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Abstract
In this thesis, we investigate Private Information Retrieval (PIR), a cryptographic

protocol that enables clients to access information from a database without revealing
their queries to the server. As a fundamental building block for privacy-preserving
applications, PIR has been extensively studied in both theory and practice for decades.

However, practical implementations have been limited to small-scale use cases due
to the linear computation barrier of PIR, which requires the server to process the entire
database for each query. The seminal works of Beimel, Ishai, and Malkin (Crypto
2000) and Corrigan-Gibbs and Kogan (Eurocrypt 2022) introduced Preprocessing
PIR to overcome this barrier. While theoretically efficient, previous constructions
remained impractical due to their reliance on expensive cryptographic operations.

To address this limitation, we propose two new PIR schemes: Piano and Quarter-
PIR. Both achieve sublinear server computation and communication while remaining
efficient in practice. These constructions transform the practical PIR landscape
by providing near real-time responses for databases with billions of entries, while
maintaining reasonable communication and storage requirements.

Furthermore, we demonstrate the practical utility of our PIR schemes through an
important application – private information searching. We develop Pacmann, a new
private approximate nearest neighbor search algorithm that delivers both high search
quality and fast response times for databases with hundreds of millions of records.

Our work makes a significant step toward bridging the gap between theory and
practice in PIR research. These contributions not only advance the state of the
art in PIR designs, but also open new avenues for developing privacy-preserving
applications in real-world and large-scale settings.
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Chapter 1

Introduction

Information retrieval and search constitute the cornerstone functionalities of the modern Internet.
From checking weather forecasts on our smartphones as we wake up, to navigating commute
routes, staying informed with current news, and searching for crucial reference documents for
our professional work, these systems permeate our daily existence. Throughout the evolution
of the Internet, researchers and engineers have invested tremendous intellectual capital into
developing information retrieval systems that are increasingly efficient, cost-effective, and precise
– fundamentally transforming our interactions with the digital landscape.

Nonetheless, privacy – recognized as a fundamental human right [A+48] and enshrined in
legal frameworks [Byg14] – remains critically underaddressed in information retrieval systems.
Mainstream search engines and retrieval platforms typically require users to transmit queries
directly to service providers, potentially exposing sensitive personal information. When a user
searches for “flights from New York to London on August 1st”, the search engine acquires
knowledge of their travel intentions, which may subsequently be exploited for targeted advertising
or behavioral tracking. More concerning scenarios arise when users search for highly sensitive
topics such as “HIV treatment” or “witness protection program” – queries containing information
whose unauthorized disclosure could result in severe consequences for the individual. Despite the
development of privacy policies and regulatory frameworks, data breach incidents continue to
happen in real-world retrieval systems, with documented cases affecting millions of users across
more than 70 countries [aol06, bin20].

Is it possible to design an information retrieval system that enables users to access database
content without exposing their queries to service providers? While a trivial approach is to down-
load the entire database for each query, such a method would impose prohibitive communication
costs. Another widely adopted privacy-enhancing technique is anonymization that obscures
users’ identities when they make queries, which can be achieved through popular techniques
such as Virtual Private Networks (VPNs) [KK04] and the Tor Network [MBG+08]. Nonetheless,
anonymization techniques do not prevent service providers from inferring sensitive informa-
tion from the queries themselves, and deanonymization attacks are frequently discovered by
researchers [SSGN17, JTJS14].

A cryptographic solution: Private Information Retrieval (PIR). In their seminal 1995 work,
Chor, Goldreich, Kushilevitz, and Sudan [CGKS95] coined the term “Private Information Re-
trieval” (PIR) and established its formal definition from a cryptographic view: given a database

1



comprising n bits stored on a server and a client’s query for index i, a PIR protocol must allow
the retrieval of the i-th bit without revealing i to the server; i.e., the server’s view in a PIR
protocol should be indistinguishable from the case where the client queries for a random index.
Notably, Chor et al. demonstrated the first PIR construction achieving sublinear communication
complexity – where ’sublinear’ indicates that the per-query communication overhead is o(n), i.e.,
asymptotically smaller than the database size.

Following the work by Chor et al. [CGKS95], the PIR problem has attracted substantial
research interest in the cryptography community. An extensive corpus of research spanning
more than two decades [CGKS95, Cha04, GR05, CMS99, CG97, KO97, Lip09, OS07, Gas04,
BFG03, SC07, OG11, MCG+08, MG07] has established various approaches for constructing PIR
protocols with non-trivial communication efficiency. The rise of Fully Homomorphic Encryption
techniques [Gen09] has led to a wave of new PIR architectures [HHCG+22, DGI+19, MW22,
BMW24] that achieve near-optimal communication complexity, where the per-query commu-
nication cost is (poly-)logarithmic in the database size. However, despite the great promise of
PIR techniques in addressing the privacy concerns in information retrieval applications and the
significant achievements in the theoretical study of PIR, the practical deployment of PIR schemes
has remained limited. This raises the question: what are the reasons behind this gap between
theory and practice?

Key challenges in practical PIR. Within the scope of this thesis, we discuss the following two
key challenges that have hindered the practical deployment of PIR schemes:
1. Computation Efficiency. In a standard setting where a single server maintains the database,

prior practical PIR schemes [MW22, HHCG+22, DPC22, ACLS18, MR22] require a linear
computation cost per query, which means that the server must process the entire database for
each query. This poses a significant barrier to the practical deployment of PIR, as the scale
of databases in real-world applications could easily reach billions of records. Unfortunately,
it has been shown that the linear computation barrier is intrinsic to the classical PIR frame-
work [BIM00] – which has been the primary focus of the PIR research community – thus
necessitating exploration of alternative models.
To get around this linear computation barrier, Beimel, Ishai, and Malkin proposed the “pre-
processing PIR” model [BIM00], which requires the server and the client to preprocess the
database upfront, with the computation results subsequently facilitating the online query
process. Their work showed the first preprocessing PIR scheme that achieves sublinear compu-
tation per query after a one-time preprocessing phase. Given the potential of this preprocessing
model, the research community has achieved significant advancements in this domain [BIM00,
CHR17, CK20, KCG21, CHK22, LP23a, LP23b, LMW23, OPPW23, LLFP24], including our
contributions [ZLTS23]. Nevertheless, existing schemes have either relied on computationally
intensive cryptographic techniques or required multiple copies of the database hosted across
multiple servers, rendering them infeasible outside a theoretical context.

2. Supporting complex queries. Current PIR implementations predominantly support only basic
point-access queries, requiring clients to retrieve records by explicitly specifying their indices.
Several research efforts have explored private key-value retrieval [CGN97, PSY23, CD24],
enabling clients to access records using keyword identifiers. However, mainstream information
retrieval architectures, including search engines and recommendation systems, demand capabili-
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ties for similarity search or even semantic search. For instance, when a user queries “What’s the
cause of my sore throat?”, they reasonably expect to receive results relating to “common cold”
or “influenza”, despite these terms not appearing explicitly in the original query. Unfortunately,
such queries fall beyond the scope of both single-point access PIR protocols and key-value PIR
frameworks. Existing approaches to private semantic search [SSLD22, HDCG+23, ABG+24]
have substantial limitations in computational efficiency and retrieval quality.
Given the status quo, we ask the following questions:

1. Can we have practically efficient single-server PIR schemes
that achieve sublinear computation and communication?

2. Can we have practically efficient PIR schemes
that support similarity and semantic search?

Affirmative answers to these questions would not only be major progress over the previous
state-of-the-art practical PIR schemes [MW22, HHCG+22, DPC22, ACLS18, MR22], but also
open up new possibilities for many more privacy-preserving applications including private contact
discovery [DRRT18, Con22], privacy-preserving stateless clients for blockchains [Per24], private
DNS queries [SACM21, ZPSZ24, Fea], private medical information search [HFM+24], and
various other domains where information retrieval intersects with privacy concerns.

Contributions. This thesis presents a novel pathway toward positive responses to these critical
questions through a series of original research contributions.

First, we introduce two new preprocessing PIR schemes – Piano [ZPSZ24] and Quarter-
PIR [GZS24], which work effectively in the single-server setting while achieving (amortized)
sublinear computation and communication query costs. Piano attains superior performance
through a simple, self-contained algorithm design that eliminates dependence on computationally
intensive cryptographic primitives and incorporates novel preprocessing techniques, requiring only
minimal cryptographic assumptions. Building upon Piano’s foundation, QuarterPIR substantially
reduces the online query communication overhead by introducing an new cryptographic primitive
named “Privately Programmable Pseudorandom Function with List Decoding”, which is a weaker
variant of “Privately Programmable Pseudorandom Function” [BKM17, CC17, BTVW17]. We
demonstrate that this weaker primitive can be efficiently constructed using simple cryptographic
building blocks such as standard pseudorandom functions, and we show that it is sufficient to
achieve a communication-efficient preprocessing PIR scheme, while the existing PIR construc-
tions [ZLTS23, LP23a] require the stronger version of the primitive. We implement and benchmark
both schemes against previous state-of-the-art single-server PIR implementations on databases
containing billions of records. Notably, our implementations represent the first sublinear PIR
protocols delivering practical performance in the single-server setting, achieving improvements
in online query computation cost of two to three orders of magnitude relative to previous works.
These contributions, together with the follow-up works [RMS24, HPPY24, WLZ+23, NGH24],
fundamentally transform the practical PIR landscape by enabling sub-100ms response times for
queries on billion-record databases.

Second, we develop Pacmann [ZSF25], a novel private semantic search algorithm that simul-
taneously addresses the trifecta challenges of privacy constraints, computational efficiency, and
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search quality. Pacmann is built on a combination of our Piano PIR scheme and a graph-based vec-
tor search algorithm. Pacmann achieves substantial improvement in retrieval accuracy – over 90%
accuracy for top-10 results on benchmark datasets containing 100 million records, nearly tripling
the accuracy metrics of previous leading private search implementations [HDCG+23, ABG+24].
This performance is achieved while maintaining a response time of 3.1 seconds, which is 25%
faster than the previous work.

Through the development of practically efficient sublinear PIR protocols and their applications
in private semantic search implementations, we hope to bridge the critical gap between theoretical
constructs and practical applications in the PIR domain. Our contributions establish a new
frontier for the continued advancement of privacy-preserving information retrieval applications
that maintain both performance viability and privacy guarantees.

1.1 Overview of results

This thesis consists of two main parts. In the first part, we mainly focus on the standard PIR
problem and introduce our results on constructing practical PIR schemes with sublinear com-
putation and communication, covering two sequential research results, Piano [ZPSZ24] and
QuarterPIR [GZS24]. In the second part, we show the applicability of our PIR schemes in the
context of private semantic search, focusing on our Pacmann [ZSF25] solution. The following
overview captures the core ideas and the key results of our work.

Part I: PIR with Sublinear Computation

Problem setting. Consider a server maintaining a public database DB consisting of n records,
each of constant size (typically a few bytes). Given an upper bound Q on the number of queries, a
client issues sequential (even adaptive) queries x1, x2, . . . , xQ to the server, where each query xi

is an index xi ∈ [n]. For each query, the client aims to retrieve the record DB[xi] from the server,
without revealing the index xi to the server.

This thesis focuses on the client-specific preprocessing PIR model, building upon the frame-
work established by Corrigan-Gibbs and Kogan [CK20]. Within this model, the client and server
engage in a one-time preprocessing phase prior to the first query, during which they exchange
messages and perform necessary computations. The client is responsible for storing the results of
this preprocessing phase. Critically, the preprocessing should be agnostic to the future queries.

Piano: A Practical Single-server Preprocessing PIR Scheme. We introduce Piano [ZPSZ24]
(short for Private Information Access NOw), a novel single-server PIR scheme in the client-specific
preprocessing model. Piano requires a one-time preprocessing cost of O(n) communication and
computation, after which the client stores Õ(

√
n) bits of the preprocessing results. Following this

preprocessing, Piano supports an unbounded number of queries with Õ(
√
n) communication and

computation per query, making it a sublinear PIR scheme when amortized over multiple queries.
This result can be summarized in the following theorem:
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Table 1.1: Comparison of single-server and two-server preprocessing PIR schemes (for
unbounded queries). Any single-server scheme immediately implies a two-server result with
the same performance bounds. n is the size of the database and m is the number of clients. The
computation overhead counts both the client’s and the server’s computation, and here we report
the expected computation. The server space counts only the extra storage needed on top of storing
the original database. Piano [ZPSZ24] and QuarterPIR [GZS24] are our proposed schemes.

Scheme Assumpt. Compute Comm. Space # Concrete
client server servers eff.

With public-key cryptography
[CHK22] LWE Õλ(

√
n) Õλ(

√
n) Õλ(

√
n) Õλ(m · n)∗ 1 ✗

Ours [ZLTS23], [LP23a] LWE Õλ(
√
n) Õλ(1) Õλ(

√
n) Õλ(m · n)∗ 1 ✗

[LMW23] Ring-LWE poly((logn)1/ϵ) poly((logn)1/ϵ) 0 n1+ϵ 1 ✗

[SACM21] LWE Õλ(
√
n) Õλ(1) Õλ(

√
n) 0 2 ✗

[LP23b] Various Õλ(
√
n) Õλ(1) Õλ(

√
n) 0 2 ✓

QuarterPIR Various Õλ(
√
n)

Õ(
√
n) offline

Õλ(
√
n) 0 1 ✓

Õλ(1) online

Without public-key cryptography
[BIM00] None O(n/ log2 n) O(n1/3) 0 O(n2) 2 ✗

[BIM00] None O(n1/2+ϵ) O(n1/2+ϵ) 0 O(n1+ϵ′ )∗∗ 2 ✗

[CK20] OWF Õλ(
√
n) Õ(

√
n) Õλ(

√
n) 0 2 ✓

[KCG21] OWF O(n) Õλ(1) Õλ(
√
n) 0 2 ✓

Piano, [RMS24] OWF Õλ(
√
n) O(

√
n) Õλ(

√
n) 0 1 ✓

QuarterPIR OWF Oλ(
√
n) Oλ(n

1/4) Õλ(
√
n) 0 2 ✓

QuarterPIR OWF Oλ(
√
n)

O(
√
n) offline

Õλ(
√
n) 0 1 ✓Oλ(n

1/4) online

∗ : In the unbounded query setting, some earlier works [ZLTS23, LP23a, CHK22] require that the next
preprocessing is persistently attached to the current window of O(

√
n) operations. The preprocessing

consumes Oλ(n) server space per client to evaluate under FHE an Õ(n)-sized circuit containing a sorting
network.

∗∗ : ϵ′ > 0 depends on ϵ.

Theorem 1.1.1 (Single-server preprocessing PIR with sublinear computation and communication).
Assume the existence of one-way functions. There exists a single-server preprocessing PIR scheme
with (amortized) Oλ(n

1/2) communication, Oλ(n
1/2) server computation and Õλ(n

1/2) client
computation per query, while incurring Õ(n1/2) client storage.

The most notable characteristic of Piano is its remarkable simplicity. Unlike previous sublinear
PIR schemes [CK20, CHK22, ZLTS23, LP23a], our approach eliminates the need for homomor-
phic encryption or other computationally intensive cryptographic primitives such as privately
puncturable PRFs [BKM17, CC17, BTVW17]. In fact, the only cryptographic primitive we need
is pseudorandom functions (PRFs), which can be efficiently implemented using the AES-NI
instruction sets available in most modern processors. Furthermore, our construction is entirely
self-contained, without relying on any existing PIR scheme as a building block.

The emphasis on simplicity translates directly to ease of adoption. Our parallelized imple-
mentation of Piano comprises around 800 lines of Golang code. We have also developed a tutorial
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implementation that captures the scheme’s core concepts in approximately 160 lines of code,
making the fundamental ideas accessible to researchers and practitioners alike.

We conducted an experiment on a 100GB database with a 60ms RTT coast-to-coast connection
– by far the largest database size evaluated for any PIR scheme in the literature. Our implementation
achieved a response time of 73ms, while the prior state-of-the-art solutions required 11s or higher.
This represents over 150× speedup compared to previous works. Moreover, since our improvement
is asymptotic in nature, the performance gap will continue to widen as database sizes increase.

Apart from its contribution to practical efficiency, Piano is also of significant theoretical
interest. It achieves the optimal theoretical tradeoff between client storage and server computation,
matching the lower bound established by Corrigan-Gibbs, Henzinger, and Kogan [CHK22].
Moreover, Piano represents the first single-server sublinear PIR scheme that operates without
any form of public-key cryptography, which has triggered the research interest in understanding
sublinear PIR schemes in the Minicrypt model. For example, a recent lower bound result by Ishai
et al. [ISW24] demonstrates that Piano’s communication cost is nearly optimal subject to the
black-box use of one-way functions.

QuarterPIR: A Communication-efficient Preprocessing PIR Scheme. In this work [GZS24],
we propose a new cryptographic primitive called “Privately Programmable Pseudorandom
Function with List Decoding”, and demonstrate its applicability by constructing QuarterPIR, a
communication-optimized preprocessing PIR scheme. QuarterPIR adheres to the same client-
specific preprocessing model as Piano, while significantly reducing the asymptotic complexity of
the online communication cost – a critical metric for client experience – while maintaining the
same asymptotic efficiency as Piano for all other performance parameters.

Theorem 1.1.2 (Single-server preprocessing PIR with improved online communication). Assume
the existence of one-way functions. There exists a single-server preprocessing PIR scheme with
Oλ(n

1/4) online communication, O(n1/2) offline communication, Oλ(n
1/2) server computation

and Õλ(n
1/2) client computation per query, while incurring Õ(n1/2) client storage.

In comparison with the construction of Piano (Theorem 1.1.1), QuarterPIR (Theorem 1.1.2)
improves the online communication cost from Õ(

√
n) to Õλ(n

1/4), while maintaining equivalent
asymptotic costs for all other parameters. This scheme also achieves the same optimal tradeoff
between client storage and server computation. Our experimental results demonstrate that Quarter-
PIR delivers a 12- to 50-times improvement in communication cost, while incurring computation
costs approximately three times higher per query compared to Piano.

Interestingly, as a side effect of the techniques we developed for QuarterPIR, we demonstrate
that if we assume the existence of a classical PIR scheme with Õλ(1) communication (estab-
lished under various cryptographic assumptions such as LWE, Φ-hiding, Damgård-Jurik, DDH,
QR) [CMS99, HHCG+22, MW22, DGI+19, BMW24], our new techniques yield a concretely
efficient single-server PIR scheme with Õλ(1) online communication, Õ(

√
n) offline communi-

cation and computation per query, utilizing Õλ(
√
n) client storage. This represents the first PIR

construction in the unbounded query model that achieves polylogarithmic online communication
without requiring the server to maintain any client-specific state. We summarize this additional
result in the following theorem:

Theorem 1.1.3. Assume the existence of a classical single-server PIR scheme (i.e., without
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preprocessing) that enjoys Õλ(1) communication per query. Then, there exists a single-server
preprocessing PIR scheme with Õλ(1) online communication, Õλ(

√
n) computation, Õ(

√
n)

offline communication, requiring Õλ(
√
n) client storage and no additional server storage except

the original database.

We provide a comparison of our schemes with the previous PIR schemes in Table 1.1.

Part II: Private Information Search.
Problem setting. Private information searching can be viewed as a generalization of the PIR
problem in the previous part. Specifically, consider a server that stores a public database DB
of n records DB[1],DB[2], . . . ,DB[n], where the records may represent documents, images, or
other data formats. Given an upper bound Q on the client’s number of queries, the client issues
a sequence of potentially adaptive queries x1, . . . , xQ to the server, where each query xi could
be a keyword, a natural language sentence, or even an image or video. For the i-th query, the
client aims to retrieve the indices of the top K most relevant records to query xi from database
DB, while preserving the privacy of xi. This thesis specifically focuses on vector search, where
both the database records and client queries are represented as high-dimensional vectors. Given a
specific distance metric (e.g., Euclidean distance), the client tries to retrieve the indices of the top
K approximate nearest neighbors for each query xi. We concentrate on vector search because
semantic search and similarity search can be effectively reduced to vector search through the
application of “embedding techniques” [RKH+21, RG19], which is a standard practice in modern
search services [LKLJ18, LLJ+21, HSS+20].

Pacmann: Graph-based Private Nearest Neighbor Search. Building upon our previous
results [ZPSZ24, GZS24], in this work [ZSF25], we propose a novel private vector search scheme
called Pacmann (Private ACcess to More Approximate Nearest Neighbors). Pacmann represents
the first private vector search scheme that simultaneously achieves practical efficiency and high
search quality. Specifically, Pacmann attains nearly 90% top-10 search accuracy on a benchmark
containing 100 million records with a response time of only 3.1 seconds. This performance nearly
triples the accuracy of the previous state-of-the-art private vector search solution [HDCG+23],
while reducing response time by approximately 25%.

The key innovation of Pacmann’s design lies in our integration of powerful graph-based
vector search into the private setting through our newly developed PIR schemes. Previous
approaches [HDCG+23, ABG+24] were limited to relatively simple search algorithms due to
privacy constraints, resulting in suboptimal search quality. Our private implementation of graph-
based vector search inherits the advantages of our earlier work on Piano and QuarterPIR, requiring
only sublinear computation and communication cost per query, thus achieving an optimal balance
of privacy and performance.

Conceptually, graph-based vector search constructs a graph structure over database DB,
allowing the search algorithm to traverse this graph to identify nearest neighbors for queries.
While being effective in non-private contexts, adapting this approach to private settings presents
significant challenges, as the access pattern during graph traversal potentially exposes sensitive
information about the query. We demonstrate that our novel PIR schemes, Piano and QuarterPIR,
provide an elegant solution to this challenge.

Our fundamental insight is to execute the graph traversal algorithm on the client side, thereby
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completely eliminating privacy concerns. To avoid the impractical requirement of storing the
entire graph client-side, we enable the client to dynamically retrieve necessary graph information
using our advanced PIR schemes. This approach allows the client to comprehensively traverse
the graph without compromising the queries’ privacy, then identify the top K nearest neighbors
after minimal communication rounds with the server. We further improve practical performance
through optimizations in both the graph traversal algorithms and PIR query processes.

The results of Pacmann represent not merely a technical advancement in private vector
search, but also demonstrate a novel paradigm for privacy-preserving computation. For general
computational tasks where clients need to query server-stored data structures (such as hash tables,
trees, or graphs), we can effectively hide client intentions by moving computation to the client
side while using our PIR schemes to retrieve only the necessary information. Importantly, this
“separation of computation and storage for privacy” approach is viable only when the underlying
PIR schemes achieve sufficient efficiency (i.e., sublinear complexity); otherwise, implementations
would remain computationally impractical. We hope that this new paradigm can significantly
influence the future evolution of privacy-preserving systems.

1.2 Thesis Organization
The remainder of this thesis is organized as follows.
• Part I includes the following two main constructions for PIR with sublinear computation:

- Chapter 2 presents the Piano PIR scheme. The chapter is based on a jointly authored paper
with Andrew Park, Elaine Shi, Wenting Zheng: “Piano: Extremely Simple, Single-Server
PIR with Sublinear Server Computation”, published in the IEEE Symposium on Security
and Privacy in 2024 [ZPSZ24].

- Chapter 3 introduces the QuarterPIR scheme. This chapter is based on a jointly authored
paper with Ashrujit Ghoshal, Elaine Shi: “Efficient Pre-processing PIR Without Public-
Key Cryptography”, published in the IACR Annual International Conference on the
Theory and Applications of Cryptographic Techniques (“Eurocrypt”) in 2024 [GZS24].

