fsinkcall(t)
+wflowstrength ftaintedarg(t) fprefixlength(t)
+wopcomplexity fopcomplexity(t)
+watkdata fatkdata(t),

where W = (wsinkcall,wflowstrength,wopcomplexity,watkdata) are nonnegative scalar weights. We now
define each feature precisely and describe how the weights were obtained.

Training data used to inform feature specifications and train the weights W . To assem-
ble training data, we allowed NodeMedic-FINE-2025 to attempt confirmation of multiple flows
per package and ran an experiment with a large timeout (1000 s total time budget, including
240 s fuzzing) against 3475 packages where a potential flow had previously been discovered with
NODEMEDIC-FINE. From a subset of 281 packages that attempted to confirm several flows we
extracted up to 5 confirmed and 5 unconfirmed flows per package. We paired confirmed and
unconfirmed flows within each package to obtain 5483 labeled (confirmed, unconfirmed) pairs.
We partitioned these into a training set of 2881 pairs from 141 packages and an evaluation set of
2602 pairs from the remaining 140 packages.

89

Sink value of fsinkcall

eval 0.88

Function 0.62

exec 1

spawn 0.1

none (default value) 0

Table 5.1: fsinkcall feature value, assigned to a provenance tree, depending on what sink is called.

Feature fsinkcall. This feature encodes which sink, if any, is invoked in the operation tree.
Table 5.1 lists the assigned values. If an input results in the invocation of multiple sinks, we use
the first reached sink for simplicity. The mapping in Table 5.1 was derived from the observed
automatic exploitability rates on the 63-package design set and the 141-package training set.

Feature ftaintedarg. We define ftaintedarg(t) = 1 if the operation tree shows a sink being called
with the necessary argument tainted (e.g., in order for a flow using the Function constructor sink
to be exploitable, it is required that the last argument is controlled by the attacker, not the first
arguments). Otherwise, if any other sink argument is tainted, we still assign ftaintedarg(t) = 0.3.
Otherwise ftaintedarg(t) = 0. Note that feature values are not independent: ftaintedarg(t) = 1 implies
a sink was called; hence fsinkcall(t) > 0 in that case. It may also seem obvious that rewarding
flow-triggering inputs is a good idea, but even inputs that trigger no flows may lead to exploitable
paths by introducing small changes to the input, so it is important to not over-prioritize paths that
exhibit high values for these features.

Feature fprefixlength. Let prefix(t) denote the length (in bytes) of the ACE prefix that needs to
be completed in operation tree t. If no sink is called or prefix(t) = 0 (meaning all sink-argument
bytes are tainted), we set fprefixlength(t) = 1. Otherwise we use a reciprocal decay:

fprefixlength(t) =
1

prefix(t)
.

Feature fopcomplexity. If no sink is called then fopcomplexity(t) = 0. Otherwise we accumulate
a complexity score over the operations applied to tainted values up to the sink, and again use a
reciprocal decay:

fopcomplexity(t) =
1

complexity
.

Counting provenance-tree nodes was insufficient to measure complexity because different oper-
ations vary greatly in SMT difficulty. Instead we assign each operation a complexity score based
on observed solver difficulty and sum these scores along the tainted-provenance path to the sink.
The scores are empirical and derived from the 63-package design set (i.e., the ones used to design
the features) and the 141-package training set.

90

Weight name Weight Cohen’s d value
wsinkcall 3.03 0.42

w f lowstrength 1.34 0.28

wopcomplexity 8.24 0.22

watkdata 0.05 0.21

Table 5.2: Exploitability metric weights computed via logistic regression on a set of 141 pack-
ages. We also show Cohen’s d value for each feature in the training dataset, showing a small
correlation between each feature and exploitability.

Dataset Accuracy (%)
Training 65.78

Eval 63.84

Table 5.3: Exploitability metric accuracy in pair-wise distinguishing confirmed versus uncon-
firmed flows in two datasets.

Feature fatkdata. This feature measures the amount of unsanitized attacker-controlled data
reaching the sink argument. If no attacker-controlled bytes reach the sink then fatkdata(t) = 0.
Otherwise we compute

fatkdata(t) = 1− 0.90
ℓatk(t)

,

where ℓatk(t) denotes the length (in bytes) of unsanitized attacker-controlled data reaching the
sink. Overall, this formula reasonably rewards the presence of attacker-controlled data, with
diminishing rewards as attacker data increases.

Computing the weights W . We fit W using binary logistic regression on labeled pairs of flows.
The 2881 pairs of flows in the 141 packages in the training set produced the weights shown in
Table 5.2.

We evaluated the resulting exploitability metric’s ability to distinguish automatically ex-
ploitable flows from those flows that are not automatically exploitable, on the training and eval-
uation partitions. Table 5.3 reports pairwise accuracy.

The metric generalizes to the held-out evaluation set. The evaluation accuracy of 63.84%
corresponds to a 13.84 percentage-point distance from a 50% baseline in correctly preferring
automatically exploitable flows over the alternative.

Mitigating overprioritization of entry points. To partially mitigate the possibility of over-
focus on entry points that show early signs of exploitability, we enforce a maximum relative
likelihood ratio for selecting any pair of entry points, using a fixed threshold T . This means that
no entry point can become more than T times more likely to be explored than any other. We use
a default value of T = 10.

91

1 module.exports.spawncat = function spawncat(arg, options){
2 spawn("cat", [arg], options);
3 }
4 module.exports.execcat = function execcat(arg){
5 exec("cat " + arg[0]);
6 }

Figure 5.3: Package with two exported entry points. spawncat uses spawn; execcat uses exec.

Prioritization of flows after fuzzing. Once fuzzing ends, NodeMedic-FINE-2025 attempts
to confirm all discovered potential flows. Instead of confirming them in the order they were
discovered, we sort them by their exploitability estimate (computed via EM) in descending order.
This prioritization allows us to focus on the most promising flows first, increasing the chances of
successful exploitation.

5.2.4 Example Analysis Run Using the Exploitability Metric.
This section shows how NodeMedic-FINE-2025 uses the exploitability metric to prioritize entry
points during fuzzing. We use a hypothetical package with two exported entry points, spawncat
and execcat, shown in Figure 5.3.

If the exploitability metric is disabled, the fuzzer alternates between the two entry points each
round. When the metric is enabled the fuzzer collects initial observations and then estimates
exploitability to guide selection.

In rounds 1 and 2 each entry point is executed once:
• Round 1: spawncat called with the string "random" produces operation tree t1.
• Round 2: execcat called with the string "anotherrandomstring" produces operation tree t2.
In round 3 the fuzzer computes exploitability estimates

ÊM
2
(spawncat) = EM(t1), ÊM

2
(execcat) = EM(t2),

Regarding t1:
• The root node of t1 will show that the sink called is spawn, so fsinkcall(t1) = 0.1.
• An argument of the root note is tainted (i.e., a flow is discovered), so ftaintedarg(t1) = 1.
• No ACE prefix needs to be completed, so fprefixlength(t1) = 1.
• The operations on tainted data are simple. The complexity calculation in reality is per-

formed by summing weighted nodes of the tree depending on its operations. For simplicity,
let us assume complexity = 2, thus fopcomplexity(t1) = 0.5.

• Six unsanitized attacker-controlled bytes reach the sink (i.e., the characters from the string
"random"), so fatkdata(t1) = 1− 0.90

6 = 0.85.
Hence

EM(t1) = 3.03 ·0.1+1.34 ·1 ·1+8.24 ·0.5+0.05 ·0.85 = 5.806.

Regarding t2:

92

• The root node of t2 will show that the sink called is exec, so fsinkcall(t2) = 1.
• A flow is discovered, so ftaintedarg(t2) = 1.
• No ACE prefix needs to be completed , so fprefixlength(t2) = 1.
• The operations on tainted data are slightly more complex, with a string concatenation and

an indexation. Again, for simplicity let complexity = 2.5, thus fopcomplexity(t2) = 0.4.
• One unsanitized attacker-controlled byte reaches the sink (i.e., the first character from the

string "anotherrandomstring"), so fatkdata(t2) = 1− 0.90
1 = 0.10.

Hence
EM(t2) = 3.03 ·1+1.34 ·1 ·1+8.24 ·0.4+0.05 ·0.10 = 7.671.

Because ÊM
2
(execcat)> ÊM

2
(spawncat), the fuzzer is more likely to select execcat in round

3. NodeMedic-FINE-2025’s confirmation engine cannot synthesize exploits for flows through
spawn when an options object is passed unless the sink call hardcodes shell=true. This makes
focusing on execcat more likely to produce confirmed flows.

In later rounds the fuzzer may discover that providing a list rather than a string to execcat
yields an operation tree with a larger attacker-controlled payload reaching the sink. That raises
the exploitability estimate further and shifts more fuzzing effort to execcat. That input produces
an exploitable flow, as a sufficient number of unsanitized attacker-controlled input reaches the
sink, and the usual payloads can be injected. In this way, the exploitability metric steers fuzzing
toward paths that are easier to confirm as exploitable.

5.3 Evaluation

In this section, we evaluate the effectiveness of our exploitability metric in guiding fuzzing to-
wards more easily exploitable paths and in prioritizing automatically exploitable flows for con-
firmation. We answer the following research questions:

RQ1: How does the exploitability metric impact NodeMedic-FINE-2025’s ability to find
confirmed flows?

RQ2: How does augmented NodeMedic-FINE-2025 compare to other tools for ACI and
ACE detection and confirmation?

5.3.1 Experimental Setup

Conditions. Table 5.4 lists the NodeMedic-FINE-2025 configurations used and the research
questions they address. The baseline, NMFINE-NoEM, has the exploitability metric disabled.
In that baseline, entry points are selected in round-robin fashion, and flows are confirmed in
discovery order, though still clustered by entry point. The baseline uses a 300s per-package
timeout, following NODEMEDIC-FINE and Explode.js [83] evaluation setup. We allocated 60%
of the time budget (180s) to fuzzing, as that proportion worked well in small scale experiments.

We evaluate six variants of NodeMedic-FINE-2025 with the exploitability metric enabled,
varying the features used. Disabling a feature fx is implemented by assigning the constant value

93

Condition name EM usage Time budget (s) RQs involved

Total Fuzzing

NMFINE-NoEM None 300 180 RQ1,RQ2
NMFINE-EM Default EM 300 180 RQ1,RQ2
NMFINE-EM-Nofsinkcall Fsinkcall disabled 300 180 RQ1
NMFINE-EM-Noftaintedarg Ftaintedarg disabled 300 180 RQ1
NMFINE-EM-Nofprefixlength Fprefixlength 300 180 RQ1
NMFINE-EM-Nofopcomplexity Fopcomplexity 300 180 RQ1
NMFINE-EM-Nofatkdata Fatkdata 300 180 RQ1

NMFINE-long-NoEM None 1800 1080 RQ1
NMFINE-long-EM Default EM 1800 1080 RQ1
NMFINE-long-EM-Nofsinkcall Fsinkcall disabled 1800 1080 RQ1
NMFINE-long-EM-Noftaintedarg Ftaintedarg disabled 1800 1080 RQ1
NMFINE-long-EM-Nofprefixlength Fprefixlength disabled 1800 1080 RQ1
NMFINE-long-EM-Nofopcomplexity Fopcomplexity disabled 1800 1080 RQ1
NMFINE-long-EM-Nofatkdata Fatkdata disabled 1800 1080 RQ1

Table 5.4: Experimental conditions for EM ablation and timeout studies.

fx(t) = 1 for all provenance trees t. Configurations that disable features are named with a suffix
indicating which feature was disabled.

For each condition we also run a long-time alternative with a 1800s timeout, of which 1080s
(60%) are allocated to fuzzing. Long-timeout condition names include the substring “-long-”.

We also evaluate the latest releases of FAST [60] and Explode.js [83] with default settings.

Datasets. We use three datasets:
• WithSinks: 33,021 packages containing sink calls as collected for NODEMEDIC-FINE

(see Chapter 4 and Section 4.4.2). Used for EM evaluation and feature ablation (RQ1).
• Potentials: A collection of all 3,938 packages where some variation of NODEMEDIC-

FINE found a potential flow, either in the past or in this work. Similarly to the first dataset,
we use this to evaluate the exploitability metric and its features (RQ1), but with a higher
timeout for both analysis and confirmation.

• Random120k: The top 100,000 npm packages by weekly downloads (crawled the week of
October 20, 2025) plus 20,000 randomly sampled packages. Used to compare NMFINE-
EM with FAST and Explode.js.

Runtime details. Each NodeMedic-FINE-2025 condition halts after the first successful ex-
ploit. Experiments ran one Docker container per package and per condition. Packages were
analyzed in parallel, each container restricted to using 4GB of RAM. Analysis and confirmation
followed the pipelines described in Section 4.4.1 with the modifications in Section 5.2.1.

94

When comparing NodeMedic-FINE-2025 to FAST and Explode.js, we used default settings
for those tools. All tools received a total timeout of 5 minutes, including 3 minutes of fuzzing for
NodeMedic-FINE-2025. For the Potentials dataset we used a 30-minute total timeout and, once
again, allocated 60% of the budget to fuzzing (18 minutes in this case).

5.3.2 RQ1: Effectiveness of the Exploitability Metric
This section evaluates the effect of the exploitability metric (EM) on (i) the number of potential
and confirmed flows discovered, and (ii) the average time to confirm flows. The evaluation pro-
ceeds in two parts: first, a short-timeout setting using the original NODEMEDIC-FINE dataset;
second, a long-timeout setting applied to all packages with previously discovered potential flows.

Overall, longer timeouts amplify the benefits of EM-guided fuzzing. EM-guided fuzzing
with a long timeout recovers shallow flows that may be missed with a short timeout when it
overprioritizes non-exploitable entry points, while still discovering deep flows overlooked by
unguided fuzzing. Additionally, because analysis of each package stops upon the first confirmed
flow, EM-guided fuzzing tends to produce shorter runs that yield slightly more confirmed flows
under equal time budgets, with larger gains under longer budgets. Finally, we observe a recur-
ring trade-off between selecting flows that maximize the amount of attacker data reaching the
sink and selecting flows that minimize provenance tree complexity. Although this trade-off ap-
pears difficult to optimize, our manual analysis suggests that identifying any program path that
provides sufficient attacker data for the payload is typically adequate; additional attacker data
beyond this threshold offers no meaningful benefit.

RQ1a: Short timeout evaluation on WithSinks dataset

We executed the following configurations on the WithSinks dataset: NMFINE-EM, NMFINE-
NoEM, NMFINE-EM-Nofsinkcall, NMFINE-EM-Noftaintedarg, NMFINE-EM-Nofprefixlength,
NMFINE-EM-Nofopcomplexity, and NMFINE-EM-Nofatkdata. Each configuration used a to-
tal timeout of 300 seconds, with 180 seconds allocated to fuzzing. Results are summarized in
Table 5.5. Overall, we find that all features contribute positively to the number of packages with
discovered potential flows, though their effect on other metrics was more nuanced. Each metric
is analyzed below.

Packages with observed potential flows. Since EM prioritizes entry points based on their es-
timated exploitability, it is essential to confirm that it does not suppress discovery of potential
flows. As shown in Table 5.5, all EM-enabled configurations discovered more potential flows
than the baseline NMFINE-NoEM. However, each feature contributes differently, and some po-
tential flows were missed.

Figure 5.4 shows the number of additional and missed potential flows per configuration rela-
tive to the baseline. We manually inspected a sample of missed and additional flows to determine
whether EM correctly prioritized exploitable entry points.

The full EM discovered 22 additional potential flows absent in the baseline. Manual inspec-
tion of five cases revealed: one false positive (over-tainting), one case where EM avoided (by a
matter of luck in input generation) an early hang in analysis suffered by the baseline, and three

95

NMFINE Condition #Packages with flows Avg. rounds
to confirm

(common confs.)

Avg. time
to confirm (s)

(common confs.)Pot. Conf. Conf.
(common pots.)

NoEM 2314 803 800 1.18 6.88
EM 2319 812 807 1.05 6.50
EM-Nofsinkcall 2310 813 808 1.05 6.62
EM-Noftaintedarg 2310 812 808 1.08 7.10
EM-Nofprefixlength 2317 813 809 1.06 6.63
EM-Nofopcomplexity 2317 810 804 1.05 6.90
EM-Nofatkdata 2318 809 806 1.07 6.33

Table 5.5: Summary of results for short-timeout evaluation on the 33,021 packages of the With-
Sinks dataset. For each NodeMedic-FINE-2025 configuration, we show the number of packages
with discovered potential flows, the number of packages with confirmed flows, the number of
packages with confirmed flows among the 2279 packages with potential flows found in common
by all conditions, the average number of rounds to confirm a flow, and the average time to con-
firm a flow within the 784 packages where a confirmed flow was found by all conditions.

genuine improvements where EM prioritized entry points that contained deep flows. In these last
three cases, fuzzing needs to analyze the exploitable entry point for some time until it figures
out the right input structure, so prioritizing that entry point is paramount. In one such case, the
fopcomplexity feature was critical: The package contained 8 entry points containing sink calls. All
EM-enabled conditions except NMFINE-EM-Nofopcomplexity prioritized an entry point with
a simpler provenance tree, leading to successful confirmation, whereas disabling fopcomplexity
(EM-Nofopcomplexity) missed the potential flow completely.

Conversely, we manually sampled 5 of the 17 potential flows missed by EM but discovered by
the baseline. One case involved multiple entry points with identical exploitability estimates; EM
then behaved like the baseline. The baseline only discovered the flow late during fuzzing, and the
condition using the exploitability estimate was not lucky enough to find the flow-triggering input
in time. This potential flow was discovered by NMFINE-EM when a longer fuzzing timeout was
provided, and it was also discovered when we simply changed the PRNG seed.

Another case involved two sink-calling entry points: one with a shallow potential flow and
yet unexploitable; another with a harder-to-find flow (requiring input of complex structure) but
exploitable. EM correctly prioritized the latter, missing the shallow potential flow seen by
NMFINE-NoEM; Interestingly, if we give the fuzzer more time to analyze this case, that not
only results in EM finding the unexploitable potential flow, but it also successfully finds and
confirms the other, harder flow. Conversely, the baseline using the longer timeout still only finds
the shallow unexploitable potential flow. Two other potential flows were missed due to EM
partially prioritizing memory-intensive entry points that ended up crashing the process. The final
case finally reflected true misprioritization: EM overemphasized an entry point that appeared ex-
ploitable early but could not actually propagate attacker input to the sink. The vulnerability was
in another entry point that did not show early promise of exploitability, but it is shallow enough
that, with a longer timeout, NMFINE-EM finds it even though it does not analyze it nearly as

96

much as the other unexploitable entry point.
In Section 5.4 we include a discussion on the underlying limitation of the exploitability met-

ric, that may result in overprioritization of entry points that exhibit early signals of exploitabil-
ity. However, this manual analysis reveals empirical evidence that EM often prioritizes the ex-
ploitable entry point, and we will see later that using a long timeout for fuzzing benefits it, as
many of the extra potential flows discovered by EM-guided fuzzing are deep enough that running
the baseline with a larger timeout still often misses them.

EM EM-Nof
sinkcall

EM-Nof
taintedarg

EM-Nof
prefixlength

EM-Nof
atkdata

EM-Nof
opcomplexity

20

10

0

10

20

De
lta

 o
f p

ac
ka

ge
s w

ith
 p

ot
en

tia
l f

lo
ws

22

10 12

19 18
12

17
14 16 16 14

9

Extra potential flows
Missing potential flows

Figure 5.4: Missing and extra potential flows, compared with the baseline NMFINE-NoEM.

Finally, some flows critically depended on individual features. For example, ftaintedarg was
essential in one case involving refinement of inputs that progressively increased taint propagation
to the Function constructor sink. The first input discovered by NMFINE-EM (and also discovered
by the baseline) called that sink, but only the first argument was tainted, which is not sufficient
for exploitability. Still, the EM-guided fuzzer (particularly, the ftaintedarg feature) took that as
evidence that the entry point is promising to analyze, and indeed a refinement of that input led
to finding a flow with the last argument tainted (i.e., the argument specifying the code of the
dynamically constructed function).

97

Confirmed flows. Using the full EM increased confirmed flows by 1% (from 803 to 812).
Although some features appear to have a positive impact (e.g., disabling the fsinkcall feature
in NMFINE-EM-Nofsinkcall decreases confirmed flows to 809), other features seem to have a
negative impact (e.g., disabling the fpre f ixlength feature actually allowed to find 813 confirmed
flows, more than using the full exploitability metric). Figure 5.5 shows missing and additional
confirmed flows relative to the baseline. To move from the impact of the EM on the potential
flows, we now focus on the common set of packages where all conditions found a potential flow,
illustrated in Figure 5.6.

Among packages where all configurations discovered potential flows, NMFINE-EM con-
firmed 12 additional flows relative to the baseline. Manual inspection of five cases showed that,
beyond finding additional potential flows, EM gains confirmed flows in two ways: First, it refines
inputs in exploitable entry points in such a way that, even though it approximately finds the same
flow as the baseline (same source and sink pair but different intermediate instructions), it is able
to find inputs that generate provenance trees that are simpler to exploit. This occured in two of
five cases. Secondly, even when the exact same flow is discovered by both NMFINE-EM and
NMFINE-NoEM, NMFINE-EM is able to prioritize flows by their exploitability estimate, which
led it to successfully confirm flows (within the time budget) on the remaining three of five cases.

Furthermore, we manually analyzed all five missing confirmed flows when using the ex-
ploitability metric when looking at the common set of packages with potential flows. The first
case had several exploitable entry points, and NMFINE-EM prioritized one exploitable entry
point the most, but successful exploitation required the synthesis of a valid filename (i.e., the file
had to exist in the filesystem). In the second and third cases, asynchronous behavior introduced
non-determinism, even though both conditions found the same exploitable flow. We launched
NMFINE-EM once again against the same package and it was able to confirm the same flow as
NMFINE-NoEM, even though we did not even change the PRNG seed used during fuzzing. In
the fourth case, both conditions attempted an exploitable flow on the first confirmation round,
but the input used by NMFINE-EM froze the npm process that validated the exploit. We assign a
60 second timeout for the process of validating a single exploit, as sometimes it takes some time
for the target entry point to process the input. If we give an additional 20 seconds of time budget
for NMFINE-EM, it is able to validate that its first attempt is actually successful. In the fifth
and final case, the exploitability metric overprioritized an entry point that showed early signs of
exploitability but was not exploitable: the vulnerability was in another entry point, but the sink
call was hard to reach.

Rounds to confirm and time to first confirmed flow. Full EM required significantly fewer
confirmation rounds (89% of the baseline on average, Welch t-test: t = 2.98, p = 0.001), while
confirming slightly faster (94% of baseline time, not statistically significant - t = 0.68, p = 0.25).
Recall that we stop at the first confirmed flow, and the time savings gained during confirmation
when using EM-enabled conditions are not used to analyze more packages: the baseline experi-
ment just takes longer to analyze the same set of packages.

98

EM EM-Nof
sinkcall

EM-Nof
taintedarg

EM-Nof
prefixlength

EM-Nof
atkdata

EM-Nof
opcomplexity

15

10

5

0

5

10

15
De

lta
 o

f p
ac

ka
ge

s w
ith

 c
on

fir
m

ed
 fl

ow
s

16 15 15 16 15
13

7
5 6 6

9
6

Extra confirmed flows
Missing confirmed flows

Figure 5.5: Missing and extra confirmed flows, compared with NMFINE-NoEM.

