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Abstract

Cameras are ubiquitous in modern life, from smartphones to autonomous
vehicles. To produce high-quality, aberration-free images, manufacturers invest
significant resources in precision lens design in order to produce cameras that
meet the demands of all these downstream applications. However, traditional
lens design tools are limited to a set of lens design tasks, and the burden of
designing lenses is largely placed on an expert designer. The methods developed
in this thesis seek to address fundamental limitations of existing lens design tools,
which only focus on optimizing continuous parameters of a fixed lens design for
sharpness. These contributions enable the optimization of complex lens designs
that were previously computationally expensive or impossible to optimize, which
allows for designers to more quickly and efficiently explore the vast design space
of lenses.

Firstly, we develop a method for calculating unbiased gradients of light
throughput, enabling the optimization of lens speed. We show previous methods
ignore the effect of the lens pupil when calculating gradients and thus result in
biased estimates. In order to address the pupil, we devise an object referred to as
a warp field that accurately accounts for the effects of the pupil on the objective
function. With pupil aware gradients, we enable the direct optimization of lens
speed, or light throughput. We demonstrate the effectiveness of our method on a
variety of lens design tasks, including enumerating a tradeoff space between
throughput and sharpness.

Secondly, we develop a Markov chain Monte Carlo (MCMC) method that
combines gradient-based optimization of continuous parameters with discrete
mutations that change the number of elements in a lens design. A lens with a
fixed number of elements is limited by a Pareto front the describes how much
throughput and sharpness can be achieved. By allowing the number of elements
to change during optimization, we can explore a larger design space and find
designs that are better in terms of both throughput and sharpness. We show that
our method constitutes a valid sampler and is effective at finding high quality
lens designs.

Lastly, we address how to add more complicated types of lens elements to our
framework. Gradient index lenses are hard to optimize with traditional techniques
because of the large number of variables to optimize. We derive a method for
calculating gradient through nonlinear ray tracing that has an order of magnitude
lower memory requirements than existing methods. This enables our method
to explore many different applications of gradient index optics, such as building
mutliview displays and building more efficient fiber optics.
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Chapter 1

Introduction

Cameras play an incredibly important role in the modern day world. They exist in applications
ranging from consumer cameras and scientific instruments to theatrical lighting and projector
systems, and with almost every practical camera system, there is a lens that focuses light from
the target scene onto a sensor. The design of these lens systems requires careful construction,
since these cameras are often used in applications where the quality of the image and the
speed at which the camera can operate are critical to performance. For this reason, highly
trained optical engineers are tasked with building lenses that are accurate at the micron level
and below.

Contemporary lens design, therefore, presents a multifaceted optimization challenge. A
typical compound lens system is characterized by both continuous parameters, such as surface
shape and thicknesses, and discrete choices, such as the number of elements and types of
material. This mixed discrete-continuous parameter space creates a complex design landscape
where the performance of the lens is highly sensitive to all of the choices of parameters. This
design space has been historically hard for designers to navigate, necessitating assistance
from theoretical and computational tools that help guide the search for performant designs.
Geometric optics theory provides a simplified model for how light travels through the refractive
materials that make up lenses [10, 68], which remains the basis of how optical design software
such as Zemax [109] and CODE V [91] evaluate lens performance by default. Yet, even with
these tools, design remains time consuming and requires a great deal of designer input. It is
thus useful, and the purpose of this thesis, to develop algorithms that alleviate the burden
on designers.

In parallel, the graphics community has developed methods for differentiable rendering,
which enable gradient-based optimization of image based tasks [44, 53, 99]. These methods
have been successfully applied to a variety of problems and are a great candidate for application
to lens design. However, there are key differences in lens design from general rendering that
make directly applying these methods to lens design challenging. In particular, lenses are
mostly comprised of refractive elements, which is expensive to evaluate in a general rendering
context.

The purpose of this thesis is to develop methods that leverage ideas and techniques from
differentiable rendering to address the challenges of lens design, which will require us to
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develop a set of theoretical and computational tools tailored to the unique requirements of
lens design. We describe three main contributions that address limitations in current lens
design tools:

• A method for calculating the unbiased gradient of light throughput with respect to lens
parameters, enabling the optimization of lens speed.

• A Markov chain Monte Carlo (MCMC) method that combines gradient-based
optimization of continuous parameters with discrete mutations that change the number
of elements in a lens system.

• Amethod for calculating gradients of ray paths through gradient-index (GRIN) materials
using constant memory, allowing for optimization of GRIN lenses.

1.1 Limitations of current lens design tools

Lens design has a long history in optics research and industry, and thus there are several
textbooks providing detailed theory and engineering background [68, 84]. Modern lens
engineers use dedicated software tools for simulation and optimization, such as Zemax [109]
and CODE V [91]. These tools enable engineers to iterate on virtual lens designs before
building expensive physical prototypes.

Despite being the industry standard, these commercial lens design tools have several
limitations that constrain the design process:

Limited Objective Function Scope Commercial software offers functionality for
optimizing designs with metrics for sharpness. However, certain quantities critical to modern
applications—particularly light throughput efficiency—cannot be directly optimized using
current gradient-based methods as it is a quantity that is not readily differentiable with ray
tracing. Designers must rely on heuristic methods to improve throughput, which generally
involves manually adjusting the parameters of the lens to improve throughput.

Manual Design Existing software primarily handles continuous parameter optimization
within a fixed lens design. Designers need to manually edit the design by adding or removing
elements from the lens before then running another continuous parameter optimization. This
process requires substantial expert knowledge and intuition about what discrete changes
are reasonable and have potential to yield a better lens. Indeed, Chapter 2 of Smith [84]
gives a long list of prescriptions for different problems that lens designers encounter during
design. These instructions, however, are suggestions that are not guaranteed to yield a better
design, and thus the designer must manually try different combinations of these mutatations
to hopefully find a better design.

Gradient calculation In order to perform optimization on a design, commercial software
employs gradient descent based optimization techniques, which rely on calculating a gradient
of the objective function with respect to the design parameters. These software packages
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typically either use finite-difference approximations to compute gradients or analytic gradients.
Finite-difference approximations often produce biased and numerically unstable estimates of
the gradient and the computational complexity of the approximation scales linearly with the
complexity of the lens system. For example, gradient-index (GRIN) lenses, have many degrees
of freedom which make them computationally intractable to optimize with finite-difference
methods. Analytic gradients are perhaps the most computationally efficient way to calculate
gradients, but analytic forms for ray tracing can generally only be found for simpler settings
like a single spherical lens element. This severely limits the complexity of optical elements
that can be optimized in the system.

1.2 Research contributions

This dissertation addresses these limitations through the development of novel theoretical
frameworks and computational methods for lens design optimization. The primary
contributions in order of presentation are:

Aperture-aware gradients A method for calculating the unbiased gradient of light
throughput with respect to lens parameters, enabling the optimziation of lens speed. We show
why prior work produces biased gradients when using traditional methods for calculating
gradients, and we show how to overcome this bias with our technique. We also show that
it is possible to find sharper lenses when using aperture-aware gradient as compared to
using biased gradients. Being able to optimize both sharpness and throughput allows us to
enumerate a Pareto front of speed-sharpness tradeoff.

Mixed continuous-discrete lens design A Markov chain Monte Carlo (MCMC) method
that combines gradient-based optimization of continuous parameters with discrete mutations
that change the number of elements. We also construct a method for adding and removing
elements from a design that does not change the performance of the lens up to first order.
This method gives us a way to incorporate mutations that lens designers typically use when
exploring lens designs, which allows us to explore the design space more effectively. We
demonstrate the efficacy of this system by producing lens designs that are comparable in
performance to those produced by designers.

Adjoint nonlinear ray tracing A method for calculating gradients of ray paths through
gradient-index (GRIN) materials using constant memory. In order to optimize for GRIN
lenses, commercial products rely on expensive finite-difference methods for calculating
gradients. Modern graphics methods require the use of automatic differentiation which is
still an expensive operation. Our method presented in Chapter 5 allows for optimization of
GRIN lenses which was previously intractable with finite-difference methods. With more
computational efficiency, we can then optimize more complex designs that exhibit interesting
effects that traditional refractive lenses cannot achieve.
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telephoto lens (600mm)normal lens (50mm)

Figure 1.1: There are many different types of lens designs even when restricted to refractive sequential
optics. Shown are two examples of lenses that we can address with the methods in this thesis. Images of
the lenses are from commons.wikimedia.org.

1.3 Thesis organization

This thesis is organized first by describing in Chapter 2 how a lens is modeled and simulated
with ray tracing. This will provide the theoretical background necessary to discuss the
constributions of Chapter 3, which describes how address the optimization of light throughput.
We will then discuss how to incorporate discrete variables into the optimization process in
Chapter 4. After, Chapter 5 describes how to optimize gradient-index elements with gradient
based optimization, which exemplifies ways in which the method from Chapter 4 can be
extended to handle more complex types of optics. Finally, we conclude with a discussion of
the limitations of our work and future research directions in Chapter 6.

1.4 Landscape of camera designs

Cameras come in many forms and are designed to image different phenomena of light. Most
cameras today are constructed around a sensor that is usually built from a CMOS chip which
is sensitive to light. The sensor is paired with an optical system that will focus light onto
that sensor. There are many different types of optical systems that can be used to focus
light onto a sensor. Optical elements are built from materials that either refract, reflect, and
diffract light. Putting these elements together in a way that focuses light onto a sensor is
what we refer to as an optical system.

When an optical element works by refracting or reflecting light, we categorize the elements
as part of geometric optics. Geometric optics is a simplified model of light that represents
light as rays that transport radiance as it travels through space and different materials. This
model is useful for understanding how light behaves in optical systems, and it is the basis
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for most lens design software, because of its relative computational simplicity. Geometric
optics is not a complete model of light, but it is sufficient for many practical applications,
such as for optical systems that are comprised of geometric optical elements. Examples of
geometric optics are mirrors and dielectric materials, which are often used in telescopes and
microscopes.

The most common optical system is a lens, which is a refractive optical element that
bends light to focus it onto the sensor. These glass or plastic elements are usually stacked
together to create a compound lens which often perform better than a single element because
of the added degrees of freedom to remove aberrations and blur in the sensor image. Most
cameras used in consumer and scientific applications are compound lenses. Compound lenses
are the main focus of this thesis, and we will discuss them in more detail in Chapter 2.

If the optical element works by leveraging the wave nature of light, then we refer to
them as wave optics. These are systems that manipulate light at the wavelength scale,
such as diffraction gratings and holographic optical elements. These systems are often
used in applications where the wavelength of light is important, such as in spectroscopy or
interferometry. Wave optics is not the focus of this thesis, but it is an important area of
optics that would also benefit from computational tools similar to those developed in this
thesis.
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Chapter 2

Modeling and Simulating Lenses

The main goal is of computational methods for designing lenses is to predict how a design
will be before manufacturing a prototype. This is done by simulating how a lens will image
an object given the design parameters. In order to simulate a lens design, we will need to
have a geometric model for these lenses and a method for simulating how light propagates
through the designed lens. This chapter provides an overview lenses are modeled and the
theory for how to simulate light in the form of geometric optics.

2.1 Lens construction

We define a lens to be a device that will redirect light from a source point to a light sensor. It
maps light emitting from points on a plane in space to points on a sensor, with the mapping
being defined by the focal length of the lens. The plane that the object is on is referred to
as the object plane, and the plane that the sensor is on is referred to as the image plane,
or sensor plane. The focal length of the lens system dictates how much the object plane is

lens sensorobject

Figure 2.1: We consider a lens as a device that focuses light from a source point to a single point on a
sensor. A lens is sharp if the light is directed to a very small area on the sensor. A lens is fast if the
amount of light that is being focused on the sensor is large. The focal length of a lens dictates the size
of the image on the sensor.
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magnified on the sensor plane. This relationship is described by the thin lens equation,

1

f
=

1

o
+

1

s
, (2.1)

where f is the focal length of the lens, o is the distance from the lens to the object plane, and
s is the distance from the lens to the sensor plane. After calculating the object and image
distances, we can calculate the magnification, m, of the lens as,

m =
s

o
. (2.2)

This tells us how far the point will be from the center of the sensor. The line that travels
through the center of the sensor and is orthogonal to the object and sensor planes is referred
to as the optical axis of the lens. The magnification of the lens is a scaling relative to this
optical axis.

It is common practice when designing a lens to assume that the object is placed at infinity,
since it possible to always move the image plane relative to the lens to refocus for objects
at different distances from the lens. When the object plane is placed at infinity, then the
image plane is placed exactly a focal length away from the lens, and each ”point” on the the
object plane is a bundle of parallel light rays, with the incident angle of the rays representing
a different point on the object plane. This optical setup is referred to as infinite conjugacy,
and is the default construction that most commerical lens design tools use, such as Zemax
[109] and Code V [91]. In this thesis, we will also assume infinite conjugacy unless stated
otherwise.

2.2 Design objectives

It is important to discuss how we can evaluate the quality of a particular lens. In this section,
we describe the qualities of a ”good” lens design, which we can formalize later in the thesis
as optimization objectives.

Sharpness In practice, a lens is not capable of focusing light from a point source to an
exact point on the sensor. Instead, the point source will map to an area on the sensor rather
than a single point. The size of this area is referred to as the spot error, and the smaller
the spot error, the sharper the image will be. No lens has perfect sharpness for all points
on the object plane, and the sharpness often gets worse as the distance from the optical
axis increases. Additionally, if the scale of the spot error is small enough relative to the
wavelength of light, then the spot error will be dominated by effects not captured through
ray tracing. At this point, the lens is said to be diffraction limited and is the best that can
be achieved with ray tracing. Once a lens is diffraction limited, we consider the lens to be as
sharp as possible.
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Focal length A specification requirement for a lens design is the focal length, which
describes how much magnification the lens will provide. A compound lens design will rarely
have the exact focal length specified, but rather changes over the span of the sensor. This
deviation from the ideal focal length is what gives rise to distortion in the image, which is
a common lens aberration. We can measure the distortion by tracking how far the focus
point is from the ideal focal length for different object heights. Depending on the application,
distortion may not be a significant issue, but it is still important to consider when designing
a lens.

Speed A lens design is fast if it allows a large amount of light to reach the sensor plane.
This quality is often important for light sparse situations, such as night photography and
sports photography. Essentially, speed is an area measure over how many rays reach the
sensor plane from a point source in the scene. The unit of measurement for speed is the
f-number, which is the ratio of the focal length of the lens to the diameter of the entrance
pupil, which is the opening in the lens that light can travel through and successfully reach the
sensor. A lower f-number indicates a faster lens design. The f-number of a lens also dictates
the depth of field of the image which is the range of distances over which the image is in focus.
Low f-numbers produce what is known as bokeh which is often a desirable quality in artistic
photography. For this thesis, we work directly with throughput, rather than f-number.

Trade-offs If the lens has really large spot error, then the speed of the lens can be made
arbitrarily large. Conversely, if the lens is very slow, then the spot error can very easily be
made small, as the amount of light that needs to be focused is minimal. These edge cases
exemplify the trade-off between the speed of the lens and the sharpness of the image. Indeed,
the challenge of lens design is to find a lens that has both a good balance of speed and
sharpness without making the lens too complicated to manufacture. Historically, photographic
lenses have been designed to be sharp, and are improved by increasing the speed of the lens
while minimally affecting the sharpness. This is often done by adding more elements to the
lens design, which follows the trend of manufacturing generally becoming cheaper and more
precise.

2.3 Geometric optics

There are many different ways to steer light. At human scale, light travels as a wave and can
be manipulated by changing the refractive index of the material that the light is traveling
through. There are optical devices that act on the wavefront of light, changing both the
amplitude and phase of the wave. These devices fall under the category of wave optics, and
are often used in applications like holography and interferometry. If the scale of the objects
that we are studying is much larger than the wavelength of light, then we can more simply
track the wavefront by tracking a ray that is orthogonal to the wavefront as it propagates
through space. What results is a model in which light is treated as a collection of rays that
travel through space and interact with objects by changing direction when encountering a
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change in material. This model is known as geometric optics, which is the less accurate model
of light propagation, but is computationally simpler.

Most commercial lenses are constructed from pieces of glass or plastic that are shaped to
focus light. These optical elements are accurately modeled with geometric optics, in fact,
the model error is usually negligible compared to the resolution of the sensors that are used
within these imaging systems. For this reason, most commercial software for lens design,
such as Zemax [109] and Synopsis [91], use the geometric model for designing lenses.

The methods of this thesis are built on geometric ray theory to both simulate the
performance of a lens design but to also calculate the gradients of performance with respect
to the design parameters. The following section provides a brief summary of the relevent
theories used in this proposal. Further discussion of geometric ray theory and Hamiltonian
optics can be found in Born and Wolf [10].

The primary object that we work with is the light ray, which is a description of how light
will travel through objects in space. A light ray is defined by its position, x, and direction, v.
The position of a light ray is the point in space where the light ray is currently located, and
the direction of a light ray is the direction in which the light ray is traveling. In this thesis,
we will use the notation ω = {x, v} to denote a light ray. In most cases, we use ω0 to denote
a ray that originates from a light source, and ωN+1 refers to a ray that has reached an end
point, which is typically a sensor.

At a high level, we can think of a lens (or any geometric optical system) as a function,
f(ω0) = ωN+1, that takes a light ray as input and traces the ray until it reaches a sensor.

In the context of design, we are interested in optimizing the parameters of a lens design,
θ, to minimize a cost function, C, that describes the performance of the lens design. This
cost function is typically a function of how all of the light in a scene is focused on a sensor,
and is of the form,

C(ω0; θ) = C(f(ω0; θ), θ), (2.3)

where ω0 is a light ray that originates from some light source.

To optimize for the cost function, C, we use gradient-based optimization, which requires
computing the gradient of the cost function with respect to the lens parameters, θ,

dC
dθ

=
∂C
∂f

∂f

∂θ
+

∂C
∂θ

. (2.4)

Calculating the partial derivatives of the cost function is often straightforward, as the cost
function is typically simple, like the L2-norm. However, calculating the partial derivatives of
the function f with respect to the lens parameters, θ, is more complex, since this function
encapsulates the entire dynamics of light traveling through our lens. What follows is a deeper
explanation of what this function, f , is and how it is implemented. Calculating this gradient
is addressed in Chapter 3 of the thesis.
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Figure 2.2: Tracing is an alternating series of propagations and transmissions.