• Part II focuses on the application of PIR in private semantic search:

- Chapter 4 presents the Pacmann private semantic search algorithm. This chapter is
based on a jointly authored paper with Elaine Shi and Giulia Fanti: “Pacmann: Private
Approximate Nearest Neighbor Search with Graph-based Vector Search”, published in
the International Conference on Learning Representations (“ICLR”) in 2025 [ZSF25].

• Part III concludes the thesis and discusses future research directions.
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Part I

Private Information Retrieval with
Sublinear Computation
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Chapter 2

Piano: Simple Single-Server PIR with
Sublinear Computation

2.1 Introduction

Two classes of PIR schemes. There are two main classes of PIR schemes, depending on whether
they rely on preprocessing. Classical PIR schemes do not perform any preprocessing of the
database, and the server simply stores an original copy of the database DB. In this setting, although
we can achieve polylogarithmic communication per query, the server’s computation overhead must
be linear in the size of the database. Beimel, Ishai, and Malkin [BIM00] showed that the linear
server computation overhead is inherent — intuitively, if there is some entry that is not touched
during some query, then the server learns that the client is not interested in this entry. To overcome
this prohibitive linear server computation barrier, Beimel et al. introduced the preprocessing
model [BIM00], which was further explored in several subsequent works [CK20, SACM21,
LP23b, CHK22, KCG21, ZLTS23, LP23a, LMW23]. In the client-specific preprocessing model
(also called the subscription model), we have each client download and store a “hint” from the
server during preprocessing. In this model, it is known that with Õλ(

√
n) client-side storage,

each online query can be accomplished with polylogarithmic communication and Õλ(
√
n) server

and client computation [ZLTS23, LP23a]. Another possible model is the global preprocessing
model, in which the server performs a global preprocessing and computes an encoding of the
database upfront for all clients. In this model, the most recent breakthrough work by Lin, Mook,
and Wichs [LMW23] showed that for any constant ϵ > 0, with O(n1+ϵ) amount of server storage,
each query can be accomplished with (poly log n)1/ϵ communication and (poly log n)1/ϵ server
computation.

Practical landscape for PIR. The community has made various attempts to implement and
optimize PIR for practical applications [MW22, HHCG+22, DPC22, ACLS18, MR22]. In the
single-server setting, to the best of our knowledge, only PIR schemes with linear server computa-
tion have been implemented prior to our work. Although recent works [HHCG+22] managed to
achieve server-computation throughput comparable to the native memory bandwidth, the linear
amount of computation severely limits the scalability to larger databases, and precludes various
killer applications such as private DNS (where the database can be as large as 100GB). Unsurpris-
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ingly, prior works conducted experiments for databases of size up to 8GB [MW22, HHCG+22],
and the server time per query is more than one second for this data size.

A natural question is why prior implementation efforts did not choose schemes with pre-
processing despite their better asymptotic performance. The reason is that prior single-server,
preprocessing sublinear PIR schemes are theoretical in nature. In particular, prior schemes with
polylogarithmic communication [ZLTS23, LP23a, LMW23] require one or more of the follow-
ing heavy-weight cryptographic primitives: Fully Homomorphic Encryption (FHE), Privately
Programmable PRFs [BLW17, PS18, KW21], and polynomial encoding data structures [KU11],
which introduce astronomical constants in the concrete performance. Unfortunately, within the
limits of known techniques, we are still very far from making these cryptographic primitives
practical when handling large amount of data (or even implementable)! Finally, although the work
of Corrigan-Gibbs et al. [CHK22] showed how to get sublinear server computation using only
linear homomorphic encryption, they pay the price of much worse asymptotics, that is, Õλ(n

2/3)
for client storage and server computation. Consequently, their scheme is also not a sweetspot for
practical implementation.

Time for a paradigm shift for practical PIR? Can we have a concretely efficient, single-server
PIR scheme with sublinear server computation? An affirmative answer to the above question
promises a paradigm shift for the practical landscape of single-server PIR! Specifically, our goal
is to eventually eschew the linear server computation regime for practical implementations, and
thus allow scaling to large database sizes.

2.1.1 Our Contributions

We propose a novel single-server PIR scheme called PIANO (short for “Private Information Access
NOw”). PIANO adopts the client-specific preprocessing model. With roughly Õ(

√
n) client-side

storage, we achieve Õ(
√
n) online communication and computation per query. The most notable

feature of PIANO lies in its simplicity. Unlike prior sublinear PIR schemes [CK20, CHK22,
ZLTS23, LP23a], we do not need any form of homomorphic encryption or other heavy-weight
cryptographic primitives such as privately puncturable PRFs [BKM17, CC17, BTVW17]. In
fact, the only cryptographic primitive we need is pseudorandom functions (PRFs), which can be
accelerated through the AES-NI instruction sets available in most modern processors. Moreover,
our construction is completely self-contained and we need not invoke any existing PIR scheme as
a building block.

Optimality. Corrigan-Gibbs, Henzinger and Kogan [CHK22] showed a lower bound for any
adaptive PIR scheme without server-side preprocessing. In particular, their lower bound states
that if the client stores S bits and the amortized server computation time is T, it must be that
ST = Ω(n). Our scheme matches this lower bound (up to poly-logarithmic factors). However,
the per-query Θ(

√
n) communication cost in our scheme is not theoretically optimal – previous

theoretical work [ZLTS23, LP23a] can achieve poly-logarithmic communication per query.

Open-source implementation and evaluation results. We implemented PIANO in Go. Given
its simplicity, the core contains only around 800 lines of code. We also provide a reference
implementation (for tutorial purposes) that contains only around 160 lines of code. Both our full
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implementation and the tutorial implementation are open sourced 1.
In our evaluation, we mainly compare with SimplePIR [HHCG+22] and the non-private

baseline. SimplePIR is the prior state of the art for practical single-server PIR schemes, and
has been shown to outperform all other practical single-server PIR schemes. They also incur
roughly Oλ(

√
n) bandwidth, but their server computation is linear in n. SimplePIR pushed

linear-computation PIR schemes to the very limit: their server performs fewer than one 32-bit
multiplication and one 32-bit addition per database byte. Thus, they were able to fully saturate
the memory bandwidth for the server computation. Nonetheless, the linear computation severely
limits their scalability. For this reason, all prior works on single-server PIR only ran experiments
for databases that are at most 8GB in size [MW22, HHCG+22].

We conducted an experiment on a 100GB database with a 60ms RTT coast-to-coast connection.
In particular, we chose an 100GB database to roughly match the size of a typical DNS database.
Our scheme achieves 73ms response time, whereas SimplePIR suffers from 11s or higher response
time2. This represents over 150× speedup relative to SimplePIR. Since our improvement is
asymptotical in nature, the speedup will only become larger as the database size grows. We also
ran a non-private baseline for the same scenario, and the response time is 61ms. Therefore, our
slowdown w.r.t. the non-private baseline is only 20%.

Theoretical Contributions. Although our work focuses on making PIR practical, our result
may be of interest from a theoretical perspective, since this is the first time we know how to
construct single-server PIR with sublinear server computation from only one-way functions
(OWF). Section 2.6 provides theoretical comparison with additional related work.

2.2 Main Construction
Suppose the database DB[0 . . . n− 1] contains n bits. We divide the indices {0, 1, . . . , n− 1} into√
n chunks each of size

√
n. Specifically, the j-th chunk where j ∈ {0, 1, . . . ,

√
n− 1} contains

the indices {j ·
√
n, . . . , (j + 1) ·

√
n− 1}.

Distribution of a random set. We will use the following simple strategy to sample a random set
of indices of size exactly

√
n: simply sample one random index from every chunk. Henceforth,

we use the notation S to denote such a random set and we use S[j] to denote the index in S
belonging to the j-th chunk.

Client’s hint. Suppose that the client stores the following hint data structure:
1. Primary table: contains Õ(

√
n) entries, where Õ(·) hides polylogarithmic factors. The i-th

entry in the hint table contains
• A random set S of

√
n indices chosen according to the aforementioned distribution;

• The parity bit p = ⊕i∈SDB[i].

2. Replacement entries: for each chunk j ∈ {0, 1,
√
n − 1}, store Õ(1) entries of the form

(i,DB[i]) where each i is a randomly sampled index from chunk j.

1https://githubimplementation.com/wuwuz/Piano-PIR-new
2The open-sourced implementation cannot support network connections or a database as large as 100GB, so this

number is a conservatively extrapolated lower bound estimate of their performance.
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3. Backup table (needed for multiple queries): for each chunk j ∈ {0, 1,
√
n− 1}, store Õ(1)

entries of the form (S, p), where S is a random set sampled according to the aforementioned
distribution, and p = ⊕i∈S\{S[j]}DB[i]. In other words, p is the parity of the database bits at all
indices in S except the index corresponding to the j-th chunk.

Compressing client storage using PRFs. For the primary and backup table, if the client stores
the full sets, the storage overhead will be Õ(n). However, in our full scheme we will use a PRF
key to succinctly represent each set in the primary and backup tables, and thus the client’s storage
can be reduced to Õ(

√
n).

Learning the hints in a single streaming pass. For the time being, we may assume that the
client can somehow magically learn this hint table. Later, we will show how the client can learn
this hint table using a streaming algorithm which makes a single linear scan over the database,
while consuming only Õ(

√
n) local storage. The communication and computational overhead

of this preprocessing step is Õ(n). Later in our full scheme, this preprocessing step needs to
be performed every Õ(

√
n) queries. If we spread the Õ(n) work across Õ(

√
n) queries, the

amortized cost per query will be O(
√
n).

We stress that the preprocessing phase does not leak any information to the server, since the
server only observes a linear scan over the database.

Making a single query. To support a single query, we only need to make use of the primary table
and the replacement entries. Specifically, suppose the client wants to learn DB[x]. It will perform
the following:

1. Find an entry (S, p) in the primary table such that x ∈ S. This succeeds with all but negligible
probability.

2. Let j = chunk(x) denote the chunk that x belongs to, and let (r,DB[r]) be the next unconsumed
replacement entry belonging to chunk j.

3. Replace the j-th entry in S with r; let S ′ denote the modified set, send S ′ to the server.

4. The server sends back p′ = ⊕i∈S′DB[i], and the client computes DB[x] = p′ ⊕ DB[r]⊕ p.

Clearly, the communication overhead is O(
√
n). Further, the set sent to the server has the

same distribution as a freshly sampled random set. Thus, the server learns no information about
the client’s query.

Supporting Õ(
√
n) random, distinct queries. We now discuss how to extend the scheme to

support Q = Õ(
√
n) random, distinct queries. After making a query, the (S, p) consumed should

be removed from the primary table, since if the same entry is used again, it will leak information.
However, simply removing the entry (S, p) is also not secure, since it skews the distribution of the
random sets in the primary table. For example, if the client has made a query for the index 5, it
will consume a set S containing 5. This means the remaining sets in the primary table will be less
likely to contain 5, which skews the distribution of future sets sent to the server.

To support multiple queries while ensuring security, we can make the following simple
modification to the scheme. Whenever an entry (S, p) is consumed from the primary table during
a query for DB[x], the client grabs the next unconsumed entry (S ′, p′) from the backup table
corresponding to chunk(x). It replaces the consumed entry with (S ′⟨chunk(x)→ x⟩, p′ ⊕ DB[x])

14



where3 S ′⟨chunk(x)→ x⟩ is otherwise the same as S ′ except for replacing S ′[chunk(x)] with x.
Observe that the consumed entry is a random set subject to containing x, and its replacement is
also a random set subject to containing x. Therefore, the distribution of the sets in the primary
table is unaffected.

The scheme so far can support Q = Õ(
√
n) random distinct queries, because we provisioned

polylogarithmically many replacement entries and backup table entries per chunk. With Q =
Õ(
√
n) random distinct queries, with all but negligible probability, each chunk will only be hit

at most polylogarithmic number of times. This means that we will not run out of replacement
entries and backup table entries except with negligible probability.

Supporting unbounded, arbitrary queries. We can get rid of the “distinct query” assumption in
the following way: suppose that the client stores the result of the most recent Q = Õ(

√
n) queries.

If a duplicate query is made, it simply looks up the answer locally, and it sends another random
distinct query to the server to mask the fact that it is a duplicate query.

Next, we can get rid of the “random query” assumption in the following way, and the resulting
scheme supports Q = Õ(

√
n) arbitrary queries. Observe that the “random query” assumption is

needed only for load balancing. Imagin the server applies a pseudorandom permutation (PRP) to
all indices of the database upfront. We may assume that this permutation is independent of the
queries. The server publishes the PRP key, and the client is now able to compute the index of the
query in the shuffled database. If the PRP key is not sampled honestly, it will not affect privacy,
but may affect correctness (which is impossible anyway if the server is malicious).

Finally, we can get rid of the Q-bounded query assumption through a simple pipelining
trick: during the current window of Q queries, we run the preprocessing phase of the next
Q queries. As mentioned earlier, the total communication and computation overhead of the
preprocessing are Õ(n). Thus, in our final scheme, we have a one-time preprocessing phase
with Õ(n) communication and computation, while consuming only Õ(

√
n) client storage. After

the one-time preprocessing, we can support an unbounded number of arbitrary queries. The
communication and computation cost of each query is O(

√
n).

Detailed description. Figure 2.1 gives a detailed description of our scheme for supporting Õ(
√
n)

random, distinct queries. As mentioned, it is easy to upgrade such a scheme to one that supports
unbounded number of arbitrary queries.

In Figure 2.1, we use the following notation for describing pseudorandom sets. Henceforth let
PRF denote a pseudorandom function whose output is in the range {0, 1, . . . ,

√
n− 1}, and let sk

denote a PRF key.
• For i ∈ {0, 1, . . . , n}, let chunk(i) = ⌊i/

√
n⌋ be the chunk i belongs to.

• Set(sk) := {j ·
√
n+PRFsk(j)}j∈{0,...,√n−1}; It is easy to see that given x ∈ {0, 1, . . . , n− 1},

and sk, it takes O(1) time to test whether x ∈ Set(sk).
• Set(sk, x) where x ∈ {⊥} ∪ {0, 1, . . . , n− 1} is defined as follows:

Set(sk, x) =

{
Set(sk) if x = ⊥
Set(sk)⟨chunk(x)→ x⟩ o.w.

3Note that since the client just queried the index x, it knows what DB[x] is.

15



Single-Server Scheme for Q =
√
n log κ · α(κ) Queries a

Notation. κ denotes a statistical security parameter and λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.

Offline preprocessing.
• Client samples M1 =

√
n log κ · α(κ) PRF keys denoted as sk1, . . . , skM1 ∈ {0, 1}λ for the

primary table. Initialize the parities p1, . . . , pM1 to zeros.
• For j ∈ {0, 1, . . . ,

√
n − 1}, Client samples M2 = log κ · α(κ) PRF keys denoted

skj,1, . . . , skj,M2 , representing all the backup keys for the j-chunk. Initialize the parities
pj,1, . . . , pj,M2

to zeros.
• Client downloads the whole DB from the server in a streaming way: when the client has the
j-th chunk DB[j

√
n : (j + 1)

√
n]:

Update primary table: for i ∈ [M1], let pi ← pi ⊕ DB[Set(ski)[j]].

Store replacement entries: sample and store M2 tuples of the form (r,DB[r]) where r
is a random index from the j-th chunk.

Update backup table: for i ∈ {0, 1, . . . ,
√
n − 1}/{j} and k ∈ [M2], let pi,k ←

pi,k ⊕ DB[Set(ski,k)[j]].

Delete DB[j
√
n : (j + 1)

√
n] from the local storage.

• At this moment, let T := {((ski,⊥), pi)}i∈[M1] denote the client’s primary table, and let
{(skj,i, pj,i)}i∈[M2] denote the backup entries for the j-th chunk.

Online query for index x ∈ {0, 1, . . . , n− 1}.
1. Query:

(a) Client finds a hint Ti := ((ski, x
′), pi) in its primary table T such that x ∈ Set(ski, x

′).
Let S = Set(ski, x

′).

(b) Let j∗ = chunk(x), Client finds the first unconsumed replacement entry from the j∗-th
chunk, denoted (r,DB[r]).

(c) Client sends S ′ = S⟨j∗ → r⟩ to the server if the previous two steps succeeded.
Otherwise, send a random set.

(d) Upon receiving a set S ′, the server returns q = ⊕k∈S′DB[k].

(e) Client computes the answer β = q ⊕ pi ⊕ DB[r] if steps (a) and (b) succeeded. Other-
wise, Client sets the answer β = 0.

2. Refresh:
• Client finds the next unconsumed backup entry

(
skj∗,k, pj∗,k

)
belonging to the j∗-th

chunk. If not found, Client generates a random skj∗,k and lets pj∗,k = 0.
• If steps (a) and (b) of the query phase succeeded, then Client replaces the matched entry

in the primary table with
(
(skj∗,k, x), pj∗,k ⊕ β

)
.

aFor clarity, we present the scheme supporting distinct and random queries. As mentioned before, these
restrictions can be removed by applying PRP and local caching.

Figure 2.1: Detailed description of PIANO .
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Recall that the notation S⟨chunk(x) → x⟩ means the set obtained by replacing the index
pertaining to chunk(x) in S with x.

2.3 Formal Definitions and Security Proofs

2.3.1 Notations

We denote the set {1, . . . , n} as [n]. DB denotes a database and we keep the convention that n is its
entry number. The indices of DB start at 0 and end at n− 1. Denote DB[x] for the x-th entry. For
any i, j, DB[i : j] denotes a slice of the database that contains (DB[i],DB[i+ 1], . . . ,DB[j − 1]).
Denote ⊕ as the xor operation.

For any distribution D, we write x $←D as sampling x according to D. For any set S, we write
x

$←S to denote that x is sampled uniform-randomly from S. For i ∈ {0, 1, . . . , |S|− 1}, we write
S[i] as the (i+ 1)-th smallest element in the set.

For a vector ∆ = (δ0, . . . , δm−1), we write ∆−i as the vector (δ0, . . . , δi−1, δi+1, . . . , δm−1)
that removes δi and compacts the remaining coordinates.

2.3.2 Pseudorandom Function

A Pseudorandom Function PRF : {0, 1}λ×{0, 1}ℓ → {0, 1}m takes in a λ-bit length key sk and
then PRFsk(·) takes in an ℓ-bit string input and outputs an m-bit pseudorandom string. We list its
syntax below.

• PRF.Gen(1λ): given the security parameter λ, output a secret key sk sampled uniformly random
from {0, 1}λ.

• PRFsk(x): given the secret key sk and an input x ∈ {0, 1}ℓ, output an m-bit pseudorandom
string.

Definition 2.3.1. A Pseudorandom Function PRF : {0, 1}λ × {0, 1}ℓ → {0, 1}m satisfies
pseudorandomness, if for sk sampled uniformly random from {0, 1}λ, for any function F sampled
uniformly at random from the set of functions mapping {0, 1}ℓ → {0, 1}m, for any PPT adversary
A, there exists a negligible function negl(λ) such that∣∣∣Pr [AOF (·) = 1

]
− Pr

[
AOPRFsk(·) = 1 : sk

$←{0, 1}λ
]∣∣∣ ≤ negl(λ).

Here, OF(·) denotes oracle access to the function F .

2.3.3 Definitions

We define a single-server private information retrieval (PIR) scheme in the preprocessing setting.
In a single-server PIR scheme, we have two stateful machines called the client and the server. The
scheme consists of two phases:
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• Offline setup. The offline setup phase is run only once upfront. The client receives nothing as
input, and the server receives a database DB ∈ {0, 1}n as input. The client may interact with
the server and store some hints in its local storage. For simplicity, we assume the entries in DB
are 1-bit4.

• Online queries. This phase can be repeated multiple times. Upon receiving an index x ∈
{0, 1, . . . , n− 1}, the client sends a single message to the server, and the server responds with
a single message. The client performs some computation and outputs an answer β ∈ {0, 1}.

Correctness. Given a database DB ∈ {0, 1}n, where the bits are indexed 0, 1, . . . , n − 1, the
correct answer for a query x ∈ {0, 1, . . . , n− 1} is the x-th bit of DB.

For correctness, we require that given a statistical security parameter κ and a computational
security parameter λ, for any sufficiently large n and any Q, there exists a negligible function
negl(κ), such that for any database DB ∈ {0, 1}n, for any sequence of queries x1, x2, . . . , xQ ∈
{0, 1, ..., n − 1}, an honest execution of the PIR scheme with DB and queries x1, x2, . . . , xQ,
returns all correct answers with a probability at least 1− negl(κ)− negl(λ).

Privacy. We now formally define privacy in the following experiment.
Definition 2.3.2 (Privacy of PIR). We say that a single-server PIR scheme satisfies privacy iff
there exists a probabilistic polynomial-time simulator Sim(1λ, n), such that for any probabilistic
polynomial-time adversary A acting as the server, any polynomially bounded n and Q, any
DB ∈ {0, 1}n, A’s views in the following two experiments are computationally indistinguishable:
• Real: an honest client interacts with A(1λ, n,DB) who acts as the server and may arbitrarily

deviate from the prescribed protocol. In every online step t ∈ [Q], A may adaptively choose
the next query xt ∈ {0, 1, . . . , n− 1} for the client, and the client is invoked with xt;

• Ideal: the simulated client Sim(1λ, n) interacts with A(1λ, n,DB) who acts as the server. In
every online step, A may adaptively choose the next query xt ∈ {0, 1, . . . , n− 1}, and Sim is
invoked without receiving xt.

2.3.4 Proofs

We now provide the proofs of privacy and correctness of our PIR scheme. We also provide the
performance analysis.
Theorem 2.3.3 (Privacy). Our PIR scheme satisfies privacy (i.e., Theorem 2.3.2).

Proof Sketch. We can first replace the PRFs with true random functions. Due to the pseudoran-
domness of the PRF, it is indistinguishable to the adversary.

With respect to the view of the server, the edited set can be simulated by just generating a
random set containing

√
n indices, where each one chunk contains exactly one random index.

Therefore, we only need to prove that the distribution of the client’s primary hints is always
“uniformly random” in the view of the adversary. After querying for x, we always replace the hint
with a new hint that contains the current query x. This maintains the distribution of the client’s
primary hint table in the adversary’s view. As a sanity check, consider a simplified case where the
client just has one local set. Let the query be x. There are two cases:

4Our scheme can directly work with multi-bit entries.
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1. With probability 1− 1/
√
n, the set does not contain x. The client sends a random set to the

server. The local set stays the same.

2. With probability 1/
√
n, the set contains x. The client sends an edited set by replacing x

with a random index from the same chunk. The client samples a new local set containing x.
The key insight is that the adversary does not know which case happens. It only sees a random

set independent of the remaining local set. The client’s local set after the query is distributed as:
1. With probability 1− 1/

√
n, a random set that does not contain x;

2. With probability 1/
√
n, a random set that contains x.

This is identically distributed as a uniformly random set.
The crux of the proof is to extend this simple calculation to the case where the client has

multiple local sets.
Proof. Denote the distribution Dn as sampling a random set that draws a random element from
each of the

√
n chunks. The Ideal experiment is as follows.

Ideal:
• Offline. A receives the streaming signal.
• Online. For query i, the simulated client sends a set sampled from Dn to A.
We define a hybrid experiment Hyb1 as follows:

Hyb1:
• Offline. A receives the streaming signal.
• Online. For each online round t, A chooses the query xt. The client samples a random set
S

$←Dn conditioned on xt ∈ S and also a random index r from xt’s chunk. The client sends
(S/{xt}) ∪ {r} to the server (received by A).