Result 1a: EM-guided fuzzing confirmed flows in 1% more packages and required signif-
icantly fewer confirmation rounds than the baseline. Improvements stem from better entry
point prioritization and consequently more refined input generation, but also from sorting the
flows to confirm by their exploitability estimate.

RQ1b: Long timeout evaluation on potentials Dataset

To evaluate EM under longer budgets, we ran NMFINE-long-EM, NMFINE-long-NoEM, NMFINE-
long-EM-Nofsinkcall, NMFINE-long-EM-Noftaintedarg, NMFINE-long-EM-Nofprefixlength,
NMFINE-long-EM-Nofopcomplexity, and NMFINE-long-EM-Nofatkdata on the Potentials dataset.
Each configuration used a total timeout of 1800 seconds (30 minutes), with 1080 seconds (60%
of time budget, 18 minutes) for fuzzing. Results are summarized in Table 5.6.

Potential flows. Figure 5.7 compares each EM-enabled configuration against the baseline, re-
porting additional and extra potential flows. The longer timeout mitigated previous misses and
enabled EM to recover several flows not found under shorter runs. Even with extended time, the

99

EM EM-Nof
sinkcall

EM-Nof
taintedarg

EM-Nof
prefixlength

EM-Nof
atkdata

EM-Nof
opcomplexity

10

5

0

5

10

De
lta

 o
f p

ac
ka

ge
s w

ith
 c

on
fir

m
ed

 fl
ow

s

12 13 13 13 12
10

5 5 5 4
6 6

Extra confirmed flows
Missing confirmed flows

Figure 5.6: Missing and extra confirmed flows, compared with NMFINE-NoEM, but only within
the set of packages where all conditions discovered a potential flow.

baseline NMFINE-long-NoEM misses 45 potential flows, which we find to be usually deep in
entry points that were correctly prioritized by the exploitability metric.

Confirmed flows. Figure 5.8 shows the number of missed and extra confirmed flows discov-
ered by each condition relatively to the baseline NMFINE-long-NoEM. If we compare those
results to Figure 5.9, which shows the same data but only within the set of packages where a
potential flow was discovered by all conditions, we see that a significant portion of the gained
confirmed flows when using the exploitability metric come from finding a potential flow on the
first place. The remaining gains in confirmed flows, once again, seem to come both from finding
easier to exploit flows during fuzzing, and also from the prioritization of flows for confirmation
based on their exploitability estimate.

Rounds to confirm and time to first confirmed flow. Using the exploitability metric reduced
the average rounds to confirm from 1.44 to 1.23 (t = 2.48, p = 0.007) and the average confirma-
tion time from 8.65s to 6.20s (t = 2.68, p= 0.004). No individual feature seems to be responsible

100

NMFINE Condition #Packages with flows Avg. rounds
to confirm

(common confs.)

Avg. time
to confirm (s)

(common confs.)Pot. Conf. Conf.
(common pots.)

NoEM 3285 1638 1633 1.44 8.65
EM 3316 1656 1640 1.15 6.20
EM-Nofsinkcall 3308 1648 1634 1.23 7.43
EM-Noftaintedarg 3306 1650 1634 1.10 6.24
EM-Nofprefixlength 3321 1657 1638 1.15 6.49
EM-Nofopcomplexity 3304 1652 1637 1.18 7.58
EM-Nofatkdata 3306 1654 1641 1.17 6.56

Table 5.6: Summary of results for long-timeout evaluation on the 3,938 packages of the Poten-
tials dataset. For each NodeMedic-FINE-2025 configuration, we show the number of packages
with discovered potential flows, the number of packages with confirmed flows, the number of
packages with confirmed flows among the 3248 packages with potential flows found in common
by all conditions, the average number of rounds to confirm a flow, and the average time to con-
firm a flow within the 1,620 packages where a confirmed flow was found by all conditions.

for most of the decrease in the average rounds to confirm, but fsinkcall and fopcomplexity seem to
have a large impact on the average time to confirm, as disabling them results in an increase from
6.20 (full exploitability metric) to 7.43s and 7.58s respectively. With respect to fopcomplexity con-
tributions, it directly prioritizes flows that use simpler operations, and it mainly affects the SMT
confirmation stage where Z3 is called. The impact of fsinkcall comes from the prioritization of
flows with sinks that are easier to exploit, which saves time attempting confirmation on entry
points using spawn when other flows exist.

Result 1b: With a long timeout, EM-guided fuzzing discovered nearly all potential flows
found by the baseline (missing only 14), plus 45 additional ones. It confirmed 25 more flows,
using 20% fewer confirmation rounds and 28% less confirmation time than the baseline.

5.3.3 RQ2: Comparison with Prior Work.

In this section, we compare NMFINE-EM against state-of-the-art tools for ACI and ACE detec-
tion: FAST [60] and Explode.js [83]. This evaluation uses the Random120k dataset, which
includes the 100,000 most popular npm packages (by weekly downloads) and an additional
20,000 randomly sampled packages. Each tool was given a 5-minute timeout per package. For
NMFINE-EM, 60% of this budget (3 minutes) was allocated to fuzzing.

Table 5.7 summarizes the results in terms of potential and confirmed flows. NMFINE-EM
reports more confirmed ACE flows than all other tools.

FAST seemingly detects the largest number of potential flows and ACI confirmed flows over-
all. However, FAST does not execute its synthesized exploits to validate exploitability; its notion
of a "confirmed flow" is therefore more permissive.

Additionally, unlike NodeMedic-FINE-2025 and Explode.js, FAST is a purely static analysis
tool that does not require package installation or execution. Finally, NodeMedic-FINE-2025

101

EM long-EM-Nof
sinkcall

long-EM-Nof
taintedarg

long-EM-Nof
prefixlength

long-EM-Nof
atkdata

long-EM-Nof
opcomplexity

40

20

0

20

40
De

lta
 o

f p
ac

ka
ge

s w
ith

 p
ot

en
tia

l f
lo

ws

45
36 34

49
39

32

14 13 13 13 18 13

Extra potential flows
Missing potential flows

Figure 5.7: Missing and extra potential flows for conditions using the exploitability metric, com-
pared with the baseline NMFINE-long-NoEM. This was using a large time budget of 1800 sec-
onds per package (including 1080 seconds allocated to fuzzing).

and Explode.js impose additional preconditions for successful analysis, such as requiring a valid
package.json with a defined main field.

Valid packages. For the remainder of this section, we focus on Random120k packages for
which detection started successfully in all tools. We define a valid package as one meeting the
following tool-specific criteria:

• Explode.js successfully builds the graph-based representation using Graph.js, indicated by
the presence of "PHASE 0: VULNERABILITY DETECTION" and absence of "Graphjs
exited with non-zero code" in Explode.js output.

• FAST successfully generates a CFG and begins its top-down abstract interpretation phase,
inferred from the presence of CFG statistics in FAST output.

• NMFINE-EM successfully starts fuzzing.
We call packages obeying all three criteria valid packages.

Figure 5.10 shows the overlap of valid packages. FAST and Explode.js rely primarily on

102

EM long-EM-Nof
sinkcall

long-EM-Nof
taintedarg

long-EM-Nof
prefixlength

long-EM-Nof
atkdata

long-EM-Nof
opcomplexity

20

10

0

10

20
De

lta
 o

f p
ac

ka
ge

s w
ith

 c
on

fir
m

ed
 fl

ow
s

25
19 22

26
21 23

7 9 10 7 5
9

Extra confirmed flows
Missing confirmed flows

Figure 5.8: Missing and extra confirmed flows, compared with NMFINE-long-NoEM.

static analysis for potential flow detection, which allows them to handle more packages. Ex-
plode.js requires code execution only for confirmation, while NodeMedic-FINE-2025 must in-
stall dependencies and execute code from the start. This explains the smaller valid set for
NodeMedic-FINE-2025. Moreover, while EM-guided analysis finished faster than NMFINE-
NoEM (around 15.5 hours for NMFINE-EM, compared to 16 hours for NMFINE-NoEM), there
were no significant differences in ACI or ACE detection in valid packages, so we focus on the
comparison between NMFINE-EM, FAST and Explode.js.

Both FAST and Explode.js support additional vulnerability types (e.g., path traversal, pro-
totype pollution), but we restrict analysis to ACI and ACE for comparability with NodeMedic-
FINE-2025.

Potential flows. Figure 5.11 and Figure 5.12 show Venn diagrams of potential flows detected
by each tool in the valid set, respectively for ACI and ACE flows. Each tool identifies a substan-
tial number of unique potential flows, highlighting their complementary coverage. Explode.js
detects the largest number of unique ACE potential flows (101 cases). FAST, as a static tool, also
report a larger number of potential flows than NODEMEDIC-FINE.

103

EM long-EM-Nof
sinkcall

long-EM-Nof
taintedarg

long-EM-Nof
prefixlength

long-EM-Nof
atkdata

long-EM-Nof
opcomplexity

10

5

0

5

10
De

lta
 o

f p
ac

ka
ge

s w
ith

 c
on

fir
m

ed
 fl

ow
s

12
9 10 11 11 11

5
8 9

6
3

7

Extra confirmed flows
Missing confirmed flows

Figure 5.9: Missing and extra confirmed flows, compared with NMFINE-long-NoEM, but only
within the set of packages where all conditions discovered a potential flow.

Overall confirmed flows. We now analyze confirmed flows, including a manual inspection of
flows uniquely discovered by one of the tools. Figure 5.13 and Figure 5.14 show Venn diagrams
of confirmed flows for ACI and ACE, respectively.

We manually sampled up to five unique ACI and five ACE confirmed flows per tool to inves-
tigate why the others missed them.

NMFINE-EM unique confirmed flows. As shown in Figure 5.13, NMFINE-EM uniquely dis-
covered 11 confirmed ACI flows. Manual inspection of five revealed that all involved JavaScript
constructs difficult to handle statically, such as higher-order functions and asynchronous call-
backs. A similar pattern was observed for five of the 15 unique ACE confirmed flows (Fig-
ure 5.14). Neither Explode.js nor FAST discovered potential flows in any of the manually in-
vestigated packages with confirmed flows by NMFINE-EM. While 9 cases were true positives, a
flow discovered in the p4-oo@2.0.3 package was a false positive, since the package documen-
tation (including code documentation) already warns that inputs are not sanitized. That package
exported its entry points like so: module.exports = require('./lib/p4')(exec,path), where exec

104

https://www.npmjs.com/package/p4-oo

Condition ACI ACE
Potential flows Confirmed flows Potential flows Confirmed flows

NMFINE-EM 115 47 61 34
NMFINE-NoEM 116 44 62 33
FAST 179 109 112 28
Explode.js 72 4 116 2

Table 5.7: Overall results of evaluating NMFINE-EM, Explode.js and FAST against all packages
from the Random120k dataset, in terms of potential and confirmed flows separated by vulnera-
bility type.

is the child-process sink to execute arbitrary commands. FAST does not detect this case because
lib/p4 exports entry points that call the argument passed in the constructor, and the argument is
itself a function, making the lib/p4 constructor a higher-order function. Explode.js queries to
Graph.js returned no results in this case, preventing Explode.js from linking exported entry points
to sinks. This is because Explode.js’s underlying detection engine (based on Graph.js queries)
does not handle packages that build their module.exports object based on the exported entry point
of some internal or external library. In contrast, NodeMedic-FINE-2025 dynamically identifies
entry points to analyze by simply inspecting module.exports at runtime.

We further analyzed the only two cases that NMFINE-EM confirmed but FAST and Ex-
plode.js only detected as potential flows. In one ACI case, Explode.js halted symbolic ex-
ecution at an unsupported await statement, while FAST’s translation to Z3 produced unsat-
isfiable constraints due to imprecise data-flow modeling. : The package combines a call to
require('path').join(argument). The other case was a package with an ACE flow. Explode.js
generates two symbolic drivers. One driver assumes that the sink argument can be an array,
which is incorrect because this application always calls the search method on the entry point
argument. That method does not exist for arrays, and symbolic execution errored with TypeEr-
ror. NodeMedic-FINE-2025 inference correctly infers that the correct type is string. Explode.js
second driver timeouts, even after we give it an additional 20 minutes timeout. The culprit ap-
pears to be an iteration over regex search results, a difficult constraint to handle during symbolic
execution. FAST failed during constraint solving. Regardless, FAST constraints were missing
syntactic validity constraints for the payload, producing an incomplete but satisfiable model.

Explode.js unique confirmed flows. Explode.js uniquely confirmed one ACE flow that nei-
ther FAST nor NodeMedic-FINE-2025 confirmed. The case involved the vm.runInContext ACE
sink, which is similar to the eval sink (although it receives a context with global variables as pa-
rameter) and only Explode.js supports it for confirmation. NodeMedic-FINE-2025 detected the
potential flow but lacked confirmation support for this sink. Extending NodeMedic-FINE-2025’s
confirmation engine with this sink (a one-line change in two files) allowed it to confirm the flow.

FAST unique confirmed flows. We manually inspected five of the 36 ACI flows and five of the
11 ACE flows uniquely confirmed by FAST. Of these, six were false positives: although FAST
reported confirmed flows, the packages were not actually exploitable (e.g., one package invoked

105

5558

29448
5115

10164

3269
45059

10942

NodeMedic-FINE-EM

FAST

Explode.js

Figure 5.10: Set of Random120k packages that are valid for each tool. We focus our analysis on
the intersection of 10,942 packages that are valid for all tools.

spawn but never passed shell=true). Three were true positives where FAST correctly identified
the vulnerability, but the synthesized exploit failed to execute as intended (e.g., one vulnerable
entry point required escaping a single-quote context; FAST generated "x00''; touch exploited #",
which reentered a single-quote context immediately after escaping). Finally, one ACI flow was
a true positive for which FAST’s exploit succeeded. That package used async primitives, which
prevented Explode.js from synthesizing an exploit. NodeMedic-FINE-2025 failed to detect this
flow because the vulnerable function was returned by an exported entry point rather than being
directly exported, a case NODEMEDIC-FINE’s does not currently support. While this is not a
fundamental limitation, it causes NODEMEDIC-FINE to miss the potential flow.

Result 2: The majority of confirmed flows uniquely identified by NMFINE-EM arise from
its dynamic analysis, which enables it to detect vulnerabilities involving complex JavaScript
primitives that static tools such as FAST and Explode.js fail to handle.

106

19
3718

14

3 14

11

NodeMedic-FINE-EM
FAST

Explode.js

Figure 5.11: ACI potential flows discovered by NMFINE-EM, Explode.js and FAST, within the
set of 10,942 valid packages.

5.4 Limitations and Future Work

The effectiveness of the exploitability metric depends on how accurately its features discriminate
exploitable from non-exploitable paths. During manual analysis, we identified two packages
in which the metric caused the fuzzer to overprioritize an entry point that initially appeared
promising but was ultimately not the correct one to analyze. This behavior reflects the classical
exploration-exploitation dilemma in fuzzing [81], where one must balance investing further in
inputs that appear promising against exploring unexplored alternatives. To mitigate this issue,
we enforce a maximum relative likelihood ratio of selecting any pair of entry points, using a
fixed threshold: no entry point can become more than ten times more likely to be explored
than any other. Our manual investigation suggests that the optimal ratio to use during fuzzing
likely depends on the remaining time budget for that package. As a future direction, a lower
threshold could be applied early in fuzzing to promote exploration across entry points, followed
by a gradual increase as time diminishes, allowing more intensive focus on entry points with high
exploitability estimates.

Furthermore, we used the exploitability metric solely to select which entry point to analyze

107

18 34
4

37

1 5

6

NodeMedic-FINE-EM
FAST

Explode.js

Figure 5.12: ACE potential flows discovered by NMFINE-EM, Explode.js and FAST, within the
set of 10,942 valid packages.

at each iteration. If a package contains one vulnerable entry point among N total entry points
with similar runtimes, then, even when assuming optimal prioritization, the time to find the flow
will be theoretically lower bounded by at least 1

N of the baseline time. Although packages in
Random120k export an average of 40.88 entry points, only about half of the packages in that
dataset export more than one entry point. This limits the potential benefit of our integration
strategy, which influences performance only when multiple entry points are available. A
more substantial improvement may arise from giving the fuzzer more granular units of selection.
Rather than selecting entry points, the metric could instead prioritize specifications, with each
entry point associated with multiple specifications targeting diverse input populations that suit
different structural characteristics of the entry point.

Further gains may also come from different or nonlinear feature combinations. Manual anal-
ysis indicates a recurring trade-off between selecting provenance trees with low complexity and
those with greater amounts of attacker-controlled input passed to the sink. In practice, we find
that proving that the attacker can inject a sufficient amount of data is often enough to ensure
that a payload of interest fits. This suggests that attacker-controlled input should receive sharply
increasing weight until a threshold is reached, after which additional injected input should have

108

11 36
8

1

NodeMedic-FINE-EM

FAST

Explode.js

Figure 5.13: ACI confirmed flows discovered by NMFINE-EM, Explode.js and FAST, within
the set of 10,942 valid packages.

diminishing or no influence on the exploitability estimate.
Finally, we currently use the same exploitability metric during fuzzing (for entry point pri-

oritization) and after fuzzing (for flow prioritization), even though these stages have distinct
purposes. Designing separate metrics for these stages may yield better performance, even if both
use the same underlying features.

5.5 Conclusion
This work investigated a set of features that can be composed into an exploitability metric for
estimating the exploitability of program paths. We integrated this metric into NODEMEDIC-
FINE’s fuzzing and confirmation pipeline to prioritize flows with higher exploitability estimates.
A large-scale evaluation shows that incorporating this metric increases the number of confirmed
flows by 1% without reducing the number of potential flows. Furthermore, the same confirmed
flows can be identified more quickly, reducing confirmation time by up to 28% relative to the
baseline without the metric.

109

1511 3 11

NodeMedic-FINE-EM
FAST

Explode.js

Figure 5.14: ACE confirmed flows discovered by NMFINE-EM, Explode.js and FAST, within
the set of 10,942 valid packages.

110

Chapter 6
Responsibility of Input Sanitization

In this chapter, we study whether npm package developers respect security warnings present in
the documentation of their dependencies, which refer to unsafe ACE and ACI sink usages.

6.1 Overview

During reporting of NODEMEDIC-FINE vulnerabilities, one source of false positives were pack-
ages that explicitly acknowledged, in their documentation, that a security concern exists on the
relevant entry points, and delegated the responsibility of sanitizing the respective inputs to the
caller. Additionally, for a subset of the true positives, developers responded to our reports by
adding such disclaimers in their documentation rather than fixing the underlying vulnerability.

In this work, we assess whether package developers respect security warnings in their depen-
dencies’ documentation. With the help of large-language models (LLMs), we triaged the doc-
umentation of all packages currently available in the npm repository1. A set of 4,547 packages
was signaled by GEMMA3:12B [127] and GPT-OSS:20B [103] as potentially having warnings
(full gathering methodology and used prompts are described in Section 6.2). After manual val-
idation, we obtained a set of 301 packages whose documentation explicitly warns of potential
ACE or ACI issues at their entry points.

In Section 6.3, we analyzed all 31,117 dependents of those 301 packages with FAST [60],
Explode.js [83] and NODEMEDIC-FINE, to determine whether these warnings are respected and
how warning characteristics impact exploitability in dependent code.

Overall, we discovered 23 previously unknown vulnerabilities. These packages are not sani-
tizing the inputs before passing them to vulnerable dependency entry points, despite the warning.
The security implications are serious: at least two packages with thousands of dependents are
not sanitizing their inputs internally, which facilitates the presence of security vulnerabilities.

Finally, we discuss limitations and threats to validity in Section 6.4: the accuracy of LLM
triage and potential labeling bias in manual confirmation.

1We used the all-the-packages package (https://www.npmjs.com/package/all-the-packages) to extract
all npm package names available in the repository.

111

https://www.npmjs.com/package/all-the-packages

6.2 LLM-Assisted Triage of Package Documentations
In this section, we detail the process that we have used to collect a dataset of packages with
security warnings in their documentation. Overall, we first triaged the npm repository using
Large Language Models (LLMs) to identify a pool of packages that are flagged to potentially
contain warnings in their documentation, and then we manually verified all flagged packages.

Relevant warnings. Some packages’ documentation contains security-related warnings, re-
garding the unsafe usage of ACI or ACE sinks by at least one of their entry points. These
warnings can be seen as delegating the input sanitization responsibility to dependent packages.
We call these relevant warnings. For example, the package gunsafe@2.6.0 includes the follow-
ing relevant warning: "The ability to run stored code adds some additional possibilities to the
versatility of Gunsafe, but use with care! The –run –global argument uses eval(), for example.".
In short, that warning not only implies that sanitization should occur in dependent packages, but
also the insecurity comes from the use of an ACE sink.

First pre-filtering stage with a small model run. We triage NPM package documentations
using the help of LLMs. This LLM-assisted triage is not meant to perfectly identify all packages
with warnings, but rather to build a large pool of packages that are more likely to have warn-
ings, though small enough that we can feasibly validate manually. We started from the complete
npm repository, which had 3,540,963 packages at the time of gathering2. From those, we kept
only the 1,670,928 packages that have at least 1 dependent package. Out of the 1,670,928 pack-
ages, we successfully extracted non-empty documentation for 1,166,078 packages by parsing
their respective NPM pages3. We first ran a small, non-reasoning model (gemma3:12b)4 with
a conservative prompt to reduce false negatives. Figure 6.1 describes the prompt used for this
small model run.

That run took approximately 41 hours on a single GeForce RTX 4080 (16 GB VRAM) and
flagged 51,713 documentation files as potentially containing warnings.

Second pre-filtering with a larger model run. We used a larger reasoning model (gpt-oss:20b)
to process the 51,713 documents that were signaled in the previous run. This larger model flagged
4,547 documents for manual review. The prompt used for the larger model is the same as that for
the smaller model, except that it does not include the instruction "Do not summarize the provided
text or provide any breakdowns of the text.". This is because, unlike the smaller model, the larger
model did not tend to include a summary of the documentation in its output, and it might also
be useful for it to summarize the package documentation in its reasoning chain before producing
an answer. Furthermore, gpt-oss:20b has three levels of reasoning (Low, Medium, and High):
Since High produces much longer reasoning chains and had a large impact on inference time,

2Gathering occurred on August 17th, 2025.
3Typically https://www.npmjs.com/package/<packagename>
4We also tried deepseek 1.5b and deepseek 8b, but gemma3:12b was the only tested package that correctly

signaled 4 packages that we were already aware that contained warnings in their documentation, while not signaling
a matching number of synthesized examples that did not contain warnings.

112

https://www.npmjs.com/package/gunsafe
https://www.npmjs.com/package/<package name>

[{"role": "system", "content": """
Do not summarize the provided text or provide any breakdowns of the text. You

will receive a \npm package documentation delimited by triple backticks.
You MUST reply with EXACTLY:

↪→

↪→

-"yes" (lowercase, no punctuation) if the documentation contains a warning
about passing unsafe, unsanitized inputs to some entry point, or warning
developers to be careful in the usage of some of the entry points, for
example if a function like eval, function constructor, exec or spawn is
used carelessly. In this case, after 'yes', type a space and then the
exact warning sentence.