2.4 Ray tracing

A light ray will travel in a straight line until it encounters a change in refractive index, at which
point the ray will change direction according to Snell’s law. Thus, f can be decomposed into
repeated applications of two operations, propagation P and transmission T, in alternating
order at each surface. Given the current ray position and direction, P updates the ray
position to the first intersection with the next lens surface; then T updates the ray direction
at that intersection, using either Snell’s law at refractive surfaces of singlets, or free-space
transmission at open surfaces of aperture stops. Thus, starting at ω, ray tracing proceeds
with the recurrence relation:

xi+1 = P (xi, vi, θ) , (2.5)

vi+1 = T (xi+1, vi, θ) . (2.6)

The subscript i indicates each step of the ray tracing process, as it iterates through the lens
surface sequence. Ray tracing ends when the ray intersects the sensor at a position xN+1,
forming a ray x0 → x1 → . . . xN → xN+1, where N is the number of lens surfaces. Both P
and T depend on the parameters θ that describe the lens geometry and material properties.
Thus the sequence of positions xi and directions vi (including xN+1) are functions of the
lens parameters θ and the initial conditions ω—we make this dependence explicit or implied
in equations depending on context. Importantly, for a fixed lens θ, the initial conditions ω
completely determine, through Equations (2.5)–(2.6), a ray’s position sequence xi. Thus we
can parameterize the space of rays through the lens using the initial conditions ω, and we
will refer to each ω also as a ray.

Transmission Light rays passing through the interface of two different refractive materials
will change direction according to Snell’s Law,

η1 sin(ϕ1) = η2 sin(ϕ2),

where η1 and η2 are the refractive indices of the two materials and ϕ1 and ϕ2 are the incident
and exiting angles, respectively. When rays travel at a glancing angle relative to the surface
normal, then the ray of light will no longer transmit through the surface, but instead reflect.
This is known as total internal reflection (TIR). For our purposes, when this happens, we
simply terminate the tracing and ignore the ray. The angle at which TIR occurs is known as
the critical angle, and is dependent on the refractive indices of the two materials that the
refraction is ocurring.
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Sequential Non-sequential

Figure 2.3: In a sequential lens design, all light rays pass through the lens surfaces in a fixed order. In a
non-sequential lens design, different light rays may pass through a different ordering of surfaces, even
interacting with the same surface multiple times.

Propagation When traveling in a single medium, a light ray will propagate in a straight
line until it reaches any surface in the design. In the most general case, a spatial data
structure is used to accelerate this search, such as a bounding volume hierarchy (BVH). This
thesis focuses on sequential lens designs, where the order in which the ray intersects surfaces
is known a priori. Thus, we can simply iterate through the surfaces in order. The theory
presented here is readily applicable to the non-sequential case.

Supposing we know which surface the ray will intersect next, and that we can represent
the surfaces implicitly (a function in which g(x) = 0 ), we can compute i-th intersection
point, xi, by solving a constained optimization problem,

xi = xi−1 + t∗vi−1, (2.7)

t∗ = argmin
t

t s.t. g(xi−1 + tvi−1) = 0. (2.8)

In many cases, this optimization problem can be solved analytically, such as when the surface
is a plane or quadratic. When the surface is not formed analytically, we can use numerical
optimization techniques, like Newton’s method, to find the solution.

Whenever a light ray intersects a surface, most of the energy of the ray will be transmitted
through teh surface, but some of the energy will be reflected back. The amount of energy
that is reflected back is determined by the Fresnel equations,

2.5 Sequential Lens Design

The primary focus of this thesis is the design of sequential compound lenses, which are optical
system where the order in which light passes through the components is fixed. This is in
contrast to non-sequential optical systems, where the order of components can change based on
the path of light through the system. Most lenses used in imaging systems (e.g. microscopes,
telescopes, and cameras) are sequential lenses. In this chapter we will describe how to
formulate the design of sequential lenses as an optimization problem and how the surfaces of
these lenses are represented.

When a compound lens design is sequential, it will have the following properties and
implications:
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1. Rays entering the lens transmit through each refractive surface once and in order from lens
entrance to sensor; we thus ignore geometric effects where rays violate this assumption
(e.g., interreflections, glare).

2. Each compound lens is a collection of refractive singlets or cemented doublets (lens
elements) that have spherical surfaces and are radially symmetric around the optical axis.

3. We assume geometric optics and thus ignore wave effects (e.g., diffraction).

Parameterization By virtue of the assumptions of sequential lens design, we can represent
a compound lens as a sequence of refractive surfaces, each with a set of parameters that
describe its geometry and optical properties. For each surface i in the lens, we need to
following parameters to fully describe it:

• κi: the curvature of the surface

• di: the distance from this surface to the next surface in the lens.

• Ri: the radius of the extent of the surface, orthogonal to the optical axis.

• ηi: the refractive index of the material after this surface.

This representation implicitly defines the sensor plane as the surface that the ray reaches
after the last element defined in the representation. Similarly, we must define what the index
of refraction is before the lens begins, which we will assume is air.

We can thus describe a compound lens as the ordered sequence of the surfaces of the lens
elements—two for each singlet, one for each aperture stop. Additionally, we consider only
geometric optics and focus on sequential lens design: that is, we consider only light rays that
originate from an emitter surface before the lens, transmit once through all lens surfaces
in order, and reach a sensor plane after the lens—we call such rays valid rays (Figure 3.2).
Thus, we do not account for wave effects such as diffraction, or geometric effects involving
invalid rays such as glare and interreflections.

With these parameters, we can then define an implicit function that describes the surface,
i,

g(x) = κi∥x∥ − 2Poax, (2.9)

where Poa is the projection onto the optical axis, and x is a point in 3D space. The surface is
assumed to be centered at the origin, which we can always do by calculating the position of
the lens based on the distances from the previous surfaces and offsetting the position of the
ray when calculating an intersection.

Comparison to commerical products. Designing sequential lenses is perhaps the most
common task in optical design. In commerical lens design software like Zemax [109], sequential
lens tracing is the default mode of operation and is the main focus of the software. Similar to
the work in this thesis, Zemax uses ray tracing to simulate the performance of a lens design
and will also optimize the lens by calculating the gradient of lens performance metrics with
respect to the lens parameters. Both Zemax and Synopsis [91] use the same parameterization
as the one presented above. However, Zemax does not use automatic differentiation, and

13



instead uses a combination of analytic gradients and finite differences to approximate more
complicated gradient terms. This is the common approach in most optical design softwares
[91, 109], but it is not as efficient as using automatic differentiation, especially for complex
lens designs. In this thesis, we will use automatic differentitation as well as derived analytic
gradients that can be used in conjuction with automatic differentiation to calculate gradients
in a much more memory and computationally efficient manner.
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Chapter 3

Aperture-Aware Lens Design

(a) scene layout

(b) optimized

(c) rendered image

sensor

Figure 3.1: (a) The objective of this chapter is to
design lenses capable of forming sharp images and
having high light throughput. (b) We optimize the
shape and position of individual lens elements and an
aperture stop to gather the light from the scene. (c)
Using off-the-shelf rendering software (e.g., Blender),
we then model our lens and simulate its performance
in forming images under various settings.

A common design specification is requiring a
lens that takes in as much light as possible,
even at the cost of reduced sharpness. A
light-efficient lens is especially important
when imaging fast moving objects requiring
a fast shutter (e.g., sports photography), or
night scenes where available light is limited.
However, existing design tools can only
quantify the light efficiency of a lens (e.g.,
by computing its f-number), but cannot
explicitly optimize it.

We augment the set of tools available
for lens design by developing a technique
to automatically optimize the light
efficiency of a lens. Our key contribution
is a new aperture-aware differentiable
rendering technique for efficiently
optimizing lens designs with respect to
parameters controlling their entrance pupil.
In particular, we express common lens
design objectives as integrals over a domain
that corresponds to the entrance pupil and
depends on the lens parameters. We then
derive estimators for the gradients of such
objectives that correctly account for this
dependence and are efficient to compute.
We use our technique to explore the
fundamental trade-off between light throughput and focus in lens design, and design lenses
for applications where light throughput is critical, such as low-light and fast-motion settings.
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Figure 3.2: Rays travel through multiple refractive or aperture surfaces along the optical axis. A valid
ray (black) travels through every surface once and in the correct order before reaching the sensor. An
invalid ray either does not intersect a surface within its physical bounds (purple, green), or does so at a
supercritical angle resulting in total internal reflection (red). We consider only valid rays in sequential
lens design.

Our code for aperture-aware lens optimization is available at the project website.1

3.1 Related work

Existing software tools, both industrial and research [103], support searching for lens designs
that match target specifications through gradient-based optimization. Our method expands
these capabilities by enabling differentiation with respect to discontinuous parameters, such
as the size of physical apertures and other pupils. This allows optimizing lens designs for
important metrics, such as light throughput and vignetting.

Lens design Recent research in graphics and computational imaging has also looked at
computational tools for lens design. Sun et al. [89] search through the lens design space using
a stochastic mutation policy that adds and removes surfaces from the lens. By contrast, our
method focuses on improving a fixed lens design without changing its number of surfaces.
Damberg et al. [23] develop a method for generating caustic images using freeform lenses.
This thesis is largely concerned with spherical sequential lens design, which are the most
common type of lens used in consumer cameras.

Lens modeling Prior work in computer graphics has developed several approximate models
for image formation through compound (multi-element) refractive lenses. Hullin et al. [38]
derive a model for approximating ray tracing using polynomials. Tang and Kutulakos [92]
provide a polynomial approximation of different optical aberrations in a lens. Both models
trade off accuracy for efficiency, and thus are more suitable for inverse problems that require
reasoning about the unknown scene that the lens is imaging. Tseng et al. [96] have used deep

1https://imaging.cs.cmu.edu/aperture_aware_lens_design/
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learning to build differentiable approximations of the light transport inside a lens. These
approximations, while efficient, do not provide sufficient accuracy for minimizing aberrations
to the level required for photographic optics, and do not capture effects such as pupil size
or light throughput. Our method uses geometric ray tracing, which is a more general and
accurate model of light transport, and can thus optimize for such effects.

Automatic differentiation Most differentiable rendering architectures utilize, at different
stages in their pipeline, automatic differentiation (AD) (backpropagation) [29]. AD analyzes
the computational graph of a program, then iteratively applies the chain rule through the
graph nodes to automatically calculate gradients of the program outputs with respect to its
inputs. In computer graphics, Li et al. [54] build a domain-specific language for differentiable
programming and use it to optimize a lens design in a setting similar to ours. We also use
AD in both forward and reverse mode (backpropagation), to further enable the optimization
of discontinuous lens parameters such as pupil sizes.

Refractive ray tracing Our method uses the classical geometric optics model of light
transport through refractive materials, which has a long history as a modeling tool for
refractive lenses [68]. In the context of rendering, this model translates to ray tracing with
light paths that undergo a chain of specular (i.e., Dirac-delta) refractive events. Chen and
Arvo [16] and Walter et al. [101] use the implicit function theorem to derive differentials for
such reflective and refractive light paths with respect to their endpoints. Zeltner et al. [108]
and Jakob and Marschner [43] use the same theory to efficiently sample and perturb specular
chains for Monte Carlo rendering. Our method likewise computes differentials of specular
paths, with respect to lens parameters.

Differentiable rendering In recent years, differentiable rendering has emerged as a core
methodology for solving inverse problems within vision and graphics. A differentiable renderer
calculates derivatives of images, or image-based objectives, with respect to scene parameters.
Examples of differentiable rendering systems include Mitsuba 3 [45], Redner [53], and PSDR
[110]. Recent works have enabled differentiable rendering with drastically lower memory
requirements [99], efficient handling of parametric discontinuities [5], and support both
explicit and implicit surface representations [6, 12, 100]. Our differentiable rendering method
utilizes all three of these advances, and extends support to specular-manifold light paths that
comprise solely interactions with smooth refractive interfaces and optical stops—such as the
paths inside a lens.

Adjoint-state method The adjoint-state method is a classical methodology for efficiently
differentiating optimization objectives constrained by partial differential equations (e.g., the
rendering equation) [15, 34]. More recently, Chen et al. [18] used the adjoint-state method
for differentiating ordinary differential equation systems represented as neural networks. In
computer graphics, the adjoint-state method has found applications in problems including
rigid-body dynamics and control [28], fluid control [59], and surface cutting [83]. In
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differentiable rendering, Nimier-David et al. [63] and Stam [85] use the adjoint-state method
to derive algorithms that decouple the computational complexity of ray tracing from the
memory requirements of backpropagation. Vicini et al. [99] use a two-stage forward and
backward tracing procedure to achieve constant memory complexity during derivative
calculations. Similar to Wang et al. [103] and Teh et al. [93], we adopt an adjoint-state
method for efficiently computing gradients of refractive ray tracing for lens optimization.

3.2 Adjoint ray tracing

We are interested in computing the gradient of the final position xN+1 with respect to the
lens parameters θ. As the ray tracing process is a composition of alternating P and T
operations, we can use the chain rule and compute this gradient by working backwards (i.e.,
backpropagating) through this composition. Differentiating Equations (2.5)–(2.6), we arrive
at the backward recurrence:

∂xi+1

∂θ
=

∂P

∂xi

∂xi
∂θ

+
∂P

∂vi

∂vi
∂θ

+
∂P

∂θ
, (3.1)

∂vi+1

∂θ
=

∂T

∂xi+1

∂xi+1

∂θ
+

∂T

∂vi

∂vi
∂θ

+
∂T

∂θ
. (3.2)

At each iteration i, we can compute the gradients of T directly using automatic differentiation,
and the gradients of P (an intersection operation) using implicit differentiation [61].

Computing the backward recurrence in Equations (3.1)–(3.2) requires knowing the ray
path. As both P and T are bijective operations, we can recover this path by starting from
the final position and direction and tracing backwards. Thus, we can calculate the gradients
of the final position xN+1 with respect to θ without storing the ray path in memory using
the following two-stage process.

Primal tracing: Starting from ω = {x0, v0}, we use the recurrence of Equations (2.5)–
(2.6) in the forward direction to compute the final ray position xN+1(ω, θ) and direction
vN+1(ω, θ).

Adjoint tracing: Starting from {xN+1, vN+1}, we use jointly the recurrences of
Equations (2.5)–(2.6) in the backward direction to retrace the ray, and
Equations (3.1)–(3.2) to compute gradients.

Wang et al. [103] derive the same process using the adjoint state method. We then need to be
able to compute the gradients of the P and T functions with respect to the lens parameters,
θ.

Transmission Since refraction is a continuous process we can compute the gradient of the
new direction with respect to the old direction through automatic differentiation.

Propagation To calculate the gradient terms of P, we need to compute the derivatives
with respect to the parameters θ, the position x, and the velocity v. Calculating the gradient
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through automatic differentiation becomes expensive, as would require differentiating the
entire iterative history of Newton’s method. Instead, to calculate the gradient of interest,

∂P

∂θ
=

∂xi
∂t∗

∂t∗

∂θ
(3.3)

∂P

∂x
=

∂xi
∂t∗

∂t∗

∂x
, (3.4)

∂P

∂v
=

∂xi
∂t∗

∂t∗

∂v
, (3.5)

we need derive dt∗/dx, dt∗/dv and dt∗/dθ directly.
Using the fact that the constraint needs to be satisfied at the solution, we can use implicit

differentiation to compute the gradients, specifically, we differentiate the constraint with
respect to x, v, and θ, noting that the solution t∗ is implicitly a function of x, v, and θ, and
solve for ∂t∗/∂x,

g(xi−1 + t∗vi−1) = 0, (3.6)

∂g

∂x

⊤(
I+ vi−1

∂t∗

∂x

⊤)
= 0, (3.7)

∂t∗

∂x
=

−∂g
∂x〈

∂g
∂x
, vi−1

〉 . (3.8)

We can follow a similar process to compute the gradients with respect to v and θ and obtain,

∂t∗

∂v
=
−t∗ ∂g

∂x〈
∂g
∂x
, vi−1

〉 , (3.9)

∂t∗

∂θ
=

−1〈
∂g
∂x
, vi−1

〉 ∂g
∂θ

. (3.10)

With these gradients, it is now possible to compute the gradients of the ray tracing process
with respect to the initial ray position and direction as well as the scene parameters, θ.
We note that we have still abstracted the calculation of ∂g/∂x, ∂g/∂v, and ∂g/∂θ. This is an
implementation dependent quantity, and these terms can often be calculated with automatic
differentiation when they cannot be calculated analytically.

3.3 Aperture-Aware Gradients

To design a compound lens, we minimize objectives that quantify its imaging performance,
including objectives for blur and light efficiency. We express such objectives in the general
form:

L(θ) :=
∫
Ω(θ)

C(xN+1(ω, θ), θ) dω. (3.11)
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The scalar-valued function C describes a cost for each ray ω (e.g., squared distance of xN+1

from a target focus point). The integration is over the set of all valid rays, which we write
as:2

Ω(θ) :=
{
ω∈E × S2 : gi(xi(ω, θ), vi(ω, θ), θ)<0, i=1, . . . , N

}
. (3.12)

For each of the N lens surfaces, we use a scalar-valued implicit function gi to describe the
constraint that the ray must transmit through that surface—this constraint function is
negative when that happens, and positive otherwise. As we explain next, in practice we need
to specify more than one constraint function per lens surface, and Ω is the set of rays that
satisfy all constraint functions for each surface. We do not explicitly indicate the multiple gi
for each i in Equation (3.12) to keep notation simple. We call Ω(θ) the entrance pupil set, as
it comprises all rays forming the entrance pupil image.

Constraint functions To understand how to define the constraint functions, we must
consider the different ways a ray may fail to transmit through a lens surface, which we show
in Figure 3.2. As we explain later in this section, we require that these constraint functions
be differentiable with respect to all three of their arguments.

We consider first a refractive surface. A ray can fail to transmit through it due to:
1. straying too far from the optical axis; or 2. experiencing total internal reflection. In the
former case, the ray position on the surface exceeds the surface’s physical bounds. Given
radially-symmetric surfaces, we can define a constraint function:

gsemi
i (x, v, θ) := dist(x)−Ri(θ), (3.13)

where Ri is the lateral radius of the i-th surface (i.e., the size of the singlet it belongs to,
determined by the lens parameters θ), and dist(x) is the lateral distance of a position x from
the optical axis.