It should be straightforward to prove the distributions of A’s views in Ideal and Hyb1 are
identical. In Hyb1, since the Dn chooses a random element in each chunk independently, even
conditioned on containing any particular x, the remaining elements are still independent and
uniformly random within their chunks. Therefore, after replacing x with a random index from
the same chunk, the edited set (S/{xt}) ∪ {r} is identically distributed as Dn. So the views are
indeed indentically distributed in these two experiments.

Now we define a hybrid experiment Hyb2:
Hyb2:

• Offline. A receives the streaming signal. The client samples random sets S1, . . . , SM1

$←DM1
n .

• Online. For each online round t, A chooses the query xt:
1. The client finds the smallest index j ∈ [M1] that xt ∈ Sj . Denote the set as S∗. If no

such index is found, the client samples a set S∗ $←Dn conditioned on xt ∈ S∗.
2. The client samples a random index r from xt’s chunk. The client sends (S∗/{xt})∪{r}

to the server (received by A).

3. The client samples S ′ $←Dn conditioned on xt ∈ S ′. If the client finds a set that
contains xt earlier, replace the j-th set in the local sets with S ′.

The following lemm shows that the view of A in Hyb1 and Hyb2 is identically distributed.
Lemma 2.3.4. In Hyb2, for every online query xt, even conditioned on A’s view over the first
t− 1 queries,
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• The set S ′ received by A is distributed as follows. Sample S
$←Dn conditioned on xt ∈ S.

Sample a random index r from xt’s chunk. Let S ′ = (S/{xt}) ∪ {r}.
• At the end of the t-th query, the client local sets S1, . . . , SM1 are identically distributed as

S1, . . . , SM1

$←DM1
n even conditioned on the messages received by A during the first t-th

queries.

Proof. The proof is similar to Fact 7.3 in [SACM21].

Base case. At the end of the offline phase, S1, . . . , SM1 are indeed distributed as S1, . . . , SM1

$←DM1
n .

The set found by the client is indeed distributed as S $←Dn subject to x ∈ S (even when the client
does not find it in the first M1 sets and generates it on-the-fly).

Inductive case. Suppose that at the end of the t− 1-th step, the client’s local sets S1, . . . , SM1

are distributed as S1, . . . , SM1

$←DM1
n even when conditioned on A’s view in the first t− 1 steps.

We now prove that the stated claims hold for t. Let xt be the query chosen by A depending on the
first t − 1 queries’ messages. For i ∈ [M1], define αi as the probability that if S1, . . . , SM1 are
i.i.d sampled from Dn, the first set that contains x is i. Let αM1+1 = 1−

∑
i∈[M1]

αi.
Consider the following experiment Expt:
• The client samples u ∈ [M1 + 1] such that u = i with probability αi.

• ∀j < u, the client samples Sj
$←Dn subject to xt /∈ Sj .

• For u, the client samples Su
$←Dn subject to xt ∈ S. The client samples a random index r

from xt’s chunk. The client sends (Su/{xt}) ∪ {r} to the server (received by A).

• For j ∈ [u+ 1,M1], the client samples Sj
$←Dn.

• The client samples S ′
u

$←Dn subject to xt ∈ S ′
u. If u ≤M1, the client replaces Su with S ′

u.
The main random variables sampled in those two cases are (S1, . . . , SM1 , u, S

′
u) where

S1, . . . , SM1 are the sets at the beginning of the t-th query, u is the index of the first set containing
xt, and S1, . . . , Su−1,S ′

u,Su+1, . . . , SM1 will be the local sets at the end of the t-th query. In Hyb2,
by the induction hypothesis, S1, . . . , SM1 are i.i.d. sampled from Dn. Then u is selected as
the first set’s index that contains xt and its distribution will follow Pr[u = i] = αi. Finally, it
samples S ′

u
$←Dn. In Expt, the sampling order is changed: it first samples u, samples S1, . . . , SM1

conditioned on u, then samples S ′
u. By the definition of α1, . . . , αM+1, we know the joint distri-

bution of (S1, . . . , SM1 , u) are the same in both experiments. Also, S ′
u is always sampled from

Dn subject to xt ∈ S ′
u. Therefore, the marginal distributions of (S1, . . . , SM1 , S

′
u) are the same in

both experiments. Now we look at Expt. The message received by A fully depends on Su (with
no dependency on u) and Su’s marginal distribution is exactly Su

$←Dn subject to x ∈ Su. So
we prove that Hyb2 satisfies the first property in the statement. From the definition of Expt, the
marginal distribution of (S1, . . . , Su−1, S

′
u, Su+1, . . . , SM1) will actually be DM1

n . Thus, we prove
Hyb2 also satisfies the second property in the statements.

Notice that Hyb2 is close to the real experiment. We define hybrid experiment Real∗ as follows:

• Offline. A receives the streaming signal. The client samples random sets S1, . . . , SM1

$←DM1
n

and also Si,j
$←Dn for i ∈ {0, 1, . . .

√
n− 1}, j ∈ [M2].

• Online. For each round t, A chooses the query xt:
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1. The client finds the smallest index j ∈ [M1] that xt ∈ Sj . Denote the set as S∗. If no

such index is found, the client samples a set S∗ $←Dn conditioned on xt ∈ S∗.
2. The client samples a random index r from xt’s chunk.
3. The client sends (S∗/{xt}) ∪ {r} to the server.
4. Let i∗ = chunk(xt). If there is an unconsumed set in Si∗,1, . . . , Si∗,M2 , say Si∗,j ,

the client consumes it and set S ′ = (Si∗,j/{Si∗,j[i
∗]}) ∪ {xt}. Otherwise, the client

samples S ′ $←Dn conditioned on xt ∈ S ′. If the client finds a set that contains xt

earlier, replace the j-th set in the local sets with S ′.
The view of A in Hyb2 and Real∗ is identically distributed – the experiments only differ in

the refreshing phase. In Hyb2, the client always replaces the set with a freshly generated set S ′

subject to the query index xt is contained. In Real∗, the client first tries to find an unconsumed
local backup set S ′ (which has distribution Dn) and manually forces xt into it. Otherwise it is the
same as Hyb2. Notice that Dn samples the element in each chunk independently. Therefore, even
in Real∗ where xt is forced into the set, the elements in other chunks are still uniformly random.
Therefore, the distribution of S ′ is identical in both experiments, andA has the same view in these
experiments.

Finally, Real∗ is just a rewrite of Real removing irrelevant terms and replacing the PRF
with real randomness. By a reduction to the pseudorandomness of the PRF, Real∗ and Real are
computationally indistinguishable.

Theorem 2.3.5 (Correctness). Assume n is bounded by poly(λ) and poly(κ). Let α(κ) be any
super-constant function, i.e., α(κ) = ω(1). Further, assume the queries are chosen independently
of the PRP. Given M1 =

√
n lnκα(κ), M2 = 3 lnκα(κ), all the Q =

√
n lnκα(κ) queries will

be answered correctly with probability at least 1− negl(λ)− negl(κ) for some negligible function
negl(·).

Proof. Recall that in our full scheme, the server will first sample a pseudorandom permuta-
tion(PRP) to permute the database upfront and the client will download the key from the server.
Replacing the PRP with a true random permutation only affects the failure probability by a
negligible amount, negl(λ). We also assume that the client does not make any duplicate queries
for those Q queries. Therefore, taking the randomness of the permutation, we can view all Q
queries are randomly sampled from {0, 1, . . . , n− 1} without replacement.

We assume the client uses a true random oracle to sample the sets, instead of a PRF. Due to
the pseudorandomness of the PRF, this assumption will not affect the failure probability by a
negligible amount, negl(λ).

There are only two types of events that cause failures: 1) the client cannot find a set that
contains the online query index; 2) the client runs out of hints in a backup group.

We analyze the second type of failure events – it only happens when the client makes more
than M2 queries in one group. Since the client is making

√
n lnκα(κ) queries and there are

√
n

groups, we can use a standard balls-into-bins argument. For t ∈ [Q], i ∈ {0, 1, . . . ,
√
n − 1},

define the random variables Yt,i ∈ {0, 1} such that Yt,i = 1 if and only if the t-th query locates
in the i-th chunk. Denote Xi = Y1,i + · · · + Yt,i as the number of queries located in the i-th
chunk. We know E[Yt,i] = 1/

√
n and E[Xi] = lnκα(κ). Since we are taking the randomness

of the permutation and assuming the queries have no duplication, Y1,1, . . . , YQ,1 are negatively
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correlated. With the Chernoff bound for negatively correlated variables, we know that

Pr[X1 ≥ (1 + 2) lnκα(κ)]

≤ exp

(
−22

2 + 2
lnκα(κ)

)
= κ−Θ(α(κ)).

Taking the union bound over all
√
n chunks, the failure probability is bounded by

√
n·κ−Θ(α(κ)),

which is a negligible function of κ.
For the first type of failure events, by Lemma 2.3.4, the local sets S1, . . . , SM1 (i.e., the set

represented by the keys) will be identically distributed as DM1
n and each set will contain the query

with probability 1/
√
n. So for a particular query x, the probability of no set containing x is(

1− 1/
√
n
)M1 =

(
1− 1/

√
n
)√n lnκ·α(κ)

≤ (1/e)lnκα(κ) = κ−α(κ).

With the union bound, for all
√
n lnκα(κ) queries, the probability of any query cannot find a

set is bounded by
√
n lnκα(κ) · κ−α(κ), which is negligible in κ since n is bounded by poly(κ).

Then, there is some negligible function negl(·) that all the queries are answered correctly with
probability at least 1− negl(λ)− negl(κ).

With the amortization technique we discussed before, we can show the following efficiency
theorem:
Theorem 2.3.6 (Efficiency). Let α(κ) be any super-constant function, i.e., α(κ) = ω(1). The
single-server PIR scheme only needs a one-time offline phase and supports an unbounded number
of queries. It achieves the following performance bounds:

• Oλ(
√
n log κ · α(κ)) client storage and no additional server storage;

• Offline Phase:
Oλ(n log κ · α(κ)) client time and O(n) server time;
O(n) communication;

• Each Online Query:
Expected Oλ(

√
n) client time and O(

√
n) server time;

O(
√
n) communication.

Proof. Let’s first consider the scheme that supports Q =
√
n lnκα(κ) online queries.

The client has O(
√
n log κ · α(κ)) local hints and each hint stores a parity and a PRF key.

The client also stores O(
√
n log κ · α(κ)) replacement index-value pairs. Also, during the offline

phase, the client will only store one
√
n-size chunk of the DB at any time. So the client’s storage

is Oλ(
√
n log κ · α(κ)).

For the offline phase, the client downloads the whole DB, so the communication cost is O(n).
For each chunk, the client needs to enumerate all O(

√
n log κ · α(κ)) local hints and update them.

So in total, the client offline computation time is O(n log κ · α(κ)).
For the online phase, the client needs to search for the hint that contains the query. Since each

set contains the query with probability 1/
√
n and each membership testing takes Oλ(1) time, the

expected searching time is Oλ(
√
n). Other operations all take Oλ(

√
n) time. The client then sends
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an O(
√
n)-sized set to the server. The server computation time is O(

√
n). The client downloads

the response of size O(
√
n) and gets the answer. The refreshing time for each query is O(1).

To support unbounded queries, the client needs to amortize the work of the next offline phase
of the original Q-bounded scheme over the last Q queries. Since Q =

√
n lnκα(κ), the amortized

asymptotic computation and communication costs remain the same. The client stores two sets of
local hints that it uses one for the current online phase and it prepares another one for the next
Q queries. It doubles the cost of local storage. The server does not need to have any additional
storage.

Discussion on the correctness guarantee. A follow-up work by Ren et al. [RMS24] points out
an attack exploiting the correctness failure in our PIR scheme. They mentioned that in a case
where the client is “adversarially influenced” and chooses the queries repeatedly in one single
chunk (with knowledge of the PRP), the client will run out of backup hints and have a correctness
failure.

Indeed, our correctness guarantee is based on the assumption that the client’s queries are
independent to the PRP. However, their definition of “adversarially influenced” client is not
well-defined, and the motivation behind such a Denial-of-Service (DoS) attack is unclear. We
make the following clarifications:

First, we assume the server is semi-honest. If the server is malicious, it can cause a correctness
failure by simply returning incorrect answers to the client, which also applies to their proposed
PIR scheme.

Second, they assume the PRP is public knowledge, which is not the case in our scheme. We
clarify that the PRP should be a secret known only between the server and the client and should
not be known to a third party, in case such failure attack is a concern.

Finally, they argue that if the client’s behaviors depend on the correctness of the returned
answers and could be observed by an adversary, a correctness attack may result in a privacy failure.
However, this is not an issue in our scheme, as we show that even when the client’s queries are
arbitrarily and adaptively chosen, privacy still holds (i.e., the messages received by the server can
be fully simulated). If there are other side effects on the correctness failure (e.g. the timing of the
next query depends on the correctness of the previous query), it is beyond the scope of our work
and the standard PIR research literature.5

2.4 Evaluation
Our evaluation aims to answer the following questions:

1. How does PIANO perform compared to a state-of-art single server PIR scheme (SimplePIR
[HHCG+22])? (Section 2.4.3)

2. How does PIANO perform compared to a non-private retrieval baseline? (Section 2.4.4)

5In fact, there are many other side effects that could happen in a real-world deployment and might lead to privacy
issues. Consider a scenario where the client will wait for one minute until the next query if the current query is on the
first half of the database, and will wait for 10 minutes if the current query is on the second half. This behavior could
indeed lead to privacy issues, and side effects like this should be considered in future research.
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In particular, we compare to the SimplePIR protocol [HHCG+22] which is the prior state-
of-art single-server PIR implementation and is faster than all other single-server PIR schemes
by at least an order of magnitude. We refer the reader to their paper for details, but crucially,
their scheme requires a linear scan on the server, like many other practical single-server PIR
implementations.

2.4.1 Implementation
We implement PIANO in Golang in approximately 800 lines of code. We utilize AES-NI hardware
instruction for fast PRF evaluations.

Parallelization. We parallelize the preprocessing phase on the client side, which is the main
bottleneck of the setup phase. All server-side and online computation is performed on a single
thread.

Parameters. We note that the performance of our scheme is more affected by the size of each set
rather than the size of each chunk. To this end, we set the chunk size to be 2

√
n and round it up to

the nearest power of 2, which makes the modulo operation more efficient. The set size is computed
accordingly. It does not affect the theoretical asymptotics of our protocol. We set Q =

√
n lnn.

We set the statistical security parameter κ to 40 and computational security parameter λ to 128.
We adjust M1,M2 accordingly so that the failure probability is bounded by 2−κ = 2−40 for all Q
queries, matching the same failure probability as SimplePIR [HHCG+22]. We use 128-bit keys
and use AES to instantiate the PRF. Our implementation uses a 64-bit integer to denote a database
index and thus we can support sufficiently large databases.

Optimization. Instead of generating a λ-bit key for each hint, the client just needs to generate a
λ-bit master secret key msk and a unique short tag tagi (e.g. 32 bits) for the i-th hint. Then, the
j-th offset of this hint will be PRF(msk, tagi||j). In practice, we observe that this optimization
reduces the storage by 30%.

2.4.2 Evaluation Setup
We evaluate PIANO and the baseline schemes on two AWS m5.8xlarge instances with 128GB
of RAM. For our local area network experiments, we run the PIR scheme on a single machine.
This simulates a scenario where the network is not the bottleneck. We also evaluate our scheme
over a wide-area network. In this case, we place the server machine on the west coast and the
client machine on the east coast. All communication is performed over TLS connections with a 2
Gbps network bandwidth. The round-trip time is around 60ms. All query costs are computed as
the average over one thousand queries. We use the open-source implementation of SimplePIR
provided by Henzinger et al. [HHCG+22]. We also implement a non-private database access
scheme as the baseline that does not include caching or load balancing.

2.4.3 Experiments in a Local-Area Network
We first compare our protocol to the SimplePIR protocol for 1GB and 2GB databases of 8-byte
entries. Because the open-source SimplePIR implementation does not support parallelization or
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connections across servers, we only compare the protocols run on a single machine. We analyze
the effect of network latency on our protocol in the following section. We also run our scheme
with a 100GB database with 1.6 billion 64-byte entries. To the best of our knowledge, this is
by far the largest database ever supported by any implementation of a single-server PIR scheme.
Because the implementation of SimplePIR does not support databases of this size, we extrapolate
the results by running their scheme for 1GB and 2GB sized databases of 64-byte entries, and
extrapolating their performance to 100GB based on the asymptotic performance discussed in their
paper.

1GB(n = 227) 2GB(n = 228) 100GB(n ≈ 1.68× 109)
SimplePIR PIANO SimplePIR PIANO SimplePIR(∗) PIANO

Preprocessing
Client time 293s 629s/111s 608s 1471s/257s 425min 192min/32min

Communication 123MB 1GB 173MB 2GB 1.2GB 100GB

Per query
Online Time 131.6ms 3.0ms 219.5ms 3.4ms 10.9s 11.9ms

Online Comm. 238KB 32KB 338KB 64KB 2.3MB 100KB
Am. Offline Time 1.4 ms 2.9/0.5ms 2.9ms 4.6/0.8ms 29.6ms 13.2ms/2.2ms

Am. Offline Comm. 0.6KB 4.9KB 0.6KB 6.6KB 1.4KB 120.5KB

Client Storage 123MB 61MB 173MB 71MB 1.2GB 839MB

Table 2.1: Performance of our scheme and SimplePIR on 1GB, 2GB, and 100GB sized databases.
The 1GB and 2GB databases have 8-byte entries, and the 100GB database has 64-byte entries. For
preprocessing time in the format of 629s/111s, the former is with a single thread, and the latter is
with 8 threads. “Am.” is an abbreviation of “Amortized”. “Comm.” stands for communication
cost. We report the online costs as well as the offline costs amortized over Q =

√
n lnn queries.

∗The results for SimplePIR with the 100GB database are extrapolated since their implementation
cannot directly support such a large database.

Metrics and two modes of operation. Table 2.1 shows the costs of the queries as well as
the one-time preprocessing. We divide the query costs into two parts, the online costs and the
amortized offline costs. The former are on the critical path of the perceived response time, and the
latter are the additional maintenance work needed when we deamortize the periodic preprocessing
costs over the queries. In practice, there are two ways to run our scheme. The first method is to
perform the preprocessing upfront only once, and the subsequent periodic preprocessing costs
are deamortized to the queries in each window. The second method is to periodically rerun the
preprocessing phase, e.g., at night or during periods of inactivity — in this case, the query phase
need not pay the “amortized offline time” and “amortized offline communication”.

Query costs. As seen in Table 2.1, our protocol outperforms SimplePIR in all online metrics,
including client storage, communication, and online querying time. In particular, for medium-
sized databases (1GB/2GB), we outperform SimplePIR by 43.9x - 64.6x in terms of online
querying latency. This performance gain stems from the fact that our online computation is
sublinear in the size of the database, while SimplePIR is fundamentally limited by the linear scan
required by their protocol. As the database grows larger, the performance gap further increases.
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For the 100GB database, PIANO only takes 11.9ms for the online query. On the other hand, the
extrapolated online time for SimplePIR is 10.9s, resulting in a nearly 915× performance gap.

Preprocessing costs. Preprocessing costs depend on the size of each entry. When the per-
entry size is bigger, our preprocessing is faster than SimplePIR (see the 100GB case where the
entry size is 64 bytes). When the per-entry size is smaller, our preprocessing is slower than
SimplePIR. In particular, PIANO has a quasi-linear preprocessing phase that takes O(n log κα(κ))
PRF evaluations and O(n log κα(κ)) XOR operations between database entries. We observe that
the PRF evaluations are the computation bottleneck when the entry size is not too big (e.g., 64
bytes or less). Therefore, our scheme’s concrete performance depends more on the number of
entries rather than the per-entry size.

The table also shows the effect of the parallelization for preprocessing costs (and similarly for
amortized offline costs during the query phase). Since client computation is the bottleneck for the
preprocessing, parallelizing the work using 8 threads significantly improves the running time. For
example, for a 2GB database, parallelization with 8 threads improves the client’s preprocessing
time from 1471s to 257s.

2.4.4 Experiments over a Wide-Area Network
Next, we report our results for experiments conducted over a wide-area network. Recall that the
round-trip network latency is around 60ms and the network bandwidth is 2Gbps (see Section 2.4.2).
The effects of this greater network latency are seen in Table 2.2. Because the open-source
SimplePIR implementation does not support connections across multiple machines, we extrapolate
a lower bound for their querying time based on the summation of the extrapolated numbers in the
previous section and the network latency.

2GB(n = 228) 100GB(n ≈ 1.68× 109)
Non-Private SimplePIR PIANO Non-Private SimplePIR PIANO

Preprocessing
Client Time - 608s 1472s/248s - 425min 205min/45min

Communication - 173MB 2GB - 1.2GB 100GB

Per query
Online Time 59.8ms 279.3ms 64.0ms 61.0ms 10.9s 72.6ms

Online Comm. 16B 338KB 64KB 72B 2.3MB 100KB
Am. Offline Time - 1.9ms 4.6ms/0.7ms - 29.6ms 14.1ms/3.1ms

Am. Offline Comm. - 0.6KB 6.6KB - 1.4KB 120.5KB

Client Storage - 173MB 72MB - 1.2GB 839MB

Table 2.2: Performance of our scheme, SimplePIR and the non-private baseline on 2GB and
100GB sized databases. The 2GB database has 8-byte entries and the 100GB database has 64-byte
entries. Numbers of the format 1472s/248s denote the performance with a single thread and 8
threads, respectively. “Comm.” stands for communication cost. “Am.” stands for “amortized”.

When compared to the non-private baseline, our protocol has a 7%− 20% latency overhead.
SimplePIR, on the other hand, has a 4.6x - 178.7x latency overhead.
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2.4.5 Performance Breakdown

Figure 2.2: Cost breakdown

In Figure 2.2, we provide a detailed performance breakdown of the online time when running
PIANO on a wide-area-network (the same setup as in Table 2.2). We see that the online time is
mostly dominated by the network transmission time. The network transmission time is bounded
by the physical distance – a 60ms RTT is required even when the payload is negligible. The client
computation time is the second largest factor and it is dominated by the time to find a matched hint,
which requires expected O(

√
n) PRF evaluations. The server computation time is much faster

since the server-side algorithm only requires some RAM accesses with some non-cryptographic
computation.

2.5 Variants and Extensions

2.5.1 A Variant of PIANO

We present a variant of PIANO in this section6. This variant has less storage but comes with more
online communication.

Client side: A different approach to hide the query point. Recall that for each query x,
the client will find a preprocessed set S containing x and the client wants to learn the parity
S/{x} (which is enough for it to learn DB[x]). The main point is to learn the parity S/{x} while
preserving privacy. In the scheme presented in Section 2.2, the client will replace the query point
x with some preprocessed replacement index r from the same chunk to ensure privacy. The query
set will look random in the view of the server, and the client can learn the parity of (S/{x})∪{r}.

The variant takes a different method to hide the query point. Given a set S that contains
one index from each chunk, we first write its “offset vector” as ∆ = (S[0] mod

√
n, S[1] mod√

n, . . . , S[
√
n− 1] mod

√
n). For example, if the DB size is 16 and the set is {2, 4, 11, 13}, the

6This is the initial scheme when we publicized the paper in March 2023. Although both being easy to implement,
we consider the new main scheme to be conceptually simpler. Henceforth, we decided to present the initial scheme as
a variant.
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1. Upon receiving the offset vector ∆′, parse ∆′ as (δ0, . . . , δ√n−2).

2. q0 = ⊕i∈{1,...,
√
n−1}DB [δi−1 + i ·

√
n].

3. For i = 0, . . . ,
√
n− 2, compute qi+1 = qi ⊕ DB [δi + (i+ 1) ·

√
n]⊕ DB [δi + i ·

√
n].