↪→

↪→

↪→

↪→

↪→

-"no" (lowercase, no punctuation) if there is no such warning.
You must not add anything else.},
{"role": "user", "content": f"""Here are two examples:
DOC:
```
<positive example of a documentation with a warning>
```
Answer: """},
{"role": "assistant", "content":
"yes, 'Just be careful not to pass any unsanitized input to the

\"exec_command\" entrypoint!'"},↪→

{"role": "user", "content": """
DOC:
```
<negative example of a documentation with a warning>
```
Answer: """},
{"role":"assistant", "content": "no"},
{"role":"user", "content":f"""
DOC:
```
{doc}
```
Answer: """}]

Figure 6.1: Prompt for gemma3:12b model described in the chat ML language. We had to
specifically request the model not to provide a summarization of the documentation: without that
instruction, it tended to summarize the documentation instead of actually answering yes or not.
Two examples are passed, one positive (described in Figure 6.2) and one negative (Figure 6.3).
We filtered out packages for which the model output was EXACTLY "no", and preserved all
other outputs for further analysis with a larger model, even those that did not start with "yes".

we used the Medium reasoning level. This larger-model run required approximately 243 GPU
hours on A100 GPUs (40 GB VRAM each) and identified 4,547 of the 51,713 documentation
files as potentially containing security-related warnings.

113

Here is the documentation for my fantastic package!

In order to use this package, users must be aware that string arguments are
expected.↪→

Just be careful not to pass any unsanitized input to the "exec_command" entry
point!↪→

Figure 6.2: Positive example of a warning: Responsibility of sanitizing the input for some of the
entry points is delegated to the dependent packages.

Welcome!

Sanitization is important, it prevents illness quite effectively.

We've got some great entry points here, for example "exec_command", that's a
beauty. It will execute any commands you give it, it's perfect!↪→

Figure 6.3: Negative example of a warning. It uses red-herring words like "sanitization" and
"exec_command" but it is actually not warning users to sanitize the inputs; executing arbitrary
commands is legitimate functionality.

Details regarding model inference runs. We exclusively employed open-source large lan-
guage models in order to maintain full control over the inference pipeline and ensure experi-
mental replicability. This choice is particularly important given that proprietary AI services may
deprecate models over time or alter prompts before they are passed to the underlying model,
thereby introducing uncontrolled variability. The models gpt-oss:20b and gemma3:12b were
downloaded and installed following the official instructions provided on their respective Hug-
ging Face repositories: https://huggingface.co/openai/gpt-oss-20b and https:
//huggingface.co/google/gemma-3-12b-it. Inference was performed using the ollama
Python framework, with the prompts described above. The temperature parameter was set to
zero in all experiments to maximize determinism and reproducibility. For each package under
analysis, the model’s full output was evaluated as follows: if the response was exactly no (case-
insensitive), the package was discarded; otherwise, the package was forwarded to the subsequent
triage stage. Consequently, malformed or unexpected model outputs were conservatively treated
as positive signals indicating potential security warnings. This design choice mitigates false
negatives arising from documentation that confuses the model or causes it to deviate from the
expected output format specified by the system prompt.

Manual confirmation of the presence of security warnings. We manually inspected the
4,547 packages that were signaled by both gemma3:12b and gpt-oss:20b as having security
warnings. From those cases, we filtered out packages where the signaled sentence only con-
tained red-herrings or referred to other vulnerabilities besides ACI and ACE, and manually read
the documentations of the remaining packages. We manually confirmed that 301 of those 4,547
packages indeed have relevant security warnings in their documentations. In some cases, we had

114

https://huggingface.co/openai/gpt-oss-20b
https://huggingface.co/google/gemma-3-12b-it
https://huggingface.co/google/gemma-3-12b-it

to verify (by looking at the actual code of a package) that the mentioned entry points code really
used an ACE or ACI sink unsafely, since the documentation was sometimes ambiguous and only
referred to potential security problems in a general sense. For instance, firedev-vsce@0.0.4
includes in its documentation the sentence "When using vsce as a library be sure to sanitize any
user input used in API calls, as a security measurement.". That warning could reasonably refer
to, for example, a SQL injection vulnerability. However, reading the code disambiguates the
warning, as the package really passes entry point arguments to the ACI sink exec.

We provide a full list of the 301 packages, together with the sentence signaled by gpt-oss:20b
in Table 8.1. We should also note that the sentences signaled by the model were not always the
exact warning sentences, or they were missing relevant context in other content of the documen-
tation. For example, for @iac-factory/tty-testing@0.1.9, the signaled sentence was "CLI
utilities can be incredibly dangerous." but the full documentation contained more information
about what the danger was (use of a ACI sink).

6.3 Evaluation
In this section, we aim to answer the following research question:
RQ: Do npm package developers heed security-related warnings contained in the documentation
of their dependencies?

To answer this question, we followed the process described in Section 6.2 and collected a
list of 301 packages with relevant security warnings their documentation. Packages identified
as having security warnings had between 1 and 13,469 dependents, with an average of 103.4
dependents.

We collected the full list of 31,117 npm packages that, at the time of gathering, depended
on at least one of those 301 packages. We refer to this final dataset of 31,117 packages as
our DepWarnings dataset. Finally, we analyzed DepWarnings using current code injection
detection tools, followed by manual investigation of potential flows.

6.3.1 RQ: Are ACI and ACE Warnings Heeded by Dependent Packages?
We ran NMFINE-EM, NMFINE-NoEM, FAST, and Explode.js with a 5-minute time budget
per package. We then manually inspected the reported flows5 to determine whether dependent-
package developers sanitized inputs passed to vulnerable dependency entry points.

Overview of results. Our manual inspection of all flows reported by the tools uncovered 23
previously unknown vulnerabilities: dependent packages that do not sanitize attacker-controlled
inputs before passing them to vulnerable dependency entry points and that do not surface the
corresponding security warnings in their own documentation. The majority of these vulnerabili-
ties occur in dependents of open and ejs. Both packages instruct dependents to sanitize inputs,
yet each has more than 10,000 dependents, all of which must consider the warning to avoid
introducing vulnerabilities. Next, we investigate this situation in more depth.

5Credit for most of this manual analysis goes to Mindy Hsu. I only double-checked the true positive cases.

115

https://www.npmjs.com/package/firedev-vsce
https://www.npmjs.com/package/@iac-factory/tty-testing
https://www.npmjs.com/package/open
https://www.npmjs.com/package/ejs

Category FAST Explode.js NM-FINE Total unique
pot. conf. pot. conf. pot. conf.

False positive, unexploitable 95 55 47 0 48 0 184
False positive, inherited_warning 0 0 0 0 0 0 0
False positive, legitimate 9 2 4 0 42 5 53
False positive, atkmodel 18 13 8 1 1 1 26
Deprecated 1 1 0 0 1 0 2
True positive, unrelated 10 7 18 0 25 19 50
True positive, relevant 14 13 2 0 8 3 23
Total 147 91 79 1 125 28 338

Table 6.1: Categorization of 338 potential (pot.) and confirmed (conf.) flows discovered by
FAST, Explode.js and NODEMEDIC-FINE (NM-FINE) in the DepWarnings dataset. Confirmed
flows are always a subset of potential flows.

Manual investigation methodology. For each dependent package with discovered flows, we
manually assigned one of the following categories:

• False positive, unexploitable: The package is not exploitable. This occurs with unex-
ploitable FAST flows or unexploitable potential flows from NodeMedic-FINE-2025 or
Explode.js.

• False positive, inherited_warning: The package is technically exploitable but correctly
propagates the dependency’s warning in its own documentation or includes a newly added
security warning.

• False positive, legitimate: The package is exploitable, but executing arbitrary commands
or code is an intended feature.

• False positive, atkmodel: The package is exploitable but does not match our attacker
model (i.e., attacker control of the entry point arguments is unreasonable).

• Deprecated: The package is deprecated.
• True positive, unrelated: The package contains a vulnerability but it is unrelated to the

vulnerable dependency entry point.
• True positive, relevant: The package is vulnerable because it passes unsanitized input to

the vulnerable dependency entry point.
A breakdown of the categorization results is reported in Table 6.1.

Categorization results. The total column in Table 6.1 counts unique flows; a single package
may contain flows reported by multiple tools. FAST is the only tool with unexploitable false
positives among confirmed flows (55 out of 91, approximately 60%, which is consistent to what
we have discovered in prior manual analysis of FAST confirmed flows). No vulnerable pack-
age propagated its dependency’s warning (False positive, inherited_warning: 0 cases). This
demonstrates a fundamental weakness of relying on documentation-based warnings: users of
dependent packages would need to read not only their direct dependencies documentation but

116

also the documentation of deeper transitive dependencies, which is particularly infeasible in the
npm ecosystem, where dependency trees are large. We are in the process of reporting all 73
confirmed vulnerabilities (50 + 23), including the 50 vulnerabilities not caused by vulnerable
dependency entry points (i.e., True positive, unrelated cases, mostly involving security issues
in the dependent package’s own code). We study the 23 True positive, relevant cases where the
vulnerability stems from the dependent package’s use of an insecure dependency entry point.

Analysis of relevant true positives. The relevant true positives stem from dependents of only
four packages with warnings. Two of these dependencies have only a single dependent package
each. We instead focus on the two popular dependencies with warnings:

• open: This package has 12,017 dependents. Some versions are vulnerable to ACI and
74% (17/23) of relevant vulnerabilities occur in dependents of open. Although the latest
version is not vulnerable, most affected dependents use open@0.0.5, an older vulnerable
version (with a public advisory6) that still receives 136,775 weekly downloads. Version
0.0.5 also includes a warning, though different from the latest version.

• ejs: This package has 14,879 dependents. It is vulnerable to ACE and 17% (4/23) of
relevant vulnerabilities occur in dependents of ejs. Four of these dependents rely on the
latest version, which remains vulnerable.

One package contains two vulnerabilities and depends on both open and ejs. The issue here is
clear: Thousands of dependents of these packages need to remember to sanitize the inputs, or
they might be vulnerable.

Moreover, all four dependencies include warnings with clarity and ambiguity problems. For
example, the open@0.0.5 documentation states: “The same care should be taken when calling
open as if you were calling child_process.exec directly. If it is an executable it will run in a new
shell.”. This wording is, in our opinion, easy to misinterpret as a functional notice rather than a
security warning.

In the case of ejs, the latest documentation states: Security professionals, before reporting
any security issues, please reference the SECURITY.md in this project, in particular, the follow-
ing: “EJS is effectively a JavaScript runtime. Its entire job is to execute JavaScript. If you run
the EJS render method without checking the inputs yourself, you are responsible for the results.”
In short, DO NOT submit ‘vulnerabilities’ that include this snippet of code: (...).

A security researcher has looked at the ejs package already, finding that "Although there is
already a prompt now, it is more targeted at asking security researchers not to report, rather than
asking developers not to use it in this way." [56]. The maintainer has kept the same stance for
years, delegating input sanitization responsibility to dependents [86, 87, 88, 89, 90].

Result: We found 23 vulnerable packages that did not follow the security warnings docu-
mented in their dependencies. Most of these depend on either ejs or open, two widely used
packages whose documentation places responsibility for input sanitization on dependents,
facilitating situations under which ACI and ACE vulnerabilities can arise.

6https://github.com/advisories/GHSA-28xh-wpgr-7fm8

117

https://www.npmjs.com/package/open
https://www.npmjs.com/package/open
https://www.npmjs.com/package/open
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/open
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/open
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/open

6.4 Threats to Validity
Regarding the completeness of the dataset of (301) packages with security warnings, although
we did not encounter any instance of a warning present in a package documentation but missed
by any of the LLMs, we expect such cases to exist. If true, our dataset of 301 packages with
warnings would be incomplete. Despite recent improvements in LLM reading-comprehension
capabilities [64], current models still suffer from hallucinations [35], preventing guarantees that
all npm packages with relevant warnings are correctly signaled.

Additionally, documentations do not always clearly, unambiguously specify whether sani-
tization responsibilities lie with the dependent package, creating potential labeling bias in the
construction of our dataset of 301 packages with warnings. Nevertheless, an explicit delegation
of input sanitization responsibility exists in the documentation of all four dependencies of the
packages with true positives.

Finally, it is often unclear whether input-sanitization responsibility lies with dependents or
dependencies, a tension that Synode terms the “blame game” [122]. A developer study is there-
fore warranted to (1) examine how developers interpret security warnings, (2) identify what
developers consider effective versus ineffective warnings, and (3) determine under which cir-
cumstances input sanitization should be delegated to dependents. Although the third objective is
ambitious, establishing such guidance is essential for maintaining security in the npm ecosystem,
particularly for packages with many dependents.

6.5 Conclusion
We examined whether developers of npm packages respond appropriately to security warnings
documented by their dependencies. To do so, we conducted a large-scale analysis of 31,117
packages that depend on another package with a published security warning, leveraging state-of-
the-art tools for detecting and confirming arbitrary code injection and arbitrary code execution
vulnerabilities. This study uncovered 23 previously unknown vulnerabilities in packages that
fail to sanitize user inputs. The results highlight a significant security concern: at least two
widely used npm packages, each with more than 10,000 dependents, delegate input sanitization
responsibilities to their dependents, and not all dependents handle this responsibility correctly.

118

Chapter 7
Conclusion

This chapter summarizes the contributions of this thesis (Section 7.1), outlines future research
directions (Section 7.2), and concludes with final remarks (Section 7.3).

7.1 Summary

In this thesis, we have shown that a substantial number of JavaScript-based applications con-
tinue to suffer from code-injection vulnerabilities, including arbitrary command injection (ACI),
arbitrary code execution (ACE), and the latter’s client-side counterpart, DOM-based cross-site
scripting (DOM-XSS). These vulnerabilities are among the most severe classes of software flaws,
potentially leading to full remote compromise when exploited. Their impact is compounded by
the interconnected nature of both the web and the npm ecosystem, e.g., the security of a package
may depend on the integrity of a large and evolving dependency chain.

The primary contributions of this thesis address three challenges: (1) measuring the preva-
lence of DOM-XSS vulnerabilities on the web and automatically detecting DOM-XSS even
when they require user interactions or specific GET parameters; (2) detecting and confirming
ACI and ACE vulnerabilities in npm packages, including cases requiring complex input struc-
tures; and (3) identifying features of program paths that correlate with automatic exploitability,
enabling more efficient vulnerability confirmation.

Chapter 3 introduced a new DOM-XSS detection infrastructure featuring a fuzzing com-
ponent that simulates user interactions to trigger event-driven code. This design addresses a
key limitation of prior work, which largely overlooked vulnerabilities gated behind interactions.
In a recent large-scale experiment, this system identified 15% more vulnerabilities than prior
approaches. Through a comprehensive comparison with prior studies, we showed that improve-
ments in modern browser URL-encoding mechanisms significantly influence the exploitability
of DOM-XSS flows, even though that feature was not introduced for security purposes.

Chapter 4 shifted focus to server-side analysis. We enhanced NODEMEDIC, a state-of-the-art
dynamic analysis tool for identifying and confirming ACI and ACE vulnerabilities, by integrating
a fuzzer capable of generating complex structured inputs. We also developed techniques for
synthesizing valid JavaScript payloads required for confirming many ACE vulnerabilities. These

119

enhancements led to a 65% increase in confirmed flows over a version of NODEMEDIC without
our fuzzer. In particular, our ACE-confirmation method enabled the discovery of 21% more
confirmed ACE flows.

Chapter 5 examined what features of program paths most strongly indicate automatic ex-
ploitability and used these insights to guide NODEMEDIC-FINE’s fuzzer toward high-value
paths. This guidance preserved the number of potential flows and yielded a small increase
in confirmed flows (1%), and reduced confirmation time: In long-timeout experiments, the
exploitability-guided approach is 28% faster than the baseline at finding confirmed flows.

Vulnerabilities in npm packages can affect any dependent that calls a vulnerable entry point
with unsanitized inputs. In Chapter 6, we examined developer practices around security warn-
ings. Using an LLM-based pre-filtering step followed by manual inspection, we collected 301
packages whose documentation includes explicit security warnings, and analyzed their 31,117
dependents with NODEMEDIC-FINE, FAST, and Explode.js. This effort uncovered 23 new vul-
nerabilities stemming from dependents that failed to respect the documented warnings.

7.2 Future Directions
Autonomous vulnerability-analysis tools have advanced substantially, yet their current capabili-
ties leave important research problems open across scalability, coverage and exploit synthesis.

Uncovering deeper DOM-XSS flows. By mutating and recombining high-level actions in its
fuzzing pool, SWIPE’s fuzzer can synthesize complex interactions, such as drag-and-drop se-
quences. Nevertheless, due to its inherently randomized nature, the approach struggles to con-
sistently reach deeper portions of web applications, a well-known limitation of fuzzing-based
techniques. In particular, some execution flows are gated either by (1) complex predicates over
user-controlled inputs or by (2) long, strictly ordered sequences of application state transitions.
For (1), approaches such as PMForce and related work [55, 67, 126] bypass conditional checks
by forcing branch execution to reach deeper code regions; however, this strategy can violate
program semantics and introduce false positives. A promising way to handle challenge (1) is
to combine fuzzing with symbolic execution, allowing systematic satisfaction of complex input
constraints while preserving the scalability of fuzzing, as demonstrated by Driller [124].

For (2), prior work has investigated explicit modeling of application state transitions [31, 34,
93, 110]; however, how to effectively integrate such state models with SWIPE’s fuzzing-driven
architecture remains unclear.

Addressing DSE scalability issues. SWIPE’s dynamic symbolic execution (DSE) engine still
suffers from scalability issues. Performance could be improved not only by expanding and
refining symbolic models of common JavaScript functions, but also by prioritizing constraint
solving based on the vulnerability characteristics of functions along explored program paths.
Prior work [92] demonstrated that DOM-XSS vulnerability-oriented classification is achievable
through static analysis using deep neural networks. Moreover, the binary analysis community has
developed shared symbolic summaries for libc functions [111]. A similar effort for JavaScript,

120

designed to be reusable across DSE engines such as SWIPE, Explode.js, and other symbolic ex-
ecution frameworks, may provide substantial benefits. Creating such summaries would require
addressing differences between symbolic execution of binary programs and JavaScript, but could
meaningfully improve performance and cross-tool interoperability.

Better package drivers. NODEMEDIC-FINE does not currently synthesize exploits that re-
quire multiple entry point invocations. Explode.js [83] has advanced this capability by sup-
porting exploit chains composed of linear chains of calls (i.e., where each element in the chain
calls a function obtained from the previous call). However, it still cannot reason about arbi-
trary inter-entry point interactions. Supporting such interactions is difficult because identifying
all meaningful combinations of calls is combinatorially explosive. One direction is to analyze
how dependent packages use the target package in practice, leveraging developer-authored us-
age patterns. While this would not cover all interactions, it may capture those most likely to
matter in real-world exploitation. Furthermore, we think it would be interesting to explore how
LLMs could be used to automatically synthesize semantically consistent variations of usage pat-
terns extracted from dependent packages and to translate these variants into executable fuzzing
harnesses.

Broader package support. Chapter 5 exposed fundamental limitations in the coverage of cur-
rent state-of-the-art tools FAST, Explode.js, and NODEMEDIC-FINE. From the Random120k
dataset, comprised of 120,000 packages, NODEMEDIC-FINE was able to initiate analysis for
only 21%. FAST and Explode.js could analyze a larger fraction due to their static nature (75%
and 58% of Random120k), but successful exploit validation still requires packages to be instal-
lable and runnable. Improving the ability of tools to automatically install, initialize, and execute
a wider range of npm packages could have a direct and substantial impact on ecosystem security
by enabling broader coverage. This was never done for npm packages to the best of our knowl-
edge, though there is a recent study on leveraging LLM agents for the automatic installation of
Python projects [94].

LLM-aided analysis and confirmation on the server-side. Large language models have rapidly
matured and may now be effective as program analysis aids. An interesting direction for future
work is to investigate how LLMs can be systematically integrated into the ACI and ACE detec-
tion and confirmation pipelines. Given the well-known propensity of LLMs to hallucinate, their
most promising role might be as auxiliary analysis heuristics rather than authoritative decision
makers. In particular, we envision them assisting analysis by (1) prioritizing package entry points
(or, more generally, drivers) during fuzzing by assigning importance scores informed by static
properties of the code, and (2) guiding the selection of dependencies that should be analyzed
with higher precision. This is especially relevant since NODEMEDIC-FINE’s underlying taint
instrumentation, inherited from the original NODEMEDIC infrastructure, supports configurable
taint-propagation precision depending on the analyzed code. With respect to confirmation, recent
work such as PocGen has demonstrated that LLMs can be effective at constructing valid exploits
when provided with an existing vulnerability report. For ACE flows in particular, which often
require completing a syntactic prefix to execute code, LLMs’ code understanding and generation

121

capabilities suggest potential utility in proposing candidate prefix completions. We conducted an
initial experiment using a recent OpenAI model (GPT 5.2) to complete three complex prefixes
for which NODEMEDIC-FINE’s enumerator was ineffective. Although valid completions were
eventually generated for all three cases, the process revealed two significant challenges. First,
obtaining assistance from the model was itself difficult, as it correctly classified the task as po-
tentially dangerous: any valid completion containing a placeholder for an attacker-controlled ex-
pression could serve as an exploit template for a package exhibiting such a prefix at an ACE sink.
This observation suggests that closer collaboration between industry and academic researchers
may be beneficial, whereby researchers working to secure the npm ecosystem could be granted
access to research-oriented models with appropriately relaxed safety constraints. Second, even
recent models struggle to respect strict character-level constraints, such as adhering to a whitelist
of allowed characters or avoiding a blacklist of forbidden ones, when generating prefix comple-
tions. While NODEMEDIC-FINE’s enumerator can systematically produce multiple alternative
completions using different characters, it remains unclear whether LLMs in the near future will
be able to generate sufficiently diverse alternatives to confirm flows that impose such stringent
character restrictions.

Support for additional vulnerabilities in NODEMEDIC-FINE. NODEMEDIC-FINE’s taint
engine currently supports the detection of arbitrary command injection and arbitrary code exe-
cution vulnerabilities. Support for additional vulnerability classes (e.g., path traversal) can be
achieved by extending the set of taint sources and sinks. However, accurately detecting certain
vulnerabilities may require a more expressive taint representation than a single boolean indi-
cator. In the case of prototype pollution, detection requires identifying executions of setField
where an attacker-controlled property name and value are used, and where the write targets an
object on the prototype chain. We expect that simply flagging attacker-controlled target objects
will be insufficient and is likely to produce a significant amount of false positives. Nevertheless,
NODEMEDIC-FINE’s taint engine can be extended to support richer taint metadata beyond a
boolean abstraction, at the cost of additional implementation complexity.

Developer study on packages with security warnings. In Chapter 6, we identified 22 pack-
ages that unsafely ignore security warnings documented by their dependencies. Because some
maintainers choose to document security expectations rather than implement sanitization inter-
nally, it is important to understand how developers perceive such warnings and how they expect
to receive security-relevant information. A study of developer attitudes and practices could in-
form better documentation and automated feedback mechanisms aimed at reducing misuse.