In the latter case, the ray intersects the surface at a supercritical angle. We can define a
constraint function for this case as:

gTIR
i (xi, vi, θ) :=

(
cos(ϕcrit

i (θ))
)2 − ⟨vi, n̂(xi, θ)⟩2, (3.14)

where ϕcrit
i is the critical angle for the i-th surface (determined by the lens material parameters

in θ). We use the differences of squared cosines as, empirically, doing so improves numerical
stability.

Lastly, for an aperture stop surface, we can use the same constraint functions gsemi
i , gTIR

i ,
in the former with Ri equal to the radius of the aperture stop opening, and in the the latter
with ϕcrit

i = π/2 (i.e., the constraint is always negative and thus satisfied).

Differentiating lens design objectives Gradient-based optimization of a compound lens
requires differentiating objectives as in Equation (3.11) with respect to the lens parameters θ.

2The measure dω is the product of the area dA(x) and solid angle dσ(v) measures.
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If the domain of integration Ω were independent on θ, this gradient would equal:3

dL
dθ

biased
=

∫
Ω

dC
dθ

dω =

∫
Ω

∂C
∂xN+1

∂xN+1

∂θ
+

∂C
∂θ

dω. (3.15)

We could then use automatic differentiation to compute the gradients of the cost function C,
and differentiable ray tracing (Section 2.3) to compute the gradients of the final ray position
xN+1. Techniques such as DiffOptics [103] use this approach, which we refer to as the biased
gradient approach.

However, in general Ω does depend on the lens parameters θ. For example, the sizes of
singlets and aperture stops in a compound lens determine its entrance pupil, and thus Ω.
Then, we can use the Reynolds transport theorem [74] to write:

dL
dθ

=

∫
Ω

dC
dθ

dω −
∫
∂Ω(θ)

Cdg
∗

dθ
dl(ω) (3.16)

=

∫
Ω(θ)

∂C
∂xN+1

∂xN+1

∂θ
+

∂C
∂θ

dω

−
∫
∂Ω(θ)

C
(
∂g∗

∂x∗
∂x∗

∂θ
+

∂g∗

∂v∗
∂v∗

∂θ
+

∂g∗

∂θ

)
dl(ω). (3.17)

In Equation (3.16), the entrance pupil boundary ∂Ω(θ) is the space of rays that satisfy all
constraint functions gi, except for one active constraint g∗ that is equal to zero. The active
constraint corresponds to a lens surface where the ray barely fails to transmit—i.e., the
corresponding intersection point x∗ is exactly on the surface boundary, or direction v∗ is
incident at exactly the critical angle.

Equation (3.16) shows that correctly differentiating objectives for compound lens
optimization requires computing the boundary integral over ∂Ω(θ). We show how to
efficiently do so in Section 3.4. But first, we use an example to demonstrate the importance
of using correct gradients for compound lens optimization. We consider a compound lens
comprising an aperture stop between two singlets (Figure 3.3(a)). We optimize only the
aperture radius to minimize imaging blur, using a cost function
C(xN+1(ω, θ), θ) := ∥xN+1(ω, θ)− o∥2, where o is the center of the sensor plane. From
geometric optics, the optimal solution involves reducing the aperture radius until we arrive
at a pinhole camera, which produces a perfectly sharp image. As xN+1 does not depend on
the aperture radius, the biased gradient of Equation (3.15) is always zero, and thus
optimization using these gradients leaves the initial lens unaltered (Figure 3.3(b)). By
contrast, optimization using the unbiased gradient of Equation (3.16) correctly results in a
pinhole (Figure 3.3(c)).

3Throughout the thesis, we explicitly distinguish between total derivatives d/d and partial derivatives ∂/∂,
e.g., in Equations (3.15)–(3.17) and Section 3.4.
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(a) initial design (b) biased gradients (c) unbiased gradients

Figure 3.3: (a) We optimize the size of an aperture stop (in black) to minimize blur. (b) Doing so using
biased gradients leaves the initial lens design unaltered. (c) Using unbiased gradients results in a pinhole,
and thus perfectly sharp imaging, as expected from geometric optics.

Figure 3.4: The shape of the entrance pupil Ω(θ) is non-trivial even for radially symmetric lenses,
becoming distorted for source points far from the optical axis. This behavior makes computing the
entrance pupil boundary ∂Ω(θ) challenging.

3.4 Warp-field reparameterization

Computing the boundary integral in Equation (3.16) is challenging because, for arbitrary
compound lenses, the entrance pupil boundary ∂Ω(θ) is difficult to characterize analytically
or sample rays from: ∂Ω(θ)ch:tracing replace the boundary integral with an integral over the
entrance pupil Ω(θ).

To this end, we first rewrite the boundary integral in Equation (3.16) into a form amenable
to the divergence theorem as:∫

∂Ω(θ)

Cdg
∗

dθ
dl(ω) =

∫
∂Ω(θ)

〈
Cdg

∗

dω
,V
〉
dl(ω), (3.18)

where the warp field V(ω, θ) is a vector field on Ω that must be differentiable and satisfy, as
ω → ∂Ω(θ), 〈

dg∗

dω
,V
〉
→ dg∗

dθ
. (3.19)
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Then, using the divergence theorem, Equation (3.18) becomes:∫
∂Ω(θ)

〈
Cdg

∗

dω
,V
〉
dl(ω) =

∫
Ω(θ)

div (CV) dω, (3.20)

where div (·) is the divergence operator. By using Equation (3.20) to replace the boundary
integral in Equation (3.16) and combining the integrands, we can write the objective gradient
as:

dL
dθ

=

∫
Ω(θ)

dC
dθ
− div (CV) dω. (3.21)

We have thus eliminated the boundary integral, making it possible to compute unbiased
Monte Carlo estimates of the objective gradient by sampling rays in the entrance pupil Ω(θ).
For each ray sample, we can evaluate the derivative terms in the integrand using differentiable
ray tracing (for dC/dθ, as in Section 3.2) and forward-mode automatic differentiation (for the
warp field).

We still need to find a warp field that satisfies the stated requirements. Bangaru et al. [6]
and Vicini et al. [100] suggest:

V(ω, θ) ?
:=

∂g∗

∂ω∥∥∂g∗

∂ω

∥∥2 ∂g∗∂θ
. (3.22)

However, g∗ is undefined inside Ω(θ), where no constraint is active. Instead, we leverage the
fact that V(ω, θ) only needs to have the correct direction as it approaches ∂Ω(θ), and define
V(ω, θ) using a mixture of such warp fields for all constraint functions:

V(ω, θ) := 1∑
iwi

∑
i

wi

∂gi
∂ω∥∥∂gi
∂ω

∥∥2 ∂gi∂θ
, wi(ω, θ) :=

tanh(−αgi)
gip

, (3.23)

with hyperparameters p > 2 and α > 0. Abusing notation, the summation is over both gTIR

and gsemi constraint functions for each lens surface i. Each weight wi approaches infinity as
the corresponding constraint function gi gets closer to activation; conversely, it decreases as
gi decreases. Intuitively, when a ray is close to failing to transmit through a lens surface—
through either exceeding its bounds or total internal reflection—the corresponding constraint
function should contribute more to the warp field.

Comparison to prior work Vicini et al. [100] and Bangaru et al. [6] have used warp-field
reparameterization for differentiable rendering of implicit surfaces, to deal with visibility-
driven changes in the integration domain of the rendering equation. Their techniques require
using a separate warp field of the form of Equation (3.22)—replacing our active constraint
function with the implicit function defining the scene geometry—at each stochastic reflection
or refraction event along a multi-bounce light path. By contrast, we define a single warp field
for the entire multi-bounce light path. We can do so because we deal with only specular (i.e.,
Dirac-delta and therefore deterministic) refractions, and can thus parameterize the resulting
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space of specular multi-bounce paths using the initial conditions ω (Section 3.2). In turn,
we use the same parameterization to define a multi-bounce warp field as in Equation (3.23).
Therefore, our technique enables differentiable rendering in lower-dimensional specular path
manifolds [43, 108] in the presence of parameter-dependent integration domains, which
is not possible in existing differentiable rendering implementations [45]. Even though we
present our theory and technique in the context of optimizing compound refractive lenses,
they should apply more broadly for other inverse problems involving specular—reflective
or refractive—path manifolds, e.g., inverse rendering of specular geometry [55] or caustics
[65, 79].

3.5 Experiments

Implementation details We implemented our warp-field technique (including the
differentiable ray tracer) in JAX [11], and provide our implementation on the project website.
We used this implementation for all our optimization experiments, for which we set α = 10
and p = 6 in Equation (3.23), and ran Adam [50] for 10,000 gradient iterations. We ran all
experiments on a desktop with an Intel i7-6700k CPU and NVIDIA Titan X GPU, where
each experiment took approximately 10min.

To render images with various lenses, we used either our ray tracer, or Blender [20] with
the built-in Cycles renderer. In the latter case, we modelled lens geometry as a triangle mesh.

Lens modeling and initialization We parameterized all singlet surfaces as spherical
surfaces centered on a fixed optical axis, each with four parameters: curvature, position on
the optical axis, refractive index, and semidiameter. We parameterized aperture stops as
planar surfaces with two parameters: position and semidiameter.

Except where we state otherwise, we initialized optimization from a double-Gauss design
by Reiley [73], which is a reconstruction of a design by Rudolph [76]. This design has 5
singlets (10 refractive surfaces) and one aperture stop, resulting in 3 × 10 + 2 = 32 free
parameters—we do not optimize refractive index.

Finite differencing To verify the correctness of the gradients we compute with our warp-
field method, in Figure 3.5 we show the gradient images (also known as forward gradients
Zhang et al. [111]) it produces when differentiating with respect to the curvature of the
first refractive surface and the semidiameter of the aperture stop of the lens. We compare
these images against those from finite differencing and from the method of Wang et al. [103],
which computes biased gradients as in Equation (3.15). Gradients from our method match
finite differencing and accurately account for changes in both curvature and aperture size;
by contrast, the method of Wang et al. [103] cannot account for aperture size changes, as
those impact the integration domain Ω(θ) rather than per-ray quantities (final ray position
or throughput). Of course, even though finite differencing is useful for validating correctness,
it is impractical for gradient-based optimization due to its linear complexity with parameter
dimensionality, and need for step-size fine-tuning.
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Figure 3.5: We consider an image of the SIGGRAPH logo through a lens, and differentiate it with respect
to two lens parameters: (top row) aperture size, and (bottom row) curvature of the first refractive element.
We compare the gradient images from: (a) our method, (b) finite differencing, and (c) DiffOptics [103].
Our method produces accurate gradients with respect to both lens parameters, and its results match
those from finite differencing. By contrast, the biased gradients from DiffOptics cannot account for
aperture size changes, producing a gradient image that is identically zero.

Light efficiency-sharpness trade-off The example of Figure 3.3 highlights a classical
trade-off in lens design: In the absence of diffraction effects, we can increase image sharpness
by shrinking the entrance pupil of the lens (e.g., making the aperture stop smaller, or refractive
surfaces flatter); however, doing so comes at the cost of decreased light efficiency, as most light
rays become invalid. Conversely, increasing the entrance pupil size improves light efficiency;
but it also increases geometric aberrations, resulting in decreased sharpness.

We can use our technique navigate the lens design space and achieve different trade-offs
between light efficiency and sharpness. To this end, we first define two objectives of the form
of Equation (3.11):

Lspot(θ) :=

∫
Ω(θ)

∥xN+1(ω, θ)− x̂(ω, θ)∥2 dω, (3.24)

Lthroughput(θ) :=

∫
Ω(θ)

−1 dω, (3.25)

where x̂(ω, θ) is the centroid of the sensor locations of all rays starting from the same source
point x0 ∈ ω. The spot-size objective Lspot measures the spot size produced on the sensor
by rays starting from the same source point. Thus, this objective, common in lens design,
encourages improved sharpness. The throughput objective Lthroughput measures the size of the
entrance pupil, with a negative sign to penalize rays becoming invalid. Thus, this objective
encourages improved light efficiency.
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We then optimize a compound lens using the composite objective:

L(θ) := Lspot(θ) + βNALthroughput(θ). (3.26)

The scalar weight βNA allows us to control the relative importance of the spot-size and
throughput objectives, and thus control how much we emphasize sharpness versus light
efficiency. Gradient-based optimization of this composite objective critically depends on the
ability to compute the unbiased gradient (3.16): the biased gradient of Lspot-size is inaccurate
and, worse yet, the biased gradient (3.15) of Lthroughput is always zero! This exploration of
the light efficiency-sharpness tradeoff is only possible with our warp-field technique, and not
those that use biased gradients [103].

Figure 3.6 shows an example where we optimize a 50mm double-Gauss lens [22] using
different weights βNA. Our technique produces designs that represent different trade-offs
between sharpness and light efficiency. We compare our designs against those from
DiffOptics [103] and Zemax [109]: By using unbiased gradients to optimize both Lspot(θ) and
Lthroughput(θ), our warp-field technique produces lens designs that have higher throughput at
comparable spot sizes, as well as designs with smaller spot sizes by giving up some
throughput.

Figure 3.6 also shows rendered images and spot diagrams for some of the resulting lens
designs.4 We simulate the spot diagrams by focusing the lens at infinity and tracing rays
parallel to the optical axis. We color the final ray points on the sensor based on how far
the corresponding rays are from the optical axis. The spot diagram for the lowest βNA

value is much smaller than that for the highest value, indicating sharper focus; however, the
resulting image is also a lot darker, indicating lower light efficiency. The figure also shows,
for comparison, rendered images and spot diagrams for the designs from DiffOptics [103] and
Zemax [109].

Low-light conditions Using a lens with high light efficiency is particularly important in
low-light settings. In Figure 3.7, we simulate such a setting by constructing a candlelit scene.
We render images of this scene using two lens designs from among those in Figure 3.6, one
with low and another with high throughput, and incorporate Poisson and additive Gaussian
noise [33] in the rendered images, assuming the same exposure time. The high-throughput
lens results in a visibly brighter image—a difference also visible in the image intensity
histograms—with higher signal-to-noise (SNR) ratio, at the expense of some sharpness.

Motion blur A situation where lens light efficiency is critical is in scenes with fast motion,
where a high-throughput lens helps reduce exposure time, and thus motion blur. In Figure 3.8,
we render images of a scene with a USAF resolution target moving from left to right, using
the same two lenses as in Figure 3.7. In this experiment, we adjust exposure times so that

4The rendered images are slightly mismatched, because the optimization does not explicitly enforce a
focal length constraint, and thus the resulting lenses produce images with different fields of view. In our
experiments, the focal length of the optimized lenses deviated by around 1mm from that of the initial design
(50mm).
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both images reach the same brightness level. The low-throughput lens requires about four
times longer exposure time, resulting in significant motion blur.

Vignetting The composite objective of Equation (3.26) penalizes low throughput, and
thus encourages rays starting from source points away from the optical axis to reach the
sensor. As a result, using this objective, and correctly minimizing it with the unbiased
gradients from our warp-field technique, helps reduce vignetting artifacts in lens designs.
Figure 3.9 shows images of a white balance target rendered using two lenses, optimized with
our warp-field technique and Zemax. As Zemax uses biased gradients, it cannot optimize
for the throughput of off-axis source points, and thus its designed lens results in significant
vignetting. By contrast, the lens from our technique maintains high throughput for off-axis
source points, drastically reducing vignetting.

Zoom lens In Figure 3.10, we use our method to improve a compound zoom lens for better
sharpness and light efficiency. We start with a zoom lens design by Reiley [73], and optimize
the surface curvatures and distances, by summing the composite objectives of Equation (3.26)
for three different focal lengths—28mm, 45mm, and 75mm. Our technique produces a zoom
lens design that is generally better in terms of both overall sharpness and light efficiency.
At focal lengths where both designs have similar sharpness, their performance can differ
significantly across the field of view; for example, at 77mm, the optimized lens has better
sharpness in the center and worse towards the edges of the image.

3.6 Discussion

We discuss the limitations and applications of this technique outside the scope of this chapter,
and how one may address them.

Interreflections An important effect that we did not explore is interreflections between
and inside optical elements in a compound lens. In very bright scenes, such interreflections
can become visible in the form of glare and lens flare. Our theory can, in principle, model
this effect; however optimization of glare characteristics would require expensive Monte Carlo
rendering, to account for all possible interreflections inside a lens in an unbiased manner.
Simulating and optimizing such effects in a computationally efficient manner remains an open
challenge.

Other geometric optical elements We have not considered many geometric optical
elements that are commonplace in consumer photography and scientific imaging. Aspherical,
Fresnel, and freeform lenses have many more degrees of freedom than spherical ones, and are
common in projector and illumination systems. Beyond dioptric (i.e., refractive) systems,
catoptric (i.e., reflective) systems are common in telescopes [27, 105]; and catadioptric (i.e.,
both reflective and refractive) systems [3] facilitate wide-angle imaging. As such systems can
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be modeled using geometric optics and ray tracing, our theory directly supports or can be
readily extended to support their design.

Beyond cameras We presented our technique in the context of photographic lenses, but it
can apply to other domains. An example is augmented reality (AR) and virtual reality (VR),
where design of eyepieces is important. VR displays use intricate configurations of optical
elements [71] and benefit from high throughput designs [23]; our technique can help optimize
existing such configurations or discover new ones. Another example is non-imaging optics,
i.e., optical systems designed specifically to maximize light throughput [88]. Our technique
can be suitable for optimizing designs in this domain.

Nonconvexity Our technique facilitates gradient-based optimization of complex objectives
for compound lenses. However, these objectives are highly non-convex. Thus gradient-based
optimization can get stuck in local minima. We can mitigate this issue by combining our
technique with simulated annealing, or reasonable initializations from data-driven techniques
[21].

Other design constraints and trade-offs Lens designs often need to accommodate
application-specific constraints that go beyond sharpness and light efficiency. For example,
the manufacturing process may constrain the realizable surface shapes. Alternatively, the
intended use may constrain the lens form factor or cost. Such constraints are typically
differentiable, and thus amenable to optimization using our technique. Even if they do not
take the form of hard constraints, such application-specific considerations can introduce
additional trade-offs that the lens design process must balance. In such cases, we can combine
our technique with gradient-based multi-objective optimization techniques [78] to discover
Pareto-optimal lens designs.