4. Return (q0, . . . , q√n−1).

Figure 2.3: O(
√
n)-time server-side algorithm for one query.

offset vector will be (2, 0, 3, 1). Let j be x’s chunk index. Consider the following offset vector
that removes the offset of x and compacts the remaining offsets:

∆−x =
(
S[0] mod

√
n, . . . , S[j − 1] mod

√
n, S[j + 1] mod

√
n, . . . , S[

√
n− 1] mod

√
n
)

For example, removing the second offset from the offset vector of the last example will result in a
vector of (2, 3, 1). We observe that after removing the offset of x from the vector, the compacted
remaining vector completely hides the information of x. Therefore, the client can directly send
∆−x to the server.

Server side: Returning the correct parity efficiently. The server cannot directly recover the set
S/{x} from the vector ∆′ = (δ0, . . . , δ√n−2), because the chunk location of the removed index
is unknown. However, the server can guess all

√
n possible cases and reconstruct a possible set

for each guess. For example, if the server guesses the removed point is from the i-th chunk, the
server can reconstruct a set as

Si = {δ0, δ1 +
√
n, . . . , δi−1 + (i− 1) ·

√
n,⊥, δi + (i+ 1) ·

√
n, . . . , δ√n−2 + (

√
n− 1) ·

√
n},

where ⊥ is simply a placeholder for the removed index. Denote the parity for Si as qi =
⊕k∈Si

DB[k]. If the server can compute all q0, . . . , q√n−1 efficiently, it can return all the guessed
parities to the client with O(

√
n) communication cost. The client can directly pick up the correct

guess qj because it knows exactly where the removed point is!
Now we show that computing q0, . . . , q√n−1 only takes O(

√
n) time. The naive approach is

to recover the whole set for each guess and compute their parities directly. Since we have
√
n

guesses and each guess reconstructs a (
√
n − 1)-size set, the computation time will be O(n).

However, observe that the symmetric difference between each two consecutive reconstructed sets
Si and Si+1 will only be two elements: δ′i + (i+ 1) ·

√
n and δ′i + i ·

√
n. Therefore, computing

qi+1 from qi only takes two extra XOR operations. The algorithm can just compute q0 directly
in O(

√
n) time, and compute q1, q2, . . . , q√n−1 in sequence, each taking O(1) time. So the total

computation time is O(
√
n). We list the algorithm in Figure 2.3.

Comparison with the main scheme. The efficiency for this variant is nearly the same as the
scheme presented before. The differences are as follows. On the one hand, in this variant, the
client does not have to store all the replacement index-value pairs. However, since other parts of
the storage already consume O(

√
n log κα(κ)) space, the asymptotic storage cost stays the same.

On the other hand, this variant has O(
√
n) download cost per query whereas the main scheme

has O(1) download cost. However, the upload costs are both O(
√
n) for the two schemes. So the
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asymptotic communication cost stays the same as O(
√
n). In short, the two schemes have the

same asymptotic behaviors and they provide a tradeoff between the local storage and the online
communication (up to a constant factor).

Correctness and Privacy Proof. The correctness proof and the privacy proof are nearly the same
as the proofs presented in Section 2.3.4. The failure probability analysis remains the same for the
correctness proof. For the privacy proof, the only difference is in that the simulation strategy for
the simulator. It now sends a uniform vector ∆′ $←{0, 1, . . . ,

√
n− 1}

√
n−1 instead of a random

set. These two simulation strategies are both independent of the query index. Other parts of the
privacy proof stay the same.

2.5.2 Supporting Key-Value Queries
Our PIR scheme so far supports memory lookup queries, where the client wants to query some
index x into some database. In some real-world applications such as private DNS, the client wants
to query some search key rather than an index. Our scheme can easily be modified to support
a key-value interface as follows. First, the server can use a Cuckoo hashing scheme to hash all
n keys into a table D of size O(n), along with an overflow pile F which is logarithmic in size
except with negligibly small probability. The server publishes the randomness seed used in the
Cuckoo hashing as well as the overflow pile F . The client will store the overflow table F locally.
Moreover, using the randomness seed, given any key, the client can compute the two relevant
indices x0 and x1 in the table D to look for key. It is guaranteed that key exists in either D[x0]
or D[x1], or in the overflow pile F . The client can retrieve both D[x0] and D[x1] using our PIR
scheme that works for memory lookup.

2.5.3 Supporting Dynamic Databases
So far, we have focused on a static database. In some applications such as private DNS, the
database will evolve over time. It is not hard to transform our static scheme into a dynamic one
using a standard technique called “hierarchical data structures”. This technique was originally
proposed by Bentley and Saxe [BS80]. Since then, it has been used in various cryptographic
applications to transform static schemes into dynamic ones, such as Oblivious RAM [GO96,
Gol87], proof of retrievability [SSP13], searchable encryption [SPS14], and PIR [KCG21].

Below we describe how to use this approach in our context to make the scheme dynamic.

Syntax. Specifically, we want to have a PIR scheme for key-value queries:
• Init(1λ,DB): given a key-value store DB, initialize a PIR scheme.
• Query(key): the client wants to look up the value associated with some key key.
• Insert(key, val): add a new entry (key, val) to the key-value store.
• Update(key, val): update the value of an existing key to the specified new value.
• Delete(key): delete key from the key-value store.

Construction. Let n be the maximum size of the database. Let Q =
√
n log n · α(n) where

α(·) is an arbitrarily small super-constant function. We assume that n = 2L ·Q. We will use a
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hierarchical data structure Γ with logarithmically many levels denoted Γ0,Γ1, . . . ,ΓL, where each
level ℓ may either be empty or have a PIR scheme of size 2ℓ ·Q.

Let t be the number of update operations (including insertions, updates, or deletions) that
have taken place so far including the current operation. We assume that at any point of time, the
client always locally stores the most recent Q updates (including insertions, updates, or deletions).
Further, these most recent Q updates are also stored at the server, in a separate array called Γ−1.

• Init(1λ,DB): Suppose that the size of the database |DB| = 2ℓ ·Q. Run the preprocessing phase
of the PIR scheme with each client, using the key-value store DB. At this moment, we have
only one PIR instance corresponding to the level Γℓ. Every other level is empty.

• Insert(key, val): Record the operation including the type of the operation in Γ−1. Assume t is
a multiple of Q. Let ℓ∗ be the first empty level. At this moment, we want to merge all PIR
schemes in levels Γ−1,Γ0, . . . ,Γℓ∗−1 into a new PIR scheme in Γℓ∗ . If no empty level is found,
then we want to merge levels Γ−1,Γ0, . . . ,Γℓ∗ into level Γℓ∗ .
The merge is done as follows: first, we examine all the update operations in the levels to be
merged, and perform a duplicate suppression. During the duplicate suppression, the most
recent update to some key should override old ones. If some key has been deleted, we will
explicitly record that its corresponding value is ⊥. Only when we are rebuilding the last level
L, we will actually delete this key.
After the duplicate suppression, we get a key-value store with at most 2ℓ∗ ·Q entries — this
will become the new database at level ℓ∗. The server now runs the preprocessing stage of the
PIR scheme with every client for this key-value store.

• Update(key, val): Same as Insert(key, val).
• Delete(key): Same as Insert(key,⊥).
• Query(key, val): For ℓ = 0, 1, . . . , L, if Γℓ is not empty, invoke the PIR scheme of level Γℓ to

query the value corresponding to key. Let vℓ be the answer obtained from level ℓ. Further, the
client also looks up its local table of the most recent Q updates, and obtains another answer
v−1.
Each answer vi may be of the form, “not found” , ⊥ (which indicates that the key is
deleted), or some actual value. If all levels report “not found”, the client outputs “not
found”. Otherwise, it outputs the freshest value found that is possibly ⊥.

In practice, the client need not be constantly online. For the periodic rebuilds that stem from
updates, the client can defer the rebuild work to the next time it comes online and makes queries.
The cost of the periodic rebuilds need to be amortized to the total number of updates — see our
performance analysis later.

Removing the known-n assumption. So far, we assumed that we know an upper bound n on the
maximum number of entries in the key-value store. This assumption can easily be removed as
follows. When we are rebuildling the last level L, if we discover that the number of entries has
exceeded n, we update n← 2n as the new upper bound, i.e., increase the number of levels by 1.

Similarly, when we are rebuilding the last level L, if we discover that the actual number of
entries is less than n/2, we can also update the new upper bound to be n← n/2, i.e., reduce the
number of levels by 1.
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Performance analysis. We now analyze the cost of the scheme. In the analysis below, we will
amortize the cost of periodic rebuilds (i.e., preprocessing) to the updates. The initial preprocessing
is only one-time and will be amortized to an unbounded number of queries.

• Online query costs. For each query, the online cost is the sum of the costs of querying
O(log n) PIR schemes, each of size Q, 2Q, . . ., n. The total amortized communication is
Oλ(Q

1
2 + (2Q)

1
2 + . . .+ n

1
2 ) = Oλ(

√
n). Using a similar calculation, the amortized online

server computation is O(
√
n). The amortized client online computation is Oλ(

√
n).

• Update costs. Every Q updates, we need to perform the preprocessing phase for a Q-sized
database. The amortized communication is Cλ · Q/Q = Cλ, the amortized server time
is C, and the amortized client time is Cλ · log κ · α(κ) for some constant C and another
parameter Cλ related to the security parameter λ. Every 2Q updates, we need to perform
the preprocessing phase for a 2Q-sized database. The amortized communication is Cλ,
the amortized server time is C, and the amortized client time is Cλ log κ · α(κ). Every 4Q
updates, we need to perform the preprocessing phase for a 4Q-sized database, and so on.
Therefore, in total, the amortized communication per update is Oλ(log n), the amortized
server computation per update is O(log n), the amortized client computation per update is
Oλ(log n log κ · α(κ)).

• Space. The client space is Oλ(
√
n log κ · α(κ)). The server’s storage is O(n).

2.6 Additional Related Work

In this section, we provide some additional comparisons with related work.

Single-server PIR schemes. Table 2.3 compares PIANO with existing single-server PIR schemes.
Although we primarily focus on enhancing the practical performance of PIR, our proposed scheme
is also of interest from a theoretical perspective. Notably, it is the first single-server PIR scheme
that relies solely on one-way functions (OWF) and has sublinear server computation.

Early theoretical works aimed at improving the communication cost of PIR, such as the
studies by Chachin, Micali and Stadler [CMS99], Yan-Cheng Chang [Cha04], and Genry and
Ramzan [GR05].

Beimel, Ishai and Malkin [BIM00] proved an important lower bound that dictates the per-
query time of any PIR scheme without preprocessing to be Ω(n). Inspired by their work, many
subsequent studies followed the “preprocessing model” to achieve amortized sublinear per-query
time.

In the “global-preprocessing” model, also known as Doubly Efficient PIR (DEPIR), the server
first preprocesses the database, and subsequently, it can answer queries with sublinear computation
time. However, early works [CHR17, BIPW17] relied on non-standard assumptions or VBB
obfuscation. A recent breakthrough work by Lin, Mook and Wichs [LMW23] presented a method
to construct DEPIR based on the standard RingLWE assumption. In their approach, for any
constant ϵ > 0, the server preprocesses the database and stores a data structure of size Õλ(n

1+ϵ).
Later, the server can answer queries in poly((log n)1/ϵ) time with poly((log n)1/ϵ) communication
cost, where poly is a fixed polynomial.
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Table 2.3: Comparison of single-server PIR schemes. m is the number of clients. n is
the database size. d is the dimension of the hypercube representation of the DB. ϵ ∈ (0, 1)
is some suitable constant. ‘Comm.” means communication per query. “CRA” means the
composite residuosity assumption. ϕ-hiding is a number-theoretic assumption described in
[CMS99]. “OLDC” means oblivious locally decodable codes. “VBB” means virtual-blackbox
obfuscation. “OWF” means one-way function. The extra space denotes the client’s extra storage,
except for the schemes based on OLDC and also Lin, Mook and Wichs [LMW23], where the
server stores the extra storage.

Scheme Assumpt. Comm. Per-query time Extra space

Theoretical Single-server PIR Schemes
Standard CRA or

Õ(1) 0[Cha04, CMS99, GR05] ϕ-hiding
or LWE

O(n)

[CHR17, BIPW17] OLDC nϵ nϵ mn
[BIPW17] OLDC, VBB nϵ nϵ n

[LMW23] RingLWE poly((log n)1/ϵ) poly((log n)1/ϵ) Õλ(n
1+ϵ)

[CK20] LWE Õλ(
√
n) Õλ(n) Õλ(

√
n)

[CHK22] LWE Õλ(
√
n) Õλ(

√
n) Õλ(

√
n)

[ZLTS23, LP23a] LWE Õλ(1) Õλ(
√
n) Õλ(

√
n)

Practical Single-server PIR Schemes (with implementations)

XPIR(d = 2)[MBFK16] LWE Õλ(
√
n) O(n) Õλ(1)

PSIR[PPY18] LWE Õλ(
√
n) O(n) Õλ(

√
n)

FastPIR[AYA+21] LWE Õλ(n) O(n) Oλ(1)

OnionPIR[MCR21] LWE Õλ(1) O(n) Õλ(
√
n)

Spiral[MW22] LWE Õλ(1) O(n) O(1)

FrodoPIR[DPC22] LWE Õλ(
√
n) O(n) Õλ(

√
n)

SimplePIR[HHCG+22] LWE Õλ(
√
n) O(n) Õλ(

√
n)

Ours OWF O(
√
n) Õλ(

√
n) Õλ(

√
n)
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Our scheme falls under the “client-preprocessing” model, also known as the subscription
model. Corrigan-Gibbs and Kogan [CK20] were the first to present a construction under this
model with O(n) offline time and Õλ(

√
n) online time. However, their scheme only supports a

single query. Later, Corrigan-Gibbs, Henzinger and Kogan [CHK22] showed how to transform a
single-query scheme into a

√
n-query scheme with polylogarithmic overhead using FHE. Zhou et

al. [ZLTS23] and Lazzaretti and Papamanthou [LP23a] further extended the idea and achieved
polylogarithmic communication cost.

In terms of practical schemes, all the previous works supporting adaptive queries had Õ(n)
per-query computation time. Most of them relied on homomorphic encryption (usually not just
linear homomorphic encryption) and required the LWE assumption. XPIR [MBFK16] was among
the first to implement a single-server PIR scheme that only consumes Õλ(

√
n) per-query commu-

nication cost. PSIR [PPY18] utilized client-side preprocessing to reduce the online cryptographic
operation number to Õ(

√
n), but the server still needs to perform O(n) plaintext operations.

FastPIR [AYA+21] made concrete improvements to online time, but it comes at the cost of O(n)
per-query communication for the client. OnionPIR [MCR21], on the other hand, chose homomor-
phic encryption parameters carefully to compress communication. Among the state-of-the-art
single-server PIR schemes, Spiral [MW22], FrodoPIR [DPC22], and SimplePIR [HHCG+22]
are noteworthy. Spiral [MW22] combined two different homomorphic encryption schemes to
control noise in the ciphertext, thereby achieving polylogarithmic communication. Meanwhile,
FrodoPIR [DPC22] and SimplePIR [HHCG+22] shared a similar idea that in the evaluation of
the Regev’s HE scheme, most of the computation can be performed without knowing the message
upfront and thus can be preprocessed. Their schemes require a one-time offline setup where the
client downloads and stores the query-irrelevant parts of the HE evaluation in advance. As a result,
for each online query, the server only needs to compute the query-relevant part, and the cost is
almost the same as plaintext evaluation over the entire database. SimplePIR [HHCG+22] has the
best performance and claims that online query time is already limited by the server’s memory I/O
speed. Nonetheless, all these schemes have linear online server time.

Batch PIR schemes. Pioneered by Ishai et al. [IKOS04], Batch PIR schemes [AS16, ACLS18,
MR22, LLWR22] are designed for batched queries. If a client submits a batch of Q parallel
queries to the server, the server’s computation cost can be amortized to Õ(n/Q) per query, even
though the server still performs O(n) computation for the entire batch. Batch PIR schemes
have two main limitations. First, a client must make many parallel queries simultaneously to
amortize the computation cost. In practical applications, the client may wish to adaptively decide
its following queries based on previous querying results. Asymptotically, only when the client
makes O(

√
n) parallel queries the amortized computation time can match PIANO . Second, these

schemes require the server to run some form of homomorphic encryption evaluations on the entire
DB and incur O(n) computation per batch, making the overall latency significant. In contrast, our
scheme only requires the server to perform O(

√
n) plaintext evaluations.

From a practical standpoint, as mentioned in Henzinger et al. [HHCG+22], the state-of-the-art
batch PIR scheme, SealPIR [ACLS18], has 100x worse throughput than SimplePIR [HHCG+22].

Multi-server PIR schemes. The multi-server PIR schemes assume there are multiple non-
colluding servers and each one of them stores a copy of the database. This assumption was first
shown to improve the communication cost to O

(
n1/3

)
[CGKS95, CKGS98] and later schemes
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based on [GI14, BGI16] further improved the cost to be polylogarithmic.
Corrigan-Gibbs and Kogan [CK20, KCG21] proposed the client-side preprocessing idea to

achieve Õλ(
√
n) amortized per-query time under the two-server model with Õλ(

√
n)-size per-

query communication and Õλ(
√
n) client side storage. Shi et al. [SACM21] and TreePIR [LP23b]

by Lazzaretti and Papamanthou further extended this idea and achieved polylogarithmic per-query
communication.

The sublinear schemes in the multi-server model are practical. The PRP-based PIR [CK20] is
implemented by Ma et al. [MZRA22]. Checklist [KCG21] and TreePIR [LP23b] also provided
implementations.

TreePIR reported the best performance among these implementations, providing one imple-
mentation with polylogarithmic per-query communication cost by invoking a recursive scheme
and another one with O(

√
n) per-query communication cost without the recursion. For an 8GB

database with 228 entries, the best amortized online time results reported in TreePIR are 23ms for
the non-recursive scheme and 84ms for the recursive scheme. For comparison, our scheme has an
amortized 20ms per-query time under the same setting with 4x local storage. The blowup of the
local storage comes from the backup hints and the deamortization of the setup phase, which are
inherently required for the single-server setting.

2.7 Limitations and Suitable Use Cases
The main limitation of PIANO is its communication cost: 1) the client has to download the whole
database during the setup phase; 2) the online communication cost per query is O(

√
n). Compared

to previous solutions like Zhou et al. [ZLTS23] and Lazzaretti and Papamanthou [LP23a] which
have Õλ(1) communication overhead per query, the cost of PIANO is O(

√
n). However, we argue

that this sacrifice is actually what makes our solution practical. The streaming preprocessing
avoids the need for using FHE during the offline phase. Also, private programming of PRF
is required to achieve Õλ(1) online bandwidth in previous solutions [ZLTS23, LP23a] and this
primitive is only known in theory. By sending the whole edited set, we can do puncturing
or programming without the need of complicated constructions. That being said, designing a
truly practical single-server PIR with Õλ(1) communication overhead is one of the major future
directions to be explored. We provide two possible use cases for PIANO .

• Private Light-weight Blockchain Node. When a light-weight blockchain node needs to
fetch data from the blockchain, it makes queries to other full nodes. A light-weight node
needs to make a verification pass over the blockchain history, and it has frequent queries,
which makes PIANO a suitable privacy-preserving solution.

• Private DNS Service. DNS queries are frequently made, typically during specific periods
(e.g., daytime) PIANO is also suitable for building a private DNS service. Users can
preprocess during rest time and make queries during the online phase.
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Chapter 3

QuarterPIR: Efficient Preprocessing PIR
from List-Decodable Privately
Programmable Pseudorandom Set

3.1 Overview

In this chapter, we still focus on the client-specific preprocessing PIR model introduced by
Corrigan-Gibbs and Kogan [CK20], where a one-time preprocessing phase is performed between
the server and a client before its first query. The client stores the preprocessing result locally, and
the client then makes an unbounded number of private queries to the server’s database.

Motivation. Our Piano work (see Chapter 2) and a subsequent work by Ren et al. [RMS24]
showed that public-key cryptography is not necessary for achieving a preprocessing PIR scheme
with Õλ(

√
n) online computation and communication cost per query, while consuming Õλ(

√
n)

client storage. These schemes already achieve the optimal tradeoff in terms of client storage
cost and the online computation due to the lower bounds by Corrigan-Gibbs, Henzinger, and
Kogan [CHK22] and Yeo [PY22]. However, there is a significant gap in terms of their com-
munication cost and the best theoretical PIR results that rely on public-key cryptography. In
particular, the best known sublinear preprocessing PIR schemes with public-key cryptography
(including our own work [ZLTS23] and the work of Lazzaretti and Papamanthou [LP23a]) can
achieve Õλ(1) online communication per query, while the best known schemes without public-
key cryptography (including Piano [ZPSZ24] and the work of Mughees et al. [RMS24]) can
only achieve Õλ(

√
n) online communication per query. Closing this gap is not only of theoret-

ical interest, but also of practical importance, as all known concretely efficient sublinear PIR
schemes [LP23b, ZPSZ24, RMS24] fall into this category.

Overview of results. We show new results that improve the state of our understanding regarding
preprocessing PIR. In all of our constructions, the server only needs to store the original database
and need not store any per-client state.

Main result 1. First, we construct a two-server preprocessing PIR scheme with asymptotically
better communication than prior work, relying only on the existence of PRFs (which is equivalent
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Table 3.1: Comparison of single-server and two-server preprocessing PIR schemes (for
unbounded queries). Any single-server scheme immediately implies a two-server scheme with
the same performance bounds. n is the size of the database and m is the number of clients. The
computation overhead counts both the client and the server’s computation, and here we report
the expected asymptotic costs. The server space counts only the extra storage needed on top of
storing the original database.

Scheme Assumpt. Compute Comm. Space # Concrete
client server servers eff.

With public-key cryptography
[CHK22] LWE Õλ(

√
n) Õλ(

√
n) Õλ(

√
n) Õλ(m · n)∗ 1 ✗

[ZLTS23, LP23a] LWE Õλ(
√
n) Õλ(1) Õλ(

√
n) Õλ(m · n)∗ 1 ✗

[LMW23] Ring-LWE poly((logn)1/ϵ) poly((logn)1/ϵ) 0 n1+ϵ 1 ✗

[SACM21] LWE Õλ(
√
n) Õλ(1) Õλ(

√
n) 0 2 ✗

[LP23b] Various Õλ(
√
n) Õλ(1) Õλ(

√
n) 0 2 ✓

Our work Various Õλ(
√
n)

Õ(
√
n) offline

Õλ(
√
n) 0 1 ✓

Õλ(1) online

Without public-key cryptography
[BIM00] None O(n/ log2 n) O(n1/3) 0 O(n2) 2 ✗

[BIM00] None O(n1/2+ϵ) O(n1/2+ϵ) 0 O(n1+ϵ′ )∗∗ 2 ✗

[CK20] OWF Õλ(
√
n) Õ(

√
n) Õλ(

√
n) 0 2 ✓

[KCG21] OWF O(n) Õλ(1) Õλ(
√
n) 0 2 ✓

[ZPSZ24, RMS24] OWF Õλ(
√
n) O(

√
n) Õλ(

√
n) 0 1 ✓

Our work OWF Oλ(
√
n) Oλ(n

1/4) Õλ(
√
n) 0 2 ✓

Our work OWF Oλ(
√
n)

O(
√
n) offline

Õλ(
√
n) 0 1 ✓Oλ(n

1/4) online

∗ :

In the unbounded query setting, some earlier works [ZLTS23, LP23a, CHK22] require that the next
preprocessing is persistently piggybacked on the current window of O(

√
n) operations, and the

preprocessing consumes Oλ(n) server space per client to evaluate an Õ(n)-sized circuit containing a
sorting network with FHE.
∗∗ : ϵ′ > 0 depends on ϵ.

to the existence of one-way functions). Our result is stated in the following theorem.
Theorem 3.1.1 (Two-server preprocessing PIR with improved communication). Assume the
existence of one-way functions. There exists a two-server preprocessing PIR scheme with Oλ(n

1/4)

communication and Oλ(n
1/2) computation per query, while incurring Õλ(n

1/2) client storage.
In comparison with the prior work of Beimel et al. [BIM00], our Theorem 3.1.1 achieves

significant asymptotic improvements in communication, computation, and server-side storage. On
the other hand, we need to assume one-way functions whereas Beimel et al. [BIM00]’s schemes
are information theoretic; further, we additionally require Õ(

√
n) space on each client. However,

our construction that gives Theorem 3.1.1 is simple and concretely efficient, which is another
advantage over Beimel et al. [BIM00].