7.3 Concluding Thoughts
Automated detection and confirmation of code-injection vulnerabilities provide powerful capa-
bilities for both offensive and defensive security. Although this thesis foregrounds an attacker-
oriented view, its results directly support defensive efforts. Our analysis uncovered numerous real
vulnerabilities, several of which have already been patched. By improving the ability to identify
and confirm vulnerabilities in both client-side and server-side JavaScript, we believe this work

122

was meaningful, as it contributes to strengthening the security of the broader JavaScript-based
ecosystem and the users who rely on it.

123

124

Chapter 8
Supplementary Material

8.1 NODEMEDIC-FINE Supplementary Material

8.1.1 Supported Sinks

In Figure 8.1 we describe all sinks that are supported by NODEMEDIC-FINE, categorized by
vulnerability type (ACI versus ACE). Different sinks have different arguments that need to be
tainted in order for a flow to be exploitable. While this is trivial for sinks like eval or exec,
which only receive one argument, it is still an important nuance for the Function constructor for
example. In the Function constructor ACE sink, the last argument is the actual code, while the
initial arguments are simply argument names that can be used in the function body. We include
sinks from the vm module, since the documentation warns users not to run untrusted code with its
methods [101], although we only support them during analysis, not for confirmation.

Sink Type Sink Name Sink Description

ACE eval Evaluate a given string argument as JavaScript code.
ACE Function constructor Create a new function from given string arguments.
ACE runInNewContext Run JavaScript code. Only safe in a new process.
ACE runInThisContext Run JavaScript code. Still has access to global object.
ACE runInContext Run JavaScript code in a given context.
ACI execSync Synchronously spawn a given shell command.
ACI exec Asynchronously spawn a given shell command.
ACI spawn Spawn a new process using a given command.

shell=true needs to be set for exploitability.
ACI spawnSync Synchronously spawn a process using a given command.

shell=true needs to be set for exploitability

Figure 8.1: Core ACE and ACI sinks supported by NODEMEDIC-FINE.

125

return new Function("x", "with (x) { return " + user_input + " } ")

(a) Code showing the sink call.

with (x) { return

(b) Prefix

[[<payload>, <literal: '} '>]]

(c) Completion template given by the Enumerator.

global.CTF()} //

(d) Exploit that was synthesized using the template provided by the Enumerator.

Figure 8.2: Prefix, completion, and exploit synthesized for a real-world prefix.

8.1.2 Example Enumerator Completion

In Figure 8.2 we illustrate an example from one of the 27 packages (from the WithSinks dataset)
that the Enumerator successfully completed, as well as the accompanying proof-of-concept ex-
ploit that was built with its help. The vulnerable code is a simple call to the Function constructor
ACE sink, which concatenates a fixed prefix containing part of a with statement with the user
input, and a terminating character delineating the body of the with statement. Our Enumerator
came up with a completion, with a placeholder (<payload> for any arbitrary statement, followed
by a closing bracket to close the with body. Regardless of the completion, NODEMEDIC-FINE’s
synthesis algorithm attempts to put a comment at the end of the attacker-controlled portion, so
that whatever comes next is ignored. The final input is then synthesized taking into account the
template offered by the Enumerator.

8.1.3 Vulnerability Characteristics

Figure 8.3 sheds light on how the proportion of packages with potential and confirmed flows, as
detected by NODEMEDIC-FINE, varies in relation to their popularity. Furthermore, Figure 8.4
correlates the code size of these packages with the presence of flows. The influence of the overall
package size on the likelihood of identifying flows is depicted in Figure 8.5. Figure 8.6 examines
how the depth of the dependency tree is associated with flows while Figure 8.7 shows the effect
of the number of unique dependencies on the detection of a flow.

These figures collectively indicate that the population of packages where we find sinks is
reasonably diverse in terms of these properties. We observe that while popularity does not seem
to correlate with the performance of our tool, metrics that measure package complexity more
directly do. We are still able to analyze very large packages, as our fuzzer is designed to analyze
each public entry point separately. However, vulnerabilities can be missed if they require more
complex interaction with the package API besides calling a single entry point with a specific

126

payload.

0-5 5-1
0

10
-10

0

10
0-1

00
0

10
00

+

Download Counts (weekly)

0

2000

4000

6000

8000

10000

#P
ac

ka
ge

s w
ith

in
 th

at
 c

at
eg

or
y

How many popular packages with sinks per Download Count Range
Popular with sinks

0-5 5-1
0

10
-10

0

10
0-1

00
0

10
00

+

Download Counts (weekly)

0

1

2

3

4

5

6

7

8

Pe
rc

en
ta

ge
 w

rt
po

pu
la

r w
ith

 si
nk

s

Percentage of packages per Download Count Range
%with potential flows
%with confirmed flows

Figure 8.3: Frequency of packages within ranges of download counts, split into "with sinks",
"with potential flows" and "with confirmed flows".

8.1.4 Fuzzing Timeout
In our NODEMEDIC-FINE, we needed to set a timeout that was sufficiently short to scalably
analyze all packages in the NPM-DATASET dataset (33,011 packages) but long enough that we
would not miss a significant number of potential flows. In Figure 8.8 we plot the accumulated
number of flows found as time progresses during fuzzing. Overall, we start seeing diminishing
returns around the 30 seconds mark. We chose a timeout of 2 minutes for fuzzing.

8.1.5 LLM Signaled Sentences in Packages Containing Warnings
Below follows a table with all the packages that were confirmed to have security-relevant warn-
ings in their documentations, along with the exact warning sentence that was signaled by the
LLM. Note that some of the signaled sentences are ambiguous and missing relevant context
from other content in the actual documentation.

Package
(name@version)

Warning sentence

@akepinski/remark-
math@5.1.1-cjs

Always be wary of user input and use rehype-sanitize.’

Continued on next page

127

https://www.npmjs.com/package/@akepinski/remark-math
https://www.npmjs.com/package/@akepinski/remark-math

Package
(name@version)

Warning sentence

gunsafe@2.6.0
The ability to run stored code adds some additional possibilities to
the versatility of Gunsafe, but use with care! The ‘–run –global‘
argument uses ‘eval()‘, for example.

mongo-escape@2.0.6
’Don’t rely on this module for escaping the [mapReduce]
command or [$where] operator as these commands parse and
execute their values as JavaScript.’

@fiad/twig-
addons@1.3.0

[dangersign] Since this filter involves the usage of *eval()*, it’s
recommended to use it for static sites generation purposes only, so
that the stringified *JavaScript* execution will be limited to the
development environment. Look
[here](https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/eval#never_use_eval!)
to learn more.

node-lambda-babel-
template@2.4.0

Piping anything unknown through ‘bash‘ can be dangerous!

fs-dot@5.0.0
’whatever you pass as arguments will passed through to the fs
commands without validation’

jse-eval@1.5.2

IMPORTANT: As mentioned under [Security](#security) below,
this library does not attempt to provide a secure sandbox for
evaluation. Evaluation involving user inputs (expressions or
values) may lead to unsafe behavior. If your project requires a
secure sandbox, consider alternatives such as
[vm2](https://www.npmjs.com/package/vm2).

@bootcamp-
ra/mocha-as-
promised@1.0.7

This library is **UNSAFE** as it uses ‘eval‘ to load the code and
the test code (check out Usage to understand why).’

crystalgazer@0.9.0
’We’re not doing any validation, just passing your input to the
command.’

hst-virtual-
dom@0.4.5

We use ‘Function‘ which use ‘eval‘ to implement this, so there
may be some security problem.

exec-string@1.0.2

Make sure you undestand why JavaScript’s eval function is no
longer used. Please refer to [this
link](https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/eval#never_use_eval!)
for more information.

j2j@0.1.2
’The JavaScript you use as input is evaluated which means your
code gets executed.’

Continued on next page

128

https://www.npmjs.com/package/gunsafe
https://www.npmjs.com/package/mongo-escape
https://www.npmjs.com/package/@fiad/twig-addons
https://www.npmjs.com/package/@fiad/twig-addons
https://www.npmjs.com/package/node-lambda-babel-template
https://www.npmjs.com/package/node-lambda-babel-template
https://www.npmjs.com/package/fs-dot
https://www.npmjs.com/package/jse-eval
https://www.npmjs.com/package/@bootcamp-ra/mocha-as-promised
https://www.npmjs.com/package/@bootcamp-ra/mocha-as-promised
https://www.npmjs.com/package/@bootcamp-ra/mocha-as-promised
https://www.npmjs.com/package/crystalgazer
https://www.npmjs.com/package/hst-virtual-dom
https://www.npmjs.com/package/hst-virtual-dom
https://www.npmjs.com/package/exec-string
https://www.npmjs.com/package/j2j

Package
(name@version)

Warning sentence

cgijs@1.2.0
’Please consider your ‘security risks based on your executable’s/
script’s security risks‘.’

stenoread-
nodejs@1.0.1

I know that passing on parameters to a shell command might be a
bad idea ;-).

jsx-to-json-
brick@0.0.9

注意：eval如果您不控制输入，不仅使用危险，而且的结
果jsx2json可能不是纯JSON。

@olzie-12/ftp-
deploy@1.2.49

’be sure to escape quotes and spaces’

shelljs-exec-
proxy@0.2.1

’Current versions of ShellJS export the ‘.exec()‘ method, which if
not used carefully, could introduce command injection
Vulnerabilities to your module.’

preschool@0.2.1
’Specifications make use of JavaScript’s eval. While using eval is
typically considered to be bad form, when calling another function
the performance does not appear suffer in V8.’

atlas-stddev@1.0.0 ’The caller is expected to sanitize input.’

radspec@1.12.1
’You either need to write your own JavaScript VM or use eval
(unsafe!) from inside JavaScript’

minimount@1.1.1 As you know, eval is evil, so use this carefully.

javawebstart@1.1.0
It is up to you to validate if the JNLP and jar file you wish to run
come from a **trusted source**

@ra-bootcamp/mocha
@1.3.0

’This library is **UNSAFE** as it uses ‘eval‘ to load the code and
the test code (check out Usage to understand why).’

comaas@0.3.3
’!!! Do not come with security system, you have to implement
your own security layer. !!!’

@aws-cdk/aws-s3-
deployment@1.204.0

IMPORTANT The ‘aws-s3-deployment‘ module is only
intended to be used with zip files from trusted sources. Directories
bundled by the CDK CLI (by using ‘Source.asset()‘ on a directory)
are safe. If you are using ‘Source.asset()‘ or ‘Source.bucket()‘ to
reference an existing zip file, make sure you trust the file you are
referencing. Zips from untrusted sources might be able to execute
arbitrary code in the Lambda Function used by this module, and
use its permissions to read or write unexpected files in the S3
bucket.’

cholesky-
solve@0.2.1

NOTE the module does no sanity checking on the input arguments.
It is assumed that the user knows what he/she is doing!

markdown-it-templa
te-literals@1.0.0

This package uses evil eval, be aware of injection attacks!

Continued on next page

129

https://www.npmjs.com/package/cgijs
https://www.npmjs.com/package/stenoread-nodejs
https://www.npmjs.com/package/stenoread-nodejs
https://www.npmjs.com/package/jsx-to-json-brick
https://www.npmjs.com/package/jsx-to-json-brick
https://www.npmjs.com/package/@olzie-12/ftp-deploy
https://www.npmjs.com/package/@olzie-12/ftp-deploy
https://www.npmjs.com/package/shelljs-exec-proxy
https://www.npmjs.com/package/shelljs-exec-proxy
https://www.npmjs.com/package/preschool
https://www.npmjs.com/package/atlas-stddev
https://www.npmjs.com/package/radspec
https://www.npmjs.com/package/minimount
https://www.npmjs.com/package/javawebstart
https://www.npmjs.com/package/@ra-bootcamp/mocha
https://www.npmjs.com/package/@ra-bootcamp/mocha
https://www.npmjs.com/package/comaas
https://www.npmjs.com/package/@aws-cdk/aws-s3-deployment
https://www.npmjs.com/package/@aws-cdk/aws-s3-deployment
https://www.npmjs.com/package/cholesky-solve
https://www.npmjs.com/package/cholesky-solve
https://www.npmjs.com/package/markdown-it-template-literals
https://www.npmjs.com/package/markdown-it-template-literals

Package
(name@version)

Warning sentence

construct-from-
spec@0.1.0

’Please note, that this can lead to security vulnerabilities, cause
config author can do an arbitrary code execution.’

hydroplane@1.0.7 I built it in like 2 hours and it literally uses eval().

jsontype@2.1.0
Caution: Do not accept validation schemas from the user because
they could harm you.

expression-
eval@5.0.1

’Evaluation involving user inputs (expressions or values) may lead
to unsafe behavior.’

coroutiner@0.3.3 Just be careful what you run this over.
git-revision-webp
ack-plugin@5.0.0

’This configuration is not not meant to accept arbitrary user input
and it is executed by the plugin without any sanitization.’

@hagana/hagana@1.0
.0

[dangersign] Something that I still need to think about is the fact
that using the ’commands startsWith’ approach is it opens a hole
that allows an attacker to run ‘node –version && cat /.ssh/id_rsa‘
which is clearly a problem.

mobx-modules@0.0.2
By carefull not to introduce security issues in your app through
this module (uses: new Function)

@flk/parser@0.1.1

Again we emphasize to only use this when feeding jsdom code
you know is safe. If you use it on arbitrary user-supplied code, or
code from the Internet, you are effectively running untrusted
Node.js code, and your machine could be compromised.

es6format@1.0.1
es6format makes use of Function(), so it should never be called on
format strings that are not known to be safe.

json-rule-
processor@1.2.3

By default, ‘eval‘ of JavaScript in strings is turned **off** for
security reasons, but can be activated with this flag.

static-eval@2.1.1

’static-eval is like ‘eval‘. It is intended for use in build scripts and
code transformations, doing some evaluation at build time—it is
NOT suitable for handling arbitrary untrusted user input.
Malicious user input _can_ execute arbitrary code.’

dhl-nolp@1.0.1
’This library uses JSDOM’s JavaScript execution machanism
which might potentially result in code injection vulnerabilities,
given the DHL page contains malicious JavaScript.’

asyncme@0.1.0
’The task functions are serialized and then executed on the child
process using the [Function constructor] which will practically
‘eval()‘ the function, so keep that in mind a’

@caijs/eval@1.0.3
It is NOT suitable for handling arbitrary untrusted user input.
Malicious user input can execute arbitrary code.’

ptolemy@0.0.3 ’always be careful when using eval’

Continued on next page

130

https://www.npmjs.com/package/construct-from-spec
https://www.npmjs.com/package/construct-from-spec
https://www.npmjs.com/package/hydroplane
https://www.npmjs.com/package/jsontype
https://www.npmjs.com/package/expression-eval
https://www.npmjs.com/package/expression-eval
https://www.npmjs.com/package/coroutiner
https://www.npmjs.com/package/git-revision-webpack-plugin
https://www.npmjs.com/package/git-revision-webpack-plugin
https://www.npmjs.com/package/@hagana/hagana
https://www.npmjs.com/package/@hagana/hagana
https://www.npmjs.com/package/mobx-modules
https://www.npmjs.com/package/@flk/parser
https://www.npmjs.com/package/es6format
https://www.npmjs.com/package/json-rule-processor
https://www.npmjs.com/package/json-rule-processor
https://www.npmjs.com/package/static-eval
https://www.npmjs.com/package/dhl-nolp
https://www.npmjs.com/package/asyncme
https://www.npmjs.com/package/@caijs/eval
https://www.npmjs.com/package/ptolemy

Package
(name@version)

Warning sentence

@axway/api-
builder-plugin-fn-
javascript@4.0.2

[dangersign] **Warning**: You should never use this flow-node to
execute code coming from untrusted sources.

frontmatter@0.0.3 For untrusted source, the ‘safeLoad‘ option should be used:

node-command-
line@2.0.2

’I’ve added a basic sanitization step that removes characters
commonly associated with shell command injection attacks. This
helps prevent unwanted characters from being executed within the
shell command.’

lazaretto@4.0.2
Lazaretto should not be relied on for completely safe isolation, the
file system and so forth can still be accessed so you still need
containers/vms for safe isolation of user code

blobs@2.3.0-beta.2
’_Options are **not**
[sanitized](https://en.wikipedia.org/wiki/HTML_sanitization).
Never trust raw user-submitted values in the options._’

burly-
bouncer@1.0.3

’Never trust the end-user to supply you with valid information.’

react-editable-
json-tree@2.3.0

’This library was previously affected by an ‘eval‘ security
vulnerability.’

yamler@1.0.1 ’If you do not trust or control the contents of the yml file, use true.’

@cyyynthia/jscert@
0.1.2

WARNING: For the time being, you shouldn’t pass untrusted
data to the lib or unexpected things might happen to your cat.
While the lib should be working for *valid* data, it lacks on
proper hardening of the parsing bits and proper data
validation/error handling, so maliciously crafted bits of data may
cause some damage.

html2image@2.0.0
If the url address contain **&**, you should use
encodeURIComponent to encode the url address, then pass to
the html2image command

@egoist/devalue@2.
0.3

When using ‘eval‘, ensure that you call it *indirectly* so that the
evaluated code doesn’t have access to the surrounding scope:

@iac-factory/cli-
utilities@0.7.26

Having the ability to issue os.exec or interface stdin always makes
the application dangerous.

pomodoro-cli@0.2.1
WARNING: The command is passed directly to a shell with the
same user permissions this program runs under – use with caution!

improv@1.0.0
’Improv does absolutely no validation or security checking of
anyt’

js-solver@0.0.2
The equations are evaled, so be aware of that. Also I used
with(Math) to get the math stuff to eval... yeah...

Continued on next page

131

https://www.npmjs.com/package/@axway/api-builder-plugin-fn-javascript
https://www.npmjs.com/package/@axway/api-builder-plugin-fn-javascript
https://www.npmjs.com/package/@axway/api-builder-plugin-fn-javascript
https://www.npmjs.com/package/frontmatter
https://www.npmjs.com/package/node-command-line
https://www.npmjs.com/package/node-command-line
https://www.npmjs.com/package/lazaretto
https://www.npmjs.com/package/blobs
https://www.npmjs.com/package/burly-bouncer
https://www.npmjs.com/package/burly-bouncer
https://www.npmjs.com/package/react-editable-json-tree
https://www.npmjs.com/package/react-editable-json-tree
https://www.npmjs.com/package/yamler
https://www.npmjs.com/package/@cyyynthia/jscert
https://www.npmjs.com/package/@cyyynthia/jscert
https://www.npmjs.com/package/html2image
https://www.npmjs.com/package/@egoist/devalue
https://www.npmjs.com/package/@egoist/devalue
https://www.npmjs.com/package/@iac-factory/cli-utilities
https://www.npmjs.com/package/@iac-factory/cli-utilities
https://www.npmjs.com/package/pomodoro-cli
https://www.npmjs.com/package/improv
https://www.npmjs.com/package/js-solver

Package
(name@version)

Warning sentence

@artit91/exec@1.0.
0

User input should be escaped!

knorke@1.0.2
Most config options are used verbatim when executing shell
commands. Do _not_ pass unsanitized user input to this script.
You have been warned!

nicedice@1.0.2
If you manage a JSFuck-style arbitrary code execution attack
using only the characters mentioned above, digits, and/or
parentheses, please tell me!!!

eval-
expression@1.0.0

Be warned: Take [all precausions which apply to using
‘eval‘][eval-precautions]. ‘eval-expression‘ is no safer, no more
performant and no easier to debug.

@devjoyvn/autoload
er-ts@2.2.2

DO NOT misuse this.

stahp@0.9.0
’If handling untrusted code it is recommended to use this
alongside a module like VM2.’

jsonpickle-
port@1.0.0

Only load data you have personally produced if you want to be
safe.

hydro.pdf@1.0.4 ’否则有 XSS风险。’

vime@0.0.1
’Important note: this module is currently not designed for
executing untrusted code ("sandboxing.") If that is an important
use case for you, please file a bug report.’

homebridge-wyze-
robovac@1.5.1

Be careful to check that the generated keys do not contain any
’shell’ special characters like ’*’ or ’|’ (vertical bar).

react-google-tag-
manager@2.2.1

As ‘eval‘ can be used to do harm, make sure that you are
understanding what you are doing here and read through the scrip

flatpad@0.2.2
Sandbox realized by **with** and **eval** is not suitable for
esm.

@momsfriendlydevco
/eval@1.0.0

Eval is massivly unsafe and unless used exactly right can cause
major harm.

pursuit-core@0.0.1
’Caveat: It does use new Function to compile the generated code
into functional code, so take great precautions with what you trust
it with.’

email@0.2.6
’Some protection against injection attacks is enabled. Use at your
own risk. Or better yet, fork it and submit something better!’

ktxml@1.0.6 ’#####库中使用到了 eval. 十分危险,谨防注入’

Continued on next page

132

https://www.npmjs.com/package/@artit91/exec
https://www.npmjs.com/package/@artit91/exec
https://www.npmjs.com/package/knorke
https://www.npmjs.com/package/nicedice
https://www.npmjs.com/package/eval-expression
https://www.npmjs.com/package/eval-expression
https://www.npmjs.com/package/@devjoyvn/autoloader-ts
https://www.npmjs.com/package/@devjoyvn/autoloader-ts
https://www.npmjs.com/package/stahp
https://www.npmjs.com/package/jsonpickle-port
https://www.npmjs.com/package/jsonpickle-port
https://www.npmjs.com/package/hydro.pdf
https://www.npmjs.com/package/vime
https://www.npmjs.com/package/homebridge-wyze-robovac
https://www.npmjs.com/package/homebridge-wyze-robovac
https://www.npmjs.com/package/react-google-tag-manager
https://www.npmjs.com/package/react-google-tag-manager
https://www.npmjs.com/package/flatpad
https://www.npmjs.com/package/@momsfriendlydevco/eval
https://www.npmjs.com/package/@momsfriendlydevco/eval
https://www.npmjs.com/package/pursuit-core
https://www.npmjs.com/package/email
https://www.npmjs.com/package/ktxml

Package
(name@version)

Warning sentence

ez-fasta@0.1.0

Внимание! Этафункцияне
делаетникаких
предварительныхпроверок на
валидностьвходящихфайлови
читаетвсёподряд.

sami.js@2.0.1 ’아무처리도하지않은데이터이니 XSS에주의하세요!’

curling@1.1.0
’The following characters are not allowed to be provided as part of
a command to prevent possible command injections:’

page-
evaluate@1.1.0

’Note: Sanitize any input, but this is safe - "fresh copies of all the
JavaScript spec-provided globals [are] installed on window" -
[jsdom readme]’

@typicalninja21/ur
lrequire@2.0.1

It is not safe, and it is not meant to be

limelightdb@3.1.5
’Because the filter is just a JavaScript function, it could lead to
remote code execution.’

nbk@0.1.31
Do not run the Web UI on a port open to public traffic! Doing so
would allow remote code execution on your machine.

cupjs@1.3.1
采用正则替换生成函数，函数再生成HTML字符串方式，并未
加上安全性的措施，请用于可信任的内容生成。

js-string-
format@0.1.0

’this library does not sanitize the input other than simple type
checking’

easyimage-
tmpfix@0.1.4

’when you want to call a custom command to ImageMagick, you
will need to take care of escaping special characters etc’

compilers@2.0.0

Specifications make use of JavaScript’s ‘eval‘. While using ‘eval‘
is typically considered to be bad form, when calling another
function the performance does not appear suffer in V8. See
http://jsperf.com/eval-function-call.