Wave optical elements Since our method relies directly on geometric optics, we cannot
readily use these methods on optical elements that fundamentally rely on wave optics, such as
diffractive optical elements and “metalenses” [13]. Such elements are becoming increasingly
popular in both scientific and consumer applications, thanks to their miniaturization potential.
Recent progress in wave optics rendering [87] can facilitate extensions in this direction.

Variable element number To produce performant compound lens designs, designers
typically add and remove lens elements to examine whether different configurations can
improve performance. From an optimization perspective, doing so corresponds to a discrete,
non-differentiable operation that changes the dimensionality of the design space. Gradient-
based optimization, and thus the technique presented in the chapter, does not accommodate
such changes. We address this limitation in the next chapter, where we present a technique
that introduces discrete operations into the optimization process.
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Figure 3.6: We use our warp-field technique to optimize the same initial design using the composite
objective of Equation (3.26) with varying weights βNA. The left plot quantifies the throughput and spot-
size performance of the resulting set of lens designs, as well as designs optimized with DiffOptics [103] and
Zemax [109]. By using unbiased gradients, our technique produces lens designs with better throughput
at comparable spot sizes as DiffOptics and Zemax, which both use biased gradients. Our technique
additionally produces multiple other designs that achieve different trade-offs between throughput and
spot size. The right figures show the lens configurations, spot diagrams, and simulated images of USAF
resolution targets for the designs corresponding to the lowest (first row) and highest (second row) βNA

values, DiffOptics (third row) and Zemax (fourth row). These figures help qualitatively assess the
differences in spot size and throughput performance. For example, the spot-size-focused design in the
first row has a smaller spot, but also transmits fewer rays than the throughput-focused design in the
second row.
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Figure 3.7: We simulate images of a candlelit scene using lenses optimized for high throughput
(βNA = 5× 10−4, bottom left) versus small spot size (βNA = 1× 10−5, bottom right). We incorporate
shot and read noise in rendered images—simulated for a Canon 7D sensor [19] at unity ISO (984)—then
gamma-correct (γ = 0.2) the noisy images. We also plot the histogram of pixel intensities in the two
images (top). The image from the high-throughput lens has less pronounced noise and an intensity
distribution shifted towards larger values; but also slightly worse blur (e.g., at the candle flame).
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Figure 3.8: We simulate images of a moving USAF resolution target using lenses optimized for high
throughput (βNA = 5× 10−4, left) versus small spot size (βNA = 1× 10−5, right). The high-throughput
lens is well suited for this dynamic scene: it achieves the same overall brightness at one-fourth the
exposure time, resulting in much reduced motion blur.
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Figure 3.9: We simulate images of a white balance target using lenses optimized with our technique
(bottom left) versus Zemax [109] (bottom right). We also plot the horizontal cross section of the two
images (top). By emphasizing throughput, including from off-axis sources, the lens from our technique
strongly mitigates vignetting away from the sensor center.
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Figure 3.10: We use our technique to optimize a zoom lens design in the focal length range 28mm
to 77mm. We sum the composite objective of Equation (3.26) at three target focal lengths, 28mm,
45mm, and 77mm. We plot the spot-size error (top left) and throughput (top right) of the initial and
optimized designs across the focal length range, and simulate images of a USAF resolution target at
focal lengths 35mm (bottom left) and 77mm (bottom right). The optimized design has overall better
spot-size error and throughput across the focal length range. At the target focal length 77mm, both
lenses achieve the same overall spot-size error, but distribute the error to different parts of the sensor
(insets).
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Chapter 4

Mixed Discrete-Continuous Design of
Compound Lenses

Gradient-based optimization has become an essential part of the design process for making
compound lenses as performant as possible. Recent advances in differentiable rendering
facilitate faster and more efficient gradient-based optimization of continuous lens parameters
(e.g., shapes of individual elements or distances between them) [90, 94, 96, 103]. Though
such methods are invaluable for improving lens designs with a fixed topology (number and
type of lens elements), they cannot optimize the lens topology itself. It is up to the designer
to perform discrete changes manually—strategically adding, changing, or removing elements
from a base design—before handing the design back to the optimizer for further improvement.
And critically, changing the lens topology is often the only option available for meeting the
stringent requirements of challenging design tasks, e.g.: drastically improving sharpness when
transitioning a lens from a half-frame to a full-frame sensor; increasing speed when designing
a lens for extreme low-light conditions; or maintaining sharpness and speed when adapting a
lens to smaller form factors.

Another way to assist designers is by generating good starting points and performing global
search through the use of deep learning or genetic algorithms [21, 39, 113]. These methods can
help seed the design process, but the seed points they output are often suboptimal: though
they can make discrete changes to lens topology, they cannot effectively optimize continuous
lens parameters, and thus cannot accurately assess the potential of different lens topologies.
This inability limits the scope of lens designs that can be explored automatically. As a result,
pushing the envelope in lens performance still requires expert designers to manually explore
edits and iterate between discrete and continuous optimization.

These considerations highlight a critical gap in automated design of compound lenses:
existing methods optimize only continuous or only discrete parameters of a system whose
performance critically depends on joint optimization of both types of parameters. In light of
this gap, we seek a method that can perform mixed discrete-and-continuous lens optimization
automatically, to better assist expert designers. To this end, we introduce a method that uses
Markov chain Monte Carlo (MCMC) sampling for compound lens design. Our method allows
combining gradient-based optimization of continuous lens parameters with transdimensional
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mutations that alter the number of lens elements. We make such a combination practical
through two core contributions:
• A sampling algorithm that facilitates mixing gradient updates and mutations without
sacrificing optimization performance.

• A set of mutations that use a projection operation to propose lenses with varied topologies
that nevertheless remain paraxially equivalent to an original design.

Altogether, these contributions allow our method to explore a much larger design space of
compound lenses than previously possible in an automated manner. We show experimentally
that our method finds lenses with improved sharpness and speed compared to prior work
that focuses on only gradient-based optimization. In the supplement, we provide interactive
visualizations and code for our method, which we will make open-source upon acceptance.

4.1 Related work

Lens design exploration The design space of lenses is highly nonconvex and contains
local minima. Prior work uses simulated annealing [112], genetic algorithms [39], or large
language models [113] to mitigate these issues. These methods can help find performant
designs, but use a predetermined number of elements.

To expand the search space, Betensky [8] proposed exchanging parts of a design with
paraxially equivalent designs. Similarly, we use paraxial optics to choose design mutations.
Alternatively, Sun et al. [89] search over a library of off-the-shelf elements to directly generate
a design without continuous optimization. Deep learning has also been used to generate
initial designs for further continuous optimization [21]. Our method combines continuous
optimization with discrete mutations, without requiring learning.

MCMC for computational design Practitioners in other areas often use MCMC methods
for discrete optimization problems. Closely related to our work are applications of MCMC to
computational design problems. For example, Yeh et al. [107] use reversible-jump MCMC to
decide the placement of furniture in virtual rooms. Desai et al. [24] use MCMC to optimize
the placement of components of a mechanical assembly. More recently, Barda et al. [7] use
MCMC to optimize for the design of sheet metal parts.

MCMC for rendering In computer graphics, MCMC finds application in rendering to
estimate light transport integrals [98]. Related to our work are methods that mix sampling
distributions of varying dimensionality [9, 64]. Other approaches use local gradients or
Hessians to guide path sampling [52, 56].

Quasi-stationary Monte Carlo Metropolis-Hastings adjusted processes reject samples,
which can be inefficient, especially when each sample is costly to generate (e.g., in
optimization). Quasi-stationary Monte Carlo (QSMC) methods sample from a target
distribution without rejections. Unlike Metropolis-Hastings, QSMC methods do not require
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reversible transitions or detailed balance for convergence. Pollock et al. [70] and Wang et al.
[102] proposed QSMC algorithms that sample from a target distribution using Brownian
motion. In rendering, Holl et al. [37] use the jump restore algorithm [102] to mix global and
local dynamics in Metropolis light transport. We use the jump restore framework to develop
a sampler that navigates the design space of lenses.

4.2 Lens design objectives

We optimize a compound lens θ with respect to a combination of lens design objectives that
emphasize sharpness, speed, and conformity to focal length specifications. We define each
loss for rays starting from the same location on the target plane, then aggregate losses for
many such locations.

1. Sharpness: We use a variance-based spot size loss :

Lspot(x0; θ) :=

∫
(x0,v0)∈Ω(θ)

∥xs(x0, v0; θ)− x̃(x0)∥2 dv0, (4.1)

x̃(x0) :=

∫
(x0,v0)∈Ω(θ)

xs(x0, v0; θ) dv0∫
(x0,v0)∈Ω(θ)

dv0
. (4.2)

2. Speed: We use a throughput loss inspired by Teh et al. [94]:

Lthroughput(x0; θ) := 1− 1

T0

∫
(x0,v0)∈Ω(θ)

dv0, (4.3)

where T0 is the maximum throughput determined by the maximum size of the design,
which we specify as a hyperparameter.

3. Focal length: We use a loss based on the target focal length f ,

Lfocal(x0; θ) := ∥x̃(x0)− xthin(x0; f)∥2, (4.4)

where xthin(x0; f) is the sensor point predicted for x0 from the Gaussian lens formula for a
thin lens of focal length f .

We include an additional regularization term that prevents lens elements from becoming
thinner than a hyperparameter dmin:

Lthickness(θ) :=
∑K

k=1
max (dmin − tk, 0)

2 , (4.5)

where tk is the thickness of the k-th lens element.
Our total loss is a weighted combination of these losses, aggregated over multiple target

locations where appropriate:

L(θ) :=
∑M

m=1

(
wspotLspot(x

m
0 ; θ) + wthroughputLthroughput(x

m
0 ; θ)

+wfocalLfocal(x
m
0 ; θ)

)
+ wthicknessLthickness(θ). (4.6)
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When the number K of lens elements (and thus length N of θ) is fixed a priori, the loss
of Equation (4.6) is differentiable using adjoint sequential ray tracing [94]. Therefore, for
fixed N , the design of a compound lens can be done using gradient-based optimization, an
approach that has been popular in recent work [90, 94, 96, 103].

Unlike this prior work, we are interested in designing all aspects of a compound lens,
including both the discrete-valued number K of lens elements and their continuous-valued
parameters θ. Though the discrete parameter is not amenable to gradient-based optimization,
we would like any such method to continue to use gradient-based optimization for the
continuous parameters, given its prior success. We enable mixed discrete-continuous design by
treating it as a sampling problem that we attack with Markov chain Monte Carlo (MCMC)
algorithms. To this end, we first convert the loss in Equation (4.6) into a positive Boltzmann
distribution to be maximized :

π(θ) := e−
L(θ)
T , (4.7)

where T is a temperature constant that controls the “sharpness” of the distribution. Intuitively,
higher T allows sampling to explore more regions of the design space, whereas lower T forces
sampling to explore only high-value regions. We treat T as a fixed hyperparameter, though
future work could explore simulated annealing methods that progressively lower temperature
over time.

4.3 Markov chain Monte Carlo for optimization

One way to approach solving an optimization problem is to build a sampler for the Boltzmann
distribution defined in Equation (4.7). Then, with high probability, the sampler will produce
samples that are close to locally optimal solutions. This approach is flexible because of that
fact that we have not imposed any restrictions on the properties of the variables that we
are optimizing over. The state space could be comprised of both continuous and discrete
variables. For this reason, using sampling in the lens design case is a natural choice, as we
want to be able to add the number of elements in the lens as part of the optimization process.

In order to build this sampler, we turn to Markov chain Monte Carlo (MCMC) methods,
which are a class of algorithms that sample from a target distribution by constructing a
Markov chain whose stationary distribution is the target distribution. Markov chains are
a more convenient object to work with since we can reason about local mutations between
states, rather than directly working with a global distribution that might be computationally
intractable.

Metropolis-Hastings and its pitfalls. Probably the most popular MCMC method
is the Metropolis-Hastings (MH) algorithm. Given a current compound lens θ, it uses a
proposal distribution p to sample a lens proposal, θ′ ∼ p(θ → θ′), and compute an acceptance
probability:

α := min

{
1, exp

(
L(θ)− L(θ′)

T

)
· p(θ

′ → θ)

p(θ → θ′)

}
. (4.8)
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The proposal is randomly either accepted with probability α and used to update the lens
(θ ← θ′), or rejected leaving the lens unchanged. The exponential term in Equation (4.8)
favors accepting proposals θ′ that improve (reduce) L. Under certain conditions on p, this
algorithm will sample lenses proportional to L.

The appeal of MH for mixed discrete-continuous design lies in the great flexibility they
afford the user in selecting the proposal distribution p. We can use a mixture proposal
distribution:

p(θ → θ′) = βpcontinuous(θ → θ′) + (1− β)pdiscrete(θ → θ′), (4.9)

which at random updates lens parameters θ either continuously by sampling pcontinuous—a
perturbation that leaves the dimension N of θ the same—or discretely by sampling pdiscrete—
a mutation that changes N . Moreover, for pcontinuous, we can use Langevin perturbations
θ′ ∼ N (θ − η dL/dθ, η), or equivalently:

θ′ ← θ − η
dL
dθ

+
√
η · ε, (4.10)

where ε is a vector of normal random variates, and the gradient term can be computed
using adjoint sequential ray tracing. The Langevin perturbations in Equation (4.10) mimic
gradient descent, except for the addition of noise, allowing MH to incorporate gradient-based
optimization of continuous lens parameters.

MH with mixed Langevin perturbations and discrete mutations has been successful
elsewhere in computer graphics, notably in work on Monte Carlo rendering [52, 56] that
also shows how to use Langevin perturbations with adaptive stepsizes (e.g., as in Adam
[50]). Unfortunately, we have empirically found it difficult to use this approach for mixed
discrete-continuous design of compound lenses, for two reasons:

1. The sharpness and speed of a compound lens θ with many elements (e.g., K ≥ 4) is very
sensitive to random perturbations. Langevin perturbations include noise ε
(Equation (4.10)), and thus almost always produce badly performing lenses that are
rejected. Preventing this behavior requires keeping the noise variance—and thus stepsize
η—very small. The result in either case is that optimization requires prohibitively many
sampling iterations.

2. Lens mutations that have high acceptance probability generally require refining a lens after
increasing or decreasing its elements. Such post-mutation refinement requires continuous
optimization, which makes it challenging—or impossible—to compute the reverse proposal
distribution p(θ′ → θ) in Equation (4.8).

We provide experimental evidence for both issues in Section 5.5. Fundamentally, these
issues arise from the requirement for reversible proposals in MH, which necessitates the
addition of noise in Equation (4.10) and the computation of p(θ′ → θ) in Equation (4.8).
In Section 4.4, we address both issues by using a different MCMC sampling algorithm that
lifts the reversibility requirement, alongside providing other advantages for design. Then,
in Section 4.5, we design effective discrete lens mutations, leveraging the flexibility from no
longer being constrained by reversibility.

37



Algorithm 1 SingleRestoreStep(θ, R, γπ, C)

Input: A compound lens θ, a reservoir R, a weight parameter γ, a target distribution π, a
constant C.

Output: A new lens θ̃, an updated reservoir R.
1: ▷ Perform a gradient step

2: θ̃ ← GradientStep(π, θ)
3: ▷ Compute the termination probability

4: κ← π(θ)−π(θ̃)+C
π(θ)+C

5: ▷ Check whether to terminate perturbation sequence

6: if SampleUniform[0, 1] < κ then
7: ▷ Update the reservoir with the current lens

8: R← UpdateReservoir(R, θ̃)
9: ▷ Sample and mutate new lens

10: if SampleUniform[0, 1] < γ then
11: θ̃ ← SampleGlobal()
12: else
13: θ̃ ← SampleReservoir(R)
14: θ̃ ←MutateLens(θ̃)

15: ▷ Return new lens and updated reservoir

16: return θ̃, R

4.4 The RESTORE algorithm

We propose to use an alternative MCMC sampling algorithm based on so-called randomly
exploring and stochastically regenerating (RESTORE) processes [102]—we use the name
RESTORE also for the sampling algorithm associated with these processes. RESTORE
uses two proposal distributions, one for small perturbations, and another for large changes
potentially including independent sampling. The RESTORE literature refers to these
distributions as local dynamics and regeneration probability (resp.); for clarity, we will
continue to use the terms perturbation and mutation (resp.) we introduced in the previous
section.

Starting from an initial lens θ, RESTORE performs a sequence of perturbations updating
the lens (“local dynamics simulation”). At each perturbation, it uses the current lens θ to
compute a termination probability to randomly decide whether to continue perturbations
or terminate the sequence. Upon termination, it updates θ using the mutation distribution
(“regeneration”), then restarts a perturbation sequence. Compared to MH, RESTORE
has no rejections, and does not require the perturbation and mutation distributions to be
reversible—both properties that benefit optimization, as prior work in other graphics areas
has demonstrated [37]. Instead of reversibility, RESTORE relies on careful selection of the
mutation distribution and termination probability to ensure it samples the target distribution
π [102]. First we will describe the original RESTORE algorithm, then we will detail our
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choices for the perturbation and mutation distributions. These mutations will then determine
the termination probability we should use in the algorithm. Along the way, we elaborate on
advantages over MH. We summarize the version of RESTORE we use in Algorithm 1.

4.4.1 Algorithm overview

The RESTORE algorithm runs by mixing two types of operations: perturbations and global
regenerations through an exponential clock with a rate κ. The algorithm at each step samples
two exponential random variables Tlocal and Tglobal with rate 1 and κ, respectively. Whichever
of the two is smaller determines the next step of the algorithm. If Tlocal < Tglobal, then the
algorithm performs a perturbation step, otherwise it performs a regeneration step. Each step
yields a weighted sample with a weight of min(Tlocal, Tglobal). This procedure converges to the
correct target distribution if

κ̃ =
Q∗π(θ)

π(θ)
+ C

µ(θ)

π(θ)
, (4.11)

where Q∗ is the adjoint infinitesimal generator of the perturbation distribution, µ is the
regeneration distribution, and C is a constant that ensures that the right-hand side is
positive. In order to use RESTORE, we need to specify the perturbation process as well as
its infinitesimal generator along with a global regeneration distribution.