Main result 2. Second, we construct a new preprocessing PIR scheme in the single-server
setting that improves the online communication in comparison with the state-of-the-art. In this
theorem, we differentiate between online communication and offline communication. The online
communication is the communication necessary for the client to obtain an answer to its query, so
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it matters to the response time of the client. The offline communication is the cost of background
maintenance work amortized to each query, and is not on the critical path of the client’s response
time.
Theorem 3.1.2 (Single-server preprocessing PIR with improved online communication). Assume
the existence of one-way functions. There exists a single-server preprocessing PIR scheme with
Oλ(n

1/4) online communication, O(n1/2) offline communication, Oλ(n
1/2) server computation

and Õλ(n
1/2) client computation per query, while incurring Õ(n1/2) client storage.

In comparison with our prior scheme PIANO, Theorem 3.1.2 improves the online communi-
cation cost from Õ(

√
n) to Õλ(n

1/4), while keeping all other costs the same. Moreover, recall
that earlier works [CK20, CHK22], proved the time-space product lower bound, showing that the
product of the client space and the online server time has to be at least linear in n. In this sense,
Theorem 3.1.2 is tight (up to polylogarithmic factors) in terms of this time-space product.

Similar to Piano [ZPSZ24] and Mughees et al. [RMS24], our 1-server result uses the same
model where the client is allowed to make a streaming pass over the database during preprocessing
(while consuming small client space). Otherwise, we would encounter the well-known OT
barrier [DCMO00].

We evaluate the concrete performance of our 1-server scheme in Section 3.6.

Additional results. While our main results focus on constructions in Minicrypt (i.e., without
public-key cryptography), if we are willing to assume classical PIR with Õλ(1) communica-
tion (which is known from various assumptions such as LWE, Φ-hiding, Damgård-Jurik, DDH,
QR) [CMS99, HHCG+22, MW22, DGI+19], our techniques would then give rise to a concretely
efficient single-server PIR scheme with Õλ(1) online communication, Õ(

√
n) offline communi-

cation and computation per query, consuming Õλ(
√
n) client storage. In comparison, although

earlier works [ZLTS23] and Lazzaretti and Papamanthou [LP23a] claim to achieve polylogarith-
mic (online and offline) communication, their schemes suffer from a significant drawback, that is,
the server would have to persistently store at least n amount of state per client! Specifically, our
work [ZLTS23] and Lazzaretti and Papamanthou [LP23a] require the preprocessing phase of the
next epoch be piggybacked on the queries of the current epoch; however, their preprocessing phase
requires that the server allocate at least n amount of space per client, to perform homomorphic
evaluation of a circuit which is super-linear in size. So far, in the unbounded query setting, it
is not known how to get polylogarithmic overall communication (including offline and online)
per query under any assumption, when the server stores only the original database. We state this
additional result in the following theorem.
Theorem 3.1.3. Assume the existence of a classical single-server PIR scheme (i.e., without
preprocessing) that enjoys Õλ(1) communication per query. Then, there exists a single-server
preprocessing PIR scheme with Õλ(1) online communication, Õλ(

√
n) computation, Õ(

√
n)

offline communication, requiring Õλ(
√
n) client storage.

3.1.1 Technical Highlights
The earlier work of Shi et al. [SACM21] showed that assuming the existence of a privately
puncturable PRF [BLW17, BKM17, CC17, BTVW17], one can construct an efficient 2-server
preprocessing PIR scheme with Õλ(

√
n) computation per query and requiring Õλ(

√
n) client
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storage. Further, the communication per query is only polylogarithmically larger than the size of
a punctured key, which can be as small as Õλ(1) using known constructions [BLW17, BKM17,
CC17, BTVW17]. Unfortunately, the only known techniques for constructing a privately punc-
turable PRF [BLW17, BKM17, CC17, BTVW17] require two layers of fully homomorphic
encryption, and it is not known whether privately puncturable PRFs can be built from only
one-way functions. The elegant TreePIR work of Lazzaretti and Papamanthou [LP23b] showed
how to replace the privately puncturable PRF with a weaker primitive called a “weakly privately
puncturable PRF”. Unfortunately, their approach relies on recursing on a classical PIR scheme for
a
√
n-sized database, and because this database is dynamically constructed during the scheme, it

is not possible to preprocess it. Therefore, Lazzaretti and Papamanthou [LP23b]’s techniques also
require public-key cryptography.

Privately programmable pseudorandom set with list decoding. Our main contribution is a
new primitive called Privately Programmable Pseudorandom Set with List Decoding (PPPS).
Given a PPPS key sk, we can expand the key sk to a pseudorandom set denoted Set(sk) of size√
n. Further, deciding whether any element in {0, 1, . . . , n− 1} is in the set takes only constant

time. Importantly, we can call a Program algorithm to program sk such that the new set is almost
the same as the original Set(sk), except that only one element in the set is now changed to
another specified element. The programmed key does not leak information about which element
is programmed.

Our notion of PPPS is otherwise very similar to our previous work [ZLTS23], except that we
make a relaxation on the correctness when decoding a programmed key — this relaxation is the
crucial reason why we can construct it from only one-way functions, whereas our previous work’s
construction [ZLTS23] relies on LWE. More specifically, we do not require that one can correctly
recover the programmed set given a programmed key sk′. Instead, we allow list-decoding, that is,
given a programmed key sk′, the decoding process outputs a list of candidate sets, among which
one must be the true programmed set. Moreover, the list-decoding of our PPPS construction is
structured, allowing succinct representation and efficient computation.

Using only one-way functions, we construct a PPPS scheme with list decoding for a pseudo-
random set of size

√
n, where the programmed key has size Oλ(n

1/4).
Using such a PPPS scheme, we show how to get a two-server scheme with Oλ(n

1/4) commu-
nication and Õλ(n

1/2) computation per query, using only Õλ(n
1/2) client space (Theorem 3.1.1).

Unlike TreePIR [LP23b], our scheme need not recurse on a classical PIR scheme, and thus we do
not need public-key operations.

A new broken hint technique. To get our single-server scheme (Theorem 3.1.2), we encounter
some further challenges. In particular, it would have been easy to make the scheme work if our
PPPS scheme supported programming a key twice at two points. Specifically, in our construction,
when the client consumes a pseudorandom set (represented by sk) in the hint table containing the
current query x, it needs to replace the consumed entry with another randomly sampled PPPS
key sk subject to containing the query x. One way to achieve this is to fetch an unconsumed key
from a backup table, and program the key to contain x. However, later, when the client consumes
this already-programmed key in another query y, it needs to program the point y to some other
random point in order not to leak the query y.

Unfortunately, our PPPS construction does not support programming twice. Interestingly,
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earlier works [ZLTS23, LP23a] also encountered a similar challenge of needing to program a key
twice, but there it was resolved using different techniques that relied on the LWE assumption,
which would not work in our setting.

The way we resolve the problem is to introduce a new technique of allowing broken entries
in the hint table. Basically, if the client consumes some PPPS key sk in the hint table, it
simply replaces the consumed sk with a new entry sampled according to the desired distribution
(required for privacy). However, since the client did not perform any preparation work during the
preprocessing phase for this new entry, consuming this entry later in a new query would result in
an incorrect answer, i.e., the replaced entry is broken. Fortunately, we can amplify correctness
through repetition. We defer the details to the subsequent technical sections.

Other applications of the broken hint technique. The broken hint technique can also lead
to other interesting applications. For example, recall that TreePIR is a 2-server preprocessing
scheme [LP23b]. With our new broken hint technique, we can convert TreePIR to a single-server
scheme which enjoys the efficiency stated in Theorem 3.1.3.

Further improvements. The approach of using broken entries introduces a super-logarithmic
blowup in the communication and computation costs, due to the repetition needed for correctness
amplification. In Section 3.5, we suggest an improved scheme that avoids this super-logarithmic
blowup and gets us the tighter bounds stated in Theorem 3.1.2, but the resulting scheme is
somewhat more complex to describe.

3.2 Privately Programmable Pseudorandom Set with List De-
coding (PPPS)

3.2.1 Definition

Distribution of set Dn. We want to construct a pseudorandom set whose distribution emulates a
set S ⊂ {0, 1, . . . , n− 1} of size

√
n sampled from the following distribution denoted Dn — we

assume that n is a perfect forth power (n1/4 is an integer):
• Divide the n elements into

√
n chunks indexed with 0, 1, . . . ,

√
n− 1, where chunk i contains

the elements [ℓ ·
√
n, (ℓ+ 1) ·

√
n− 1]

• For each chunk ℓ ∈ {0, 1, . . . ,
√
n− 1}, sample a random offset δℓ

$←{0, 1, . . . ,
√
n− 1}.

• Output the following set S := {ℓ ·
√
n+ δℓ}ℓ∈{0,1,...,√n−1}.

Offset representation of a set. For convenience, in the rest of the section, we will always use an
offset representation of a set, i.e., we will represent a set as

S := {δ0, . . . , δ√n−1}

where each δi ∈ {0, . . . ,
√
n− 1} represents the relative offset of the i-th element inside the i-th

chunk.

Privately programmable pseudorandom set with list decoding. We introduce a new abstraction
called a privately programmable pseudorandom set with list decoding that we utilize in our PIR
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constructions that follow. Intuitively, this primitive provides an algorithm to generate a secret
key that represents pseudorandom subset of {0, . . . , n− 1} with a specific distribution. Further,
the primitive allows, given a key for a pseudorandom set, to produce a key for pseudorandom set
that is the same as the starting set except for being programmed at a particular location with a
specified value – with the guarantee that the new key does not reveal the programmed location.
Moreover, this primitive has a list decoding algorithm, that given a programmed key outputs a list
of sets such that one of them is the one is the correct set that the key represents.

Formally, define a privately programmable pseudorandom set (PPPS) with list decoding which
emulates the distribution Dn:

• sk← Gen(1λ, n): takes in the security parameter 1λ, the size of the set n, and outputs a secret
key sk.

• S ← Set(sk): takes in a secret key sk, and expands it to a random set S of size
√
n. We

sometimes write Set(sk)[i] to denote the element in the i-th chunk for this set.
• sk′, i← Program(sk, ℓ, δℓ): takes in a secret key sk, a chunk identifier ℓ ∈ {0, 1, . . . ,

√
n− 1},

a desired offset δℓ within the specified chunk ℓ, and outputs a programmed key sk′, and some
auxiliary information i that indicates which of the decoded sets will be correct.

• {S0, . . . , SL−1} ← ListDecode(sk′): takes in a programmed key sk′ and outputs a list of sets
S0, S1, . . . , SL−1, such that one of them is the correctly programmed set corresponding to the
key sk′.

Correctness. Correctness requires that for any λ, n ∈ N, for any ℓ, δℓ ∈ {0, 1, . . . ,
√
n −

1}, the following holds with probability 1: let sk ← Gen(1λ, n), sk′, i ← Program(sk, ℓ, δℓ),
S0, . . . , SL−1 ← ListDecode(sk′), it must be that Si is equal to the Set(sk) but replacing the ℓ-th
element with δℓ instead.

Pseudorandomness. We say that a PPPS scheme emulates Dn iff the following two distributions
are computationally indistinguishable:
• Sample S

$←Dn and output S;
• Sample sk← Gen(1λ, n), output Set(sk).

Private programmability. We require that there exists a probabilistic polynomial time simulator
Sim such that for any n ∈ N that is a perfect forth power and polynomially bounded in λ, any
ℓ ∈ {0, 1, . . . ,

√
n− 1}, any index x that belongs to the ℓ-th chunk, the outputs of the following

experiments be computationally indistinguishable:
• Real. Sample sk ← Gen(1λ, n) subject to x ∈ Set(sk), let δℓ

$←{0, 1, . . . ,
√
n − 1}, and let

sk′, ← Program(sk, ℓ, δℓ), output sk′.
• Ideal. Output Sim(1λ, n).

Efficiency. In our PIR scheme later, we need a programmed key sk′ to have size at most Oλ(n
1/4).

Further, the size of the decoded list L = n1/4. Naı̈vely, since each set has size
√
n, it would take

n3/4 space to represent the L decoded sets. However, we want our scheme to satisfy a non-trivial
notion of efficiency, that is, it takes only O(

√
n) space to represent all L decoded sets. Specifically,

the compression is possible because the L decoded sets are correlated.
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3.2.2 Construction

Intuition. In our construction, we will divide the
√
n chunks into n1/4 superblocks where the i-th

superblock contains the i-th group of n1/4 consecutive chunks.
To program a PPPS key in some chunk ℓ with the specified offset δ̃, we first expand the

PPPS key to n1/4 superblock keys denoted k0, . . . , kn1/4−1. Let i be the superblock corre-
sponding to chunk ℓ. We then replace ki with a randomly sampled superblock key k̃i. We
then expand ki into n1/4 offsets denoted δ0, . . . , δn1/4−1, one corresponding to each chunk
contained in the i-th superblock. Suppose chunk ℓ corresponds to the j-th chunk within the
i-th superblock. We then replace δj with the desired δ̃. The programmed key is the com-
bination of k0, . . . , ki−1, k̃i, ki+1, . . . , kn1/4−1, and δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1. Given this
programmed key, we do not know which superblock should contain the expanded offsets
δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1. However, we can generate a list of n1/4 candidate sets by
plugging in the offsets δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1 into each of the n1/4 superblocks. One of
them must be the true programmed set.

Detailed PPPS construction. Henceforth, let PRF1 : {0, 1}λ × {0, 1} logn
4 → {0, 1}λ, and

PRF2 : {0, 1}λ × {0, 1}
logn
4 → {0, 1} logn

2 be two pseudorandom functions.
• Gen(1λ, n): Sample a PRF1 key sk and output sk.
• Set(sk):

1. First, expand sk to n1/4 superblock keys:

∀i ∈ {0, . . . , n1/4 − 1} : ki = PRF1(sk, i) (3.1)

2. Next, for each superblock i ∈ {0, . . . , n1/4− 1}, compute the pseudorandom offset for each
of its n1/4 chunks, that is:

∀i, j ∈ {0, . . . , n1/4 − 1} : δi,j = PRF2(ki, j) (3.2)

3. Define the alias δi·n1/4+j := δi,j , and output S := {δℓ}ℓ∈{0,...,√n−1}.

• Program(sk, ℓ, δ̃):

1. Expand sk to n1/4 superblock keys denoted as k0, . . . , kn1/4−1 in Equation (3.1).

2. Let i := ⌊ℓ/n1/4⌋ be the superblock containing the ℓ-th chunk, let j := ℓ mod n1/4 be the
index of chunk ℓ within superblock i.

3. Sample a fresh PRF key k̃i to replace ki with.

4. For j′ ∈ {0, 1, . . . , n1/4 − 1}, compute δj′ = PRF2(ki, j
′).

5. Output the following terms:

sk′ :=

(
(k0, . . . , ki−1, k̃i, ki+1, . . . , kn1/4−1),

(δ0, . . . , δj−1, δ̃, δj+1, . . . , δn1/4−1),

)
, i

• ListDecode(sk′):
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Figure 3.1: Two-layer set representation. The first layer key expands to n1/4 superblock keys.
Each superblock key further expands to n1/4 offsets, one for each chunk in the superblock.

1. Parse sk′ = ({ki}i∈{0,...,n1/4−1}, {δ∗j}j∈{0,...,n1/4−1}).

2. ∀i, j ∈ {0, . . . , n1/4 − 1}, compute δi,j like in Equation (3.2), let S be the matrix S :=
{δi,j}i,j∈{0,1,...,n1/4−1}.

3. For i ∈ {0, . . . , n1/4 − 1}, let Si be the same as S except for substituting the i-th row with
{δ∗j}j∈{0,...,n1/4−1}. In other words,

Si :=



δ0,0, . . . , δ0,n1/4−1,
. . . , . . . , . . . ,
δi−1,0, . . . , δi−1,n1/4−1,
δ∗0, . . . , δ∗

n1/4−1 ,
δi+1,0, . . . , δi+1,n1/4−1,
. . . , . . . , . . . ,
δn1/4−1,0, . . . , δn1/4−1,n1/4−1,


4. Output (Flatten(S0), . . . ,Flatten(Sn1/4−1)) where Flatten outputs the vector obtained from

concatenating all rows of the matrix. These are the offset representations of the n1/4

candidate sets, each of size
√
n.

Size of programmed key and efficiency of ListDecode. Clearly, the programmed key sk′ output
by Program has size Oλ(n

1/4). It is also easy to have a succinct representation of size O(
√
n)

of all n1/4 candidate sets output by ListDecode. Specifically, one can first compute the common
set S of size

√
n (we abuse the notation that this set is derived from flattening the matrix S in

ListDecode). Then, the symmetric difference between the i-th candidate set and the common set
S is just 2n1/4 elements (those elements in the i-th superblocks). So the succinct representation
(and hence the efficient algorithm) of ListDecode takes Oλ(

√
n) space and time.

Efficient set membership. The above construction also supports Oλ(1)-time set membership
query. Given a secret key sk that has not been programmed, to check if some element x ∈ Set(sk)
or not, one simply has to check

PRF2(PRF1(sk, ⌊ℓ/n1/4⌋), ℓ mod n1/4)
?
= x mod n1/2 where ℓ = ⌊x/n1/2⌋
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"′Server: "# "%

Client: 

Step 1: The client expands the PPPS key to n1/4

superblock keys and replaces the key corresponding
to x’s superblock with a random key.

!"
#$ #" #%

#′Server: 
Here? Here? Here?

#$ #%

Client: 

Step 2: The client expands the replaced superblock
key to n1/4 offsets and replaces x’s offset to a ran-
dom one. The server constructs the candidate sets
by plugging these offsets into every superblock.

Figure 3.2: Illustration about how PPPS is used in our PIR schemes. The client programs the key
and the server will decode the list of candidate sets.

3.2.3 Proof of Correctness
To see the correctness, let sk ← Gen(1λ, n), let sk′, i∗ ← Program(sk, ℓ, δℓ). Recall that sk′ can
be parsed as sk′ = ({ki}i∈{0,...,n1/4−1}, {δ∗i }i∈{0,...,n1/4−1}), and by construction, we know that
i∗ = ⌊ℓ/n1/4⌋ is the index of the superblock that contains the chunk ℓ. Let j∗ := ℓ mod n1/4.
Let S∅ := Set(sk), and we can view S∅ as a n1/4 × n1/4 matrix. The correct programmed set S∗

is S∅ but replacing the element at index (i∗, j∗) with δℓ.
Below, we show that the set Si output by ListDecode is the same as S∗. By construction, in

the ListDecode(sk′) algorithm, the intermediate set S is the same as S∅ except for the i∗-th row.
Further, the i∗-th row of S∅ is the same as {δ∗j}j∈{0,...,n1/4−1} but replacing the j∗-th element with
δℓ. Additionally, the Si output by ListDecode is obtained by replacing the i∗-th row of S with
{δ∗i }i∈{0,...,n1/4−1}.

3.2.4 Proof of Security
We now prove pseudorandomness and private programmability assuming the security of the
underlying PRF1 and PRF2.

Pseudorandomness. Pseudorandomness follows directly from the pseudorandomness of the
underlying PRFs.

Private programmability. We can consider the following sequence of hybrid experiments. Fix
an arbitrary chunk identifier ℓ and an index x that belongs to the ℓ-th chunk. Throughout, let
i∗ = ⌊ℓ/n1/4⌋, let j∗ = ℓ mod n1/4.

Experiment Real. Recall the definition of the real experiment. Sample a PRF key sk such
that PRF2(PRF1(sk, i

∗), j∗) = x mod
√
n. Let δℓ

$←{0, 1, . . . ,
√
n − 1}, and let sk′, ←

Program(sk, ℓ, δℓ), output sk′.

Experiment Hyb. Same as Real except with the following modification: when executing the
Program(sk, ℓ, δℓ) algorithm, instead of using the k0, . . . , kn1/4−1 keys that are expanded using
PRF1(sk, ·), sample k0, . . . , kn1/4−1 at random subject to PRF2(ki∗ , j

∗) = x mod
√
n.
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Lemma 3.2.1. Given that PRF1 is secure, Hyb is computationally indistinguishable from Real.

Proof. Suppose there is an efficient adversary A that can distinguish Real and Hyb with non-
negligible probability. We can construct the following efficient reduction B which can distinguish
a PRF (the family of PRF1) from a random function with non-negligible probability. Basically, B
is interacting with its own challenger who either answers queries using a PRF or using a truly
random function. B will query its own challenger on the inputs 0, 1, . . . , n1/4−1, and it will obtain
k0, . . . , kn1/4−1 from its challenger. It will check if ki∗ satisfies the relation PRF2(ki∗ , j

∗) = x
mod

√
n. If not, B aborts and outputs 0. Otherwise, it runs the Program algorithm where it plugs

in the terms k0, . . . , kn1/4−1 as the superblock keys. It gives the resulting sk′ to A. Henceforth, we
use b = 0 to denote the world in which B’s challenger uses a truly random function, and we use
b = 1 to denote the world in which B’s challenger uses a randomly sampled PRF function. We
use the notation Prb[·] to denote the probability of events in world b ∈ {0, 1}. Let G be the good
event that the relation PRF2(ki∗ , j

∗) = x mod
√
n is satisfied.

Pr
b
[B outputs 1] = 0 · Pr

b
[G] + Pr

b
[A outputs 1|G] · Pr

b
[G]

We know that Pr0[G] = 1/
√
n which is non-negligible. If the PRF is secure, then it must be

that |Pr1[G]− Pr0[G]| ≤ negl(λ) due to a straightforward reduction to PRF security. Therefore,
we have that ∣∣∣Pr

1
[B outputs 1]− Pr

0
[B outputs 1]

∣∣∣
=
∣∣∣Pr

1
[A outputs 1|G] · Pr

1
[G]− Pr

0
[A outputs 1|G] · Pr

0
[G]
∣∣∣

≥
∣∣∣Pr

1
[A outputs 1|G]− Pr

0
[A outputs 1|G]

∣∣∣ · 1√
n
− negl(λ)

Observe also that in world 0, conditioned on G, A’s view in the experiment is identically
distributed as Hyb. In world 1, conditioned on G, A’s view in the experiment is identically
distributed as Real. Therefore, the term∣∣∣Pr

1
[A outputs 1|G]− Pr

0
[A outputs 1|G]

∣∣∣
represents A’s advantage in distinguishing Real and Hyb. We can now conclude that if A can
distinguish Real and Hyb with non-negligible probability, then B can break PRF security with
non-negligible probability.