@voidptr9/service@
1.0.0

Warning: If you’re not fond of ‘new Function‘ and
language-semantics-breaking designs, then Service is not what you
should be using.

meval@1.1.0 This is **not** a "safe JavaScript eval"!

js-string-to-
value@1.2.0

However if for some reason the parser is reporting the variable is
not valid but is, you can still run unsafeParseJs() which will skip
validation (it may also be faster, however only use this if you know
what and where your data is and is coming from)

ra-mocha-as-
promised@1.1.10

This library is **UNSAFE** as it uses ‘eval‘ to load the code and
the test code (check out Usage to understand why).

Continued on next page

133

https://www.npmjs.com/package/ez-fasta
https://www.npmjs.com/package/sami.js
https://www.npmjs.com/package/curling
https://www.npmjs.com/package/page-evaluate
https://www.npmjs.com/package/page-evaluate
https://www.npmjs.com/package/@typicalninja21/urlrequire
https://www.npmjs.com/package/@typicalninja21/urlrequire
https://www.npmjs.com/package/limelightdb
https://www.npmjs.com/package/nbk
https://www.npmjs.com/package/cupjs
https://www.npmjs.com/package/js-string-format
https://www.npmjs.com/package/js-string-format
https://www.npmjs.com/package/easyimage-tmpfix
https://www.npmjs.com/package/easyimage-tmpfix
https://www.npmjs.com/package/compilers
https://www.npmjs.com/package/@voidptr9/service
https://www.npmjs.com/package/@voidptr9/service
https://www.npmjs.com/package/meval
https://www.npmjs.com/package/js-string-to-value
https://www.npmjs.com/package/js-string-to-value
https://www.npmjs.com/package/ra-mocha-as-promised
https://www.npmjs.com/package/ra-mocha-as-promised

Package
(name@version)

Warning sentence

canvas-
sequencer@3.1.0

’This is error-prone and risky however, and exposes you to all the
incumbent problems of the eval() function.’

babel-plugin-
codegen-
dynimport@1.0.0

’All code run by ‘codegen‘ is _not_ run in a sandboxed
environment’

@phase2/outline-
include@0.1.5

Allows included scripts to be executed. You must ensure the
content you’re including is trusted, otherwise this option can lead
to XSS vulnerabilities in your app!

decompress-
zip@0.3.3

Setting to false has significant security implications if you are
extracting untrusted data.

corporate-
punk@1.2.0

’This app is just passing query parameters directly to an
‘imagemagick‘ wrapper, without any kind of sanity check, **bad
shit can happen**.’

farse@0.2.2
’In general, I recommend you default to using farse.inverse.inexact
over farse.inverse.exact. The .inexact version, though less precise,
is slightly safer because it uses the Function’

@caijs/python-
eval@1.0.1

It is NOT suitable for handling arbitrary untrusted user input.

pppipe@0.0.3 ’Never use this in production.’

@payid-org/payid-
cli@1.0.4

’when passing a PayID as an argument in non-interactive mode,
the PayID must be escaped or quoted to avoid the ’$’ being
interpolated as a variable by the shell.’

picotemplate@0.0.2
This module heavily uses ‘eval()‘. You should audit it before use
and not pass it user provided strings.

gbkuai-shadowsock
sconfig@0.0.8

’No sanitization is performed for these fields. Client code is
responsible for sanitizing these values when received from
untrusted input.’

run-on-
server@3.2.0

Out of the box, this effectively gives the client serverside ‘eval‘.

@mischback/imp@2.1
.0

You should not expose ImP publicly, at least not without some
wrapper that does perform sanitarization of any user input.’

qtools-parse-
command-line@1.0.9

’For historical reasons, it defaults to evaluating incoming
Javascript. This can, of course, be dangerous. It should be called
with the ’noFunctions:true’ argument unless you need function
evaluation.’

apple-java-
script@1.0.1

AppleJavaScript direct call could be dangerous because it uses
‘eval‘ behind the scenes to parse returned AppleScript value.

Continued on next page

134

https://www.npmjs.com/package/canvas-sequencer
https://www.npmjs.com/package/canvas-sequencer
https://www.npmjs.com/package/babel-plugin-codegen-dynimport
https://www.npmjs.com/package/babel-plugin-codegen-dynimport
https://www.npmjs.com/package/babel-plugin-codegen-dynimport
https://www.npmjs.com/package/@phase2/outline-include
https://www.npmjs.com/package/@phase2/outline-include
https://www.npmjs.com/package/decompress-zip
https://www.npmjs.com/package/decompress-zip
https://www.npmjs.com/package/corporate-punk
https://www.npmjs.com/package/corporate-punk
https://www.npmjs.com/package/farse
https://www.npmjs.com/package/@caijs/python-eval
https://www.npmjs.com/package/@caijs/python-eval
https://www.npmjs.com/package/pppipe
https://www.npmjs.com/package/@payid-org/payid-cli
https://www.npmjs.com/package/@payid-org/payid-cli
https://www.npmjs.com/package/picotemplate
https://www.npmjs.com/package/gbkuai-shadowsocksconfig
https://www.npmjs.com/package/gbkuai-shadowsocksconfig
https://www.npmjs.com/package/run-on-server
https://www.npmjs.com/package/run-on-server
https://www.npmjs.com/package/@mischback/imp
https://www.npmjs.com/package/@mischback/imp
https://www.npmjs.com/package/qtools-parse-command-line
https://www.npmjs.com/package/qtools-parse-command-line
https://www.npmjs.com/package/apple-java-script
https://www.npmjs.com/package/apple-java-script

Package
(name@version)

Warning sentence

justcurl@1.0.3
’WARNING: Make sure to sanitize any user input. Some
precautions are already taken, but it’s in no way perfect.’

arepl-
backend@3.0.5

this should ONLY be used to execute trusted code. It does not have
any security features whatsoever.

pursuit@0.3.1

’It does use ‘new Function‘ to compile the generated code into
functional code, so take great precautions with what you trust it
with. Think twice before using it to generate code on the
client-side.’

@debonet/es6format
@1.0.1

es6format makes use of Function(), so it should never be called on
format strings that are not known to be safe.

reshape-code-
gen@2.0.0

’However, if any type of outside user input is accepted and
evaluated as a ‘code‘ node, or if a malicious plugin is being used,
you have a serious security vulnerability on your hands.’

@ramumb/strip-
tags@0.1.3

’Lastly, while stripTags is good enough for most purposes, it
shouldn’t be relied upon for security purposes.’

cli-input@0.2.0
Caution: the above example executes commands via the shell, be
careful.

json-to-
styled@0.1.2

Warning: uses Function()/eval() so don’t use it on a server or a
production environment

blender-
compiler@0.1.1

Precaution - Eval is used to compile the shader.

gulp-shell@0.8.0

WARNING: [Using command templates can be extremely
dangerous](https://github.com/sun-zheng-an/gulp-shell/issues/83).
Don’t shoot yourself in the foot by passing arguments like $(rm -rf
$HOME).

graphql-playgrou
nd-html@1.6.30

You must sanitize any and all user input values to
‘renderPlaygroundPage()‘ values.

safe-eval@0.4.1
’Be careful about the objects you are passing to the context API,
because they can completely defeat the purpose of safe-eval.’

browser-
redirect@1.0.2

:warning: Please don’t install this package. This package allows
[OS command injection](https://portswigger.net/web-security/os-
command-injection)

@phase2/outline-
icon@0.1.5

’WARNING: Be sure you trust the content you are including as it
will be executed as code and can result in XSS attacks.’

m2m-
supervisor@0.1.1

Support remote submission of local ’shell’ commands – _**user
caution is advised!**_

Continued on next page

135

https://www.npmjs.com/package/justcurl
https://www.npmjs.com/package/arepl-backend
https://www.npmjs.com/package/arepl-backend
https://www.npmjs.com/package/pursuit
https://www.npmjs.com/package/@debonet/es6format
https://www.npmjs.com/package/@debonet/es6format
https://www.npmjs.com/package/reshape-code-gen
https://www.npmjs.com/package/reshape-code-gen
https://www.npmjs.com/package/@ramumb/strip-tags
https://www.npmjs.com/package/@ramumb/strip-tags
https://www.npmjs.com/package/cli-input
https://www.npmjs.com/package/json-to-styled
https://www.npmjs.com/package/json-to-styled
https://www.npmjs.com/package/blender-compiler
https://www.npmjs.com/package/blender-compiler
https://www.npmjs.com/package/gulp-shell
https://www.npmjs.com/package/graphql-playground-html
https://www.npmjs.com/package/graphql-playground-html
https://www.npmjs.com/package/safe-eval
https://www.npmjs.com/package/browser-redirect
https://www.npmjs.com/package/browser-redirect
https://www.npmjs.com/package/@phase2/outline-icon
https://www.npmjs.com/package/@phase2/outline-icon
https://www.npmjs.com/package/m2m-supervisor
https://www.npmjs.com/package/m2m-supervisor

Package
(name@version)

Warning sentence

run-script@0.1.1
Please note: this is a simple wrapper for creating new dynamic
functions, similar to eval, which has performance and security
issues.

@innotrade/enapso-
sparql-
client@1.1.9

It’s inadvisable to concatenate strings in order to write a query,
especially if data is coming from untrusted sources.

@entan.gl/vsce@1.7
9.6

Warning: When using vsce as a library be sure to sanitize any
user input used in API calls, as a security measure.

codex-
function@1.0.1

’THIS WILL DOWNLOAD CODE FROM OPENAI AND EVAL
IT’

jsx2json@1.0.1
’*Note:* Not only is using ‘eval‘ dangerous if you aren’t
controlling the input, but the result of ‘jsx2json‘ may not be pure
JSON.’

peertube-plugin-
simplelogo@0.0.6

There is no sanitarization for your inputs (neither url or width). We
assume that administrators are not evil, and don’t do XSS and co.

@58fe/hammer-
security@0.1.1

远程命令执行漏洞，用户通过浏览器提交执行命令，由于服
务器端没有针对执行函数做过滤，导致可以执行命令，通常
可导致入侵服务器。

alicatejs@0.1.1
All templating engines allow some level of arbitrary expression
execution, which could rely on something like ‘eval‘, or have a
built in parser for such evaluations.

muffin-js@1.1.2 Remember: EVAL IS EVIL!
@nexssp/expressi
on-parser@1.0.5

Important: Uses JavaScript evaluation - only use with trusted
input sources.

un-eval@1.2.0
’You should avoid using un_eval any untrustable objects (maybe
from user input) then eval it. NEVER use eval unless you know
what will happen.’

@ardatan/fast-js
on-stringify@0.0.6

Treat the schema definition as application code, it is not safe to use
user-provided schemas.

@cjs-mifi-
test/execa@6.0.0

We recommend against using this option since it is: - not
cross-platform, encouraging shell-specific syntax. - slower,
because of the additional shell interpretation. - unsafe, potentially
allowing command injection.

textops@0.0.2
That being said, you should still only run text operations on text
from trusted sources or in a secure sandbox.

module-cache@1.0.4
DO NOT USE THIS MODULE TO LOAD UNTRUSTED
MODULES!

Continued on next page

136

https://www.npmjs.com/package/run-script
https://www.npmjs.com/package/@innotrade/enapso-sparql-client
https://www.npmjs.com/package/@innotrade/enapso-sparql-client
https://www.npmjs.com/package/@innotrade/enapso-sparql-client
https://www.npmjs.com/package/@entan.gl/vsce
https://www.npmjs.com/package/@entan.gl/vsce
https://www.npmjs.com/package/codex-function
https://www.npmjs.com/package/codex-function
https://www.npmjs.com/package/jsx2json
https://www.npmjs.com/package/peertube-plugin-simplelogo
https://www.npmjs.com/package/peertube-plugin-simplelogo
https://www.npmjs.com/package/@58fe/hammer-security
https://www.npmjs.com/package/@58fe/hammer-security
https://www.npmjs.com/package/alicatejs
https://www.npmjs.com/package/muffin-js
https://www.npmjs.com/package/@nexssp/expression-parser
https://www.npmjs.com/package/@nexssp/expression-parser
https://www.npmjs.com/package/un-eval
https://www.npmjs.com/package/@ardatan/fast-json-stringify
https://www.npmjs.com/package/@ardatan/fast-json-stringify
https://www.npmjs.com/package/@cjs-mifi-test/execa
https://www.npmjs.com/package/@cjs-mifi-test/execa
https://www.npmjs.com/package/textops
https://www.npmjs.com/package/module-cache

Package
(name@version)

Warning sentence

graphql-
playground-html-
patched@1.9.5

’You must sanitize any and all user input values to
‘renderPlaygroundPage()‘ values.’

nbob@2.1.0

’The version of Handlebars (v3.0.3) that is used by nBob has a
vulnerability that allows remote attackers to conduct cross-site
scripting (XSS) attacks by leveraging a template with an attribute
that is not quoted.’

node-retrieve-
globals@6.0.1

[dangersign] The ‘node:vm‘ module is not a security mechanism.
Do not use it to run untrusted code.

funjson@2.1.0 ’Implemented using ‘eval‘, don’t parse untrusted JSON!’

express-template-
to-pdf@1.0.5

’This is one way to enable running Puppeteer in Docker but may
be a security issue if you are loading untrusted content, in which
case you should override these defaults.’

youtube-ext@1.1.25

[dangersign] YouTube stream data is decoded by evaluating
arbitrary JavaScript code. By default, youtube-ext uses ‘eval‘ or
‘node:vm‘. Please install
[isolated-vm](https://www.npmjs.com/package/isolated-vm) or
[@ohmyvm/vm](https://www.npmjs.com/package/@ohmyvm/vm)
to prevent security issues.

@nomad-
xyz/contracts-da-
bridge@1.0.0

You should never run ‘forge –ffi‘ without knowing what exactly
are the shell commands that will be executed, as the testing suite
could be malicious and execute malicious commands.

poppins-exec@0.1.0
’Be careful how you use this, or you’ll subject yourself to [shell
injec-
tion](http://en.wikipedia.org/wiki/Code_injection#Shell_injection).’

webpack-Minimount-
starter@0.1.3

As you know, eval is evil, so use this carefully.

ying@2.3.0
’This library uses ‘new Function‘ (which uses ‘eval‘) to compile
template code. You should sanitize the data when dealing with
user input.’

discord-
eval.ts@1.1.3

Think of securing access because a malicious Eval can be
devastating for your PC!

electron-
toolkit@1.0.24

Override and disable eval , which allows strings to be executed as
code

@tilastokeskus/cro
ss-spawn@5.0.1

’You must manually escape the command and arguments which is
very error prone, specially when passing user input’

Continued on next page

137

https://www.npmjs.com/package/graphql-playground-html-patched
https://www.npmjs.com/package/graphql-playground-html-patched
https://www.npmjs.com/package/graphql-playground-html-patched
https://www.npmjs.com/package/nbob
https://www.npmjs.com/package/node-retrieve-globals
https://www.npmjs.com/package/node-retrieve-globals
https://www.npmjs.com/package/funjson
https://www.npmjs.com/package/express-template-to-pdf
https://www.npmjs.com/package/express-template-to-pdf
https://www.npmjs.com/package/youtube-ext
https://www.npmjs.com/package/@nomad-xyz/contracts-da-bridge
https://www.npmjs.com/package/@nomad-xyz/contracts-da-bridge
https://www.npmjs.com/package/@nomad-xyz/contracts-da-bridge
https://www.npmjs.com/package/poppins-exec
https://www.npmjs.com/package/webpack-Minimount-starter
https://www.npmjs.com/package/webpack-Minimount-starter
https://www.npmjs.com/package/ying
https://www.npmjs.com/package/discord-eval.ts
https://www.npmjs.com/package/discord-eval.ts
https://www.npmjs.com/package/electron-toolkit
https://www.npmjs.com/package/electron-toolkit
https://www.npmjs.com/package/@tilastokeskus/cross-spawn
https://www.npmjs.com/package/@tilastokeskus/cross-spawn

Package
(name@version)

Warning sentence

nodepub@3.2.1
’This is a utility module, not a user-facing one. In other words it is
assumed that the caller has already validated the inputs. Only basic
sanity checks are performed.’

@iac-factory/git-
clone@0.4.9

Having the ability to issue ‘os.exec‘ or interface ‘stdin‘ always
makes the application dangerous.’

comment-
regex@2.0.0

Do not use it with untrusted user input.

firestore-
serializers@1.0.3

’However, keep in mind the old approach may be susceptible to
injection attacks!’

@lpezet/etl-
js@3.1.2

Commands, scripts and more can be executed as part of the Mods
defined in the template. Therefore, you should make sure to use
only the Mods you trust in your ETL Template.’

intershop-
lazy@1.0.1

’Usage of ‘create_lazy_producer()‘ is inherently unsafe; therefore,
no untrusted data (such as coming from web form as data source)
should be used to call this function (although the function that
‘create_lazy_producer()‘ creates is itself deemed safe).’

beardfondle@0.1.6
DO NOT USE THIS LIBRARY IN PRODUCTION. ‘eval()‘ IS
ALMOST NEVER SAFE.

gist-init@1.0.1 ’be careful, don’t use this on anyone elses work but your own.’
commandbox_remote@
0.1.4

’*This essentially starts a network-accessible shell, so it should be
used with extreme caution!*’

expr2fn@1.0.0
’The context in which ‘eval‘ and ‘Function‘ were invoked can be
modified by expressions, especially when they are provided by the
user.’

gulp-math@1.0.0
Please note, ‘gulp-math‘ uses the ‘eval‘ function for evaluating
expressions.

node-shred@1.1.0
Defenses against [command-injection attacks][1] have been put in
place, except with regards to the ‘shredPath‘ parameter, which
cannot be defended.

@matteodisabatino/
typed-env@2.0.0

For conversion into Functions the built-in object eval() is used,
however eval() is known to be problematic since statement is
directly executed and this exposes the application to security risks.
So, please, use this conversion with caution.

bollireact@1.2.0
’*NOTE*: I basically ‘child_process.exec‘ a bunch of shit so use
with caution!’

Continued on next page

138

https://www.npmjs.com/package/nodepub
https://www.npmjs.com/package/@iac-factory/git-clone
https://www.npmjs.com/package/@iac-factory/git-clone
https://www.npmjs.com/package/comment-regex
https://www.npmjs.com/package/comment-regex
https://www.npmjs.com/package/firestore-serializers
https://www.npmjs.com/package/firestore-serializers
https://www.npmjs.com/package/@lpezet/etl-js
https://www.npmjs.com/package/@lpezet/etl-js
https://www.npmjs.com/package/intershop-lazy
https://www.npmjs.com/package/intershop-lazy
https://www.npmjs.com/package/beardfondle
https://www.npmjs.com/package/gist-init
https://www.npmjs.com/package/commandbox\protect \T1\textunderscore remote
https://www.npmjs.com/package/commandbox\protect \T1\textunderscore remote
https://www.npmjs.com/package/expr2fn
https://www.npmjs.com/package/gulp-math
https://www.npmjs.com/package/node-shred
https://www.npmjs.com/package/@matteodisabatino/typed-env
https://www.npmjs.com/package/@matteodisabatino/typed-env
https://www.npmjs.com/package/bollireact

Package
(name@version)

Warning sentence

mock-globals@0.1.5

’**WARNING**: this is not a secure sandbox and is not intended
for running untrusted code! The "protection" it provides is only
proof against *accidental* global modifications, and can be
trivially bypassed in several ways that I can easily think of, and
probably hundreds of less-trivial ways. It is intended only for
running tests, with *no thought given to any actual security*.’

usher-cli@2.15.1

’For the ‘shell‘ command, beware that the properties defined in the
usher file can overwrite those used by
[child_process.exec](https://nodejs.org/api/child_process.html)
module.’

@gzzhanghao/jsdom@
11.0.1

Again we emphasize to only use this when feeding jsdom code
you know is safe. If you use it on arbitrary user-supplied code, or
code from the Internet, you are effectively running untrusted
Node.js code, and your machine could be compromised.

node-
tezzeract@0.0.3

- consider sanitizing inputs to ‘exec‘ such that they do not contain
shell meta-characters such as ‘$()‘

@zent/codemods@1.0
.1

[dangersign] Codemods are not guaranteed to be safe for all
inputs, you must review the output

code-execution-
engine@0.4.6

[redexclamationsign]This package is not secure by default. Visit
[Security](#security) for production projects.[redexclamationsign]

k8s-resource-
parser@0.2.2

’Only use when you expect correct strings (e.g. coming directly
from the K8s API), as the parser isn’t designed to handle
maliciously-crafted inputs.’

tdp-glob-file-
copier@0.1.2-alpha

’* **This module is somewhat insecure currently** e.g. some
config params are used in shell commands.’

js-exec@1.2.4
’Executing an inputted string, as JS code can be **Extremely**
risky.’

fis3-deploy-ala-
http-push@2.0.11

’**此代码存在很大的安全隐患，没有做任何安全考虑，请不
要部署到线上服务。**’

as-run-js@0.0.2 ’This module use ‘eval()‘.’
@zvenigora/jse-
eval@1.10.0

Evaluation involving user inputs (expressions or values) may lead
to unsafe behavior.

brackets@0.5.8
’Since this imposes very serious security and stability risks,
Brackets Server will not load nor execute domains from user
extensions, unless ‘-d‘ option is specified.’

Continued on next page

139

https://www.npmjs.com/package/mock-globals
https://www.npmjs.com/package/usher-cli
https://www.npmjs.com/package/@gzzhanghao/jsdom
https://www.npmjs.com/package/@gzzhanghao/jsdom
https://www.npmjs.com/package/node-tezzeract
https://www.npmjs.com/package/node-tezzeract
https://www.npmjs.com/package/@zent/codemods
https://www.npmjs.com/package/@zent/codemods
https://www.npmjs.com/package/code-execution-engine
https://www.npmjs.com/package/code-execution-engine
https://www.npmjs.com/package/k8s-resource-parser
https://www.npmjs.com/package/k8s-resource-parser
https://www.npmjs.com/package/tdp-glob-file-copier
https://www.npmjs.com/package/tdp-glob-file-copier
https://www.npmjs.com/package/js-exec
https://www.npmjs.com/package/fis3-deploy-ala-http-push
https://www.npmjs.com/package/fis3-deploy-ala-http-push
https://www.npmjs.com/package/as-run-js
https://www.npmjs.com/package/@zvenigora/jse-eval
https://www.npmjs.com/package/@zvenigora/jse-eval
https://www.npmjs.com/package/brackets

Package
(name@version)

Warning sentence

@hitsuji_no_shippo
/self-referenced-
object@4.0.0

self-referenced-object evaluates any expressions inside template
literals by calling ‘pass:[Function(’"use strict"; return ‘’ +
expression + "‘;")()]‘ which is a marginally safer version of ‘eval‘
(ie still incredibly unsafe), so you should avoid passing any
untrusted data into an object evaluated by
‘resolveReferencesInObject‘ (or at least don’t self-reference
untrusted data in an ‘resolveReferencesInObject‘ evaluated
object).

@bricehabib/react-
lottie-
player@1.4.2

The default lottie player uses ‘eval‘. If you don’t want eval to be
used in your code base, you can instead import
‘react-lottie-player/dist/LottiePlayerLight‘.

firedev-vsce@0.0.4
When using vsce as a library be sure to sanitize any user input
used in API calls, as a security measurement.

object-string-
parser@0.1.0

[dangersign][dangersign][dangersign] actually the source code is
only one sentence, and not secure, so don’t use it

@invertase/next-
mdx-remote@1.0.0

Do not pass user input into ‘<MDXRemote />‘.