Perturbation distribution. As RESTORE does not require reversible proposals, we use
gradient perturbations without noise:

θ∗ ← θ − η
dL
dθ

. (4.12)

Thus a perturbation sequence becomes equivalent to gradient descent. The lack of noise is
crucial for performance: Whereas in Langevin perturbations (Equation (4.10)) the noise term
required keeping step size η small, in Equation (4.12) we can use large step sizes to accelerate
optimization. We use Adam [50] to determine adaptive step sizes from the history of lenses θ
in the current perturbation sequence. As we explain below, the sequence terminates randomly
with a probability that adapts to how much progress gradient steps make towards improving
the lens θ.

The gradient perturbation process is a jump process, which means that it jumps from on
state to another in a discrete manner. The adjoint infinitesimal generator of the gradient
perturbation is

Q∗
gradientπ(θ

∗) = π(θ)− π(θ∗). (4.13)

This form comes from plugging in Equation Equation (4.12) into the definition of the adjoint
infinitesimal generator of a jump process [26].
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Mutation distribution. RESTORE requires that the mutation distribution can sample
any lens θ with non-zero probability. In practice, the choice of mutation distribution is further
constrained by its role in determining the termination probability—through an integral
operator relationship that is difficult to compute analytically except for trivial distributions
(e.g., uniform sampling). We follow Pollock et al. [70], who show that using a mutation
distribution that selects from a reservoir of previous samples allows a tractable approximation
of the termination probability (described below).

In particular, we first sample a lens θ from a mixture distribution

µ(θ) = γpglobal(θ) + (1− γ)preservoir(θ, R), (4.14)

where: 1. pglobal samples a lens θ by sampling each of its parameters independently and
uniformly within some upper and lower bounds; 2. preservoir samples a lens from a reservoir R
of previously sampled lenses, formed as we explain below; 3. γ ∈ [0, 1] is a hyperparameter.
We set γ to a small value, to ensure that the mutation distribution satisfies the RESTORE
requirement while mostly sampling from the reservoir. After sampling a lens θ, we mutate
it as we describe in Section 4.5. As the overall mutation distribution does not need to be
reversible, our mutations allow altering the number of lens elements, then refining the lens
before resuming a perturbation chain.

We form the reservoir R by keeping track of the top N lenses (in terms of π) sampled upon
perturbation chain terminations. The reservoir effectively allows RESTORE to “backtrack”
to a previous high-performing lens, when a perturbation chain gets trapped exploring a
bad region of the design space. This backtracking is important as without it the mutation
distribution would be extremely unlikely to find a reasonable lens by randomly sampling
the design space. Instead, using the reservoir allows “warm starting” a new perturbation
chain from a previous reasonable lens. As the chain continues, the reservoir R will contain
samples from the target distrbution, so the regeneration distribution µ that we are effectively
sampling from is an approximation to our target distribution,

µ(θ) ≈ π(θ). (4.15)

Termination probability Given our specifications of perturbations and global
regenerations, we can write, κ̃ as

κ̃← π(θ)− π(θ∗)

π(θ)
+ C. (4.16)

For optimization, the associated weights with each sample are unnecessary, since we are
searching for the maximum of the target distribution. We can therefore simply calculate the
probability of terminating the current gradient descent sequence, κ, as

κ← π(θ)− π(θ̃) + C

π(θ) + C
. (4.17)
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Figure 4.1: We construct a toy lens design problem (a) to validate the sampling accuracy of our
method. The sampler can choose between optimizing the distance of a singlet from the sensor (1D
target distribution, left), or the distances between two singlets and the sensor (2D target distribution,
right). Even with an approximate termination probability, our method (d-e) correctly samples from the
target distributions (b-c) in both 1D and 2D.

Intuitively, κ increases, and thus termination becomes more likely, when the relative
improvement of π after a gradient step becomes small. Thus, RESTORE adaptively
determines to stop perturbations and use a mutation when gradient optimization gets stuck
at a local maximum of π. Though Equation (4.16) is an approximation, we show in Figure
Figure 4.1 that using it in RESTORE still allows sampling from the target distribution π if
we account for the weights calculated by the timers.

4.5 Lens mutations

We implement four mutations in our method (Figure 4.2): singlet addition, singlet removal,
singlet gluing, and doublet splitting. These mutations are inspired by strategies suggested
in lens design reference textbooks [84, Chapter 2]. During sampling, we uniformly sample
an element of the current compound lens, then uniformly sample a mutation strategy for
the selected element, and lastly apply a refinement process. We use singlet addition as
an example to explain this refinement process, but the same process applies to the other
mutations. Additionally, our refinement process is extensible to other types of mutations,
e.g., changing the material type or flipping the orientation of lens elements.

If we simply add a singlet to the current compound lens, the resulting lens will almost
certainly have drastically worse focusing and throughput performance than the original
lens. Though RESTORE will still attempt to optimize the mutation proposal, optimization
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will likely get stuck fast requiring a new mutation—and thus wasting the previous ones.
We therefore need a way to quickly fine-tune the lens from a mutation proposal so that it
performs closer to the original lens. To do so, we use ray transfer matrix analysis—a paraxial
approximation to ray tracing—as a proxy for Equation (4.6) that allows quickly improving
lens focusing performance.
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Figure 4.2: We consider four types of mutations to
a compound lens. Applying such a mutation on its
own often leads to a lens with significantly worse
performance than the original. We alleviate this issue
by using a paraxial projection refinement process that
updates the mutated lens to have the same focusing
behavior (up to first order) as the original lens.

Paraxial lens optics. With the paraxial
approximation of radially symmetric optics,
we parameterize a light ray using the 2D-
vector of its distance y and angular deviation
ϕ from the optical axis. We also model a
sequential compound lens using a 2× 2 ray
transfer matrix M . Then, we can model
propagation of the ray through the lens using
matrix-vector multiplication:[

ϕf

yf

]
= M

[
ϕ
y

]
, (4.18)

We overview this matrix for compound lenses
comprising spherical elements, and refer to
Pedrotti et al. [68, Chapter 18] for details.

As a ray traveling through a lens
undergoes a sequence of propagation and
refraction operations, it suffices to explain
how to model each such operation paraxially
as a ray transfer matrix. Propagation by a
distance d corresponds to a matrix:

Mp(d) :=

[
1 0
d 1

]
, (4.19)

Refraction at a spherical surface with
curvature κ corresponds to:

Mr(κ, ηo, ηi) :=

[
ηi
ηo

κ(ηi−ηo)
ηo

0 1

]
, (4.20)

where ηi and ηo are the refractive indices before and after refraction.
We can then model a compound lens as the product of the refraction and propagation

matrices corresponding to its elements. For example, a singlet is represented paraxially as
MrMpMrMp, where the last matrix considers the distance from the final lens surface to the
sensor plane. Given a compound lens θ, we denote its ray transfer matrix M(θ), which can
always be written in the form:

M(θ) =

[
a − 1

f

b c

]
, (4.21)
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where f is the focal length of the lens and a, b, and c are coefficients that encode other
first-order properties of the lens. Importantly, M(θ) provides a fixed-sized abstraction of the
compound lens, no matter the complexity of its design (e.g., number of elements). Moreover,
two compound lenses will have similar (up to first order) focusing behavior if their ray transfer
matrices are equal, no matter how different their internal designs. Therefore, we can define
the following notion of approximate equivalence between two compound lenses—emphasizing
focusing of rays parallel to the optical axis and at infinite conjugacy (y = 1, ϕ = 0).

Definition 1: Paraxial equivalence

Two compound lenses θa and θb are paraxially equivalent if

M(θa)

[
0
1

]
= M(θb)

[
0
1

]
.

Figure 4.3: Example of paraxial equivalence. The 2×2
ray transfer matrix describes how a light ray parallel
to the optical axis propagates through a compound
lens (up to first order). If two lenses have the same
effect on such a ray, they are paraxially equivalent.

Mutation procedure. After adding a
singlet to a lens θ, we refine the augmented
lens θ∗ so that it is paraxially equivalent to θ.
We formulate this refinement as a constrained
optimization problem;

min
θ∗
∥θ − θ∗∥2 s.t. (M(θ)−M(θ∗))

[
0
1

]
= 0.

(4.22)
Optimization
excludes entries of θ∗ corresponding to
the added singlet. This refinement process,
which we term paraxial projection, ensures
that θ∗ has the same first-order behavior
as θ, and applies to our other mutation
operations (Figure 4.2) exactly analogously.

We solve Equation (4.22) using Newton’s method and Lagrange multipliers. Empirically,
we found that the solver runtime is equivalent to about 30 gradient-based iterations using full
(adjoint) ray tracing. We also found that using paraxial projection after a mutation results
in much larger improvements in the lens objective than using gradient descent for the same
amount of time. We note that paraxial projection is locally unique and thus has a full-rank
Jacobian of θ∗ with respect to θ—the supplement has a derivation. Though the Jacobian is
not needed for our method, it can be used for MH-based sampling requiring reversibility.

Jacobian of manifold projection If we call the solution to Equation 4.22, θ∗, and
the initial parameters, θ0, then we are interested in the Jacobian of θ∗ w.r.t. θ0. This
optimization problem can be differentiated using the implicit function theorem. We first
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write the Lagrangian of the optimization problem.

L(θ∗, θ0, λ) = ∥θ∗ − θ0∥2 (4.23)

+ λ⊤
(
M
([

θ∗ θadd
]⊤)−M(θ0)

)[0
1

]
. (4.24)

Following the method of Lagrange multipliers, we know that the solution to the optimization
problem is a stationary point of the Lagrangian,

∇1L = 0 (4.25)

∇3L = 0, (4.26)

where ∇i refers to differentiation with respect to the i-th argument. We now assume that
both θ and λ are functions of θ0 and differentiate the Lagrangian w.r.t. θ0,

∇1∇1L
dθ∗

dθ0
+∇2∇1L+∇3∇1L

dλ

dθ0
= 0, (4.27)

∇1∇3L
dθ∗

dθ0
+∇2∇3L+∇3∇3L

dλ

dθ0
= 0. (4.28)

Notice that both ∇1L and ∇2L have the same dimension, while ∇3L has a dimension of the
number of constraints (two in our case). Writing this out in matrix form,[

∇1∇1L ∇3∇1L
∇1∇3L 0

] [ dθ∗

dθ0
dλ
dθ0

]
=

[
−∇2∇1L
−∇2∇3L

]
, (4.29)

and plugging in Equation 4.24 gives,[
I+ λ⊤∇1∇1g ∇1g
∇1g

⊤ 0

] [ dθ∗

dθ0
dλ
dθ0

]
=

[
− (I+∇2∇1g)
−∇2g

⊤

]
, (4.30)

where g is the constraint function in Equation 4.24. We can now perform a linear solve to
find the Jacobian of the projection.

4.6 Experiments

We show results from experiments on several lens design tasks.

Implementation details. We implemented our method in Python, using JAX [11] for GPU
acceleration, and Optimistix [72] for ray transfer matrix projection. We assume a standard
35mm full-frame sensor, and optimize for four target plane positions in Equation (4.6),
sampled so that their thin-lens sensor-plane projections are uniformly distributed from the
center to the edge of the sensor. We set reservoir size to 5, and temperature so that the initial
lens θ0 has π(θ0) ≈ 0.5. All our initial lenses are from Reiley [73]. On a workstation with an
NVIDIA RTX 3090 GPU, our implementation performs 12000 iterations in about 40min.
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Figure 4.4: We compare our method with an MH-
based sampler. The MH-based sampler (green) rejects
most mutations proposals and can only perform small
gradient steps. By contrast, our method (blue)
efficiently optimizes all mutation proposals before
trying another mutation.

Comparison with Metropolis-Hastings
In Figure 4.4, we compare our method with
a reversible-jump MCMC sampler that uses
the Metropolis-adjusted Langevin algorithm
(i.e., MH with Langevin perturbations) [75].
As we explain in Section 4.3, the need
to include noise in Langevin perturbations
forces the MH-based sampler to use very
small step sizes to ensure perturbations are
accepted—thus slowing down optimization
process. Additionally, the MH-based
sampler rejects most mutation proposals as,
even with projection, they are significantly
worse than the current lens. By contrast,
our method uses large step sizes for faster
gradient optimization and, as it has no
rejections, attempts to optimize mutation
proposals before performing another mutation. As a result, our method consistently finds
better lenses.

Comparison with brute-force search In Figure 4.5, we compare our method against a
baseline using brute-force search. Brute-force search works by adding or removing a singlet
at every possible location in the compound lens, then optimizing the resulting lens using
gradient descent. This baseline is simple to implement, but is prone to getting stuck in local
minima and can become intractable as we increase the number of elements in the original
lens or the number of elements we want to add. By contrast, our method can better avoid
local minima and explore more lens designs by: adaptively adding and removing elements,
using paraxial projection, and dynamically terminating stalled optimization.

We use four initial lenses for comparison: a 28mm wide-angle lens, a 50mm normal lens,
a 105mm macro lens, and a 135mm telephoto lens. We run our method and the brute-force
baseline for the same time (40min), optimizing all lenses generated from additions and
removals by the baseline for an equal number of gradient iterations. In all cases, our method
finds lenses with better objective values, sharpness, and speed than the baseline.

Paraxial projection ablation Figure 4.6 and Table 4.1 show results from an ablation
study evaluating the utility of paraxial projection. We run our method with and without
paraxial projection for 5000 iterations. The table shows that our method samples lenses
that improve on the initialization much more often with paraxial projection than without.
Figure 4.6 shows how mutations are distributed during sampling for the 135mm lens, with
and without paraxial projection. In both cases, there is a “warm-up” period where our
method must first populate the reservoir with good lenses, before it starts consistently finding
better lenses. Using paraxial projection greatly shortens this period, resulting in overall
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Figure 4.5: A comparison of our method with a baseline using brute force search. The baseline adds or
removes an element at every possible location in the original compound lens, then uses gradient-based
optimization for the resulting lens. Both methods run for 40min. We experiment on four different types
of lenses: a 28mm wide-angle lens, a 50mm normal lens, 105mm macro lens, and a 135mm telephoto
lens. In all cases, our method finds better lenses than baseline for the given objective function.
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Table 4.1: Ablation study for paraxial projection. We run our method with and without paraxial projection,
and report the fraction of iterations in which the sampled lenses have better objective value than the
initial lens. We report results after 1000 and 5000 iterations.

projection no projection

lens 1k 5k 1k 5k

wide-angle (28mm) 0.356 0.358 0.225 0.241
normal (50mm) 0.964 0.972 0.554 0.828
macro (105mm) 0.118 0.424 0.0 0.015
telephoto (135mm) 0.087 0.281 0.009 0.122

mutationsamplerinitial loss

mutation loss

perturbation steps
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Figure 4.6: Two runs of our method with (a) and without (b) paraxial projection. We initialize both
optimizations with the 135mm lens and run for 5000 iterations. We also plot the loss of the initial lens
(orange) for comparison. Using paraxial projection results in better mutations with lower losses, and
perturbation sequences with longer durations. As the reservoir saturates with good lenses, both runs
more consistently find better lenses. However, paraxial projection reduces this “warm-up” period.

47



initial

restore 1 restore 125

rendersperformance space
Zemax

Zemax
initial

th
ro

ug
hp

ut
 (m

m
²)

spot error (mm²)

Teh et al. [2024] 1 Teh et al. [2024] 125

Teh et al. [2024]
restore

1 5 25 125throughput weight

Teh et al. [2024]

restore

focus optimized throughput optimized

improvedfront

Figure 4.7: By varying the throughput and spot error weights in the optimization loss, we can explore
designs that achieve different tradeoffs between lens speed and sharpness, tracing a Pareto front. Without
mutations, lens designs are limited to the Pareto front determined by the initial design’s topology. As
our method can add and remove elements from the design, it is able to explore a larger space of designs
and expand the Pareto front to achieve better tradeoffs.

better lenses.

Expanding the lens sharpness-speed Pareto front Figure 4.7 shows that our method
allows exploring a richer tradeoff space of lens designs than using just gradient-based
optimization of continuous lens parameters. Exploring the design space involves changing
the weights of different losses in Equation (4.6), to place different emphasis on lens sharpness
versus speed, creating a Pareto front of lens designs. Initialized with lenses from the Pareto
front produced using only gradient-based optimization, similar to Teh et al. [94], our method
with the same total loss finds designs that move past this front to more favorable parts of
the design space. By varying both continuous and discrete lens parameters, our method
produces lenses with better overall performance than previous methods.

4.7 Discussion

We presented a method for automated design of compound lenses that, uniquely among
related work, can optimize both continuous and discrete parameters of a lens design. It uses
Markov chain Monte Carlo sampling to combine gradient-based optimization of continuous
parameters, and tailored mutations altering the number of lens elements. Our method uses
the RESTORE algorithm for effective sampling, and paraxial projection to improve lens
mutations. Our method finds better lenses than when using only gradient-based optimization,
and expands the Pareto front possible when considering the lens speed-sharpness tradeoff.
We discuss limitations of our method that point towards future research directions.
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Other geometric optical elements Our method is currently limited to only spherical
lens elements, due to our reliance on the ray transfer matrix for the paraxial projection step.
First-order approximations to other types of lens elements (e.g., aspherics, cylindrical lenses,
or even reflective elements) do exist, though as their accuracy is lower than for spherical
lenses, it remains unclear how effective they would be when designing lens mutations.

Wave optics As we rely on geometric optics for ray tracing and paraxial projection, our
method is limited to elements well approximated by geometric optics. Several recent works
extend continuous lens design methods using gradient-based optimization to account for wave
effects (e.g., diffraction) [17, 36]. Incorporating these works into our method would allow
likewise extending mixed continuous-discrete lens design.

Initialization dependence Though our method is able to explore a larger design space
than using only gradient-based optimization, it is still sensitive to initialization, requiring
high-quality initial lens designs. Sampling such design at random is extremely unlikely, but
data-driven methods [21] provide a potential solution to this problem. Such methods can
work in conjunction with our method to, e.g., prepopulate the reservoir.

Paraxial projection Our paraxial projection procedure solves a nonconvex polynomial
optimization problem with Newton’s method, thus is sensitive to initialization and can
get stuck in saddle points, though rarely an issue in practice. It is possible to rewrite the
optimization problem as a sum-of-squares problem whose solution comes with a certificate
of optimality. Directly using sum-of-squares, however, is slow and not practical for our
method. Further investigation into optimal solutions to the paraxial projection problem is an
interesting direction.