Experiment Ideal. The Ideal experiment is almost the same as Hyb except with the following
modification: when outputting the sk′, instead of using the δ0, . . . , δj∗−1, δj∗+1, . . . , δn1/4−1 terms
derived from evaluating PRF2(ki∗ , ·) at the points 0, 1, . . . , j∗ − 1, j∗ + 1, . . . , n1/4 − 1, we now
sample δ0, . . . , δj∗−1, δj∗+1, δn1/4−1 at random from {0, . . . , n1/2 − 1} instead.

Observe that in the Ideal experiment, we no longer make use of knowledge of the query x.
Therefore, the description of the Ideal experiment also uniquely specifies the simulator Sim we
want to construct.
Lemma 3.2.2. Given that PRF2 is secure, Ideal is computationally indistinguishable from Hyb.
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Proof. It suffices to show that the following two probability ensembles are computationally
indistinguishable for any fixed δ∗ ∈ {0, 1, . . . ,

√
n− 1}, and j∗ ∈ {0, 1, . . . , n1/4 − 1}.

1. Distr0: Output a randomly sampled vector δ0, . . . , δn1/4−1 ∈ {0, 1, . . . ,
√
n− 1}n1/4 .

2. Distr1: Sample a PRF key k subject to PRF2(k, j
∗) = δ∗. Sample δ′ ∈ {0, 1, . . . ,

√
n− 1} at

random. For j ∈ {0, 1, . . . , n1/4 − 1}, compute δj = PRF2(k, j). Output

δ0, . . . , δj∗−1, δ
′, δj∗+1, . . . , δn1/4−1.

If there is an efficient adversary A that can distinguish between the above Distr0 and Distr1
with non-negligible probability, we can construct an efficient reduction B that can distinguish
whether it is interacting with a random oracle or a randomly chosen PRF function. Basically, B
sends the inputs 0, . . . , n1/4 − 1 to the oracle it is interacting with, and gets back δ0, . . . , δn1/4−1.
If δj∗ ̸= δ∗, then B aborts and outputs 0. Otherwise, it replaces δj∗ with a random value from
{0, . . . , n1/2 − 1} and gives the resulting vector to A. Suppose B is interacting with a random
oracle, then conditioned on the good event δj∗ = δ∗, A’s view is identically distributed as Distr0.
On the other hand, suppose B is interacting with a PRF, then conditioned on the good event
δj∗ = δ∗, A’s view is identically distributed as Distr1. The rest of the proof can be completed due
to a similar probability calculation as Theorem 3.2.1.

3.3 Our Two-Server PIR Scheme

3.3.1 Construction

Intuition. The scheme has three major components.
• Preprocessing. The client randomly samples Õ(

√
n) privately programmable pseudorandom

sets, each of size
√
n. The client queries the right server for the sets’ parities, storing them

along with the keys. Moreover, the client queries the right server for the values of logarithmic
numbers of randomly sampled indices for each

√
n-size chunk. Those entries are stored as the

“replacement” entries.
• Online Query. Given a query x, the client finds a set S such that x ∈ S. The client then finds a

replacement entry r that resides in the same chunk as x. The client privately programs the set,
intending to change it from S to (S/{x}) ∪ {r}. Once the client knows the parity for this new
set, it can compute DB[x] because it already knows DB[r] and the parity for S. The client uses
the PPPS programming function to program the set, and sends the programmed key sk′ to the
left server. The left server runs the list decoding algorithm, then computes and returns all n1/4

candidate sets’ parities. The client knows that there is one candidate parity corresponding to the
correct set (S/{x}) ∪ {r}, which is enough to compute the answer.

• Refresh. Each query consumes a set. After each query, the client just samples a new set
conditioned on it containing the query x, and queries the right server for its parity with the same
query technique mentioned above. The new set will replace the consumed set.

The detailed algorithm for bounded, random queries. We describe the detailed construction
for Q =

√
n log κ · α random, distinct queries in Figure 3.3. We can easily extend such a scheme
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Two-server scheme for Q =
√
n log κ · α queries

Offline preprocessing.
• Hint table. Let M1 =

√
n log κ · α(κ). For each i ∈ [M1], sample a fresh PPPS key

ski, send ski to the right server and receive a parity pi := ⊕j∈Set(ski)DB[j] back. Let
T := {(ski, pi)}i∈[M1] denote the client’s hint table.

• Replacement entries. For each chunk ℓ ∈ {0, . . . ,
√
n − 1}, repeat the following M2 =

3 log κ · α(κ) times: sample a random index r1 ∈ {ℓ ·
√
n, . . . , (ℓ+ 1) ·

√
n− 1} in chunk

ℓ, send r1 to the left server, and receive DB[r1]. Store the tuple (r1,DB[r1]).
Similarly, for each chunk ℓ ∈ {0, . . . ,

√
n− 1}, repeat the following M2 times: sample a

random index r2 in chunk ℓ, send r2 to the right server, and receive DB[r2]. Store the tuple
(r2,DB[r2]).

Query for index x ∈ {0, 1, . . . , n− 1}.
1. Step 1: (Client Querying)

• Find the first entry (sk, p) in the hint table such that x ∈ Set(sk). a

• Find the first unconsumed replacement entry (r1,DB[r1]) retrieved from right server,
such that r1 is in chunk(x). b

• (sk′1, j1)← Program(sk, chunk(x), r1 mod
√
n).

• Send sk′1 to the left server.

2. Step 2: (Client Reconstructing)
• Receive (β0,1, . . . , βn1/4−1,1) from the left server.
• Save the answer as y = p⊕ DB[r1]⊕ βj1,1.

3. Step 3: (Client Refreshing)
• Sample sk2 such that x ∈ Set(sk2).
• Find the first unconsumed replacement entry (r2,DB[r2]) retrieved from left server,

such that r2 is in chunk(x).
• (sk′2, j2)← Program(sk2, chunk(x), r2 mod

√
n).

• Send sk′2 to right server.
• Receive (β0,2, . . . , βn1/4−1,2) from the right server.
• Replace the hint (sk, p) with (sk2,DB[r2]⊕ βj2,2 ⊕ y) in the table.

4. Server Responding: (Same for Left and Right Server)
• Upon receiving sk′, compute (S0, S1, . . . , Sn1/4−1)← ListDecode(sk′).
• Return (β0, . . . , βn1/4−1) to the client where βi = ⊕i∈Sb

DB[i].
aIn a rare case, if not found, let sk be a freshly sampled PPPS key subject to x ∈ Set(sk), and let p = 0.
bIn a rare case, if such an r1 is not found, let it be a random index in chunk(x), and use 0 whenever DB[r1]

is needed later.

Figure 3.3: Two-server preprocessing PIR with Oλ(n
1/4) communication, Oλ(n

1/2) computation
based on PRFs.
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to support unbounded, arbitrary queries using known techniques [ZLTS23]. For completeness, we
explain how the extension works shortly after.

Efficiency. Observe that the list decoding produces n1/4 candidate sets, each of size
√
n. Naively,

expanding all sets and computing their corresponding parities takes Oλ(n
3/4) time. We are still

going to rely on the fact that ListDecode has an O(
√
n)-size succinct representation to optimize

computation. Recall that we can first compute the common set of size
√
n. The symmetrical

difference between each possible decoding set and the common set will only contain 2n1/4

elements. Therefore, to compute the parities for all n1/4 possible sets, we first compute the parity
for the common set S, which takes Oλ(

√
n) time. Then, it takes Oλ(n

1/4) time to enumerate the
symmetrical difference between the i-th set and the common set, which suffices to compute the
parity for the i-th set. So the total computation time will be Oλ(

√
n).

Supporting unbounded, arbitrary queries. For completeness, we review the techniques de-
scribed in previous works about upgrading the PIR scheme from supporting Q random, distinct
queries to supporting unbounded, arbitrary queries. We can easily get rid of the distinct query
assumption in the following way: we require the client to store a local cache of size Q for caching
the most recent Q queries. If the client wants a repeated query, it can lookup in the cache and
make a distinct fake query.

Further, we can assume that the queries are random without loss of generality as follows:
we can have the client and the servers agree on a small-domain pseudorandom permutation
(PRP) [RY13] (which is implied by one-way functions [HMR12]) upfront and the servers can
permute the database according to the PRP. Another option is to have one of the servers build the
database as a key-value storage and use a cuckoo hash table [PR04, Yeo23] directly based on a
PRF to locate the queries, and share it with the other server. Notice that in both implementations,
the client can still make queries adaptively depending on the real query sequence and the responses,
which is sufficient for practical usage. Then, as long as the client makes the queries independent
of the randomness of the PRP/PRF, those queries can be considered as uniformly random. This
assumption is only needed for the correctness.

Lastly, we can remove the bounded Q query assumption as follows: we use a pipelining trick
suggested in earlier works [ZLTS23, ZPSZ24]. Essentially, we can spread the preprocessing for
the next window of Q queries over the current window of Q queries.
Theorem 3.3.1. Let α(κ) be any superconstant function. Suppose that PRF1,PRF2 are secure
pseudorandom functions, and n is bounded by poly(λ) and poly(κ). The two-server scheme
in Figure 3.3 that supports Q =

√
n log κ · α random and distinct queries is private, and correct

with probability 1− negl(λ)− negl(κ) for some negligible function negl(.). Further, it achieves
the following performance bounds:

• Oλ(
√
n log κα(κ)) client storage and no additional server storage;

• Preprocessing Phase:
Oλ(n log κ · α(κ)) server time and Oλ(

√
n log κ · α(κ)) client time;

Oλ(
√
n log κ · α(κ)) communication;

• Query Phase:
Oλ(
√
n) expected client time and Oλ(

√
n) server time per query;

Oλ(n
1/4) communication per query.
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Therefore, the amortized communication per query is Oλ(n
1/4), and the amortized server compu-

tation and expected client computation per query is Oλ(
√
n).

Proof. We defer the privacy and correctness proofs to Section 3.3.2 and Section 3.3.3 respectively.
Here, we focus on proving the efficiency claims.

In the proof, we abuse the notation and write α(κ) as α. The client stores M1 =
√
n log κ · α

number of PPPS keys, and M2 = 3 log κ · α number of replacement entries per chunk. Therefore,
the space required is Oλ(

√
n log κ · α).

During the offline phase, the client sends M1 PPPS keys to the right server, and sends M2

indices per chunk to either server for constructing replacement entries. Therefore, the offline
communication is bounded by Oλ(

√
n log κ · α). The right server needs to expand the sets for

each PPPS key received and evaluate the xor-sums. Both servers need to return the bits for the
replacement entries. Therefore, the total server computation is bounded by Oλ(n log κ · α).

During the query phase, the client sends one programmed PPPS key to each server, and the
size of a programmed key is at most Oλ(n

1/4). Each server sends back the xor-sums of n1/4

candidate sets. Each candidate set has size n1/2, however, all n1/4 candidate sets have a succinct
representation of size only n1/2, and servers can compute this succinct representation in time
Oλ(n

1/2). Further, it is not hard to see that due to the structure of the candidate sets, the server can
compute all n1/4 xor-sums in time only O(n1/2). Therefore, the servers’ running time is bounded
by Oλ(n

1/2) during each query. The client needs to find a matched hint, and compute O(1) xor
operations during each query. Its running time is dominated by the cost of finding a matched hint,
which can be done by invoking the set membership operation for each of the M1 hints. Using
Theorem 3.3.2 and the pseudorandomness property of the PPPS, the expected number of hints
checked until a key sk such that Set(sk) contains the current query is found is O(

√
n). Also, the

expected number of tries in the rejection sampling during the refresh phase is also
√
n. Therefore,

the client’s expected running time per query is upper bounded by Oλ(
√
n).

3.3.2 Privacy Proof
Suppose that the underlying PPPS scheme satisfies private programmability. Below, we prove the
privacy of our two-server PIR scheme.

In the preprocessing phase, the server sends the sets Set(ski) only to the right server, thereby
no information about these sets is leaked to the left server. Similarly, no information about the
indices r1 is leaked to the right server and no information about the indices r2 is leaked to the
left server. We will first prove the lemma about the distribution of client’s hint table, when the
adversary controls either of the left or right server.
Lemma 3.3.2. Recall that in each time step t, the adversary A adaptively chooses a query
xt ∈ {0, 1, . . . , n − 1} for the client. At the end of each time step t, the client’s hint table is
distributed as a table of size M1, where each entry is a freshly sampled PPPS key, even when
conditioned on A’s view so far.

Proof. Suppose the above statement holds at the end of time step t−1. We prove that it still holds
at the end of time step t. Since the hint table is distributed as a fresh randomly sampled table even
when conditioned on A’s view at the end of t− 1, we may henceforth assume an arbitrary fixed
query xt. The distribution of the hint table before the t-th query can be equivalently rewritten as:
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• First, determine the decision whether any of the M1 entries contains the current query xt, and if
so, which is the first entry (denoted i∗) that contains xt. If not found, we assume i∗ = M1 + 1.

• For each i < i∗, sample a random PPPS key subject to not containing xt.
• For i = i∗, sample a random PPPS key subject to containing xt.
• For each i > i∗, sample a random PPPS key.

Using the above interpretation, it is easy to see that the distribution of the hint table after the
t-th query is unaltered, no matter which of the two servers A controls.

Left Server Privacy

We first construct the following simulator for proving left server privacy.

Simulator construction.
• During the preprocessing phase, for each chunk ℓ, sample M2 random indices belonging to ℓ,

send them to A.
• During each query, call the simulator of the PPPS scheme which outputs sk′, send sk′ to A.

Indistinguishability of Real and Ideal. We now prove the indistinguishability of the Real and
Ideal assuming the private programmability of the underlying PPPS scheme.

First, due to Theorem 3.3.2, we can equivalently rewrite the Real experiment for the right
server as follows: at the end of each time step, resample the entire hint table freshly at random
before continuing to answer more queries. As a result, the view of A who controls the right server
is distributed as:
• preprocessing phase. For each chunk ℓ, send M2 random indices in chunk ℓ to A.
• Each time step t.

sample a PPPS key sk at random subject to containing the query xt; sample δ at random
from {0, . . . ,

√
n− 1}.

call sk′, ← Program(sk, chunk(xt), δ);

send sk′ to A.

One way to see this is to think of the distribution of the table as the equivalent distribution in
the proof of Theorem 3.4.2. Further, observe that each r2 mod

√
n in the scheme is distributed

randomly from the perspective of the left server, since these indices were only sent to the right
server during the preprocessing phase.

Therefore, the rest of the proof follows due to a straightforward hybrid argument where we
replace the programmed keys (denoted sk′ earlier) sent to the right server in all time steps one by
one with a simulated key, relying on the private programmability of the underlying PPPS.

Right Server Privacy

We first construct the following simulator for proving right server privacy.

Simulator construction.
• During the preprocessing phase, send M1 randomly sampled PPPS keys toA. Further, for each

chunk ℓ, sample M2 random indices in ℓ, send them to A.
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• During each query, call the simulator of the PPPS scheme which outputs sk′, send sk′ to A.

Indistinguishability of Real and Ideal. We now prove the indistinguishability of the Real and
Ideal assuming the private programmability of the underlying PPPS scheme.

The view of A who controls the right server is distributed as:
• preprocessing phase. Sample M1 random PPPS keys, and send them to A. Further, for each

chunk ℓ, send M2 random indices in chunk ℓ to A.
• Each time step t.

sample a PPPS key sk at random subject to containing the query xt; sample δ at random
from {0, . . . ,

√
n− 1}.

call sk′, ← Program(sk, chunk(xt), δ);

send sk′ to A.

To see the above, observe that each r1 mod
√
n in the scheme is distributed randomly from the

perspective of the right server, since they were only sent to the left server during the preprocessing
phase.

Therefore, the rest of the proof follows due to a straightforward hybrid argument where we
replace the programmed keys (denoted sk′ earlier) sent to the right server in all time steps one by
one with a simulated key, relying on the private programmability of the underlying PPPS.

3.3.3 Correctness Proof

We show that with Q =
√
n log κ · α random, distinct queries, the probability of ever having

correctness error is negligibly small. An error can happen if one of the following bad events takes
place:
• No matched hint. During some query for x, no hint is found that contains the query x.
• Depleting replacement entries. During some query for x, there is no more replacement entry

of the form (r1,DB[r1]) or (r2,DB[r2]) corresponding to chunk(x).
Below, we show that the probability of each bad event during a window of Q random, distinct

queries is negligibly small.

Probability of no matched hint. Due to Theorem 3.3.2, for any fixed time step t, we can assume
the client’s hint table contains freshly sampled PPPS keys and is independent of the current query
xt. Due to the pseudorandomness property of the PPPS, the sets generated by the keys in the
hint table are computationally indistinguishable from M1 sets independently sampled from the
distribution Dn. Below we calculate the probability that a fixed element xt is not in any of the M1

sets sampled independently from Dn – the probability that xt is not contained in any entry in the
client’s hint table can only be negligibly different.

The probability that one set sampled from Dn contains xt is 1/
√
n. Therefore, the probability

that none of the M1 sets contains xt is (1−1/
√
n)M1 , and given the choice of M1 =

√
n log κα(κ)

where α(κ) is a super-constant function, this probability is negligibly small in κ.
Finally, taking a union bound over all polynomially many time steps the probability of ever

not having a matched hint is negligibly small in κ.
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Probability of depleting replacement entries. One can only deplete the replacement entries
of some chunk ℓ if the chunk ℓ is encountered more than M2 times. With Q random distinct
queries, each query will hit a random chunk. The expected number of hits per chunk is therefore
Q/
√
n = log κ · α. By the Chernoff bound, the probability that the number of visits to some fixed

chunk ℓ exceeds M2 = 3 log κ · α is negligibly small in κ, as long as α(κ) is a super-constant
function.

Finally, taking a union bound over all chunks and all polynomially many time steps, the
probability of ever depleting replacement entries of any chunk is negligibly small in κ.

3.4 Our Single-Server PIR Scheme

3.4.1 Construction

Notation. For x ∈ {0, 1, . . . , n − 1}, we define chunk(x) := ⌊x/n1/2⌋ and superblock(x) :=
⌊chunk(x)/n1/4⌋. We assume (Gen, Set,Program,Decode) is a PPPS scheme over the distribution
Dn as described in Section 3.2.

Intuition. The major differences between our single-server scheme and the two-server scheme
are summarized below.
• Preprocessing. The two server scheme allows the client to do preprocessing with one server

and do online queries with another server. Our single-server scheme uses the technique from
Piano [ZPSZ24] such that the client makes a streaming pass over the whole database (retrieving
from the only server) and runs the preprocessing locally.

• Query and Refresh. The two-server scheme allows the client to replace a consumed set with a
new set on-the-fly, because the client can query another server for the new parity. Instead, in the
single-server scheme, we use a new broken hint idea. The client still generates a new set after
the query, but it only marks the new set as “broken hint” since the parity is unknown. To ensure
correctness, the client now uses all the matched sets for a given query, and as long as there is
one non-broken hint, the answer can be computed correctly.

Detailed algorithm for bounded, random queries. In Figure 3.4, we describe our algorithm
that supports Q =

√
n/2 random and distinct queries. It is well known how to upgrade such an

algorithm to support an unbounded number of arbitrary queries [ZLTS23]. For completeness, we
briefly describe the upgrade afterward.

Efficiency. Observe that although the list decoding produces n1/4 candidate sets each of size
√
n,

all n1/4 sets can actually be represented using only O(
√
n) space. Furthermore, computing the

parities of all sets takes only O(
√
n) time. This is because all n1/4 sets are derived from some

common set S by replacing the offsets within each of the n1/4 superblocks with another random
vector δ0, . . . , δn1/4−1. We give a full efficiency analysis in the proof of Theorem 3.4.1.

Supporting unbounded, arbitrary queries. We can easily get rid of the distinct query assumption
in the following way: we can require the client to store a local cache of size Q to store the most
recent Q queries. If the client wants a repeated query, it can lookup in the cache and make a
dummy query.
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Single-Server Scheme for Q =
√
n/2 Queries a

Notation. κ denotes a statistical security parameter, λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.

Preprocessing.
• Client samples M1 = 2

√
n log κ · α(κ) master PPPS keys denoted sk1, . . . , skM1 ∈ {0, 1}λ.

Initialize the parities p1, . . . , pM1 to zeros.
• Client downloads the whole DB from the server in a streaming way: when the client has the
j-th chunk DB[j

√
n : (j + 1)

√
n]:

Update the primary table: for i ∈ [M1], let pi ← pi ⊕ DB[Set(ski)[j]].

Store replacement entries: sample and store M2 = 3 log κ · α(κ) tuples of the form
(r,DB[r]) where r is a random index from the j-th chunk.

Delete DB[j
√
n : (j + 1)

√
n] from the local storage.

• At this moment, let T := {(ski, pi)}i∈[M1] denote the client’s hint table. Mark all the hints
as “good”.

Query for index x ∈ {0, 1, . . . , n− 1}.
1. Client: For each matched entry (ski, pi) such that x ∈ Set(ski) in the hint table, do the

following unless there are already M3 = 3 log κ · α matched entries:
• For the first good (i.e., non-broken) matched entry, find the first unconsumed replacement

entry (r,DB[r]) for chunk(x). b

• Otherwise, sample a random index r in chunk(x).
• (sk′, i∗)← Program(ski, chunk(x), r mod

√
n).

• Send sk′ to the server, and receive {βi}i∈{0,...,n1/4−1} from the server.
• For the first good matched entry, save the answer pi ⊕ βi∗ ⊕ DB[r].
• Sample a fresh PPPS key sknew subject to x ∈ Set(sk), and replace the consumed entry
(ski, pi) with (sknew, 0) and mark the entry as broken.

2. Client: If fewer than M3 keys are sent in the previous step, send more dummy programmed
keys to the server until there are M3 keys sent c.

3. Client: Output the saved answer. If no answer was saved, output 0.

4. Server: For each sk′ received, let S0, . . . , Sn1/4−1 ← ListDecode(sk′). For each i ∈
{0, . . . , n1/4 − 1}, send the xor-sum ⊕j∈Si

DB[j] to the clientd.
aWe first present the scheme supporting distinct and random queries. As mentioned, these restrictions can be

removed by applying PRP and local caching.
bIf not found, treat it as the otherwise case.
cThe dummy key is constructed as sampling a random PPPS key sk subject to x ∈ Set(sk) and call

sk′, ← Program(sk, chunk(x), δ′).
dWe use the normal representation of the set Si and not the offset representation.

Figure 3.4: Our single-server preprocessing PIR scheme.
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Furthermore, we can assume that the queries are random without loss of generality as follows:
we can let the client and the server agree on a pseudorandom permutation (PRP) [RY13, HMR12]
upfront and the server can permute the database according to the PRP. Another option is let
the server build the database as a key-value storage and use a cuckoo hash table [PR04, Yeo23]
directly based on a PRF to locate the queries. Notice that, in both implementations, the client
can still make queries adaptively depending on the real query sequence and the responses, which
is sufficient for practical usage. Then, as long as the client makes the queries independent of
the randomness of the PRP/PRF, those queries can be considered as uniformly random. This
assumption is only needed for correctness.

Lastly, we can remove the bounded Q query assumption as follows: the straightforward
way is that once the client finishes a window of Q queries, the client and the server rerun the
preprocessing phase again, using fresh randomness. The drawback is that the client has to wait a
long time before starting the next window. As previous work pointed out [ZPSZ24, ZLTS23], we
can easily avoid this drawback through a simple pipelining trick, by spreading the preprocessing
work of the next Q window over the current Q window of queries.
Theorem 3.4.1. Let α(κ) be any super-constant function. Suppose that PRF1,PRF2 are secure
pseudorandom functions, and n is bounded by poly(λ) and poly(κ). The single-server scheme
in Figure 3.4, which supports

√
n/2 random, distinct queries, is private, and correct with prob-

ability 1− negl(λ)− negl(κ) for some negligible function negl(·). Furthermore, it achieves the
following performance bounds:

• Oλ(
√
n log κ · α) client storage and no additional server storage;

• Preprocessing Phase:
O(n) server time and Oλ(n log κ · α) client time;
O(n) communication;

• Query Phase:
Oλ(
√
n log κ · α) expected client time and Oλ(

√
n log κ · α) server time per query;

Oλ(n
1/4 log κ · α) communication per query.