@leichtgewicht/rex
replace@6.0.16

Purposefully implemented the most insecure way possible to
remove _any_ incentive to consider running code from an
untrusted part.’

@alex.garcia/unoff
icial-observable
hq-compiler@0.6.0-
alpha.9

Keep in mind, there is no sandboxing done, so it has the same
security implications as ‘eval()‘

node-package-
api@1.0.0

’Do not expose this package to the web without any security to
prevent unauthorised access to your system.’

expand-template-
literal@1.0.3

DO NOT use where malicious templates could cause harm.

mongoson@0.2.0 You do NOT want to use this unattended.

@copha/execa@0.0.1

We recommend against using this option since it is: - not
cross-platform, encouraging shell-specific syntax. - slower,
because of the additional shell interpretation. - unsafe, potentially
allowing command injection.

any-
serialize@1.4.12

’(Which is in principle similar to unsafe eval.)’

cholesky-
tools@0.1.7

For performance reasons there is no input validation. It is up to
user to insure valid input.

Continued on next page

140

https://www.npmjs.com/package/@hitsuji\protect \T1\textunderscore no\protect \T1\textunderscore shippo/self-referenced-object
https://www.npmjs.com/package/@hitsuji\protect \T1\textunderscore no\protect \T1\textunderscore shippo/self-referenced-object
https://www.npmjs.com/package/@hitsuji\protect \T1\textunderscore no\protect \T1\textunderscore shippo/self-referenced-object
https://www.npmjs.com/package/@bricehabib/react-lottie-player
https://www.npmjs.com/package/@bricehabib/react-lottie-player
https://www.npmjs.com/package/@bricehabib/react-lottie-player
https://www.npmjs.com/package/firedev-vsce
https://www.npmjs.com/package/object-string-parser
https://www.npmjs.com/package/object-string-parser
https://www.npmjs.com/package/@invertase/next-mdx-remote
https://www.npmjs.com/package/@invertase/next-mdx-remote
https://www.npmjs.com/package/@leichtgewicht/rexreplace
https://www.npmjs.com/package/@leichtgewicht/rexreplace
https://www.npmjs.com/package/@alex.garcia/unofficial-observablehq-compiler
https://www.npmjs.com/package/@alex.garcia/unofficial-observablehq-compiler
https://www.npmjs.com/package/@alex.garcia/unofficial-observablehq-compiler
https://www.npmjs.com/package/@alex.garcia/unofficial-observablehq-compiler
https://www.npmjs.com/package/node-package-api
https://www.npmjs.com/package/node-package-api
https://www.npmjs.com/package/expand-template-literal
https://www.npmjs.com/package/expand-template-literal
https://www.npmjs.com/package/mongoson
https://www.npmjs.com/package/@copha/execa
https://www.npmjs.com/package/any-serialize
https://www.npmjs.com/package/any-serialize
https://www.npmjs.com/package/cholesky-tools
https://www.npmjs.com/package/cholesky-tools

Package
(name@version)

Warning sentence

object-graph-as-
json@2.0.0

’UnsafeDecoder allows the input to run arbitrary code at decode
time, as demonstrated in src/index.test.js, so it is not suitable for
use in most situations without modification.’

at-bindings@0.3.0
‘at-bindings‘ doesn’t sanitize any inputs (e.g. in the ‘schedule‘
function).

mongo-express-
patch@0.21.1

’JSON documents are parsed through a javascript virtual machine,
so **the web interface can be used for executing malicious
javascript on a server**.’

surrial@2.0.2
CAUTION! Evaluates the string in the current javascript engine
(‘eval‘ or one of its friends). Be sure the ‘serializedThing‘ comes
from a trusted source!

@nuxtjs/devalue@1.
2.3

When using eval, ensure that you call it *indirectly* so that the
evaluated code doesn’t have access to the surrounding scope:

babelon@1.0.5
’‘babelon‘ uses ‘vm‘, ‘Function‘, and/or ‘eval‘, so only use it
where you trust the input.’

JSONPath@0.11.2

’Although JavaScript evaluation expressions are allowed by
default, for security reasons (if one is operating on untrusted user
input, for example), one may wish to set this option to ‘true‘ to
throw exceptions when these expressions are attempted.’

funcster@0.0.5
This package performs the equivalent of ‘eval‘, and thus should
only be used to deserialize functions delivered from trusted
sources.

yaml-parser@3.5.3 Use with care with untrusted sources
check-
dependencies@2.0.0

’Do not pass untrusted input here.’

@readme/markdown@1
0.2.10

’This is essentially a wrapper around
[‘mdx.run‘](https://mdxjs.com/packages/mdx/#runcode-options)
and **it will ‘eval‘ the compiled MDX**. Make sure you only call
‘run‘ on safe syntax from a trusted’

loopback-componen
t-explorer@6.5.1

Versions of swagger-ui prior to 3.0.13 are vulnerable to Cross-Site
Scripting (XSS). The package fails to sanitize YAML files
imported from URLs or copied-pasted. This may allow attackers

better-eval@1.3.0

Remember: **never use better-eval blindly with user code.**
These checks are precautions for your own usage, but any user
with maltious intent could find a way to get through them. Thus,
use this package with caution.

Continued on next page

141

https://www.npmjs.com/package/object-graph-as-json
https://www.npmjs.com/package/object-graph-as-json
https://www.npmjs.com/package/at-bindings
https://www.npmjs.com/package/mongo-express-patch
https://www.npmjs.com/package/mongo-express-patch
https://www.npmjs.com/package/surrial
https://www.npmjs.com/package/@nuxtjs/devalue
https://www.npmjs.com/package/@nuxtjs/devalue
https://www.npmjs.com/package/babelon
https://www.npmjs.com/package/JSONPath
https://www.npmjs.com/package/funcster
https://www.npmjs.com/package/yaml-parser
https://www.npmjs.com/package/check-dependencies
https://www.npmjs.com/package/check-dependencies
https://www.npmjs.com/package/@readme/markdown
https://www.npmjs.com/package/@readme/markdown
https://www.npmjs.com/package/loopback-component-explorer
https://www.npmjs.com/package/loopback-component-explorer
https://www.npmjs.com/package/better-eval

Package
(name@version)

Warning sentence

@dschulmeis/ls-
utils@1.3.0

Beware, that this could potentialy execute JavaScript code in the
context of the current document, if the HTML code is coming
from an untrusted source!

ramda-
suggest@1.3.5

’The easiest way allow inputs of things other that just primitive
JavaScript data types (i.e. Arrays, Objects, Functions) was to use
eval.’

callable-
extractor@0.1.1

The library is built on top of [babel-parser] and uses eval under the
hood - so be extremely careful and use this functionality
judiciously, in an isolated testing context.

@nbarray/execa@1.0
.0

Prefer execa() whenever possible, as it’s both faster and safer.

squish-
squash@1.0.6

Use with caution!

js-
sanitizer@1.0.15

Using eval() or the newer new Function() is a known security risk
and it is generally a bad idea to use them.

gulp-less-
templates@0.0.6

’You probably dont want to use this’

ipfs-webpack-
plugin@0.1.0

IPFSWebpackPlugin does make use of ‘eval‘ which executes the
JavaScript received from IPFS.

exceptionable@0.0.
5

’This should be used with care, if you really need something like
this it can be useful, but if you don\’t it can also be a footgun.’

cidr-tools@11.0.3

’It is expected that the passed CIDRs and IPs are validated as the
module’s own input validation is rudimentary. You are encouraged
to use modules like [is-cidr](https://github.com/silverwind/is-cidr)
and [is-ip](https://github.com/sindresorhus/is-ip) to validate before
passing to this module.’

@ector/cli@1.1.0 **Warning**: it’s safer to quote the entry using double quotes ‘".
@agoric/evaluate@2
.2.6

The evaluated code will have full access to the globals, which is
usually far more authority than you really want to give that code

JASON@0.1.3

Warning: unlike JSON, JASON is *unsafe*. You should only use
it in contexts where you have strong guarantees that the strings that
you pass to the JASON parser have been produced by a JASON
formatter from a trusted source.

webpack-plugin-re
act-to-html@2.2.2

’*Warning! This plugin executes your code in a Node context after
each compilation.*’

mkpi@1.1.6
The [exec] and [macro] directives can run arbitrary commands and
execute arbitrary javascript if your input is untrusted set the ‘safe‘
option and these directives are no longer recognised.

Continued on next page

142

https://www.npmjs.com/package/@dschulmeis/ls-utils
https://www.npmjs.com/package/@dschulmeis/ls-utils
https://www.npmjs.com/package/ramda-suggest
https://www.npmjs.com/package/ramda-suggest
https://www.npmjs.com/package/callable-extractor
https://www.npmjs.com/package/callable-extractor
https://www.npmjs.com/package/@nbarray/execa
https://www.npmjs.com/package/@nbarray/execa
https://www.npmjs.com/package/squish-squash
https://www.npmjs.com/package/squish-squash
https://www.npmjs.com/package/js-sanitizer
https://www.npmjs.com/package/js-sanitizer
https://www.npmjs.com/package/gulp-less-templates
https://www.npmjs.com/package/gulp-less-templates
https://www.npmjs.com/package/ipfs-webpack-plugin
https://www.npmjs.com/package/ipfs-webpack-plugin
https://www.npmjs.com/package/exceptionable
https://www.npmjs.com/package/exceptionable
https://www.npmjs.com/package/cidr-tools
https://www.npmjs.com/package/@ector/cli
https://www.npmjs.com/package/@agoric/evaluate
https://www.npmjs.com/package/@agoric/evaluate
https://www.npmjs.com/package/JASON
https://www.npmjs.com/package/webpack-plugin-react-to-html
https://www.npmjs.com/package/webpack-plugin-react-to-html
https://www.npmjs.com/package/mkpi

Package
(name@version)

Warning sentence

@iooxa/runtime@0.2
.7

The functions provided are strings and their evaluation can be
dangerous if you do not trust the source.

node-red-contrib-
builder@0.1.0

’This node have a little code injection checking to prevent
malicious usage injection’

bdwm-orion@1.0.13
’**注意: **如果JSON内容是由不受信任的用户直接编写的，
则一定要进行Base64或额外的一层JSON编码包装以防止错误
或潜在的攻击。’

@afterburner-
js/afterburner-
js@2.0.1

You should only ever run this application against a host you fully
trust because of the proxy and the ability to execute system
commands. However, this behavior can be disabled or modified.
See ‘middleware/proxy.js‘ and ‘middleware/shelly.js‘.

safe-eval-2@0.4.2 User-submitted data should not be run through safe-eval.
github-
webhook@2.0.2

’you will generally want to quote the rule to prevent shell trickery.’

graphql-playgrou
nd-middleware-expr
ess-patched@1.10.7

’All versions of ‘graphql-playground-express‘ until ‘1.7.16‘ or
later have a security vulnerability when unsanitized user input is
used while invoking ‘expressPlayground()‘.’

@quarto/external-
alex-garcia-unoffi
cial-observablehq-
compiler@0.0.6

Keep in mind, there is no sandboxing done, so it has the same
security implications as ‘eval()‘

gulp-minify-
inline@1.1.0

’Please note that the plugin defaults ‘js.output.inline_script‘ to
‘true‘ in order to combat XSS (contributed by @TimothyGu). This
is quite useful in general but you might want to re-set it to ‘false‘
explicitly in (an extremely rare) case it breaks things for you’

a-sandbox@0.0.0-
alpha.2

[dangersign]进行定制时，**不能**将外部的对象泄漏到沙箱
中，防止沙箱中的代码通过**原型链**对外部进行攻击。

babel-plugin-inli
ne-constants@5.0.0

[dangersign] **Danger**: modules to be inlined are evaluated
with Node, so only use this plugin if you completely trust your
code.

peertube-plugin-
bittube-logo-
favicon@1.0.5

’There is no sanitarization for your inputs (neither url or width).
We assume that administrators are not evil, and don’t do XSS and
co.’

@breaktherules/kew
lpackage@0.8.3

ShellJS is not safe for untrusted input. Do not use shelljs.exec with
unsanitized input.

jsonpickle@1.2.0
Only load data you have personally produced if you want to be
safe

Continued on next page

143

https://www.npmjs.com/package/@iooxa/runtime
https://www.npmjs.com/package/@iooxa/runtime
https://www.npmjs.com/package/node-red-contrib-builder
https://www.npmjs.com/package/node-red-contrib-builder
https://www.npmjs.com/package/bdwm-orion
https://www.npmjs.com/package/@afterburner-js/afterburner-js
https://www.npmjs.com/package/@afterburner-js/afterburner-js
https://www.npmjs.com/package/@afterburner-js/afterburner-js
https://www.npmjs.com/package/safe-eval-2
https://www.npmjs.com/package/github-webhook
https://www.npmjs.com/package/github-webhook
https://www.npmjs.com/package/graphql-playground-middleware-express-patched
https://www.npmjs.com/package/graphql-playground-middleware-express-patched
https://www.npmjs.com/package/graphql-playground-middleware-express-patched
https://www.npmjs.com/package/@quarto/external-alex-garcia-unofficial-observablehq-compiler
https://www.npmjs.com/package/@quarto/external-alex-garcia-unofficial-observablehq-compiler
https://www.npmjs.com/package/@quarto/external-alex-garcia-unofficial-observablehq-compiler
https://www.npmjs.com/package/@quarto/external-alex-garcia-unofficial-observablehq-compiler
https://www.npmjs.com/package/gulp-minify-inline
https://www.npmjs.com/package/gulp-minify-inline
https://www.npmjs.com/package/a-sandbox
https://www.npmjs.com/package/a-sandbox
https://www.npmjs.com/package/babel-plugin-inline-constants
https://www.npmjs.com/package/babel-plugin-inline-constants
https://www.npmjs.com/package/peertube-plugin-bittube-logo-favicon
https://www.npmjs.com/package/peertube-plugin-bittube-logo-favicon
https://www.npmjs.com/package/peertube-plugin-bittube-logo-favicon
https://www.npmjs.com/package/@breaktherules/kewlpackage
https://www.npmjs.com/package/@breaktherules/kewlpackage
https://www.npmjs.com/package/jsonpickle

Package
(name@version)

Warning sentence

gradleshim@1.0.2
’You should not manipulate these files flippantly, do not accept
user input as it could result in injection. Static, safe, and tested
changes are key to making this an effective solution.’

nearley-
there@1.0.0

Warning: Uses ‘eval()‘. Don’t use this other than for testing.

with-with@1.1.2
This is not a sandbox do not use it as a sandbox do not try to make
it a sandbox

aws-lambda@1.0.7
Versions prior to 1.0.5 suffer from ’Command Injection’
vulnerability

compile-
template@0.3.1

’The node vm module is not a security mechanism. Do not use
untrusted code in templates.’

nrsc@0.2.4 ’USE WITH EXTREME CARE!’

babelon7@2.0.0
‘babelon‘ uses ‘vm‘, ‘Function‘, and/or ‘eval‘, so only use it where
you trust the input.

433mhz@2.0.0
Be aware of command injection: the binary code you pass to
‘transmitCode‘ is passed directly into ‘exec‘ (no sanitization)!

atlas-interactive-
shell@1.0.2

Don’t pass unsanitized user input into this function.

crossvm@0.0.9-beta
’CrossVM is not a security mechanism. Do not use it to run
untrusted code.’

gyp-reader@0.0.2 ’Do not run this on gyp files that you are not sure of.’

babel-
codemod@2.1.2

’This feature should only be used as a convenience to load code
that you or someone you trust wrote. It will run with your full user
privileges, so please exercise caution!’

@spongex/docbuilde
r@2.1.1

’__Performs command injection, use at your own risk! Please read
documentation before use!__’

estime@1.3.0 支持‘eval‘的Javascript环境，但是又担心eval的安全性问题。
@agoric/insecure-
evaluate@0.1.1

INSECURE three-argument evaluate function.

jsoncomma@1.0.0 parseUnsafe is called that for a reason so only feed it trusted data

ctx-loader@1.0.3
’This is experimental, and it wraps a private method in NodeJS,
which can be dangerous.’

uneval@0.1.2
’Do **not** use this unless you know all the things that could
possibly go wrong with this.’

jsex@1.0.32
’Basically you can just ‘eval‘ the string if you trust the source.
However if you don’t, use
‘String.prototype.parseJsex(forbiddenMethods)‘ instead.’

Continued on next page

144

https://www.npmjs.com/package/gradleshim
https://www.npmjs.com/package/nearley-there
https://www.npmjs.com/package/nearley-there
https://www.npmjs.com/package/with-with
https://www.npmjs.com/package/aws-lambda
https://www.npmjs.com/package/compile-template
https://www.npmjs.com/package/compile-template
https://www.npmjs.com/package/nrsc
https://www.npmjs.com/package/babelon7
https://www.npmjs.com/package/433mhz
https://www.npmjs.com/package/atlas-interactive-shell
https://www.npmjs.com/package/atlas-interactive-shell
https://www.npmjs.com/package/crossvm
https://www.npmjs.com/package/gyp-reader
https://www.npmjs.com/package/babel-codemod
https://www.npmjs.com/package/babel-codemod
https://www.npmjs.com/package/@spongex/docbuilder
https://www.npmjs.com/package/@spongex/docbuilder
https://www.npmjs.com/package/estime
https://www.npmjs.com/package/@agoric/insecure-evaluate
https://www.npmjs.com/package/@agoric/insecure-evaluate
https://www.npmjs.com/package/jsoncomma
https://www.npmjs.com/package/ctx-loader
https://www.npmjs.com/package/uneval
https://www.npmjs.com/package/jsex

Package
(name@version)

Warning sentence

open@10.2.0
’This package does not make any security guarantees. If you pass
in untrusted input, it’s up to you to properly sanitize it.’

ops-per-sec@3.0.0
’When using the cli your string will be interpreted using Node’s
‘vm‘ in a sandboxed context.’

docker-wrap@2.0.5
’This does not currently do any input sanitization and forwards
your inputs to the shell, so be sure to not use user inputs for the
arguments without sanitizing them first.’

nstal@0.1.20 Warning! This command can be dangerous!
indomitable@4.1.0 ’Not recommended as every broadcastEval uses eval() internally’

shell-source@1.1.0
Since sourcing a shell script allows it to execute arbitrary code,
you should be 100% sure its contents are not malicious!

kaiser@0.0.4
The resulting serializer, when used on unsanitized data, will be as
safe as the most unsafe object in the whitelist, so be careful:

@ukstv/ses@0.10.3
’Still under development: do not use for production systems yet,
there are known security holes that need to be closed.’

ejs@3.1.10
’If you run the EJS render method without checking the inputs
yourself, you are responsible for the results.’

interpolate-
parameters@3.0.1

’Do not use this module on untrusted strings (eg. user input or
where user could manipulate the string somehow).’

@marchyang/execa@6
.0.1

We recommend against using this option since it is: - not
cross-platform, encouraging shell-specific syntax. - slower,
because of the additional shell interpretation. - unsafe, potentially
allowing command injection.

das-sdk@1.9.3
’Developers should valid the validity of the value before using
them.’

fis3-deploy-http-
push@2.0.8

’此代码存在很大的安全隐患，没有做任何安全考虑，请不要
部署到线上服务。’

self-referenced-
object@2.0.0

self-referenced-object evaluates any expressions inside template
literals by calling “Function(’"use strict"; return ‘’ + expression +
"‘;")()“ which is a marginally safer version of ‘eval‘ (ie still
incredibly unsafe), so you should avoid passing any untrusted data
into an object evaluated by sro (or at least don’t self-reference
untrusted data in an sro evaluated object).

@seung_h/node-
sh@1.2.1

’**Caution**: This function uses the [child
process](https://nodejs.org/api/child_process.html) module to
execute commands directly.’

Continued on next page

145

https://www.npmjs.com/package/open
https://www.npmjs.com/package/ops-per-sec
https://www.npmjs.com/package/docker-wrap
https://www.npmjs.com/package/nstal
https://www.npmjs.com/package/indomitable
https://www.npmjs.com/package/shell-source
https://www.npmjs.com/package/kaiser
https://www.npmjs.com/package/@ukstv/ses
https://www.npmjs.com/package/ejs
https://www.npmjs.com/package/interpolate-parameters
https://www.npmjs.com/package/interpolate-parameters
https://www.npmjs.com/package/@marchyang/execa
https://www.npmjs.com/package/@marchyang/execa
https://www.npmjs.com/package/das-sdk
https://www.npmjs.com/package/fis3-deploy-http-push
https://www.npmjs.com/package/fis3-deploy-http-push
https://www.npmjs.com/package/self-referenced-object
https://www.npmjs.com/package/self-referenced-object
https://www.npmjs.com/package/@seung\protect \T1\textunderscore h/node-sh
https://www.npmjs.com/package/@seung\protect \T1\textunderscore h/node-sh

Package
(name@version)

Warning sentence

commitr@1.1.5
’Giving this kind of control to a file you downloaded can be
dangerous.’

gulp-fest-
hardcore@3.0.0

’надабытьвнимательным:
формируемыйшаблонусловно
делитсянавыраженияи
возвращаемоезначения.’

@ministryofjustice
/express-template-
to-pdf@2.1.0

’This is one way to enable running Puppeteer in Docker but may
be a security issue if you are loading untrusted content, in which
case you should override these defaults.’

krtek@0.1.1
’**WARNING** Krtek can be evil :japanese_goblin:, because
‘eval()‘ is evil.’

jsx0@1.0.1
’This is dangerous to use with user-generated content and in web
applications.’

jstojson@1.0.1
‘jstojson‘ currently utilizes ‘eval()‘ method which means if you
pass in a malicious piece of code, it could potentially harm your
system. So use it at your own risk.

qone@2.0.0
Eval can retain context information, the disadvantage is that the
execution code contains compiler code, and it is unsafe, and so on.

pupbot-plugin-
jsconsole@1.0.1

目前没有对任何JS函数进行限制，所以不要在公共的群中开
启此插件！

@sporeball/node-
crush@0.1.0

’as mentioned above, it also requires an eval for decompression;
make sure you trust the code you’re passing to it.’

es6-dynamic-
template@2.0.0

’Version 1 used ‘eval‘, requiring you to sanitise user input before
use.’

@plugin.land/run-
command@1.2.1

’Avoid using child_process.exec, and never use it if the command
contains any input that changes based on user input.’

git-kit@1.0.2
These scripts are mostly simple wrappers around existing git
commands, and not a lot of validation is going on so handle them
with as much care as you would every other shell command.

@iac-factory/tty-
testing@0.1.9

CLI utilities can be incredibly dangerous.

safer-eval@1.3.6
’**Warning:** The ‘saferEval‘ function is harmful - so you are
warned!’

php-escape-
shell@1.0.0

’This function should be used to make sure that any data coming
from user input is escaped before this data is passed to the exec()
functions.’