Manufacturing constraints and tolerances Though our method outputs good lenses
in simulation, ensuring that these lenses are manufacturable and robust to manufacturing
errors is essential for practicality. Our designs satisfy certain manufacturability constraints
(e.g., element thickness), but there are other constraints not captured in our method (e.g.,
element distances). Additionally, our method does not account for manufacturing tolerances
to improve robustness. Investigating how to incorporate manufacturing constraints and
tolerances is an important future research direction.
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Chapter 5

Adjoint Nonlinear Ray Tracing

(a) Luneburg lens (b) Gas flow

Figure 5.1: Examples of refractive index fields,
including a Luneburg lens and a plume of gas.
(a) The Luneburg lens focuses any incoming light
direction to the antipodal point of the incoming
direction. (b) The gas plume has a spatially-
varying lower refractive index than the surrounding
air, causing light to bend through the medium. To
exaggerate distortion (see inset), we multiply the
refractive index of the medium by 100×.

Up until this point, the thesis has been
concerned with spherical lenses, mainly for
their simplicity. There are many other
types of optical elements one can build
that exhibit interesting optical properties.
One such type of optical element is a
gradient-index (GRIN) lens, which is an
optical element that has a spatially-varying
refractive index field. In this setting, rays
of light will bend continuously through the
medium instead of refracting at discrete
interfaces. This chapter presents a method
for differentiating GRIN lenses and other
continuously-refractive media, which we call
adjoint nonlinear ray tracing (ANRT). With
ANRT, we can calculate the gradient of
an objective function with respect to the
refractive index field, which readily allows us
to integrate these materials into the methods
presented in the previous chapters.

GRIN lenses, such as the Luneburg lens
shown in Figure 5.1(a) or optical fibers used
for telecommunication, use spatially-varying
refractive index fields to focus or steer light.
The phenomenon of continuously varying
index of refraction also occurs in naturally,
in the form of mirages and mixing fluids like mixed drinks. Mixing two gases with different
refractive index also causes light to distort when passing through, as shown in Figure 5.1(b).

The theory for the geometric and radiometric properties of light paths undergoing
continuous refraction is well-established in computer graphics. Given a volume with a known
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refractive index field as input, there are many ray tracing procedures to efficiently determine
the nonlinear path of light through a medium [1, 41, 86]. This enables the rendering of
photorealistic images of these gradient-index fields, which we refer to as nonlinear ray
tracing.

We are interested in building a differentiable version of nonlinear ray tracing. One
approach is to use reverse-mode automatic differentiation (AD) to calculate gradients with
respect to the refractive field. Reverse-mode AD records the computation that occurs during
the simulation, then calculates the derivative of the output rays with respect to the refractive
index profile. This requires a large amount of memory to store the computation graph,
especially when working with 3D volumes. This means that the more accurate the simulation
is, the more memory automatic differentiation will require.

We instead present a method for differentiating the dynamics of continuous refraction
without constructing the computation graph. We employ the adjoint state method to derive
a set of ordinary differential equations for calculating the gradient. We then show how to
discretize and efficiently simulate these equations. Our technique can optimize for refractive
index fields based on two types of objectives: image objectives and geometric objectives.
We use our technique to explore multiple types of optimization objectives for a number of
applications, including: (i) optimizing the focusing properties of GRIN optical fibers and
lenses, (ii) designing novel displays based on refractive index fields, and (iii) reconstructing
unknown refractive index fields from a set of images. To ensure reproducibility and facilitate
follow-up work, we provide our code on the project website: http://imaging.cs.cmu.edu/
adjoint_nonlinear_tracing/.

5.1 Related Work

Nonlinear ray tracing Our focus is on continuously-refractive media, where the refractive
index changes continuously from one location to another. As a consequence of the eikonal
equation of geometric optics, light propagating inside such media travels along curved rays,
rather than (piecewise-)linear rays [51]. Stam and Languénou [86] use Lagrangian optics to
convert the eikonal equation into a second-order differential equation, which they then use to
describe and numerically trace these curved rays. We follow Gröller [30] and term this process
nonlinear ray tracing. Sharma et al. [82] reformulate these equations to make nonlinear ray
tracing more numerically stable. Ihrke et al. [41] use nonlinear ray tracing to render images
due to light wavefronts propagating through continuously-refractive media. In practice, many
such media additionally exhibit volumetric scattering. The combined effects of light curving
and scattering can be described using the refractive radiative transfer equation [1], which
can be simulated using variants of volumetric path tracing [67] and photon mapping [31]
techniques.

Gradient-index optics Unlike conventional refractive optics, GRIN optics work by using
a continuously-varying refractive index field to guide light along curved light paths. These
optics can produce optical effects and aberration characteristics that are not possible with
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conventional refractive optics. Teichman et al. [95] survey GRIN optic designs, their
advantages and disadvantages compared to conventional refractive optics, and ways to
fabricate different GRIN profiles. As an alternative to fabrication, it is possible to sculpt
virtual GRIN optics in various media (e.g., water, tissue) using acoustic
waves [14, 47, 67, 80, 81].

Two common examples of GRIN optics, for which the refractive index fields are known
analytically, are the Luneburg lens [57] and Maxwell fisheye lens [58]. They focus collimated
beams or point sources (respectively), regardless of the orientation of the lens, the angle of
incidence of the beam, or the location of the point source [51]. Another common example is
GRIN waveguides, which can be used in place of conventional optical fibers [25]. Similar to
our work, Balasubramanian et al. [4] use differentiable ray tracing to design refractive index
fields for new types of GRIN optics. Their technique is based on automatic differentiation, and
thus suffers from slow computation and large memory consumption. Our adjoint derivation
addresses both shortcomings.

Reconstruction of transparent materials Some transparent materials such as gas clouds
are continuously-refractive media. Atcheson et al. [2] develop an algorithm that, given a set
of image measurements of a gas cloud, solves for the refractive index everywhere inside the
cloud. Their approach assumes that light rays through the cloud are approximately linear,
which makes it possible to recover the refractive index field through Poisson integration.
Ihrke [40] and Ji et al. [46] both relax the path linearity assumption by iterating between
nonlinear path tracing and refractive index estimation. However, these iterative schemes
ignore either the exit direction or the exit position when path tracing. In contrast to these
prior works, our method can recover the refractive index field even in cases of large deflection.
Schröder and Schuster [77] introduce theoretical analysis and an algorithm for reconstructing
continuously-refractive media using time-of-flight measurements. Our method can also take
advantage of time-of-flight information.

5.2 Theoretical background

We use this section to present the theory of nonlinear ray tracing within media with
continuously-varying refractive index, and the adjoint state method for differentiating
objectives subject to partial differential equation (PDE) constraints. We refer to Kravtsov
and Orlov [51] for a more detailed discussion of nonlinear ray tracing, and to Plessix [69] for
the adjoint state method.

5.2.1 Nonlinear ray tracing

Nonlinear ray tracing refers to the geometric optics description of how light propagates in
continuously-refractive media. These are media where the refractive index η varies continuously
from point to point. When traveling from point x1 to point x2 inside such a mediumM⊂ R3,
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Table 5.1: Definitions of main terms used in the adjoint state method.

symbol type description

σ [0,∞) Parameterization of time
η R3 → [1,∞) Refractive index field
∇η R3 → R3 Spatial gradient of refractive index

Hess(η) R3 → R3×3 Hessian of the refractive index
x [0,∞)→ R3 Position of the light ray
v [0,∞)→ R3 Velocity of the light ray
λ [0,∞)→ R3 Adjoint state variable of position
µ [0,∞)→ R3 Adjoint state variable of velocity
Ci R3 × R3 → R Inner cost function
Fi R→ R Outer cost function

light will trace a curved ray that is a stationary point of the optical Lagrangian

L(R) ≡
∫
R

η(x(s)) ds, (5.1)

where R is any curve contained inM that starts at x1 and ends at x2; and s is the geometric-
length (arc-length) parameterization of this ray. Equation (5.1) is the optical length of ray
R, that is, geometric length weighted by the local refractive index. Therefore, light travels
along curved rays that correspond to extrema (local maxima or minima) and saddle points of
optical length.1

Using the Euler-Lagrange equation for stationarity of the optical Lagrangian of
Equation (5.1), we can derive the ray equation of geometric optics [10] for light rays inside a
continuously-refractive medium:

d

ds

(
η
dx

ds

)
= ∇η, (5.2)

where, to simplify notation, we made the dependence of the refractive index η and its gradient
∇η on the location x(s) ∈M implicit. Throughout the chapter, we adopt a change of variable
proposed by Sharma et al. [82] and defined through the differential relationship

dσ ≡ ds

η
. (5.3)

We term σ the canonical parameter, a name we will justify shortly. By reparameterizing light
rays in terms of σ, Equation (5.2) becomes

d

dσ

(
dx

dσ

)
= η∇η. (5.4)

1The optical length is directly proportional to time, given that dt = η/co ds, where co is the speed of
light in vacuum. Therefore, stationary points of the optical Lagrangian of Equation (5.1) also correspond to
stationary points of time.
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Lastly, by introducing the velocity v ∈ R3, we can separate this second-order ordinary
differential equation (ODE) into a system of first-order ODEs known as Hamilton’s equations,

dx

dσ
= v, (5.5)

dv

dσ
= η∇η. (5.6)

Equations (5.5)-(5.6) are known as the Newton’s law form or canonical form of Hamilton’s
equations, because of their similarity with Newton’s equations of motion in mechanics [51].
We can interpret these equations as a moving particle that is subject to forces equal to
η∇η. This exact analogy with Newton’s equations of motion is a consequence of the use of
σ from Equation 5.3 to parameterize light rays, justifying the name canonical parameter.
As we discuss in Section 5.4, the use of canonical parameter σ also allows us to discretize
and numerically simulate these equations using reversible symplectic integrators [32]. The
reversibility property will be critical when discretizing our adjoint nonlinear ray-tracing
formulation.

5.2.2 Adjoint state method

The adjoint state method allows computing derivatives of optimization objectives subject
to constraints in the form of (ordinary or partial) differential equations. Such optimization
problems often arise in physics-based inverse problems. The general form of the optimization
problem that we will consider is:

min
θ
G(p)

s.t. S(p; θ) = 0,
(5.7)

where S is the set of differential equations describing the underlying dynamics, and G is the
cost function of the inverse problem. p is the configuration, or state variables, describing the
physics, and θ is the control variables of the dynamics. The adjoint state method differentiates
the optimization objective, making it possible to use gradient-based optimization techniques
to solve optimization problems of the form shown in Equation (5.7).

The adjoint state method proceeds by first converting the constrained optimization
problem of Equation (5.7) into an unconstrained optimization problem, through the use of
Lagrange multipliers,

min
θ,p,λ

L(p, θ,λ), (5.8)

L(p, θ,λ) ≡ G(p)− ⟨λ,S(p; θ)⟩. (5.9)

The Lagrangian L augments the original cost function G with the original constraints, scaled
by slack variables λ known as the adjoint state. The adjoint state has the same dimensionality
as the configuration of the dynamics.
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The Lagrangian L will have the same minimum as the original cost function G when all
the variables except for θ are critical points. This is equivalent to finding values p∗ for the
configuration and λ∗ for the adjoint state such that

dpL(p∗, θ,λ∗) = 0, (5.10)

dλL(p∗, θ,λ∗) = 0. (5.11)

Combining these equations with the definition of the Lagrangian in Equation (5.9), we have

( dpS)(p∗; θ)λ∗ − dpG(p∗) = 0, (5.12)

S(p∗; θ) = 0. (5.13)

Equation (5.13) simply requires that we satisfy the constraints of the original optimization
problem of Equation (5.7). Equation (5.12) allows us to solve for λ∗. Lastly, taking the
derivative of the Lagrangian with respect to θ, we have

dθL(p∗, θ,λ∗) = −λ∗ dθS(p∗; θ). (5.14)

Equation (5.14) equals the derivative of the constrained objective of the optimization problem
of Equation (5.7). With this gradient in hand, we can solve this problem using any gradient-
based optimization algorithm. Importantly, Equation (5.12) will be a set of differential
equations defined by the derivatives of the original differential equations S with respect to
the configuration p. We can use these equations to compute λ∗ first, and use the result
to compute the product λ∗ dθS(p∗; θ) directly, without having to explicitly construct the,
typically very high-dimensional, Jacobian dθS(p

∗; θ).

5.3 Differentiating w.r.t. Refractive Index

In this section, we use the adjoint state method to derive an expression for differentiating
optimization objectives constrained by Hamilton’s equations (5.5)-(5.6). Concretely, we are
concerned with optimization problems of the form:

min
η

N∑
i=1

Fi

[∫∫
(x0,v0)∈Ω
Ci(x (σf ; η, x0, v0) ,v (σf ; η, x0, v0))dx0 dv0

]
s.t. ẋ(σ; η, x0, v0) = v, ∀σ ∈ [0, σf ],

v̇(σ; η, x0, v0) = η∇η, ∀σ ∈ [0, σf ],

x(0; η, x0, v0) = x0,

v(0; η, x0, v0) = v0,

(5.15)

where the dot refers to differentiation with respect to the canonical parameter σ; Ω is the set
of possible initial conditions for light rays (e.g., their location and velocity on a light source);
σf parameterizes the end of the ray (e.g., when it exits the medium or reaches a sensor); Ci
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x̂t

(a) Forward tracing (b) Backward tracing (c) Updated refractive index field

Figure 5.2: The adjoint tracing procedure involves three key steps. (a) First, the ray is traced forward,
where each vertex is an integration step in the simulation. An error value is computed, e.g., the distance
between the terminal position xt and a target position x̂t. (b) This error is then backward traced through
the volume to compute the optimization gradient. Because of the reversibility property of the forward
tracing procedure, we can retrace the same set of vertices without actually storing them—which would
otherwise be extremely memory demanding. (c) Finally, the refractive index field η is updated using
the gradient. This cycle is repeated until convergence. Each point on the trajectory of the ray has an
associated x, v, λ, and µ.

is any function of the location and velocity at the end of the ray; and Fi is any function of
integrals over multiple rays. For simplicity, we will generally use x and v in place of the full
x (σ; η, x0, v0) and v (σ; η, x0, v0). Moreover, we will use x(σf ) and v(σf ) when referring to
the ray’s end position and velocity, respectively.

In the simplest case of the optimization problem of Equation (5.15), rays travel for some
fixed amount of time σf , specified as part of the problem description. In practice, this
time may be defined implicitly, e.g., as the time when the ray exits the medium or crosses
through some specific surface inside the medium. In this case, σf is itself a function of the
unknown refractive index field η. In both cases, differentiation reduces to solving the same
pair of ordinary differential equations (Equations (5.19)-(5.20)), but with different boundary
conditions. Thus, for simplicity, our derivation here assumes that σf is fixed and independent
of η, and we show a derivation for the more general case in the supplement.

Our formulation will allow us to compute the derivative of optimization objectives such
as Equation (5.15) with respect to refractive index, assuming derivatives of functions Fi and
Ci are available (e.g., through analytic or automatic differentiation). We explore two main
types of losses as specializations of the optimization problem of Equation (5.15): image losses
and geometric losses.

For image losses, the optimization problem of Equation (5.15) searches for a refractive
index field η such that rendered radiometric measurements through that field match target
measurements by a sensor. In this case, Ci becomes the path contribution function; the
integral corresponds to a radiometric path integral expression [97]; and Fi is a loss function
that compares the rendered and target radiometric measurements. An example image loss is:

Fi =
∥∥Îi − ∫∫

(x0,v0)∈Ω
We,i(x(σf ), v(σf ))Le(x0, v0)dx0dv0

∥∥2. (5.16)

In this example, Ci equals the product of the sensitivity function We,i of the i-th sensor and

57



the source emission function Le, and Fi equals the L2 loss between the rendered measurement
and the actual measurement Îi at that sensor. Summing over all N sensors (e.g., all pixels of
an image) completes the loss.

For geometric losses, the optimization problem of Equation (5.15) searches for a refractive
index field η such that rays traced through the field have end conditions satisfying specified
properties. In this case, Ci becomes a loss function that compares the end conditions of the
ray against the desired properties; the integral accumulates this loss for all rays; N = 1; and
F is the identity function. An example of a geometric loss is:

Ci = ∥x(σf )− x̂∥2, (5.17)

where C is the L2 loss between the ray’s end position x(σf ) and a target position x̂ where we
want all rays to arrive.

Adjoint nonlinear ray tracing We now apply the adjoint state method to compute the
derivative of the optimization objective of Equation (5.15). For simplicity, we differentiate the
function inside the integral of Equation (5.15), which we denote as C. The total derivative
additionally requires the term dF

dC , which is easy to compute.
Using the terminology of Section 5.2.2, the configuration variables are p ≡ (x, v), and

the control variable is θ ≡ η. Therefore, we introduce a pair of adjoint state variables (λ,µ)
that have the same dimensionality as the corresponding configuration variables. We can then
form the Lagrangian as:

L = C(x(σf ), v(σf ))−
∫ σf

0

λ⊤(ẋ− v) dσ

−
∫ σf

0

µ⊤(v̇ − η∇η) dσ. (5.18)

Solving for the critical points of the Lagrangian with respect to λ and µ, we obtain Hamilton’s
Equations (5.5)-(5.6) with initial conditions x0, v0—that is, the constraints of the optimization
problem of Equation (5.15), as expected. Solving for the critical points with respect to x and
v, we have

λ̇ = −
(
∇η(∇η)⊤ + ηHess(η)

)
µ, ∀σ ∈ [0, σf ] (5.19)

µ̇ = −λ, ∀σ ∈ [0, σf ] (5.20)

λ(σf ) =
∂C
∂x

, (5.21)

µ(σf ) =
∂C
∂v

. (5.22)

We provide the details of this derivation in the supplement. We make the following
observations. First, Equations (5.19)-(5.20) are a system of first-order ODEs on the adjoint
state variables, with boundary conditions specified by Equations (5.21)-(5.22) at the
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propagation end, σf . We term Equations (5.19)-(5.20) the adjoint equations. Second,
computing the boundary conditions in Equations (5.21)-(5.22) requires knowing the ray’s
end position x(σf ) and velocity v(σf ). Third, even though the ODEs in
Equations (5.19)-(5.20) evolve only the adjoint state variables λ,µ, they require evaluating
the refractive index η and its derivatives at all intermediate ray locations x(σ), ∀σ ∈ [0, σf ].