Therefore, the amortized online communication per query is Oλ(n
1/4 log κ · α), the amortized

offline communication per query is O(
√
n), and the amortized client and server computation per

query is Oλ(
√
n log κ · α).

Proof. We defer the privacy and the correctness proofs to Section 3.4.2 and Section 3.4.3 re-
spectively. The client only stores M1 = 2

√
n log κα λ-bit keys and stores in total

√
n ·M2 =

3
√
n log κ · α index-value pairs. So the storage is Oλ(

√
n log κ · α). The preprocessing phase’s

performance bounds follow straightforwardly by the algorithm descriptions.
For the query phase, the client first enumerates all M1 hints to find x, which takes Oλ(

√
n log κ·

α) time. For all the M3 = Θ(log κ · α) found hints, the Program algorithm takes Oλ(n
1/4) client

computation. For the server, during the query phase, the client sends M3 programmed PPPS
keys to the server, the size of which is Oλ(n

1/4). The server sends back the xor-sum of n1/4

candidate sets for each key after running ListDecode. Even though each candidate set has size
n1/2, all the candidate sets have a succinct representation of size n1/2 and server can compute this
representation in time Oλ(n

1/2). Furthermore, as observed in Theorem 3.3.1, due to the structure
of the candidate sets, the server can compute all the n1/4 xor-sums in time only O(n1/2). Hence,
the server’s running time Oλ(

√
n).
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The client needs to find M3 matched hints, compute O(log κ · α) xor operations during each
query and for the matched hints, it needs to sample fresh PPPS key sknew subject to x ∈ Set(sknew).
The client’s computation time is dominated by this sampling step. We consider the expected
computation time: each key in the hint table will have 1/

√
n probability to be replaced in this,and

each sampling takes Oλ(
√
n) expected time to finish using Lemma 3.4.2 and pseudorandomness

of PPPS, the expected number of keys checked until a key sk such that Set(sk) contains the current
query is found is O(

√
n). So the total expected time for the query phase is Oλ(

√
n log κα) per

query. The server time is Oλ(
√
n(log κ · α)) per query. The online communication per query is

Oλ(n
1/4(log κ · α)).

3.4.2 Privacy Proof

Suppose that the underlying PPPS scheme satisfies private programmability. Below, we prove the
privacy of our single-server PIR scheme.

In the preprocessing phase, the server observes a single scan over the database, and thus no
information is leaked. The rest of the proof will therefore focus on the query phase.
Lemma 3.4.2. Recall that in each time step t, the adversary A adaptively chooses a query
xt ∈ {0, 1, . . . , n− 1} for the client.

At the end of each time step t, the client’s hint table is distributed as a table of size M1 where
each entry is a freshly sampled PPPS key, even when conditioned on A’s view so far.

Proof. Suppose the above statement holds at the end of time step t−1. We prove that it still holds
at the end of time step t. Since the hint table is distributed as a fresh randomly sampled table even
when conditioned on A’s view at the end of t− 1, we may henceforth assume an arbitrary fixed
query xt. The distribution of the hint table before the t-th query can be equivalently rewritten as:
• First, sample the indices of the entries (henceforth denoted I) that contain the query xt.

Specifically, each i ∈ [M1] is chosen into the set I independently with probability 1/
√
n.

• For each i /∈ I , sample a random PPPS key subject to not containing xt.
• For each i ∈ I , sample a random PPPS key subject to containing xt.

Using the above interpretation, it is easy to see that the distribution of the hint table after the
t-th query is unaltered.

Simulator construction and the Ideal experiment. Consider the following simulator construction
which does not make use of the queries: in every time step t, call the simulator Sim of the PPPS
scheme, and let the output be sk′. Send sk′ to the server.

Indistinguishability of Real and Ideal. We now prove the indistinguishability of the Real and
Ideal assuming the private programmability of the underlying PPPS scheme.

First, due to Theorem 3.4.2, we can equivalently rewrite the Real experiment as follows: at
the end of each time step, resample the entire hint table freshly at random before continuing to
answer more queries. As a result, the messages sent to A in each time step t are distributed as

Repeat M3 times:

sample a PPPS key sk at random subject to containing the query xt; sample δ at random
from {0, . . . ,

√
n− 1}.
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call sk′, ← Program(sk, chunk(xt), δ);

send sk′ to A.

One way to see this is to think of the distribution of the table as having the equivalent distribution
in the proof of Theorem 3.4.2.

Therefore, the rest of the proof follows from a straightforward hybrid argument where we
replace the programmed keys (denoted sk′ earlier) sent to the server in all time steps one by one
with a simulated key, relying on the private programmability of the underlying PPPS.

3.4.3 Correctness Proof
For the correctness analysis, we may assume that every set is sampled independently fromDn. Due
to the pseudorandomness property of the PPPS, this will only affect the correctness probability by
a negligible amount.

Recall that we have a window of Q =
√
n/2 random, distinct queries. There are only two bad

events that can cause correctness failure: 1) the client cannot find a good hint that contains the
query index; 2) the client runs out of replacements in a chunk.

We first analyze the second bad event, i.e., depleting replacement entries. For every query,
at most one replacement entry is consumed. Therefore, the second bad event only happens
when the client makes more than M2 queries in one chunk. The analysis is the same as the
analysis of depleting replacement entries in the proof of correctness for our 2-server scheme (see
Section 3.3.3).

The first bad event, i.e., no matched good hint, can only arise from the following events: 1)
there are no good hints left that match the query; 2) there are more than M3 matched hints but the
first M3 matched hints are all broken.

Fix a sequence of queries x1, . . . , xm and consider the error probability for xm. Consider the
initial hint table in which each entry represents a random set sampled from Dn.

If a hint in the initial hint table contains xm and does not contain x1, . . . , xm−1, this hint will
remain good until the query for xm. We have that, for any hint,

Pr [ this hint contains xm] = 1/
√
n .

Furthermore, conditioned on a hint containing xm, if xi and xm are not in the same chunk, then the
hint contains xi with probability 1/

√
n because each chunk has its own randomness. Moreover, if

xi and xm are in the same chunk, this hint definitely will not contain xi. Hence, we have that

Pr
[

this hint is broken
∣∣ this hint contains xm

]
≤Pr

[
∃i ∈ {1, . . . ,m− 1} this hint contains xi

∣∣ this hint contains xm

]
≤(m− 1)/

√
n ≤ Q/

√
n ≤ 1/2 .

Therefore,

Pr [ this hint is good and contains xm]

≥Pr
[

this hint is good
∣∣ this hint contains xm

]
· Pr [ this hint contains xm] ≥ 1/(2

√
n) .
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Then, the probability that there is no good hint matching xm in the table is at most

(
1− 1

2
√
n

)M1

=

(
1− 1

2
√
n

)2
√
n lnκ·α(κ)

≤ (1/e)lnκα(κ) = κ−α(κ).

Now let us argue that for query xm, the probability of more than M3 hints being matched is
small. Due to the Lemma 3.4.2, we may assume that at the beginning of each query, the hint
table contains freshly and independently chosen sets. Each set sampled from Dn contains the
query with probability 1/

√
n. The expected number of hints that match the query is therefore

M1/
√
n = 2 log κ · α. Using the Chernoff bound, we have that the probability of more than

M3 = 3 log κ · α hints being matched is bounded by a negligibly small function in κ.
Finally, we can apply a union bound over all

√
n/2 queries and conclude that the probability

of the first bad event (i.e., no matched good hint) ever happening is negligibly small in κ.

3.5 Our Optimized Single-Server Scheme with Non-Black-Box
Use of PPPS

Since our earlier single-server scheme in Section 3.4 employs the broken hints technique, there is
a superlogarithmic multiplicative overhead due to the repetition needed for correctness compared
to the two-server scheme in Section 3.3. In this section, we describe an improved single-server pre-
processing PIR scheme that avoids this super-logarithmic repetition overhead. For this optimized
version, we cannot use the PPPS scheme in a completely blackbox manner.

3.5.1 Construction

Why previous schemes do not worry about broken hints. First, we need to understand why
in the previous single-server schemes like PIANO [ZPSZ24], the client does not have to worry
about broken hints. Notice that in the two-server scheme, the client will replace the consumed hint
with a resampled hint that contains the current query, and interact with another server to fetch the
correct parity for this new hint. This ensures that all hints are useful. In the single-server setting,
the client cannot rely on the additional server to dynamically fetch the parity for the resampled
hint. To fix this, PIANO requires the client to prepare polylogarithmic backup hints for each of the√
n chunks. The backup hints for the i-th chunk record the parity of the set and also the value of

the item in the i-th chunk. After querying for x, the client will replace the consumed hint with a
backup hint from x’s chunk and lazily mark that i-th element of the hint to be the current query x,
which maintains the distribution of the hint table. Since the values for the original i-th element
and x are known to the client, the correct parity for this edited hint can be derived by the client
locally, avoiding the issue of broken hints. Then, the client only needs to find the first hint that
contains x, instead of finding all matched hints and making multiple queries based on those hints,
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hoping that one of them will be good. 1 Now, after the client expands the key to a whole set, the
client can easily enforce the marking (if necessary) by just changing the corresponding element.

We will try to follow the backup hint and the lazy-marking idea. There is one challenge
remaining: in PIANO, the client can expand the whole set and possibly change two elements
obliviously before sending the set to the server. The client not only needs to change the offset
in the current query’s chunk to ensure the privacy, it also needs to change the offset in the lazy
marked element’s chunk to reflect the correct history. Our main construction in Section 3.2 only
allows us to program one location. How should we modify the scheme to support programming at
two points?

One way to achieve that is by using a privately programmable pseudorandom function (PPPRF).
A PPPRF allows us to directly program on the key. This is nearly the same idea in two previous
single-server PIR schemes [ZLTS23, LP23a]. Unfortunately, this primitive is only known under
strong cryptographic assumptions like LWE, and still only exists in the theoretical literature – it is
completely impractical at the current stage.

Our solution: rejection sampling. We observe that all we need to do is just to “maintain” the
right distribution of the hint table and the keys sent to the server. If we can monitor the change
in the distribution, we can rejection-sample the PRF keys according to the right distribution and
avoid the difficulty of doing private programming on the key level.

Maintaining the distribution for the local hint table is relatively simple and is already achieved
by the lazy-marking technique. For the local hint table, what we actually care about is the
distribution of the actual sets, regardless of how we represent them. Assume that the client already
queries for y and knows DB[y]. Now the client consumes a hint that contains y, and replaces it
with a hint from those backup hints prepared for chunk(y). Suppose the key for the backup hint is
sk. Set(sk) may not contain y, but we can mark y alongside the key, such that whenever we need
to do membership testing on this key, we will consider that y is already programmed into the set.
This maintains the local table’s distribution.

The trickier case is how we handle the keys that the client sends to the server. Suppose the
client is now querying for x, and it finds the first hint that contains x. Also, it notices that the
hint is marked with y. Recall that in the PPPS programming algorithm, the client will expand
the master key into n1/4 keys and expand the keys corresponding to the superblock of x to n1/4

offsets. Now there are two cases:
1. x and y are in the same superblock. This is a relatively simple case. As the normal

programming step in the PPPS, we will replace the sub-key corresponding to the superblock
of x (the same as y) with a uniformly random sub-key. However, when we expand the
original sub-key to n1/4 offsets, we need to replace x’s offset with a random one, and also
manually set the offset corresponding to y’s chunk to y’s offset, reflecting that we enforce y
to be included. No rejection sampling is required in this case.
For the answer, since we are just replacing the original element in y’s chunk to y, the
influence of such change should be corrected. We can require the client to store the database

1A natural question is why the client cannot simply pick the first good hint. Observe that this would be equivalent
to deleting a consumed hint from the table because a broken hint will never be used again. Then, it would skew the
distribution of the hint table because the remaining hints are less likely to contain the past queries, which leads to
privacy leakage.
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Figure 3.5: The augmented query protocol based on a single hint. The augmentation is mainly
about returning the parities of those superblocks corresponding to the n1/4 sub-keys and will be
used in Figure 3.6.

Augmented Query Protocol Based on a Single Hinta

Client’s input:
• A master PPPS key sk assuming x ∈ Set(sk);
• The parity of Set(sk) is assumed to be psk;
• A random index r in x’s chunk such that the DB[r] is assumed to be known.

1. Step 1: (Client)

(a) Let (sk′, i)← Program(sk, chunk(x), r mod
√
n) and send sk′ to the server;

2. Query Step 2: (Server) Upon receiving sk′:

(a) Parse sk′ as

(k0, . . . , kn1/4−1), (δ0, . . . , δn1/4−1).

(b) Let S0, . . . , Sn1/4−1 ← ListDecode(sk′);

(c) For i ∈ {0, . . . , n1/4 − 1}:

i. Let βi = ⊕x∈Si
DB[x];

ii. Expand ki to n1/4 offsets and consider them being the corresponding index
offsets in chunk {i · n1/4, . . . , (i+ 1) · n1/4 − 1}. Compute the xor-sum of the
database values for those indices as

αi = ⊕j∈{0,...,n1/4−1}DB[(j + in1/4)
√
n+ PRF2(ki, j)].

(d) Return (α0, . . . , αn1/4−1), (β0, . . . , βn1/4−1) to the client.

3. Step 3: (Client)
Upon receiving (α0, . . . , αn1/4−1), (β0, . . . , βn1/4−1):
• Save (α0, . . . , αn1/4 − 1) if the answer needs to be corrected later.
• Return psk ⊕ βi ⊕ DB[r] as the answer.

aThe augmented part is highlighted in red.
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Figure 3.6: The optimized sublinear single server preprocessing PIR protocol introduced in
Section 3.5. The protocol uses a subroutine defined in Fig. 3.5 as a subroutine.

Optimized Single-Server Scheme for Q =
√
n log κ · α Queries a

Notation. κ denotes a statistical security parameter, λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.

Preprocessing.
• In addition to the previous algorithm:

Client samples M2 = 3 log κα(κ) backup keys ski,1, . . . , ski,M2 for chunk i;

For each backup hint, Client stores ski,j and the following information:

− The parity for the whole set: pi,j = ⊕x∈Set(ski,j)DB[x];

− The parity for those items within the superblock that contains the i-th chunk:
bi,j = ⊕x∈Set(ski,j)1

[
superblock(x) =

⌊
i

n1/4

⌋]
DB[x]b

− The DB-value of the i-th item: DB[Set(ski,j)[i]].

Query for index x ∈ {0, 1, . . . , n− 1}.
1. Query:

(a) Client finds the first matched hint (ski, pi) such that x ∈ Set(ski) and the hint does not
have a positive constraint y that chunk(y) = chunk(x).

(b) If there is no positive constraint on this hint: proceed the subroutine Figure 3.5 as usual.

(c) If there is a positive constraint +y on this hint:

i. If superblock(y) = superblock(x), execute the subroutine, except that
• After the client programs the key and gets n1/4 sub-keys and offsets, replaces

the (chunk(y) mod n1/4)-th offset with y’s offset;
• Let the return value be v, mark the answer as v ⊕ DB[y] ⊕
DB[Set(ski)[chunk(y)]].

ii. If superblock(y) ̸= superblock(x), execute the subroutine, except that:
• After the client has the programmed key of n1/4 sub-keys and offsets, re-

place the superblock(y)-th key with a rejection-sampled key k′. The rejection
sampling key k′ should satisfy all constraints related to the matched hint
(+y,−z1, . . . ,−zt) if k′ controls superblock(y) (as specified in Section 3.5).

• Let the return value be v, mark the answer as v ⊕ αsuperblock(y) ⊕ b, where
αsuperblock(y) is the corresponding parity of superblock controlled by the
rejection-sampled sub-key and b is the original parity for that superblock,
known by preprocessing.

2. Refresh:
• Client adds the constraint −x for the first i− 1 entries.
• Client replaces the matched hint with an unconsumed hint from the chunk(x)’s

backup hint group. Clean all other constraints and only mark +x for the i-th entry.
aFor clarity, we present the scheme supporting distinct and random queries.
b1[A] is 1 when A is true and 0 otherwise. 59



value for the i-th element for all the backup hints dedicated for the i-th chunk. Then, if
this promoted hint sk is used, we can correct the answer by xoring the influence value,
DB[Set(sk)[chunk(y)]]⊕ DB[y].

2. x and y are in the different superblocks. This is the more involved case. In the programming,
we will again replace the sub-keys corresponding to x’s superblock with a uniformly random
sub-key and replace the offsets in x’s chunk with a random one. However, we need to
ensure that the key corresponding to y’s superblock will expand to the correct offset for
y’s chunk, to ensure that y is included. Now, we will rejection-sample a sub-key k for y’s
superblock, such that it expands to the correct offset of y. This is what we refer to as a
positive constraint, and we write this constraint as +y. Additionally, to maintain the right
distribution, there are also negative sampling constraints. Observe that if the i-th hint entry
is the first one to contains x, it means that from the client’s perspective, the first i− 1 entries
do not contain x. Suppose between the query y and query x, there are some other queries.
After making those queries, the client also knows that the current hint entry does not contain
some queries z1, . . . , zt. We write down the negative constraints as −z1, . . . ,−zt. Then,
when we do the rejection sampling for the sub-key for y’s superblock, we will consider all
the constraints: +y,−z1, . . . ,−zt, until we find a sub-key k that satisfies all the constraints.
This ensures that the resampled sub-key for y’s superblock has the right distribution.
We also need to argue that the rejection-sampling is efficient. The positive constraint is
satisfied with probability 1/

√
n. Conditioned on the positive constraint being satisfied, for

each negative constraint, it is satisfied with probability at least 1− 1/
√
n. We only need to

focus on the negative constraints related to the n1/4 chunks in that particular superblock.
Due to a simple balls-into-bins argument, the maximum queries in each chunk is bounded by
3 log κ · (α(κ)) with high probability, and the same bound holds for the maximum number
of negative constraints in each chunk. Therefore, the rejection sampling can satisfy all the
negative constraints in those n1/4 chunks with probability at least 1−n1/4 · 3 log κ·(α(κ))√

n
, which

is at least 1/2 given a sufficiently large n. Therefore, we conclude that a freshly sampled
sub-key satisfies all the constraints with probability at least 1/2

√
n, and the expected sample

time is O(
√
n).

A notable detail is that when we draw a new fresh key, we first check the positive constraint.
Only when the positive constraint is satisfied, we check the negative constraints. The
positive constraint is satisfied with probability 1/

√
n but only takes O(1) time to check.

Conditioned on the positive constraint being satisfied, the negative constraints take O(
√
n)

to check, but they are satisfied with probability at least 1/2. So even including the constraint
checking time, the expected sampling time is still O(

√
n).

For the answer, since we are essentially replacing the original superblock with a rejection-
sampled one. To remove the influence of this step, we can require the client to store the
parity for the corresponding superblock controlling the i-th chunk for all the backup hints
dedicated for the i-th chunk. Then, if this promoted hint sk is used, we can correct the
answer by xor-ing the parity for the original superblock (known by preprocessing) and the
parity for the rejection-sampled superblock. This is why we need an augmented version of
the response protocol for the server Figure 3.5 – we need the server to tell the client about
the parity of the rejection-sampled superblock.
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We provide the pseudocode of this construction in Figure 3.6.
Theorem 3.5.1. Let α(κ) be any super-constant function. Assume n is bounded by poly(λ)
and poly(κ). The PIR scheme in Figure 3.6 that supports

√
n log κα(κ) queries is private,

correct with probability 1− negl(λ)− negl(κ) and achieves the following performance bounds
(the optimized parts are underlined):

• Oλ(
√
n log κα(κ)) client storage and no additional server storage;

• Preprocessing Phase:
Oλ(n log κα(κ)) client time and O(n) server time;
O(n) communication;

• Query Phase:
Oλ(
√
n) expected client time and Oλ(

√
n) server time per query;

Oλ(n
1/4) communication per query.

Therefore, the amortized online communication per query is Oλ(n
1/4), the amortized offline

communication per query is O(
√
n), the amortized client computation is Oλ(

√
n log κα), and the

server computation is Oλ(
√
n).

Proof. The correctness proof will be similar to the correctness proof for the main scheme
described in Section 3.3.3.

We defer the privacy proof to later.
The additional storage for the client will be those M2 backup hints per chunk, which results

in total of O(λ
√
n log κα(κ)) space. Notice that the client does not directly store the negative

constraints, otherwise the storage will be blown up. The client can directly store the history of
those matched hint entry index (which takes O(

√
n log n) space) and also the generation time

label of each hint. Whenever the client finds the first matched hint, say entry i, it finds all the
previous queries that are older than the current hint’s generation time and whose matched hint
entry indices are larger than i. Those history queries will be the negative constraints. By doing
this, maintaining all the constraints only takes O(

√
n log n) space.

The preprocessing phase’s performance bounds are obvious by the algorithm description.
For the query phase, the client first finds the first hint that contains x. Each hint contain x with

probability 1/
√
n, so the expected time is O(λ

√
n). The subroutine in Figure 3.5 takes O(λn1/4)

client computation and O(λ
√
n) server computation, while consuming O(λn1/4) communication

cost. The refresh phase takes only O(1) time (if the client maintains the negative constraint using
the technique mentioned above). So the expected client time is O(λ

√
n) per query. The server

time is O(λ
√
n) per query. The online communication per query is O(λn1/4) per query.

3.5.2 Privacy Proof

Proof. We will prove this theorem via a sequence of hybrids. The first hybrid in the sequence
will capture the real experiment in the privacy definition of single server PIR, and the last hybrid
will capture the ideal experiment. We first define the hybrid Real∗:

• Preprocessing phase. A receives the streaming signal. The client samples sk1, . . . , skM1

$←{0, 1}λ.
• Query phase. For each round t, A chooses a query xt:
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The client finds the first matched key ski in the hint table where x ∈ Set(ski) and if
there’s a positive constraint +y on this entry, x is not in the same chunk as y.
If the entry i has no positive constraint: execute the subroutine.
If the entry i has a positive constraint +y:
− If y and x are in the same superblock: execute the subroutine, with the difference

that when the client is expanding the sub-key corresponding to the superblock of
x to n1/4 offsets, replace the offset of y’s location with y’s offset.

− If y and x are not in the same superblock: execute the subroutine with the
difference that when the client is expanding the master key to n1/4 sub-keys,
replace the sub-key corresponding with y’s superblock to a rejection sampled key
k′, such that when k′ is considered as the key for that superblock, the expanded
set satisfies all constraints related to entry i;

Then, the client replaces the entry ski with a freshly-sampled key sk′, but deletes other
constraints and marks constraint +x for entry i;
The client also marks constraints −x for entry 1 to entry i− 1.

This hybrid is identically distributed as the actual experiment where we just remove all parts
unrelated to the privacy proof.

We define Hyb1 by removing PRF1 from Real∗: for each sampled master key sk, the client
will directly sample n1/4 random sub-keys and store them in the local storage. When the client
executes the programming step in the subroutine, it no longer has to expand the master key to
n1/4 sub-keys.

Hyb1 is computationally indistinguishable from Real∗ due to a straightforward reduction to
the pseudorandomness of PRF1.

Since we already replaced all master keys with n1/4 sub-keys, the later hybrids no longer need
to expand a master key to n1/4 sub-keys in the subroutine.