Continued on next page

146

https://www.npmjs.com/package/commitr
https://www.npmjs.com/package/gulp-fest-hardcore
https://www.npmjs.com/package/gulp-fest-hardcore
https://www.npmjs.com/package/@ministryofjustice/express-template-to-pdf
https://www.npmjs.com/package/@ministryofjustice/express-template-to-pdf
https://www.npmjs.com/package/@ministryofjustice/express-template-to-pdf
https://www.npmjs.com/package/krtek
https://www.npmjs.com/package/jsx0
https://www.npmjs.com/package/jstojson
https://www.npmjs.com/package/qone
https://www.npmjs.com/package/pupbot-plugin-jsconsole
https://www.npmjs.com/package/pupbot-plugin-jsconsole
https://www.npmjs.com/package/@sporeball/node-crush
https://www.npmjs.com/package/@sporeball/node-crush
https://www.npmjs.com/package/es6-dynamic-template
https://www.npmjs.com/package/es6-dynamic-template
https://www.npmjs.com/package/@plugin.land/run-command
https://www.npmjs.com/package/@plugin.land/run-command
https://www.npmjs.com/package/git-kit
https://www.npmjs.com/package/@iac-factory/tty-testing
https://www.npmjs.com/package/@iac-factory/tty-testing
https://www.npmjs.com/package/safer-eval
https://www.npmjs.com/package/php-escape-shell
https://www.npmjs.com/package/php-escape-shell

Package
(name@version)

Warning sentence

@viperhq/exec@1.0.
1

User input should be escaped!

neat@2.1.0
’[dangersign] As a general rule (not just for Neat), you should
never execute a remote file without prior verification because it
could have been tampered with malicious code.’

gulp-
htmlincluder@2.2.4

I have flagged these features below, but please use caution when
using them so that you don’t have any untrusted data that isn’t
unsanitized going into the system.

atocha@2.0.0
’Note: Do **not** pass unsanitized input since there’s no filtering
going on. See [execa](https://github.com/sindresorhus/execa) for
that.’

node-
stringify@0.2.1

’Please be aware that eval may be insecure.’

@curvenote/runtime
@0.2.9

The functions provided are strings and their evaluation can be
dangerous if you do not trust the source.

panic-server@1.1.1
Loading the client software into a browser or Node.js process
exposes the mother of all XSS vulnerabilities. Connect it to the
coordinator, then it’ll have full control over your process.

baset-vm@0.14.4

it’s not designed for running untrusted code - normal code won’t
affect host’s environment in most cases but there are NO
PROGRAM RESTRICTIONS to do it, so if you know how this
context is built and which parts are actually shared between host
and child you are able to affect host from child

@nuxt/devalue@2.0.
2

While ‘devalue‘ prevents the XSS vulnerability shown above,
meaning you can use it to send data from server to client, **you
should not send user data from client to server** using the same
method.

accord-papandreou
@0.20.0-patch1

but be careful.

obj-to-json-
cli@0.0.4

Uses ‘eval‘, so only use it with trusted input.

coffeeson@0.1.0
’So don’t accept and parse Coffeeson from untrusted sources,
that’s what JSON is for.’

johnny-tools-
react-native@1.0.3

Please make sure you sanetise the values. (no spaces in the card
number, correct format for month and year)

@bishal-9/video-
to-mp3-
converter@1.0.0

NOTE: Do not pass any song name with a space inside it.

Continued on next page

147

https://www.npmjs.com/package/@viperhq/exec
https://www.npmjs.com/package/@viperhq/exec
https://www.npmjs.com/package/neat
https://www.npmjs.com/package/gulp-htmlincluder
https://www.npmjs.com/package/gulp-htmlincluder
https://www.npmjs.com/package/atocha
https://www.npmjs.com/package/node-stringify
https://www.npmjs.com/package/node-stringify
https://www.npmjs.com/package/@curvenote/runtime
https://www.npmjs.com/package/@curvenote/runtime
https://www.npmjs.com/package/panic-server
https://www.npmjs.com/package/baset-vm
https://www.npmjs.com/package/@nuxt/devalue
https://www.npmjs.com/package/@nuxt/devalue
https://www.npmjs.com/package/accord-papandreou
https://www.npmjs.com/package/accord-papandreou
https://www.npmjs.com/package/obj-to-json-cli
https://www.npmjs.com/package/obj-to-json-cli
https://www.npmjs.com/package/coffeeson
https://www.npmjs.com/package/johnny-tools-react-native
https://www.npmjs.com/package/johnny-tools-react-native
https://www.npmjs.com/package/@bishal-9/video-to-mp3-converter
https://www.npmjs.com/package/@bishal-9/video-to-mp3-converter
https://www.npmjs.com/package/@bishal-9/video-to-mp3-converter

Package
(name@version)

Warning sentence

travisci-
webhook@2.0.0

you will generally want to quote the rule to prevent shell trickery.

@jsenv/uneval@1.6.
0

However JSON.stringify is way faster and is safe (it cannot
execute arbitrary code). So prefer JSON.stringify + JSON.parse
over uneval + eval when you can.

@eklingen/vinyl-
stream-gears@4.0.5

Optional argument objects are not sanitized.

@commonify/execa@6
.0.0

unsafe, potentially allowing command injection.

@drfrost/xum@1.0
.0-alpha.10

’Use with caution since your command won’t be validated.’

o-command-
line@1.0.3

Executing bash commands from a program is a high security risk

eval-
serializer@0.3.2

Big disclaimer: Even though it tries its best to sandbox the eval
context, it’s always possible that there’s a security risk I missed to
address. Only use this library when the configuration cannot be
modified by 3rd party.

worker-proof@1.0.1

WARNING: This library works by serializing functions and
evaluating strings as code on the other side. Generally, this is
considered inadvisable due to potential security risks involved with
any variation of ‘eval‘ of use of ‘Function‘ constructor, as is done
here. This should probably not be used in a real production app.
Get professional security review if you’re considering it

@inikulin/jsdom-
only-external-
scripts@11.1.0

Again we emphasize to only use this when feeding jsdom code
you know is safe. If you use it on arbitrary user-supplied code, or
code from the Internet, you are effectively running untrusted
Node.js code, and your machine could be compromised.

Table 8.1: Packages with warnings, and the sentence that was signaled by the smaller LLM.

148

https://www.npmjs.com/package/travisci-webhook
https://www.npmjs.com/package/travisci-webhook
https://www.npmjs.com/package/@jsenv/uneval
https://www.npmjs.com/package/@jsenv/uneval
https://www.npmjs.com/package/@eklingen/vinyl-stream-gears
https://www.npmjs.com/package/@eklingen/vinyl-stream-gears
https://www.npmjs.com/package/@commonify/execa
https://www.npmjs.com/package/@commonify/execa
https://www.npmjs.com/package/@drfrost/xum
https://www.npmjs.com/package/@drfrost/xum
https://www.npmjs.com/package/o-command-line
https://www.npmjs.com/package/o-command-line
https://www.npmjs.com/package/eval-serializer
https://www.npmjs.com/package/eval-serializer
https://www.npmjs.com/package/worker-proof
https://www.npmjs.com/package/@inikulin/jsdom-only-external-scripts
https://www.npmjs.com/package/@inikulin/jsdom-only-external-scripts
https://www.npmjs.com/package/@inikulin/jsdom-only-external-scripts

0-1
00

0

10
00

-10
00

0

10
00

0-1
00

00
0

10
00

00
+

Lines of Code (LoCs)

0

2000

4000

6000

8000

10000

#P
ac

ka
ge

s w
ith

in
 th

at
 ra

ng
e

How many popular packages with sinks per Lines Range
Popular with sinks

0-1
00

0

10
00

-10
00

0

10
00

0-1
00

00
0

10
00

00
+

Lines of Code (LoCs)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Pe
rc

en
ta

ge
 w

rt
po

pu
la

r w
ith

 si
nk

s

Percentage of packages per Lines Range
%with potential flows
%with confirmed flows

Figure 8.4: Frequency of packages within ranges of lines of code counts, split into "with sinks",
"with potential flows" and with "confirmed flows".

0-5 5-1
0

10
-20

20
-40

40
-80

80
-16

0

16
0-3

20

32
0-6

40

64
0-1

28
0

12
80

-25
60

25
60

-51
20
51

20
+

Package size Ranges (KBs)

0

1000

2000

3000

4000

5000

6000

#P
ac

ka
ge

s w
ith

in
 th

at
 si

ze

How many popular packages with sinks per Package Size Range
Popular with sinks

0-5 5-1
0

10
-20

20
-40

40
-80

80
-16

0

16
0-3

20

32
0-6

40

64
0-1

28
0

12
80

-25
60

25
60

-51
20
51

20
+

Package size Ranges (KBs)

0

5

10

15

20

25

Pe
rc

en
ta

ge
 w

rt
po

pu
la

r w
ith

 si
nk

s

Percentage of packages per Package Size Range
%with potential flows
%with confirmed flows

Figure 8.5: Frequency of packages within ranges of package size, split into "with sinks", "with
potential flows" and with "confirmed flows".

149

0-1 1-2 2-3 3-4 4-5 5-6 7-8 8-9 9-1
0

10
+

Tree Depth

0

1000

2000

3000

4000

5000

6000

7000

8000

#P
ac

ka
ge

s w
ith

in
 th

at
 ra

ng
e

How many popular packages with sinks per Tree Depth Range
Popular with sinks

0-1 1-2 2-3 3-4 4-5 5-6 7-8 8-9 9-1
0

10
+

Tree Depth

0

2

4

6

8

10

12

14

Pe
rc

en
ta

ge
 w

rt
po

pu
la

r w
ith

 si
nk

s

Percentage of packages per Tree Depth Range
%with potential flows
%with confirmed flows

Figure 8.6: Frequency of packages within ranges of tree depth size, split into "with sinks", "with
potential flows" and with "confirmed flows".

0-2 2-4 4-8 8-1
6

16
-32

32
-64

64
-12

8
12

8+

#Unique dependencies

0

1000

2000

3000

4000

5000

6000

7000

8000

#P
ac

ka
ge

s w
ith

in
 th

at
 ra

ng
e

How many popular packages with sinks per Unique Dep Range
Popular with sinks

0-2 2-4 4-8 8-1
6

16
-32

32
-64

64
-12

8
12

8+

#Unique dependencies

0

2

4

6

8

10

12

14

Pe
rc

en
ta

ge
 w

rt
po

pu
la

r w
ith

 si
nk

s

Percentage of packages per Unique Dep Range
%with potential flows
%with confirmed flows

Figure 8.7: Frequency of packages within ranges of unique dependency numbers, split into "with
sinks", "with potential flows" and with "confirmed flows".

150

20 40 60 80 100
Time (seconds)

0

500

1000

1500

2000

Ag
gr

eg
at

ed
 n

um
be

r o
f f

lo
ws

Flows found over time

Figure 8.8: How many flows are discovered (y-axis) when we set the fuzzing timeout to (x-axis
in seconds).

151

152

Bibliography

[1] Chrome platform status. https://chromestatus.com/metrics/feature/timeline/
popularity/3160. accessed 2025-07-21.

[2] Cloudflare workers Node.js runtime APIs. https://developers.cloudflare.com/wo
rkers/runtime-apis/nodejs/. Accessed: 2025-08-09.

[3] Visual studio code. https://github.com/microsoft/vscode. Accessed: 2025-08-09.

[4] Wayback machine, 1996–. https://web.archive.org.

[5] Wfuzz – the web fuzzer. https://github.com/xmendez/wfuzz, 2014.

[6] Npm passes the 1 millionth package milestone! What can we learn?, 2021. http://tiny
url.com/npm-1-millionth.

[7] WARC, web ARChive file format, 2022–. https://www.loc.gov/preservation/dig
ital/formats/fdd/fdd000236.shtml.

[8] https://security.snyk.io/vuln/SNYK-JS-NETWORK-6184371, January 2024.
Available from Snyk, Snyk-ID SNYK-JS-NETWORK-6184371.

[9] Network and distributed system security symposium (ndss) 2025. Internet Society, 2025.

[10] Network and distributed system security symposium (ndss) 2026. Internet Society, 2026.

[11] Marco Abbadini, Dario Facchinetti, Gianluca Oldani, Matthew Rossi, and Stefano Para-
boschi. Natisand: Native code sandboxing for JavaScript runtimes. In Proceedings of
the 26th International Symposium on Research in Attacks, Intrusions and Defenses, pages
639–653, 2023.

[12] Acunetix. Acunetix vulnerability report 2021. https://www.acunetix.com/white-
papers/acunetix-web-application-vulnerability-report-2021/?#cross-
site-scripting-xss, 2021. Accessed: 2024-09-03.

[13] AFLFuzzJS. afl-fuzz-js: A JavaScript Port of the American Fuzzy Lop Fuzzer. https:
//github.com/tunz/afl-fuzz-js, 2016.

[14] Scott G Ainsworth, Michael L Nelson, and Herbert Van de Sompel. Only one out of five
archived web pages existed as presented. In Proceedings of the 26th ACM Conference on
Hypertext & Social Media, pages 257–266, 2015.

[15] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. {NAVEX}:
Precise and scalable exploit generation for dynamic web applications. In 27th USENIX
Security Symposium (USENIX Security 18), pages 377–392, 2018.

153

https://chromestatus.com/metrics/feature/timeline/popularity/3160
https://chromestatus.com/metrics/feature/timeline/popularity/3160
https://developers.cloudflare.com/workers/runtime-apis/nodejs/
https://developers.cloudflare.com/workers/runtime-apis/nodejs/
https://github.com/microsoft/vscode
https://web.archive.org
https://github.com/xmendez/wfuzz
http://tinyurl.com/npm-1-millionth
http://tinyurl.com/npm-1-millionth
https://www.loc.gov/preservation/digital/formats/fdd/fdd000236.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000236.shtml
https://security.snyk.io/vuln/SNYK-JS-NETWORK-6184371
https://www.acunetix.com/white-papers/acunetix-web-application-vulnerability-report-2021/?#cross-site-scripting-xss
https://www.acunetix.com/white-papers/acunetix-web-application-vulnerability-report-2021/?#cross-site-scripting-xss
https://www.acunetix.com/white-papers/acunetix-web-application-vulnerability-report-2021/?#cross-site-scripting-xss
https://github.com/tunz/afl-fuzz-js
https://github.com/tunz/afl-fuzz-js

[16] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. ACM Computing Surveys (CSUR),
51(3):1–39, 2018.

[17] Souphiane Bensalim, David Klein, Thomas Barber, and Martin Johns. Talking about
my generation: Targeted DOM-Based XSS exploit generation using dynamic data flow
analysis. In Proceedings of the 14th European Workshop on Systems Security, 2021.

[18] Tim Berners-Lee, Larry Masinter, and Mark McCahill. Uniform resource locators (url).
RFC 1738, December 1994.

[19] Masudul Hasan Masud Bhuiyan, Adithya Srinivas Parthasarathy, Nikos Vasilakis, Michael
Pradel, and Cristian-Alexandru Staicu. Secbench. js: An executable security benchmark
suite for server-side JavaScript. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pages 1059–1070. IEEE, 2023.

[20] Daniel Borkmann, Jesper Dangaard Brouer, et al. ebpf: The extended berkeley packet
filter. Linux Kernel Documentation, 2014. Introduced in Linux kernel 3.18.

[21] Tiago Brito, Mafalda Ferreira, Miguel Monteiro, Pedro Lopes, Miguel Barros,
José Fragoso Santos, and Nuno Santos. Study of JavaScript static analysis tools for vulner-
ability detection in node. js packages. IEEE Transactions on Reliability, 72(4):1324–1339,
2023.

[22] Darion Cassel. Practical End-to-End Analysis of Information Flow Security Policies. PhD
thesis, Carnegie Mellon University, 2023.

[23] Darion Cassel, Nuno Sabino, Min-Chien Hsu, Ruben Martins, and Limin Jia. NodeMedic-
FINE: Automatic detection and exploit synthesis for Node.js vulnerabilities. In Network
and Distributed System Security Symposium, 2025.

[24] Darion Cassel, Wai Tuck Wong, and Limin Jia. NodeMedic: End-to-end analysis of
Node.js vulnerabilities with provenance graphs. In 2023 IEEE 8th European Symposium
on Security and Privacy (EuroS&P), 2023.

[25] The MITRE Corporation. CWE - CWE-77: Improper Neutralization of Special Elements
used in a Command (’Command Injection’) (4.3), 2020–. https://cwe.mitre.org/da
ta/definitions/77.html.

[26] The MITRE Corporation. CWE - CWE-94: Improper Control of Generation of Code
(’Code Injection’) (4.3), 2020–. https://cwe.mitre.org/data/definitions/94.ht
ml.

[27] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. mitmproxy: A
free and open source interactive HTTPS proxy. https://mitmproxy.org/, 2010.
Version 9.0.

[28] Mickaël Courtes. Landlock: Unprivileged access control for linux. Linux Kernel Docu-
mentation, 2021. Introduced in Linux kernel 5.13.

[29] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proceedings
of the 14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2008.

154

https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/94.html
https://mitmproxy.org/

[30] Deno Land Inc. and contributors. Deno: A modern runtime for JavaScript, typescript and
webassembly, 2025. Version 2.x (latest stable release as of November 2025).

[31] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. Enemy
of the state: A {state-aware}{black-box} web vulnerability scanner. In 21st USENIX
Security Symposium (USENIX Security 12), pages 523–538, 2012.

[32] Kostas Drakonakis, Sotiris Ioannidis, and Jason Polakis. Rescan: A middleware frame-
work for realistic and robust black-box web application scanning. In Network and Dis-
tributed System Security Symposium, 2023.

[33] EJS Team. Ejs, 2025. Embedded JavaScript templates.

[34] Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. Black widow: Blackbox
data-driven web scanning. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1125–1142. IEEE, 2021.

[35] Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations
in large language models using semantic entropy. Nature, 630(8017):625–630, 2024.

[36] Mafalda Ferreira, Miguel Monteiro, Tiago Brito, Miguel E Coimbra, Nuno Santos, Limin
Jia, and José Fragoso Santos. Efficient static vulnerability analysis for JavaScript with
multiversion dependency graphs. Proceedings of the ACM on Programming Languages,
8(PLDI):417–441, 2024.

[37] Yaw Frempong., Yates Snyder., Erfan Al-Hossami., Meera Sridhar., and Samira Shaikh.
Hijax: Human intent JavaScript XSS generator. In Proceedings of the 18th International
Conference on Security and Cryptography - SECRYPT,, 2021.

[38] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed whitebox fuzzing.
In 2009 IEEE 31st International Conference on Software Engineering, pages 474–484.
IEEE, 2009.

[39] Behrad Garmany, Martin Stoffel, Robert Gawlik, Philipp Koppe, Tim Blazytko, and
Thorsten Holz. Towards automated generation of exploitation primitives for web
browsers. In Proceedings of the 34th Annual Computer Security Applications Conference,
2018.

[40] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. AFFOGATO: Runtime
detection of injection attacks for Node.js. In Companion Proceedings for the ISSTA/E-
COOP 2018 Workshops, 2018.

[41] Ayush Goel, Jingyuan Zhu, Ravi Netravali, and Harsha V Madhyastha. Jawa: Web
archival in the era of JavaScript. In 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 22), pages 805–820, 2022.

[42] Google. honggfuzz: a general-purpose, easy-to-use fuzzer with interesting analysis op-
tions. https://github.com/google/honggfuzz, 2015.

[43] Google. Expanding user protections on the web. https://blog.chromium.org/2017
/11/expanding-user-protections-on-web.html, 2017.

[44] Google. Further protections from harmful ad experiences on the web. https://blog.c
hromium.org/2018/11/further-protections-from-harmful-ad.html, 2018.

155

https://github.com/google/honggfuzz
https://blog.chromium.org/2017/11/expanding-user-protections-on-web.html
https://blog.chromium.org/2017/11/expanding-user-protections-on-web.html
https://blog.chromium.org/2018/11/further-protections-from-harmful-ad.html
https://blog.chromium.org/2018/11/further-protections-from-harmful-ad.html

[45] Google. A secure web is here to stay. https://security.googleblog.com/2018/0
2/a-secure-web-is-here-to-stay.html, 2018.

[46] Google. Under the hood: How Chrome’s ad filtering works. https://blog.chromium.
org/2018/02/how-chromes-ad-filtering-works.html, 2018.

[47] Google. Building a more private web: A path towards making third party cookies obsolete.
https://blog.chromium.org/2020/01/building-more-private-web-path-
towards.html, 2020.

[48] Google. Protecting against resource-heavy ads in Chrome. https://blog.chromium.
org/2020/05/resource-heavy-ads-in-chrome.html, 2020.

[49] Google. Samesite cookie changes in february 2020: What you need to know. https:
//blog.chromium.org/2020/02/samesite-cookie-changes-in-february.html,
2020.

[50] J. Gruber and the V8 Project. Block code coverage. Google Docs, 2018. Design document
for V8 code-coverage support including block-level instrumentation.

[51] Brij B Gupta, Aakanksha Tewari, Ankit Kumar Jain, and Dharma P Agrawal. Fighting
against phishing attacks: state of the art and future challenges. Neural Computing and
Applications, 28(12):3629–3654, 2017.

[52] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. Dowser: a
guided fuzzer to find buffer overflow vulnerabilities. In Proceedings of the 22nd USENIX
Security Symposium, pages 49–64, 2013.

[53] Florian Hantke, Stefano Calzavara, Moritz Wilhelm, Alvise Rabitti, and Ben Stock. You
call this archaeology? evaluating web archives for reproducible web security measure-
ments. In ACM Conference on Computer and Communications Security, 2023.

[54] Joona Hoikkala. ffuf - Fuzz Faster U Fool. https://github.com/ffuf/ffuf, 2018.
Accessed: 2025-04-17.

[55] Xunchao Hu, Yao Cheng, Yue Duan, Andrew Henderson, and Heng Yin. Jsforce: A
forced execution engine for malicious JavaScript detection. In International conference
on security and privacy in communication systems, pages 704–720. Springer, 2017.

[56] Huli. Ejs vulnerabilities in ctf. https://blog.huli.tw/2023/06/22/en/ejs-
render-vulnerability-ctf/, 2023. Accessed: 2025-11-13.

[57] IAB Technology Laboratory, Inc. Content taxonomy 3.0 and descriptive vectors, June
2022. GitHub repository.

[58] JSFuzz. Jsfuzz. GitHub repository, 2020. Available at: https://github.com/fuzzitd
ev/jsfuzz.

[59] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song. Dta++:
dynamic taint analysis with targeted control-flow propagation. In NDSS, 2011.

[60] Mingqing Kang, Yichao Xu, Song Li, Rigel Gjomemo, Jianwei Hou, V. N. Venkatakr-
ishnan, and Yinzhi Cao. Scaling JavaScript abstract interpretation to detect and exploit
Node.js taint-style vulnerability. In IEEE Symposium on Security and Privacy, 2023.

156

https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html
https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html
https://blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/01/building-more-private-web-path-towards.html
https://blog.chromium.org/2020/05/resource-heavy-ads-in-chrome.html
https://blog.chromium.org/2020/05/resource-heavy-ads-in-chrome.html
https://blog.chromium.org/2020/02/samesite-cookie-changes-in-february.html
https://blog.chromium.org/2020/02/samesite-cookie-changes-in-february.html
https://github.com/ffuf/ffuf
https://blog.huli.tw/2023/06/22/en/ejs-render-vulnerability-ctf/
https://blog.huli.tw/2023/06/22/en/ejs-render-vulnerability-ctf/
https://github.com/fuzzitdev/jsfuzz
https://github.com/fuzzitdev/jsfuzz

[61] Zifeng Kang, Song Li, and Yinzhi Cao. Probe the proto: Measuring client-side prototype
pollution vulnerabilities of one million real-world websites. In NDSS, 2022.