These observations suggest the following two-stage procedure for computing the adjoint
state variables. At the first stage, we evolve Hamilton’s Equations (5.5)-(5.6) with initial
conditions x0, v0 forward in σ, until propagation ends at σf . At the second stage, we first
use the ray’s end position and velocity to compute the initial conditions µ(σf ),λ(σf ) of
Equations (5.21)-(5.22). We then evolve the adjoint Equations (5.19)-(5.20) with initial
conditions µ(σf ),λ(σf ) backward in σ, for which we travel in reverse along the ray we
traced during the first stage. We refer to the second stage procedure as backward tracing.
In Section 5.4, we leverage the special structure of Hamilton’s equations and the adjoint
equations, and devise discrete numerical procedures for efficiently implementing this two-stage
procedure, without the need to store the trajectory of the ray.

Once we have computed the adjoint state variables, we can compute the gradient of the
objective of Equation (5.15) as

dηL =

∫ σf

0

(η∇( dη) + dη∇η)⊤µ dσ. (5.23)

Figure 5.2 visualizes the steps of the overall procedure. The differential term dη in
Equation (5.23) will depend on the spatial representation of the refractive index field. We
assume that we compute the refractive index using a function N with parameters θ,
η(x) = N (x; θ). Then, we can replace dη(x) = dN (x;θ)

dθ
dθ. We note that Equation (5.23)

requires also computing spatial gradients of dη, i.e., the derivatives of the underlying
refractive index field representation. Thus, we can use Equation (5.23) to compute
derivatives of the objective of Equation (5.15) with respect to the parameters of any
representation of the refractive index field that: (i) supports point, gradient (for
Equations (5.6) and (5.20)), and Hessian (for Equation (5.20)) queries; and (ii) has point
and gradient queries that are differentiable with respect to the representation parameters θ.
We refer to the supplement for the derivation of these equations for the case where N
corresponds to trilinear interpolation. Other representations that satisfy these requirements
include smooth interpolation schemes (linear, spline, and so on), different grid types, and
neural fields [106].

5.4 Discretization of the adjoint equations

We now discuss how to numerically implement the two-stage procedure we derived in
Section 5.3 for differentiating the optimization objective of Equation (5.15) with respect to
the refractive index field.
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Algorithm 2 ForwardTrace(η, x0, v0,∆σ)

Input: A refractive field η, initial position x0, initial direction v0, step size ∆σ.
Output: A new position xf , a new direction v.
1: ▷ Initialize parameters

2: x← x0
3: v← v0
4: while insideVolume(x) do
5: η,∇η ← interpolate(η, x)
6: v← v + η · ∇η ·∆σ
7: x← x + v ·∆σ

8: xf ← x
9: vf ← v
10: ▷ Return new position and direction

11: return xf , vf

Forward tracing During the first stage of our procedure, we need to evolve Hamilton’s
Equations (5.5)-(5.6) forward in σ. We choose to use a symplectic and reversible integrator
to perform this numerical integration. When applied to a Hamiltonian system of ODEs,
symplectic integrators have well-documented stability properties that help keep discretization
error bounded even along very long integration trajectories. Additionally, reversible integrators
will be important during the second stage of our procedure when we perform backward tracing,
as we discuss later in this section. Many popular symplectic integrators are also reversible.
For more information on symplectic and reversible integrators, we refer to Hairer et al. [32]
and Kharevych et al. [48].

For our experiments, we use the symplectic Euler integrator, though we can easily change
to other symplectic integration schemes (e.g., the leapfrog integrator [62, 67]). Applying this
integrator to Hamilton’s Equations (5.5)-(5.6) results in the following discretized evolution
equations:

xi = xi−1 + vi∆σ, (5.24)

vi = vi−1 + η(xi−1)∇η(xi−1)∆σ. (5.25)

This integration scheme is explicit : the evolution equations compute the values of x and
v at the i-th step using only their values and the values of the refractive index field η at
the previous (i− 1)-th step, and thus without the need for a nonlinear solver. Algorithm 2
summarizes our procedure for the forward tracing stage.

Backward tracing During the second stage of our procedure, we need to evolve the adjoint
Equations (5.19)-(5.20) backward in σ, along with retracing in reverse direction the ray we
traced during the first stage. For this, we need to: first discretize the adjoint equations, as
we did for Hamilton’s equations in Equations (5.24)-(5.25); and second, evaluate both sets of
discrete equations in the backward σ direction.
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Algorithm 3 BackwardTrace(η, x0, v0,∆σ)

Input: A refractive field η, initial position x0, initial velocity v0, position gradient dx,
direction gradient dv, step size ∆σ.

Output: A gradient w.r.t parameters, dθ.
1: ▷ Initialize parameters

2: x← xf
3: v← vf
4: µ← dv
5: λ← dx + dv ·∆σ
6: dθ ← 0
7: while insideVolume(x) do
8: ▷ Backward tracing

9: x← x− v ·∆σ
10: η,∇η ← interpolate(η, x)
11: v← v − η · ∇η ·∆σ
12: ▷ Accumulate the gradients in the adjoint variables

13: nxx← Hess(η, x)
14: λ← λ+

(
∇η · ∇η⊤ + η · nxx

)
µ∆σ

15: µ← µ+ λ∆σ
16: δθ ← δθ + (µ · ∇η)dN

dθ
+ η
(
µ · ∇dN

dθ

)
17: ▷ Return the accumulated gradient

18: return dθ

The adjoint equations share the same symplectic structure as Hamilton’s equations.
Therefore, we can discretize them using the same symplectic Euler integrator we used for
Hamilton’s equations:

λi = λi−1 −
(
∇η(xi−1)(∇η(xi−1))

⊤

+ η(xi−1)Hess(η(xi−1))
)
µi∆σ. (5.26)

µi = µi−1 − λi−1∆σ, (5.27)

Then, we can invert these discrete relationships to evolve both Hamilton’s equations and
the adjoint equations in reverse, as required during the backward tracing stage:

xi−1 = xi − vi∆σ, (5.28)

vi−1 = vi − η(xi−1)∇η(xi−1)∆σ, (5.29)

λi−1 = λi

+
(
∇η(xi−1)(∇η(xi−1))

⊤ + η(xi−1)Hess(η(xi−1))
)
µi∆σ, (5.30)

µi−1 = µi + λi−1∆σ. (5.31)
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Equations (5.28)-(5.31) are simply rearranged versions of the forward discretized evolution
Equations (5.24)-(5.27), respectively. The resulting numerical scheme is also explicit : the
backward evolution equations update all quantities at the (i− 1)-th step using only their
values and the values of the refractive index field η at the (i)-th step. Algorithm 3 summarizes
our backward tracing procedure.

We make two observations. First, we note that Equations (5.28)-(5.29) will query the
exact same locations x and refractive index values η as during forward tracing (up to numerical
precision error). Therefore, we do not need to store the ray locations traced during forward
tracing. We only need to use the final position and velocity (x(σf ), v(σf )) at the end of the
forward tracing stage. Experimentally, we found that the relative difference between points
on the (discretized) paths produced by forward and backward tracing is on the order of
10−6. As a result, the memory use of our combined forward tracing and backward tracing
algorithms is constant, instead of scaling linearly with step-size and number of steps, as in
conventional reverse-mode AD.

Second, we note that the explicit and exact reversibility properties of our two-stage
procedure are due to two important choices we made in our formulation. The first choice is
our use of a reversible symplectic integrator. Using a non-reversible integrator (e.g., Euler
scheme) would result in the locations x (and thus queried refractive index values η) during
backward tracing being different from those during forward tracing. In turn, this difference
would result in biased gradient estimates.2 The second choice is our use of the canonical
parameterization σ and the ensuing Newton’s law form of Hamilton’s equations (5.5)-(5.6).
Using a different parameterization of Hamilton’s equations (e.g., arc-length s, as in Ihrke
et al. [41]) would result—even with a reversible integrator—in implicit backward equations,
requiring expensive root finding procedures (e.g., Newton’s method) to evolve. This is even
though the corresponding continuous Hamilton’s and adjoint equations are reversible. We
demonstrate this in the supplement.

Step size During both the forward and backward tracing stages, it is important to select an
appropriate step size ∆σ for integration. Decreasing the step size increases the accuracy of the
integration, at the cost of increased computation. In particular, in the case of our two-stage
procedure, halving the step size would increase tracing computation by roughly 2×, given
the need to trace the ray twice, forward and backward. A procedure based on reverse-mode
AD would have a similar increase in computation, given the need to forward-trace a longer
path and then parse a larger computational graph. However, such a procedure based on
reverse-mode AD would have additionally increased memory requirements, given the need to
store this larger computational graph. By contrast, our two-stage procedure has constant
memory requirements. This highlights an important advantage of our two-stage procedure,
especially when optimizing refractive index fields at higher resolutions (which requires smaller
step sizes for accurate ray tracing).

2By “biased”, we mean that the gradients computed by our procedure would not match those computed
using automatic differentiation on the loss evaluation routine, which involves forward tracing.
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5.5 Experiments

We compare the performance of our technique with other differentiable rendering alternatives,
in terms of both memory use and computational efficiency. Additionally, we show experiments
using different cost functions and refractive index field representations, to show the diversity
of applications of our framework. We show results for designing displays, optimizing GRIN
optics, and reconstructing different types of objects. In the supplement, we show additional
results that validate the accuracy of our computed gradients, and demonstrate the importance
of the reversibility properties we discuss in Section 5.4.

Implementation details We have created two implementations of our two-stage forward
and backward tracing procedure: one in Pytorch [66], and another in C++ using the Enoki
library [42]. We use the two implementations to compare against reverse-mode AD, as
implemented both by Pytorch’s autograd and in Enoki. For our design and reconstruction
experiments, we use the C++ implementation, combined with Pytorch for its gradient-based
optimizers and visualization tools.

For all our results, we use the Adam optimizer [49], and initialize the refractive index
field to be η(x) = 1 everywhere. To ensure that the recovered reconstruction is physically
plausible, after every gradient descent iteration, we project η to be greater than or equal
to 1 (projected gradient descent). We also use a multiresolution approach to accelerate
optimization convergence: During optimization, we periodically double the resolution of
the volume we use to represent the refractive index field. We select the step size used for
tracing to always be smaller than the width of a voxel in the volume, meaning that we
periodically decrease the step size during optimization. We also impose a constraint that
the volume boundary has a refractive index of 1, by clamping the values at the boundary
at each iteration. We run all of our experiments on an NVIDIA RTX 3090 GPU, with
runtimes ranging between 10-40 minutes. We use the Mitsuba renderer with support for
continuously-refractive media [67] for rendering visualizations of the results.

We note that, because of the finite step size used for tracing, a traced ray will end at
some point past the volume boundary. We deal with this by tracing the ray back to the
boundary to compute the boundary conditions for the adjoint equations, then begin the
backward tracing stage from the actual post-boundary end location.

Performance We compare the computational efficiency and performance requirements of
our technique, against the reverse-mode AD implementations of Pytorch and Enoki. In terms
of memory, our method requires the initial and final positions and velocities of the ray. It
also needs to keep track of a second volume that maintains the refractive index gradients
δη. By contrast, reverse-mode AD additionally needs to store the computation graph, which
grows with the number of integration steps taken during the simulation. This means that
reverse-mode AD has a linear memory complexity with respect to step size, whereas the
memory complexity of our method is constant.

To demonstrate these advantages, we perform quantitative comparisons of our C++
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Figure 5.3: Runtime and memory use comparison for reverse-mode AD and the adjoint method. The
number of steps along a ray is directly proportional to resolution and inversely proportional to step size.
For the adjoint method, memory use is constant and runtime increases linearly as a function of the
number of steps along a ray. By contrast, memory usage and runtime for reverse-mode AD are both
significantly higher. This is because reverse-mode AD requires keeping track of the entire light path to
compute gradients.
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implementation against one that uses Enoki’s reverse-mode AD. In the supplement, we show
additional comparisons of our Pytorch implementation against Pytorch’s reverse-mode AD.
For our comparisons, we look at runtime and peak memory usage of performing forward and
backward tracing operations, as a function of increasing volume resolution and decreasing
step size.

Figure 5.3 shows the comparison results. As expected, our method has constant memory
usage with respect to step size, whereas reverse-mode AD has a linear dependence on step
size. Increasing the volume resolution also affects reverse-mode AD significantly more than
our method. As resolution increases, the memory footprint of the volume increases by N3.
However, the step size needs to decrease along with the increase in resolution so that traced
rays sample the volume voxels properly. The decrease in step size dominates the memory
resources more so than the cubic increase in the volume size, which is why we see a linear
dependence on resolution for reverse-mode AD as well.

Our method also performs better in terms of runtime compared to reverse-mode AD.
Theoretically, our method has the same asymptotic complexity as reverse-mode AD, as
traversal of the computation graph (for reverse-mode AD) and the backward tracing procedure
(for our method) will both take as long as the forward tracing procedure. We attribute the
better runtime observed for our method in practice to the much larger number of memory
accesses that reverse-mode AD needs to perform.

We note that Enoki can perform graph simplification during automatic differentiation,
which gives better memory performance than standard reverse-mode AD (so called,
hybrid-mode automatic differentiation [29]). In our comparisons with Enoki, we keep graph
simplification turned on. However, our workload requires use of the gather operation to
query the spatial volume, which prevents Enoki from using certain aggressive graph
simplification techniques.

Novel view displays We present three experiments for designing refractive index fields
that produce different displays. The first experiments is generating a multiview display that
shows two images in two different directions. The second is building a multifocal display that
produces images at different focusing distances with accurate defocus blur. The third is a
caustic design problem where our method produces a refractive index field that generates a
caustic pattern in both the near and far fields.

For the multiview display, we replicate the experimental setting presented in Nimier-David
et al. [62], where the task is to generate a refractive index volume that produces two different
images simultaneously using two perpendicular light sources. The sources are collimated
beams. We use an image loss in this case where, using the notation of Equation (5.15), the
outer and inner cost functions are

Fmultiview
i (a) ≡

∥∥∥a− Îi

∥∥∥2, (5.32)

Cmultiview
i (x, v) ≡ Ii(x, v), (5.33)

and summation is over the two views.
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333 voxels 653 voxels 1293 voxels 2573 voxels
Figure 5.5: Effect of volume resolution. We optimize volumes of different resolution to reproduce a
picture of Albert Einstein, under the same setting as in Figure 5.4. As the volume resolution increases,
so does reproduction accuracy. The image is courtesy of Yousuf Karsh. ©Yousuf Karsh.

Optimized images Target images

Figure 5.4: The optimized GRIN lens displaying two
images. (Top) Two collimated beams of light (red
and blue) simultaneously illuminate two faces of a
cubic GRIN lens, which steers the light to form two
distinct images on a wall. (Bottom) The optimized
images of Albert Einstein and Alan Turing, and the
corresponding target images. The image of Albert
Einstein is a portrait by Yousuf Karsh. ©Yousuf
Karsh. The portrait of Alan Turing is by Elliot & Fry
Studio. ©National Portrait Gallery.

Figure 5.4 shows the results. Our method
allows us to optimize a higher-resolution
volume than that used by Nimier-David
et al. [62] (2563 versus 1503 voxels; trying
to use 2563 with the reverse-mode AD
implementation in a single pass resulted in
an “out-of-memory” error). We note that our
experiments produce different results than
those in Nimier-David et al. [62], due to
differences in the experimental setup.

Thanks to its constant memory
complexity, our method enables optimizing
refractive index fields of higher resolution
than what is possible using reverse-mode
AD. To demonstrate the importance
of this capability, in Figure 5.5, we repeat
the experiment of Figure 5.4 using refractive
index volumes of different resolutions.
Increasing the volume resolution helps
ameliorate discretization artifacts due to
trilinear interpolation, which in turn results
in more accurate reproduction of the target

image.

For the multifocal display, we optimize a refractive index field that can generate a focal
stack of some input scene. We can simulate the focal stack by placing image planes at
different distances from the refractive index volume, as shown in Figure 5.6. The distance of
each plane then corresponds to projecting an image at a different focusing distance, with
appropriate defocus blur. We select focusing distances equally spaced in diopter space. We
then run optimization with an image loss where, using the notation of Equation (5.15), the
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source mask GRIN optic focal planes

Mask Plane A Plane B Plane C

Figure 5.6: A multifocal display. (Row 1) Collimated light passes through a mask to form an all-in-focus
projected image of a lego scene. Placing a GRIN lens in front of the mask produces a 2D intensity
distribution that can change as a function of distance. We optimize this GRIN lens to create a focal
stack of this lego scene. (Row 2) The optimized intensity distribution at different plane positions, where
plane A is the closest to the GRIN lens and plane C is the furthest. (Row 3) The target (ground truth)
focal stack.

outer and inner cost functions are

Fmultifocal
i (a) ≡

∥∥∥a− Îi

∥∥∥2, (5.34)

Cmultifocal
i (x, v) ≡ Ii (x, v) . (5.35)

and summation is over the different focusing distances.

Figure 5.6 shows the results of the optimization. We form the target images by focusing
the Lego knights lightfield from the Stanford light field dataset at different focusing distances.
Our optimized refractive index fields can produce images that replicate the defocus blur
effects in the input images.

Lastly, we design a refractive index field that generates circular caustics in both the near
and far fields. 3 Instead of an image loss, for this caustic design, we use a geometric loss that
encourages rays to land at a particular locus of points and have a particular direction. The
use of such a loss function showcases the ability of our method to optimize both image and
geometric objectives. To define the loss, we use the signed distance function of the target
caustic patterns at the near and far field planes. In the notation of Equation (5.15), our loss

3By “far field” we mean the image we would obtain if we placed a sensor at a plane placed at the infinity
focus of a lens. The location of rays on this plane is determined by their velocity v rather than their location
x.
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Target z = 10 z = 100 z = 1000 z =∞
image (near field) (far field)

Figure 5.7: Caustic design. The caustic pattern remains in shape as the sensor moves away from the
volume. Since the cost function does not promote uniform energy distribution, the caustic contains
bright spots.

corresponds to using the outer and inner cost functions

F caustic(a) ≡ a, (5.36)

Ccaustic(x, v) ≡ (SDFnear(x))
2 + (SDFfar(v))

2. (5.37)

To compute the loss, rays are traced until they reach the end of the volume. There, the
near-field part of the loss penalizes large distances (as measured by the SDF) of the ray
end-location x from the target caustic. Likewise, the far-field part of the loss penalizes large
distances of the ray end-velocity v from the target caustic.