[62] Rahul Kanyal and Smruti R Sarangi. Panoptichrome: A modern in-browser taint analysis
framework. In Proceedings of the ACM Web Conference 2024, pages 1914–1922, 2024.

[63] R. Karim, F. Tip, A. Sochurkova, and K. Sen. Platform-Independent Dynamic Taint Anal-
ysis for JavaScript. IEEE Transactions on Software Engineering, 2018.

[64] Wenjun Ke, Yifan Zheng, Yining Li, Hengyuan Xu, Dong Nie, Peng Wang, and Yao
He. Large language models in document intelligence: A comprehensive survey, recent
advances, challenges and future trends. ACM Transactions on Information Systems, 2025.

[65] Soheil Khodayari, Thomas Barber, and Giancarlo Pellegrino. The great request robbery:
An empirical study of client-side request hijacking vulnerabilities on the web. In IEEE
Symposium on Security and Privacy, 2024.

[66] Soheil Khodayari and Giancarlo Pellegrino. {JAW}: Studying client-side {CSRF} with
hybrid property graphs and declarative traversals. In 30th USENIX Security Symposium
(USENIX Security 21), pages 2525–2542, 2021.

[67] Kyungtae Kim, I Luk Kim, Chung Hwan Kim, Yonghwi Kwon, Yunhui Zheng, Xiangyu
Zhang, and Dongyan Xu. J-force: Forced execution on JavaScript. In Proceedings of the
26th international conference on World Wide Web, pages 897–906, 2017.

[68] David Klein, Thomas Barber, Souphiane Bensalim, Ben Stock, and Martin Johns. Hand
sanitizers in the wild: A large-scale study of custom JavaScript sanitizer functions. In
IEEE Symposium on Security and Privacy, 2022.

[69] Maryna Kluban, Mohammad Mannan, and Amr Youssef. On detecting and measuring
exploitable JavaScript functions in real-world applications. ACM Transactions on Privacy
and Security, 2024.

[70] Igibek Koishybayev and Alexandros Kapravelos. Mininode: Reducing the attack surface
of Node.js applications. In 23rd International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID 2020), pages 121–134, San Sebastian, October 2020. USENIX
Association.

[71] Dimitrios Kouzis-Loukas. Learning Scrapy. Packt Publishing Ltd, 2016.

[72] Guilhem Lacombe and Sébastien Bardin. Attacker control and bug prioritization. arXiv
preprint arXiv:2501.17740, 2025.

[73] Tobias Lauinger, Abdelberi Chaabane, Sajjad Arshad, William Robertson, Christo Wilson,
and Engin Kirda. Thou shalt not depend on me: Analysing the use of outdated JavaScript
libraries on the web. arXiv preprint arXiv:1811.00918, 2018.

[74] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Korczyński,
and Wouter Joosen. Tranco: A research-oriented top sites ranking hardened against ma-
nipulation. In Network and Distributed System Security Symposium, NDSS 2019, 2019.

[75] Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: large-scale de-
tection of DOM-Based XSS. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 1193–1204, 2013.

157

[76] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

[77] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Detecting Node.js Prototype
Pollution Vulnerabilities via Object Lookup Analysis. 2021.

[78] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Mining Node.js vulnerabilities
via object dependence graph and query. In 31st USENIX Security Symposium (USENIX
Security 22), 2022.

[79] Blake Loring, Duncan Mitchell, and Johannes Kinder. Expose: practical symbolic exe-
cution of standalone JavaScript. In Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, pages 196–199, 2017.

[80] Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static analysis of event-driven Node.js
JavaScript applications. ACM SIGPLAN Notices, 2015.

[81] Valentin JM Manes, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele,
Edward J Schwartz, and Maverick Woo. Fuzzing: Art, science, and engineering. arXiv
preprint arXiv:1812.00140, 2018.

[82] marmelab. Gremlins. https://github.com/marmelab/gremlins.js, May 2020.
Accessed: 2024-10-09.

[83] Filipe Marques, Mafalda Ferreira, André Nascimento, Miguel E Coimbra, Nuno Santos,
Limin Jia, and José Fragoso Santos. Automated exploit generation for Node.js packages.
Proceedings of the ACM on Programming Languages, 9(PLDI):1341–1366, 2025.

[84] Matheos Mattsson. A comparison of ffuf and wfuzz for fuzz testing web applications.
2021.

[85] S McAllister, E Kirda, and C Kruegel. Expanding human interactions for in-depth testing
of web applications. In 11th Symposium on Recent Advances in Intrusion Detection, 2008.

[86] mde/ejs contributors. Unrestricted render option may lead to a rce vulnerability #451.
https://github.com/mde/ejs/issues/451, 2019. Accessed: 2025-11-13.

[87] mde/ejs contributors. Mitigate prototype pollution effects (pull request #601). https:
//github.com/mde/ejs/pull/601, 2021. Accessed: 2025-11-13.

[88] mde/ejs contributors. [vulnerability] server side template injection leads to rce #663. ht
tps://github.com/mde/ejs/issues/663, 2022. Accessed: 2025-11-13.

[89] mde/ejs contributors. Ejs @ 3.1.9 has a server-side template injection vulnerability (un-
fixed) #735. https://github.com/mde/ejs/issues/735, 2023. Accessed: 2025-11-
13.

[90] mde/ejs contributors. Ejs, server side template injection ejs@3.1.9 latest #720. https:
//github.com/mde/ejs/issues/720, 2023. Accessed: 2025-11-13.

[91] William Melicher, Anupam Das, Mahmood Sharif, Lujo Bauer, and Limin Jia. Riding out
domsday: Towards detecting and preventing DOM cross-site scripting. In Network and
Distributed System Security Symposium, 2018.

[92] William Melicher, Clement Fung, Lujo Bauer, and Limin Jia. Towards a lightweight,

158

https://github.com/marmelab/gremlins.js
https://github.com/mde/ejs/issues/451
https://github.com/mde/ejs/pull/601
https://github.com/mde/ejs/pull/601
https://github.com/mde/ejs/issues/663
https://github.com/mde/ejs/issues/663
https://github.com/mde/ejs/issues/735
https://github.com/mde/ejs/issues/720
https://github.com/mde/ejs/issues/720

hybrid approach for detecting DOM XSS vulnerabilities with machine learning. In Pro-
ceedings of the web conference 2021, pages 2684–2695, 2021.

[93] Ali Mesbah, Arie Van Deursen, and Stefan Lenselink. Crawling ajax-based web applica-
tions through dynamic analysis of user interface state changes. ACM Transactions on the
Web (TWEB), 6(1):1–30, 2012.

[94] Louis Milliken, Sungmin Kang, and Shin Yoo. Beyond pip install: Evaluating llm agents
for the automated installation of python projects. In 2025 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 1–11. IEEE, 2025.

[95] Mozilla. Firefox 86 introduces total cookie protection. https://blog.mozilla.org/s
ecurity/2021/02/23/total-cookie-protection/, 2021.

[96] Mozilla. Firefox 87 introduces smartblock for private browsing. https://blog.mozil
la.org/security/2021/03/23/introducing-smartblock/, 2021.

[97] Mozilla. Firefox 90 introduces smartblock 2.0 for private browsing. https://blog.moz
illa.org/security/2021/07/13/smartblock-v2/, 2021.

[98] Mozilla. Firefox 93 features an improved smartblock and new referrer tracking protec-
tions. https://blog.mozilla.org/security/2021/10/05/firefox-93-featur
es-an-improved-smartblock-and-.new-referrer-tracking-protections/,
2021.

[99] Mozilla. Firefox rolls out total cookie protection by default to more users worldwide.
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-
protection-.by-default-to-all-users-worldwide/, 2022.

[100] Netcraft. May 2025 web server survey. https://www.netcraft.com/blog/may-
2025-web-server-survey, 2025. Accessed: 2025-11-28.

[101] Node.js Contributors. VM (executing JavaScript) – untrusted code warning. Node.js
v24.5.0 API documentation, 2025. [Online; accessed 3-Aug-2025].

[102] Node.js Foundation. child_process.execfile — Node.js v24.8.0 documentation. https:
//nodejs.org/api/child_process.html#child_processexecfilefile-args-
options-callback, 2025. Accessed: 2025-09-20.

[103] OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025.

[104] OpenJS Foundation (Electron Project). Electron: Build cross-platform desktop apps with
JavaScript, HTML, and CSS, 2025. Version 36.2.0 (latest stable release as of May 2025).

[105] Stack Overflow. Most popular technologies, 2024. Accessed: 2024-10-31.

[106] OWASP Foundation. OWASP zed attack proxy (ZAP). https://www.zaproxy.org/.
Accessed: 2025-07-21.

[107] Brian S Pak. Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic
execution. School of Computer Science Carnegie Mellon University, 2012.

[108] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang, Atul Sadhu, and
Prateek Saxena. Auto-patching DOM-based XSS at scale. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, 2015.

159

https://blog.mozilla.org/security/2021/02/23/total-cookie-protection/
https://blog.mozilla.org/security/2021/02/23/total-cookie-protection/
https://blog.mozilla.org/security/2021/03/23/introducing-smartblock/
https://blog.mozilla.org/security/2021/03/23/introducing-smartblock/
https://blog.mozilla.org/security/2021/07/13/smartblock-v2/
https://blog.mozilla.org/security/2021/07/13/smartblock-v2/
https://blog.mozilla.org/security/2021/10/05/firefox-93-features-an-improved-smartblock-and-.new-referrer-tracking-protections/
https://blog.mozilla.org/security/2021/10/05/firefox-93-features-an-improved-smartblock-and-.new-referrer-tracking-protections/
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protection-.by-default-to-all-users-worldwide/
https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-protection-.by-default-to-all-users-worldwide/
https://www.netcraft.com/blog/may-2025-web-server-survey
https://www.netcraft.com/blog/may-2025-web-server-survey
https://nodejs.org/api/child_process.html#child_processexecfilefile-args-options-callback
https://nodejs.org/api/child_process.html#child_processexecfilefile-args-options-callback
https://nodejs.org/api/child_process.html#child_processexecfilefile-args-options-callback
https://www.zaproxy.org/

[109] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang, Atul Sadhu, and
Prateek Saxena. DexterJS: Robust testing platform for DOM-based XSS vulnerabilities.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
2015.

[110] Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian Rossow. jäk:
Using dynamic analysis to crawl and test modern web applications. In Research in At-
tacks, Intrusions, and Defenses: 18th International Symposium, RAID 2015, Kyoto, Japan,
November 2-4, 2015. Proceedings 18, pages 295–316. Springer, 2015.

[111] Frederico Ramos, Nuno Sabino, Pedro Adão, David A Naumann, and José Fragoso San-
tos. Toward tool-independent summaries for symbolic execution. In ECOOP, number
263, 2023.

[112] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Her-
bert Bos. Vuzzer: Application-aware evolutionary fuzzing. In Network and Distributed
System Security Symposium, pages 1–14. Internet Society, 2017.

[113] Nuno Sabino, Darion Cassel, Rui Abreu, Pedro Adão, Lujo Bauer, and Limin Jia. SWIPE:
DOM-XSS analysis infrastructure. https://doi.org/10.5281/zenodo.15883603,
July 2025.

[114] Chris Saint-Amant. Scaling a/b testing on netflix.com with Node.js. Netflix Technology
Blog, August 2014. Originally published at techblog.netflix.com; accessed 2025-08-09.

[115] José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and Philippa
Gardner. Symbolic execution for JavaScript. In Proceedings of the 20th International
Symposium on Principles and Practice of Declarative Programming, pages 1–14, 2018.

[116] Koushik Sen and Manu Sridharan. Jalangi2, 2014–. https://github.com/Samsung/j
alangi2.

[117] Deniz Simsek, Aryaz Eghbali, and Michael Pradel. Pocgen: Generating proof-of-concept
exploits for vulnerabilities in npm packages. arXiv preprint arXiv:2506.04962, 2025.

[118] Snyk. How much do we really know about how packages behave on the npm registry?
https://snyk.io/blog/how-much-do-we-really-know-about-how-packages-
behave-on-the-npm-registry/, 2019. Accessed: 2025-07-01.

[119] Stephen Spender and Jonathan Corbet. Secure computing with filters (seccomp). Linux
Kernel Documentation, 2005. Introduced in Linux kernel 2.6.12.

[120] Aleksei Stafeev, Tim Recktenwald, Gianluca De Stefano, Soheil Khodayari, and Gian-
carlo Pellegrino. Yurascanner: Leveraging llms for task-driven web app scanning. 2024.

[121] C.-A. Staicu, M. T. Torp, M. Schäfer, A. Møller, and M. Pradel. Extracting Taint Speci-
fications for JavaScript Libraries. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), 2020.

[122] Cristian-Alexandru Staicu, M. Pradel, and B. Livshits. SYNODE: Understanding and
Automatically Preventing Injection Attacks on NODE.JS. In NDSS, 2018.

[123] Marius Steffens and Ben Stock. Pmforce: Systematically analyzing postmessage han-
dlers at scale. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and

160

https://doi.org/10.5281/zenodo.15883603
https://github.com/Samsung/jalangi2
https://github.com/Samsung/jalangi2
https://snyk.io/blog/how-much-do-we-really-know-about-how-packages-behave-on-the-npm-registry/
https://snyk.io/blog/how-much-do-we-really-know-about-how-packages-behave-on-the-npm-registry/

Communications Security, pages 493–505, 2020.

[124] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo
Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller: Aug-
menting fuzzing through selective symbolic execution. In NDSS, volume 16, pages 1–16,
2016.

[125] Haiyang Sun, Andrea Rosà, Daniele Bonetta, and Walter Binder. Automatically assess-
ing and extending code coverage for npm packages. In 2021 IEEE/ACM International
Conference on Automation of Software Test (AST), pages 40–49, 2021.

[126] Zhenhao Tang, Juan Zhai, Minxue Pan, Yousra Aafer, Shiqing Ma, Xiangyu Zhang, and
Jianhua Zhao. Dual-force: Understanding webview malware via cross-language forced
execution. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pages 714–725, 2018.

[127] Gemma Team. Gemma 3. 2025.

[128] Node.js Team. Permissions | Node.js v24.3.0 documentation. https://nodejs.org/a
pi/permissions.html, 2025. Accessed: 2025-11-07.

[129] HBLT Avgerinos Thanassis, Cha Sang Kil, and Brumley David. Aeg: Automatic exploit
generation. In Network and Distributed System Security Symposium, 2011.

[130] Orpheas van Rooij, Marcos Antonios Charalambous, Demetris Kaizer, Michalis Pa-
paevripides, and Elias Athanasopoulos. webfuzz: Grey-box fuzzing for web applications.
In Computer Security–ESORICS 2021: 26th European Symposium on Research in Com-
puter Security, Darmstadt, Germany, October 4–8, 2021, Proceedings, Part I 26, pages
152–172. Springer, 2021.

[131] W3Techs. Usage statistics of JavaScript as client-side programming language on websites.
https://w3techs.com/technologies/details/cp-javascript, June 2025.
Accessed: 2025-06-26.

[132] Wenhua Wang, Sreedevi Sampath, Yu Lei, and Raghu Kacker. An interaction-based test
sequence generation approach for testing web applications. In 2008 11th IEEE High
Assurance Systems Engineering Symposium, pages 209–218. IEEE, 2008.

[133] Wenya Wang, Xingwei Lin, Jingyi Wang, Wang Gao, Dawu Gu, Wei Lv, and Jiashui
Wang. Hodor: Shrinking attack surface on node. js via system call limitation. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
pages 2800–2814, 2023.

[134] Zilun Wang, Wei Meng, and Michael R Lyu. Fine-grained data-centric content protection
policy for web applications. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pages 2845–2859, 2023.

[135] Wapiti Scanner Project. Wapiti: Web-application vulnerability scanner. https://wapi
ti-scanner.github.io/, 2024. Version 3.2.0, accessed 2025-07-21.

[136] Sunny Wear. Burp Suite Cookbook: Practical recipes to help you master web penetration
testing with Burp Suite. Packt Publishing Ltd, 2018.

[137] Web Application Security Working Group, W3C. Content security policy level 2. Tech-

161

https://nodejs.org/api/permissions.html
https://nodejs.org/api/permissions.html
https://w3techs.com/technologies/details/cp-javascript
https://wapiti-scanner.github.io/
https://wapiti-scanner.github.io/

nical Report W3C Recommendation 15 December 2016, World Wide Web Consortium
(W3C), 2016. Recommendation version.

[138] Web Application Security Working Group, W3C. Trusted types: A browser API to prevent
DOM-Based cross-site scripting. Technical Report Working Draft 3 November 2025,
World Wide Web Consortium (W3C), 2025. Working Draft.

[139] Lukas Weichselbaum and Michele Spagnuolo. “csp is dead, long live csp! on the inse-
curity of whitelists and the future of content security policy”. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security (CCS ’16), pages
973–985, 2016.

[140] Nico Weidmann, Thomas Barber, and Christian Wressnegger. Load-and-act: Increasing
page coverage of web applications. In International Conference on Information Security,
pages 163–182. Springer, 2023.

[141] Feng Xiao, Jianwei Huang, Yichang Xiong, Guangliang Yang, Hong Hu, Guofei Gu, and
Wenke Lee. Abusing hidden properties to attack the Node.js ecosystem. In 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, 2021.

[142] Feng Xiao, Zheng Yang, Joey Allen, Guangliang Yang, Grant Williams, and Wenke Lee.
Understanding and mitigating remote code execution vulnerabilities in cross-platform
ecosystem. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 2975–2988, 2022.

[143] Zheng Yang, Simon P. Chung, Jizhou Chen, Runze Zhang, Brendan Saltaformaggio, and
Wenke Lee. Coindef: A comprehensive code injection defense for the electron framework.
In 2025 IEEE Symposium on Security and Privacy (SP), pages 3127–3144, 2025.

[144] Michal Zalewski. American Fuzzy Lop (AFL). https://github.com/google/honggf
uzz, 2024.

[145] Xinshi Zhou and Bin Wu. Web application vulnerability fuzzing based on improved ge-
netic algorithm. In 2020 IEEE 4th Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC), volume 1, pages 977–981. IEEE, 2020.

[146] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing: a survey for
roadmap. ACM Computing Surveys (CSUR), 54(11s):1–36, 2022.

[147] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel. Small
world with high risks: A study of security threats in the npm ecosystem. In 28th USENIX
Security symposium (USENIX security 19), pages 995–1010, 2019.

162

https://github.com/google/honggfuzz
https://github.com/google/honggfuzz

	1 Introduction
	1.1 Roadmap
	1.2 Thesis Statement

	2 Background and Related Work
	2.1 Code Injection Vulnerabilities in JavaScript Programs
	2.1.1 domxss
	2.1.2 aci
	2.1.3 ace

	2.2 Attacker Model
	2.3 Program Analysis Techniques for Signaling Code Injection Vulnerabilities
	2.3.1 Static Analysis
	2.3.2 Dynamic Analysis

	2.4 Program Exploration Techniques
	2.4.1 Fuzzing
	2.4.2 (Dynamic) Symbolic Execution

	2.5 Exploit Synthesis
	2.5.1 Overview
	2.5.2 Observing Expected Side Effects to Confirm Vulnerabilities
	2.5.3 Use of SMT Synthesis to Generate Exploits
	2.5.4 Existing Methodologies for domxss Vulnerability Confirmation
	2.5.5 Limitations of Synthesis Tools

	2.6 Vulnerability Mitigation
	2.6.1 OS-Level Mitigations
	2.6.2 JavaScript Engine-Level Mitigations
	2.6.3 Application-Level Mitigations
	2.6.4 Coding Security Practices

	3 Improving Client Code Exploration for DOM-XSS Detection
	3.1 Overview
	3.2 SWIPE Architecture
	3.2.1 Execution Modes
	3.2.2 Workflow Overview
	3.2.3 Flow Collection
	3.2.4 Flow Confirmation
	3.2.5 Fuzzing User Interactions
	3.2.6 Using DSE to Find pfs
	3.2.7 Web Archiving

	3.3 Evaluation
	3.3.1 Experimental Setup
	3.3.2 RQ1: Importance of User Interactions
	3.3.3 RQ2: Synthesis and Impact of pfs
	3.3.4 RQ3: Comparison with other domxss Detection Tools
	3.3.5 RQ4: domxss Detection Over the Years

	3.4 Discussion
	3.4.1 Limitations of the Web Archive Component

	3.5 Conclusions

	4 Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities
	4.1 Overview
	4.2 Type and Structure Aware Fuzzer for Node.js Packages
	4.2.1 Motivation
	4.2.2 Fuzzer Input Generation
	4.2.3 Fuzzer Weight Adjustment
	4.2.4 Fuzzer Weight Initialization
	4.2.5 Fuzzer Object Reconstruction
	4.2.6 Fuzzer Generated Values

	4.3 Confirming Code Injection Flows in Node.js Packages
	4.3.1 Usage of Polyglot Exploits for both aci and ace
	4.3.2 Enumerator
	4.3.3 Construction of an Objective Payload Obeying Syntactic Constraints
	4.3.4 Integration of the Objective Payload in Exploit Synthesis
	4.3.5 Addressing Efficiency Concerns

	4.4 Evaluation
	4.4.1 Experimental setup
	4.4.2 Gathering of the Evaluation Dataset
	4.4.3 RQ1: Effectiveness of Type-Aware Fuzzing
	4.4.4 RQ2: Effectiveness of Polyglots and Enumerator for ace Synthesis
	4.4.5 RQ3: Comparison with prior work
	4.4.6 Responsible disclosure
	4.4.7 Exploring Precision in NodeMedic-FINE

	4.5 Limitations and Future Work
	4.5.1 More Complex Drivers
	4.5.2 Multiple Flows in the Same Package
	4.5.3 Enumerator: completing prefixes with multiple lines

	4.6 Conclusions

	5 Confirmation-Aware Analysis
	5.1 Overview
	5.2 Confirmation-Aware Analysis
	5.2.1 Iterative NodeMedic-FINE Pipeline
	5.2.2 Feature Design
	5.2.3 Assigning Weights to Exploitability Metric Features
	5.2.4 Example Analysis Run Using the Exploitability Metric.

	5.3 Evaluation
	5.3.1 Experimental Setup
	5.3.2 RQ1: Effectiveness of the Exploitability Metric
	5.3.3 RQ2: Comparison with Prior Work.

	5.4 Limitations and Future Work
	5.5 Conclusion

	6 Responsibility of Input Sanitization
	6.1 Overview
	6.2 LLM-Assisted Triage of Package Documentations
	6.3 Evaluation
	6.3.1 RQ: Are aci and ace Warnings Heeded by Dependent Packages?

	6.4 Threats to Validity
	6.5 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Future Directions
	7.3 Concluding Thoughts

	8 Supplementary Material
	8.1 NodeMedic-FINE Supplementary Material
	8.1.1 Supported Sinks
	8.1.2 Example Enumerator Completion
	8.1.3 Vulnerability Characteristics
	8.1.4 Fuzzing Timeout
	8.1.5 LLM Signaled Sentences in Packages Containing Warnings

	Bibliography