Figure 5.7 shows the results. We note that the optimized refractive index volume
successfully reproduces the target caustic in both near-field and far-field. However, some
parts of the caustic are a lot brighter than other parts. This is because the loss function we
use encourages rays to move toward the caustic, but not to spread uniformly along it. Our
focus in this experiment is to show that our technique can optimize geometric losses, rather
than to find the best loss for producing uniformly-illuminated caustics. In fact, the general
problem of defining a transport map between the source and the target images is an active
area of research [60, 79, 104]; our optimization procedure could be used with a geometric
loss, to design refractive index field realizing such a transport map.

Optimizing GRIN optics We show experiments where we recover the refractive index
field of a known GRIN lens, using only a description of the operation of the lens (i.e., the
geometric mapping between incident and outgoing rays that the lens implements). We do this
for the Luneburg and Maxwell lenses. The Luneburg lens [57] is a GRIN lens that focuses
a point source at infinity to the antipodal point on the lens; whereas the Maxwell lens [58]
focuses a point source placed at the surface of the lens to the antipodal point on the lens.
These perfect focusing properties are realized using the radial refractive index profiles

ηLuneburg(r) ≡
√

2−
( r

R

)2
, (5.38)

ηMaxwell(r) ≡
2

1 +
(
r
R

)2 , (5.39)
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Figure 5.8: Renderings of the reconstructed Luneburg and Maxwell lenses. (Col 1) Renderings of both
lenses in the Cornell box with lasers shining through the lens. (Col 2) A comparison of the center axes of
the optimized volume and the ground truth lens. Qualitatively, the paths have little divergence between
the two. The greatest disparity occurs at the boundary of the volume. This is because of the constraint
we add during optimization which projects the boundary of the solution to a value of one.
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optimized parabolic parabolic
optimized

0 r-r

(a) (b) (c)

Figure 5.9: A comparison between the optimized fiber design and the parabolic profile. (a) A cross-section
of each fiber with the ray trajectories. Light disperses the farther it travels in both fibers, but much less
so in the optimized fiber. (b) Images of the focused source at each of the focus points in the fibers.
The images from the optimized fiber are better focused. (c) A cross-section of the images, showing the
PSF of the fiber at each of the focus points. The optimized fiber retains better focus at the farther hop.

where R is the radius of the lens, and r is the distance from the center of the lens. Even
though the Luneburg and Maxwell lenses are primarily of theoretical interest, they provide
useful groundtruth profiles for evaluating our method.

To recover these profiles, we optimize refractive index fields for the same geometric loss
that, in the notation of Equation (5.15), uses the outer and inner cost functions 4

FGRIN(a) ≡ a, (5.40)

CGRIN
x0,v0

(x, v) ≡ ∥x− x̂(x0, v0)∥2. (5.41)

where x̂(x0, v0) is the target antipodal point determined by the initial ray direction and
position. In the case of the Luneburg lens, rays entering the lens with the same direction
should reach the same end point. For the Maxwell lens, rays entering the lens from the same
point should reach the same end point. At each gradient descent iteration, we pick at random
six directions and a corresponding six target points to optimize over. Figure 5.8 shows the
results. The optimized refractive index volumes closely match the analytic refractive fields
for both the Luneburg and Maxwell lenses.

Next, we turn our attention to using our method to optimize a GRIN fiber. This is a long
waveguide cable that has a rotationally-symmetric refractive index profile. As a result, light
traveling through the fiber is curved toward the center of the fiber. As light travels through
the medium and does not bounce off of the sides of the fiber, it can travel long distances
with minimal loss of energy.

4We note that, for this experiment, we use a slightly more general inner cost function than in Equation (5.15),
as we allow the inner cost function to change depending on the initial conditions of the ray. This does not
affect our optimization formulation.
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Table 5.2: Error values for the experiments in Figure 5.10, measured as L2 relative error from the
ground truth.

Method Orig. Data 10x 100x 1000x

Adjoint [ours] 0.0014 0.014 0.29 3.8
Atcheson et al. [2] 0.0110 0.113 1.28 19.3

The drawback to this design, however, is that light traveling through the fiber experiences
dispersion. Rays starting at the center of the fiber have a smaller optical distance to travel
compared to rays starting farther away from the center. This results in the waveform eventually
being deformed as propagation distance increases. Figure 5.9 visualizes this dispersion.
Hisatomi et al. [35] survey different radial profiles and their dispersion characteristics. The
simplest such GRIN fiber profile is the parabolic one,

ηfiber(r) =

√
2−

( r

R

)2
, (5.42)

where r is the distance from the medial axis of the fiber, and R is the radius of the fiber.

We seek to design a profile that exhibits less dispersion compared to the parabolic profile.
We start with a collimated source and have it focus to a point. Our cost function is

Ffiber(a) ≡ a, (5.43)

Cfiber(x, v) ≡ ∥x− p̂∥, (5.44)

where p̂ is the target focal point of the fiber. To enforce rotational symmetry, we use a
refractive index field representation that specifies refractive index only as a function of radius.

Figure 5.9 shows the results. Using our optimized refractive index profile results in rays
that focus better than using the parabolic profile, and that maintain better focus at multiple
points throughout the fiber. At all focus points in the fiber, the optimized profile produces a
more focused image than the parabolic profile.

Fuel injection reconstruction An application for our refractive index field optimization
procedure is the reconstruction of transparent gas flows, similar to Atcheson et al. [2] and Ji
et al. [46]. Both works use active sensing to obtain measurements of the light field entering
and exiting a gas volume. They generate correspondences between incident and outgoing
rays; then use this information to reconstruct the refractive index field of the volume by
assuming that light rays are approximately linear. This is an accurate assumption given that,
as the gas flow volume has refractive index changes on the order of 10−4, most rays undergo
very little deflection.

We reconstruct the fuel injection dataset from SFB 382 of the German Research Council
(DFG) using the measurements as in these prior works. We optimize a geometric loss that, in
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the notation of Equation (5.15), uses the outer and inner cost functions

F fuel(a) ≡ a, (5.45)

Cfuelx0,v0
(x, v) ≡ ∥x− x̂(x0, v0)∥2 + ∥v − v̂(x0, v0)∥2, (5.46)

where x̂ and v̂ are the measurements from the ground truth simulation. Importantly, our
technique does not assume that the paths of the rays are known prior to the optimization (as
Ji et al. [46] do), or linear (as Atcheson et al. [2] do).

Figure 5.10 compares our results with those from the technique of Atcheson et al. [2].
Along with experiments using the original dataset, we show experiments where we scale the
refractive index values of the volume, to artificially generate scenes that produce much larger
ray deflections. These artificial settings are not representative of the original application
on gas flow reconstruction, but help highlight the ability of our technique to handle large
deflections. As ray deflection increases, the technique of Atcheson et al. [2] produces
reconstructions with more artifacts than in those produced by our technique. The remaining
artifacts are because of the nonconvex nature of this inverse problem, and can potentially be
reduced with more measurements. Table 5.2 compares the performance of our method and
the method of Atcheson et al. [2] in terms of relative error from the ground truth, showing
that our method improves performance using the same measurements.

5.6 Discussion

We presented a theory for differentiating optimization objectives constrained by nonlinear
ray tracing equations with respect to the underlying refractive index field. We showed both a
continuous formulation, and a discretization that lends itself to numerical evaluation. The
resulting algorithm has constant memory complexity, and overall requires significantly less
memory than previous differentiable rendering methods based on reverse-mode automatic
differentiation. Our method supports different types of optimization objectives, involving
image and geometric losses. Lastly, we demonstrated the utility of our method through
simulated experiments, where we use it for a variety of design and reconstruction problems
involving continuously-varying refractive index fields. We now discuss the limitations of our
method and outline future research directions.

Initialization As with any gradient-based optimization procedure, our method requires a
good initialization. Given that the optimization landscape is highly non-convex, it is easy
for gradient descent to get trapped into local minima. In our experiments, initializing to a
uniform refractive index field gave satisfactory results. Exploring better initialization schemes
(e.g., reconstructions from techniques assuming a single refraction event [2]) is an important
future research direction.

Sufficient measurements When using our technique for reconstruction tasks, it is still
unclear how many and what measurements are required to correctly recover the underlying
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Figure 5.10: Isocontour visualizations of the reconstructions of an unknown refractive index field from
a set of images with our method and Atcheson et al. [2]. Every row increases the magnitude of the
refractive index field by a factor of 10. With increased refractive index gradients, the light rays deflect
by larger amounts. The method proposed by Atcheson et al. [2] struggles to recover the field in such
scenarios, because of a linear path assumption imposed on the propagation of light. In contrast, our
method recovers the fuel injection scene even in the case of extreme ray deflections.
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refractive index field. In the presence of ambiguities, it is possible to have zero measurement
loss, while still recovering a different refractive index field. The analysis of what are sufficient
measurements for unique refractive index field recovery is an important open problem.

Scattering Our theory and algorithms apply to media where there is only continuous
refraction, and no volumetric scattering. However, most real-world materials have both
continuous refraction and volumetric scattering. Currently, there exist forward rendering
formulations based on the refractive radiative transfer equation for the simulation of such
materials [1, 67]. We believe our techniques can be combined with the refractive radiative
transfer equation, to enable differentiable rendering in materials that both scatter and
continuously refract light.

Discretization bias Our procedure uses discrete numerical integration to simulate
continuous ODEs. Inevitably, this introduces bias, which is larger as the simulation step size
increases. However, we note that our derivation in Section 5.3 is continuous and thus
unbiased. Investigating ways to simulate these continuous equations without discretization
bias (e.g., Monte Carlo and randomization techniques) is an interesting future research
direction.

Fabrication constraints In most of our simulated experiments, we did not take into
account possible fabrication constraints in real-world design tasks, such as those discussed
by Teichman et al. [95]. However, as we show in the GRIN fiber optimization example, it is
possible to incorporate design constraints into our framework (e.g., rotational symmetry).
Future work should investigate incorporating other types of design and fabrication constraints
into our optimization framework.
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Chapter 6

Conclusion

We summarize the contributions of this thesis and discuss the limitations and open research
directions that could be explored.

6.1 Summary of Contributions

Aperture-aware gradients We developed a method for calculating unbiased gradients of
lens throughput, which enables optimization of lens speed. Using automatic differentiation,
or differentiating the ray tracing procedure directly will lead to biased results. We showed
that this bias comes from ignoring an integral term that appears when differentiating an
integral that has a domain that is dependent on the variable of differentiation. We derived
a method for calculating the unbiased gradient, which requires constructing a ray tracing
procedure that tracks the aperture of the lens.

Mixed continuous-discrete lens design In order to optimize over the number of elements
in a design, we developed a Markov chain Monte Carlo (MCMC) method that combines
gradient-based optimization of continuous parameters with discrete mutations that change
the number of lens elements. We showed that this method can find better lenses than
when using only gradient-based optimization and is able to expand the Pareto front of the
speed-sharpness tradeoff.

Adjoint nonlinear ray tracing By looking directly at the nonlinear ray tracing equations,
we derived a method for calculating gradients through nonlinear ray tracing using constant
memory. Our key insight is that the trajectory of a ray in gradient index field can be
completely described by the initial position and direction of the ray, or the final position and
direction. This allows us to accumulate the gradient of the refractive index field in the same
way as automatic differentitation, but without the need to store the entire ray trajectory.
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6.2 Discussion

In this thesis, we made several simplifying assumptions and focused on specific types of
optical elements. We discuss the limitations of our work, and how they can be addressed in
future research.

Nonconvexity Our techniques facilitate gradient-based optimization of complex objectives
for compound lenses. However, these objectives are highly non-convex. Thus gradient-based
optimization will often get stuck in local minima. All of the methods developed in this thesis
are sensitive to initialization. We can mitigate this issue by combining our technique with
simulated annealing, or reasonable initializations from data-driven techniques [21].

Other geometric optical elements We have not considered many geometric optical
elements that are commonplace in consumer photography and scientific imaging. Aspherical,
Fresnel, and freeform lenses have many more degrees of freedom than spherical ones, and are
common in projector and illumination systems. Beyond dioptric (i.e., refractive) systems,
catoptric (i.e., reflective) systems are common in telescopes [27, 105]; and catadioptric (i.e.,
both reflective and refractive) systems [3] facilitate wide-angle imaging. As such systems can
be modeled using geometric optics and ray tracing, our theory directly supports or can be
readily extended to support their design.

Wave optical elements Other types of optical elements fundamentally rely on wave
optics, such as diffractive optical elements and “metalenses” [13]. Such elements are
becoming increasingly popular in both scientific and consumer applications, thanks to their
miniaturization potential. As our theory relies on geometric optics, it does not apply to such
optical elements. Recent progress in wave optics rendering [87] can facilitate extensions in
this direction.

Beyond cameras We presented our technique in the context of photographic lenses, but it
can apply to other domains. An example is augmented reality (AR) and virtual reality (VR),
where design of eyepieces is important. VR displays use intricate configurations of optical
elements [71] and benefit from high throughput designs [23]; our technique can help optimize
existing such configurations or discover new ones. Another example is non-imaging optics,
i.e., optical systems designed specifically to maximize light throughput [88]. Our techniques
can be suitable for optimizing designs in this domain.

Other design constraints and trade-offs Lens designs often need to accommodate
application-specific constraints that go beyond sharpness and light efficiency. For example,
the manufacturing process may constrain the realizable surface shapes. Alternatively, the
intended use may constrain the lens form factor or cost. Such constraints are typically
differentiable, and thus amenable to optimization using our technique. Even if they do not
take the form of hard constraints, such application-specific considerations can introduce
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additional trade-offs that the lens design process must balance. In such cases, we can combine
our technique with gradient-based multi-objective optimization techniques [78] to discover
Pareto-optimal lens designs.

Manufacturing constraints and tolerances Though our method outputs good lenses
in simulation, ensuring that these lenses are manufacturable and robust to manufacturing
errors is essential for practicality. Our designs satisfy certain manufacturability constraints
(e.g., element thickness), but there are other constraints not captured in our method (e.g.,
element distances). Additionally, our method does not account for manufacturing tolerances
to improve robustness. Investigating how to incorporate manufacturing constraints and
tolerances is an important future research direction.
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[5] Sai Bangaru, Tzu-Mao Li, and Frédo Durand. Unbiased warped-area sampling for
differentiable rendering. ACM Trans. Graph., 39(6):245:1–245:18, 2020. 3.1

[6] Sai Bangaru, Michael Gharbi, Tzu-Mao Li, Fujun Luan, Kalyan Sunkavalli, Milos
Hasan, Sai Bi, Zexiang Xu, Gilbert Bernstein, and Fredo Durand. Differentiable
rendering of neural sdfs through reparameterization. In ACM SIGGRAPH Asia 2022
Conference Proceedings, SIGGRAPH Asia ’22, New York, NY, USA, 2022. Association
for Computing Machinery. doi: 10.1145/3550469.3555397. URL https://doi.org/10.

1145/3550469.3555397. 3.1, 3.4, 3.4

[7] Amir Barda, Guy Tevet, Adriana Schulz, and Amit Haim Bermano. Generative design
of sheet metal structures. ACM Trans. Graph., 42(4), July 2023. ISSN 0730-0301. doi:
10.1145/3592444. URL https://doi.org/10.1145/3592444. 4.1

[8] Ellis I. Betensky. Postmodern lens design. Optical Engineering, 32(8):1750 – 1756, 1993.
doi: 10.1117/12.145079. URL https://doi.org/10.1117/12.145079. 4.1

[9] Benedikt Bitterli, Wenzel Jakob, Jan Novák, and Wojciech Jarosz. Reversible jump
metropolis light transport using inverse mappings. ACM Trans. Graph., 37(1), October
2017. ISSN 0730-0301. doi: 10.1145/3132704. URL https://doi.org/10.1145/

3132704. 4.1

[10] Max Born and Emil Wolf. Principles of optics: electromagnetic theory of propagation,
interference and diffraction of light. Elsevier, 2013. 1, 2.3, 5.2.1

[11] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary,
Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-

79

https://doi.org/10.1145/3550469.3555397
https://doi.org/10.1145/3550469.3555397
https://doi.org/10.1145/3592444
https://doi.org/10.1117/12.145079
https://doi.org/10.1145/3132704
https://doi.org/10.1145/3132704


Milne, and Qiao Zhang. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax. 3.5, 4.6

[12] G. Cai, K. Yan, Z. Dong, I. Gkioulekas, and S. Zhao. Physics-based inverse rendering
using combined implicit and explicit geometries. Computer Graphics Forum, 41(4),
2022. 3.1

[13] Praneeth Chakravarthula, Jipeng Sun, Xiao Li, Chenyang Lei, Gene Chou, Mario Bijelic,
Johannes Froesch, Arka Majumdar, and Felix Heide. Thin on-sensor nanophotonic
array cameras. ACM Transactions on Graphics (TOG), 42(6):1–18, 2023. 3.6, 6.2

[14] Maysamreza Chamanzar, Matteo Giuseppe Scopelliti, Julien Bloch, Ninh Do, Minyoung
Huh, Dongjin Seo, Jillian Iafrati, Vikaas S Sohal, Mohammad-Reza Alam, and Michel M
Maharbiz. Ultrasonic sculpting of virtual optical waveguides in tissue. 5.1

[15] Guy Chavent. Identification of functional parameters in partial differential equations.
06 1974. 3.1

[16] Min Chen and James Arvo. Theory and application of specular path perturbation.
ACM Trans. Graph., 19(4):246–278, oct 2000. doi: 10.1145/380666.380670. URL
https://doi.org/10.1145/380666.380670. 3.1

[17] Ni Chen, Congli Wang, and Wolfgang Heidrich. ∂h: Differentiable holography. Laser &
Photonics Reviews, 17(9):2200828, 2023. 4.7

[18] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural
ordinary differential equations. NeurIPS, 2018. 3.1

[19] Roger N. Clark. Clarkvision.com, 2023. URL https://clarkvision.com/articles/

digital.sensor.performance.summary/index.html. Accessed: 2024-13-1. 3.7

[20] Blender Online Community. Blender - a 3D modelling and rendering package. Blender
Foundation, Stichting Blender Foundation, Amsterdam, 2023. URL http://www.

blender.org. 3.5
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the adjoint method. ACM TOG, 2004. 3.1
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