We define Hyb2 as follows: Hyb2 is the same as Hyb1, except that whenever the client finds the
matched hint for query x, it will resample all those n1/4 sub-keys according to all the marked
negative constraints and also the new constraint +x. Notice that the history-dependent positive
constraint (usually written as +y) is not considered in this new resample step and only enforced
just before the client sending messages to the server.

Now we argue that Hyb2 is identically distributed as Hyb1.
Claim 3.5.2. The view of the adversary in Hyb2 is identically distributed as in Hyb1.

Proof. For all Q queries, let’s consider the matched hint index vector I = (i1, . . . , iQ) where it
denotes the client finds it as the matched hint in the t-th round. Notice that the recorded constraints
at the t-th round are completely determined by i1, . . . , it−1.

Now we add the matched index vector to the view of the adversarys, and we will argue that
even with the augmented view, the views of the adversary are still identically distributed in the
two experiments.

First, observe that the two experiments have exactly the same way to generate the matched
index vector. We only need to argue that, the selected entries in each round have the same
distribution in both experiments, and then the messages observed by the adversary should have
the same distribution.
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We claim that conditioned on the same i1, . . . , it−1, the selected entry in round t have the same
distributions in the two experiments.

In Hyb1, we can equivalently consider the client first uniformly sampling the M1 primary hints
and extra t− 1 replaced hints. Then, given the queries x1, . . . , xt−1, the client finds the matched
hint and hence derives i1, . . . , it−1 and those selected entry.

In Hyb2, we can equivalently consider the client first observing the queries x1, . . . , xt−1 and
sampling i1, . . . , it−1 from the marginal distribution (conditioned on x1, . . . , xt−1 and all the initial
M1 hints and the t− 1 replacement hints are random). Then, the client samples the selected entry
for each round by deriving the constraints from i1, . . . , it−1 and does rejection sampling.

A key observation is that in Hyb1, the adversary cannot observe what the hint table is before
round t. Then, from the adversary’s perspective, the selected entry’s distribution is the posterior
distribution of them after observing i1, . . . , it−1. Moreover, that posterior distribution is exactly
the same as the distribution the client uses to generate the selected entry (and even the whole
table) in round t (i.e., containing the query xt and some negative constraints −z1,−z2, . . . ) in
Hyb2. Therefore, from the adversary’s perspective, the selected hints in the two experiments share
the same distribution, and thus the views in the two experiments are identically distributed.

We define Hyb3 as follows: Hyb3 is the same as Hyb2, except that whenever the client finds
the matched hint for query x, it will resample that entry also considering the history-dependent
positive constraint. Hyb2 does not consider the history-dependent positive constraint because
the history-dependent constraint is only marked locally and is only enforced before sending the
message. That is, it will include the positive constraints of including the current query x and
a history query y (if necessary) and all other negative constraints. We will prove that Hyb3 is
computationally indistinguishable from Hyb2.
Claim 3.5.3. Hyb3 is computationally indistinguishable from Hyb2.

Proof. For each query xt, there are three cases for the selected hint entry: 1) it does not have a
history-dependent positive constraint; 2) it has a history-dependent positive constraint +y, but y
and x are not in the same superblock; 3) it has a history-dependent positive constraint +y such
that y and x are in the same superblock.

The first case is trivially identical in the two experiments. For the second case, since the client
will always resample the sub-key for y’s superblock before sending messages to the server, it
does not matter whether the original hint contains y or not (which only affects the sub-key for
y’s superblock). The final case is that the current query x and the positive constraint y are in
the same superblock. We can view Hyb2 and Hyb3 as the case where we sample the sub-key
in that particular superblock according to the same constraints, except that Hyb3 will have one
additional constraint that the offset in y’s chunk should be y’s offset. Then the client will expand
the sampled sub-key to n1/4 offsets and change the offset in y’s chunk to y’s offset. Due to the
pseudorandomness of PRF2, the two distributions are computationally indistinguishable.

Now, define Hyb4 the same as Hyb3, except that in the query phase, after the client resamples
the selected hint entry, the client will not do the processing steps related to the history-dependent
positive constraint.

For clarity, we write the full definition of Hyb4:
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• Preprocessing phase. A receives the streaming signal. The client samples sk1, . . . , skM1

$←{0, 1}λ.
• Query phase. For each round t, A chooses a query xt:

The client finds the first matched key ski in the hint table, that is, x ∈ Set(ski) and if
there’s a positive constraint +y on this entry, x is not in the same chunk as y.
Resample a key sk subject to all the constraints recorded for this entry (e.g. including
the current query x and the history query y, while satisfying some negative constraints
−z1, . . . ).
Execute the subroutine based on this resampled key.
Then, the client replaces the entry ski with a freshly-sampled key sk′, but deletes other
constraints and marks constraint +x for entry i;
The client also marks constraints −x for entry 1 to entry i− 1.

Hyb4 is identically distributed as Hyb3. There are only two different cases in Hyb4 and Hyb3:

• The history-dependent positive constraint y is in the same superblock as the current query x.
Notice that the client already resamples the sub-key subject to y is included, so the offset in
chunk(y) is already y’s offset;

• The history-dependent positive constraint y is not in the same superblock as the current
query x. In Hyb3, we already have another step to resample the sub-key corresponding to
y’s superblock. However, notice that the two resampling steps are independent and subject
to exactly the same constraints, so removing the latter one preserves the distribution.

Now we define Hyb5 as follows:

• Preprocessing phase. A receives the streaming signal. The client samples sk1, . . . , skM1

$←{0, 1}λ.
• Query phase. For each round t, A chooses a query xt:

The client finds the first matched key ski in the hint table, that is, x ∈ Set(ski).
Execute the subroutine with this matched key.
Then, the client replaces the entry ski with a freshly-sampled key sk′ subject to
x ∈ Set(sk′).

Notice that in Hyb5, the client does not record any constraint and does not resample the
matched hint.
Claim 3.5.4. The adversary’s views in Hyb4 and Hyb5 are computatonally indistinguishable.

Proof. This argument is similar to the argument for Claim 3.5.2. We can still consider adding the
matched index vector I to the adversary’s views and prove the augmented views are indistinguish-
able.

We first argue that the distributions of I are computationally indistinguishable in the two
experiments. Observe that at given any time, if we expand all the local hints to sets, the distribu-
tions of those sets are computationally indistinguishable. The only difference between the two
experiments is that in Hyb4, the client replaces the matched hint with a uniformly random new
hint and lazily marks the current query x to the entry in Hyb4, while in Hyb5, the client directly
does rejection-sampling to sample a new hint containing x. These two sets are computationally
indistinguishable due to the pseudorandomness of the PRF2.
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Conditioned on the same matched indices i1, . . . , it, we only need to argue that the selected
entry in round t has the same distribution in both experiments, and then the messages observed by
the adversary should have the same distribution.

In Hyb4, we can equivalently consider the client first observes the queries x1, . . . , xt−1 and
samples i1, . . . , it from the marginal distribution (conditioned on x1, . . . , xt, those initial M1 hints
are uniformly random, and the extra t−1 replacement hints are sampled conditioned on containing
the corresponding queries). Then, the client samples the selected entry for this round by deriving
the constraints from i1, . . . , it and does rejection sampling.

In Hyb5, we can equivalently consider the client first generates M1 primary hints and also the
t− 1 replacement hints given the queries x1, . . . , xt−1. Then, the client finds the matched hint in
each round and hence derives i1, . . . , it and chooses those selected entries.

Again, the key observation is that in Hyb5, the adversary cannot observe what the hint table
is before round t. Then, from the adversary’s perspective, the whole table’s distribution is the
posterior distribution after observing i1, . . . , it. Moreover, that posterior distribution is exactly
the same as the distribution the client recorded as the form of constraints.

Therefore, from the adversary’s perspective, the selected entries in the two experiments share
the same distribution conditioned on the same matched indices i1, . . . , it. So we can conclude
that the adversary’s views in the two experiments are computationally indistinguishable.

Finally, we define the hybrid Ideal:
• Preprocessing phase. A receives the streaming signal.
• Query phase. For each round t, A chooses a query xt:

The client will:
− Independently sample k0, . . . , kn1/4−1

$←{0, 1}λ;

− Independently sample r0, . . . , rn1/4−1
$←{0, . . . ,

√
n− 1}.

− Send (k0, . . . , kn1/4−1), (r0, . . . , rn1/4−1) to the server.

The argument that Ideal and Hyb5 are computationally indistinguishable is nearly the same as
the proof in Section 3.4.2.

3.6 Evaluation
We implement our optimized single-server PIR scheme (Section 3.5) and compare it against a
state-of-the-art preprocessing single server PIR scheme (Piano [ZPSZ24]). We show that the
performance of our scheme is reasonably efficient and practical, while having a huge advantage in
the online communication.

Implementation and Parameters. We implement our scheme with Go, based on the open-
sourced code base of Piano [ZPSZ24]. Our code base is open-sourced2. We set Q =

√
n lnn,

set the correctness failure parameter κ to 40 and set the computational security parameter λ
to 128. We adjust the chunk size and also superblock size by constant factors to optimize the
overall performance. The parameter combination ensures the failure probability is bounded by
2−κ = 2−40 for all queries. We use 128-bit keys and use AES to instantiate the PRF.

2https://github.com/wuwuz/QuarterPIR
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Evaluation Setup. We evaluate our scheme and the baseline scheme on a single AWS m5.8xlarge
instance with 128GB of RAM and run the experiments on a local network. In this case, the network
will not be the bottleneck. However, we do expect that our scheme can perform relatively better
compared to Piano in a network-constrained environment.

3.6.1 Experimental Results
We evaluate the schemes under two scenarios: 1) a 64GB database with 4.2 billions of 16-byte
entries; 2) a 100GB database with 1.6 billions of 64-byte entries. The same as Piano, we use
8-thread parallelization during the preprocessing phase, and only use a single thread during the
online phase.

64GB 100GB
Piano Ours Piano Ours

Preprocessing
Client time 81min 114min 32min 46min

Communication 64GB 64GB 100GB 100GB

Per query
Online Time 14.0ms 42.7ms 11.9ms 46.3ms

Online Communication 256KB 5KB 100KB 8KB
Am. Offline Time 3.3ms 4.7ms 2.2ms 3.2ms

Am. Offline Communication 46KB 46KB 120.5KB 120.5KB

Client Storage 419MB 684MB 839MB 1.8GB

Table 3.2: Performance of our scheme and Piano on 64GB and 100GB sized databases. The
64GB database has 16-byte entries and the 100GB database has 64-byte entries. “Am.” denotes
“Amortized”. We report both the online costs and the offline costs amortized over Q =

√
n lnn

queries.

In Table 3.2, we show the cost for the one-time preprocessing, the online query cost, and also
the amortized offline cost. Notice that the amortized offline cost can also be considered as the
background maintenance cost that is not on the critical path of the query.

Computation Costs. As seen in Table 3.2, our scheme is worse compared to Piano in terms of
computation cost. The offline time is worse by around 1.4× (the same for the maintenance time),
and the per query online time is worse by around 3.0×. Although the two schemes have the same
asymptotic computation costs, our scheme is more complicated, resulting in a larger constant
factor. The most significant factor is that our scheme needs to make at least two PRF evaluations
per hint, while Piano only makes one PRF evaluation. Also, Piano further optimizes the PRF
evaluations. This explains the 3.0× gap.

Communication Costs. Our scheme has the same offline communication cost (same streaming
preprocessing) and a much better online communication compared to Piano. The asymptotic
online communication is Oλ(n

1/4) for our scheme and is O(
√
n) for Piano. Thus, given a bigger
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n, the gap will be larger. The concrete performance also depends on many other factors, including
the size of the entries, the size of the chunk and the size of the superblock. We see a 12× gap
when n is 1.6 billion in the 100GB database case (with a larger entry size) and a 51× gap when n
is 4.2 billion in the 64GB database case (with a smaller entry size).

Storage Costs. Our scheme has worse storage cost compared to Piano. In our experiment, the
gap is 1.6×−2.1×. Our optimized scheme needs to additionally store the superblock parity for
each hint, and also stores the constraints generated during the query phase, compared to Piano.

3.7 Additional Result: Sublinear Preprocessing PIR with Õ(1)

Online Communication from Stronger Assumptions

Previously, we focused on designing preprocessing PIR schemes that rely only on one way
functions (OWF). In this section, we show that the “broken hint” technique used in our one-
server construction Section 3.4 can also be applied to the state-of-the-art two-server scheme,
TreePIR [LP23b]. This gives us a single-server scheme with Õλ(1) online communication cost,
O(
√
n) offline communication, and Õλ(

√
n) computation per query, assuming the existence of a

classical single-server PIR scheme with polylogarithmic bandwidth.

3.7.1 Privately Puncturable Pseudorandom Set with List Decoding

The elegant TreePIR work [LP23b] constructs a Privately Puncturable Pseudorandom Set with
List Decoding (henceforth denoted PPPS−). Specifically, their implied PPPS− also emulates the
same set distribution Dn which we inherit in our paper (see Section 3.2.1), and it supports the
following operations:
• sk← Gen(1λ, n): takes in the security parameter 1λ, the size of the universe n, and outputs a

secret key sk representing a set.
• S ← Set(sk): takes in a secret key sk and outputs a set S of size

√
n.

• sk′, i← Puncture(sk, ℓ): takes in a secret key sk, a chunk index ℓ, and outputs a punctured key
sk′ which removes the element in the ℓ-th chunk from the set, as well as auxiliary information i
that indicates which of the list decoded answers later is the correct answer.

• S0, . . . , SL−1 ← ListDecode(sk′): takes in a punctured key sk′, and outputs a set of candidate
sets S0, . . . , SL−1. It is guaranteed that one of them is the correctly punctured set.
A PPPS− scheme needs to satisfy the following properties:

1. Correctness. For any λ, n, any ℓ ∈ {0, . . . ,
√
n− 1}, the following must hold with probability

1: let sk← Gen(1λ, n), sk′, i← Puncture(sk, ℓ), S0, . . . , SL−1 ← ListDecode(sk′), it must be
that Si is equal to Set(sk) but with the ℓ-th element removed.

2. Pseudorandomness. Defined in the same way as in Section 3.2.1.

3. Private puncturability. There exists a probabilistic polynomial-time simulator Sim such that
for any n that is polynomially bounded in λ, for any x ∈ {0, . . . , n − 1}, the following two
distributions are computationally indistinguishable:
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• Real: Sample sk← Gen(1λ, n) subject to x ∈ Set(sk), let sk′, ← Puncture(sk, chunk(x)),
output sk′.

• Ideal: Let sk′ ← Sim(1λ, n), output sk′.

TreePIR [LP23b] implies a PPPS− scheme constructed from PRFs, satisfying not only the
above properties but also the following efficiency requirements:
• Fast membership: testing whether an element x ∈ {0, . . . , n − 1} is in the set or not takes
Oλ(1) time.

• Small punctured key: a punctured key has size Õλ(1).
• Efficient list decoding: Although ListDecode outputs

√
n candidate sets, all

√
n candidate

sets has a succinct representation of size O(
√
n); moreover, the ListDecode algorithm runs in

Oλ(
√
n) time.

3.7.2 A Single-Server PIR Scheme with Polylogarithmic Online Communi-
cation

Given a PPPS− scheme with the aforementioned security and efficiency requirements, we can
construct a single-server preprocessing PIR scheme as in Figure 3.7.

We can prove the following theorem about this construction.
Theorem 3.7.1. Assume the existence of a classical PIR scheme with linear computation, storage
and polylogarithmic communication. We can construct a PIR scheme supporting

√
n/2 queries

that is private and achieves the following performance bounds:
• Oλ(

√
n log κα(κ)) client storage and no additional server storage;

• Preprocessing Phase:
Oλ(n log κ · α) client time and Oλ(n log κ · α) server time;
O(n) communication;

• Query Phase:
Õλ(
√
n) expected client time and server time per query;

Õλ(1) communication per query.
Further, assuming that n is bounded by poly(λ) and poly(κ), all the Q =

√
n/2 queries in the

scheme in Section 3.7 will be answered correctly with probability at least 1− negl(λ)− negl(κ)
for some negligible function negl(·).
Proof. The proof about efficiency is nearly the same as the proof of Theorem 3.4.1 – These are
the main differences: the PPPS− replaces the PPPS here and that the classical PIR scheme that
is run during the query phase needs to be taken into account for the storage, computation and
communication. Since the storage and computation of the classical scheme is linear, and the
communication polylogarithmic, the overall complexities do not change asymptotically. Also, we
note in the context of the PPPS− scheme that the parities of the

√
n sets can be computed by the

server in O(
√
n) time as shown in [LP23b].

The proof of correctness is the same as the analysis in Section 3.4.3, assuming correctness of
the underlying classical PIR scheme. The privacy proof is also nearly the same as the privacy proof
in Section 3.4.2 except for the following couple of changes: 1) the PIR’s simulator additionally
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Single-Server Scheme for Q =
√
n/2 Queries

Notation. κ denotes a statistical security parameter, λ denotes a computational security
parameter. We use α(κ) to denote an arbitrarily small super-constant function.

Preprocessing. Same as in Figure 3.4 but with no more need for replacement entries.

Query for index x ∈ {0, 1, . . . , n− 1}.
1. For each entry (ski, pi) in the client’s hint table, if x ∈ Set(ski) (henceforth called a

matched entry), do the following unless there are already M3 = 3 log κ ·α matched entries:
• Let sk′, i∗ ← Puncture(ski, chunk(x)). Send sk′ to the server.
• Server calls S0, . . . , S√

n−1 ← ListDecode(sk′), and for each i ∈ {0, . . . ,
√
n − 1}, it

computes βi := ⊕j∈Si
DB[j].

• Client and server run a classical PIR scheme on the database (β0, . . . , β√
n−1), and the

client retrieves βi∗ .
• If the matched entry is good, client saves the answer pi ⊕ βi∗ .
• Client samples a fresh PPPS− key sknew subject to x ∈ Set(sk), and replaces the con-

sumed entry (ski, pi) with (sknew, 0) and marks the entry as broken.

2. Let cnt be the number of matched entries in the previous step. If cnt < M3, then the
client repeats the following M3 − cnt times: sample a random PPPS− key sk subject to
x ∈ Set(sk), call sk′, ← Puncture(sk, chunk(x)), and send sk′ to the server. Invoke a
classical PIR scheme with the server to retrieve any index in {0, . . . ,

√
n− 1}, and ignore

the answer received.

3. Client outputs any saved answer. If no answer was saved, output 0.

Figure 3.7: Our single-server preprocessing PIR scheme with Õ(1) online bandwidth from a
classical PIR scheme.

calls the underlying classical PIR’s simulator; and 2) instead of calling the simulator of the PPPS
scheme, the PIR’s simulator now calls the simulator of the PPPS− scheme.
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Part II

Application: Private Information Searching
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Chapter 4

Pacmann: Efficient Private Approximate
Nearest Neighbor Search

4.1 Overview
So far, most existing Private Information Retrieval (PIR) schemes, including our own work of
Piano [ZPSZ24] and QuarterPIR [GZS24], aim to achieve the PIR functionality defined in the
1995 work of Chor et al. [CGKS95]. The original definition is indeed clean and simple in the
academic sense: for each query, the client wants to retrieve only a single record from a database
without revealing the record’s index to the server. Yet this definition is too simplistic for real-
world applications. For example, search engines like Google and Bing can search for documents
according to the semantic meaning of the client’s query, rather than the exact keywords. They
also provide similarity search services, such as finding similar images or documents based on
files uploaded by the user. These advanced search features are not supported by the original PIR
definition, and such a gap between the theoretical definition and practical applications has been a
long-standing problem in the field of privacy-preserving information retrieval.

In this work, we aim to bridge this gap by proposing a new private search algorithm that enables
private approximate nearest neighbor search (ANN). ANN search is a fundamental building
block for many advanced retrieval systems, including multimedia information search [LKLJ18,
LXY+19], recommendation systems [HSS+20, LLJ+21], and generative AI systems [LPP+20].
In the ANN context, we assume a server is holding a database of n vectors, and a client wants to
find the (approximately) most similar vector in the database to a given query vector where the
similarity is defined by a distance metric (e.g., Euclidean distance). Specifically, we focus on
private ANN search algorithms that allow the client to find the most similar vector in the database
without revealing the query vector to the server.

To date, there have been several proposed private nearest neighbor search algorithms, which
provide cryptographic privacy guarantees over the user’s query [HDCG+23, ABG+24, SSLD22].1

However, existing algorithms suffer from poor tradeoffs between: (1) search quality and/or
(2) efficiency. For example, consider Tiptoe [HDCG+23], the state-of-the-art private search
algorithm with cryptographically strong privacy guarantees. Tiptoe incurs a linear computation

1Cryptographic privacy means that the server learns cryptographically negligible information about the query.
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cost for the server per query; that is, the server needs to at least scan through the entire database
for each query. Although Tiptoe is parallelizable, the linear computation cost may be a bottleneck
for large-scale applications. At the same time, Tiptoe’s search accuracy is limited. For example, it
only achieves around 40% of the non-private search accuracy in the MS-MARCO dataset.

Private ANN search algorithms can be categorized by two main design choices: the search
algorithm and the privacy primitive. These two aspects are closely intertwined: the search
algorithm must be chosen to be compatible with the privacy primitive, while also ensuring
that information is not leaked to the server and the search quality is not overly degraded. For
example, Tiptoe makes two design choices that limit its performance: (1) It uses a clustering-
based approximate nearest neighbor algorithm that significantly limits the search quality. (2)
Its privacy guarantees are based on a preprocessed somewhat homomorphic encryption (SHE)
scheme, which requires significant computation linear in the dataset size. This is a common theme
in existing private ANN search algorithms: they either use a simple search algorithm that is not
competitive with the state-of-the-art non-private ANN search algorithms, or they rely on expensive
cryptographic primitives that incur high computation costs. This leads to the natural question:

Can we design a private ANN search algorithm that utilizes advanced search al-
gorithms while achieving strong privacy guarantees with highly efficient privacy
mechanisms?

4.1.1 Our Contribution
In this work, we present PACMANN (Privately ACcess More Approximate Nearest Neighbors), a
fully private nearest neighbor search algorithm that addresses the search quality-efficiency tradeoff.
We make the observation that the existing private search solutions fail to leverage the graph-based
ANN search algorithms [MY18, JSDS+19, IM18] that have shown better quality-efficiency trade-
offs compared to other families of ANN search algorithms (including Local-Sensitive Hashing
(LSH) [IM98, SSLD22] and clustering-based algorithms [ABG+24, HDCG+23]). The core
challenge lies in the fact that graph-based ANN search algorithms are inherently iterative algo-
rithms that require multiple adaptive steps to find the results (See Figure 4.3). Implementing
such algorithms with generic privacy-preserving techniques like fully homomorphic encryption
(FHE) [Gen09] or secure multi-party computation (SMPC) [CD+15] could incur high overheads.

Our key insight is that we can implement a graph-based ANN search algorithm by running the
iterative search locally on the client side, so that the computation can be done in plaintext and with
no privacy concerns. To achieve this without the client storing the whole graph structure, we let the
server store the graph structure and let the client dynamically fetch necessary information from the
server. We now see that this approach reduces the problem to a relatively standard PIR problem:
for each step, the client will access the graph information stored on the server to find the next
vertex to traverse, without revealing the access pattern to the server. However, if we apply standard
PIR schemes [CGKS95] here, the computation per graph access will be at least linear to the size
of the whole graph2, making the whole system inefficient. We utilize Piano [ZPSZ24], our new
sublinear PIR construction from the recently popularized client-preprocessing PIR model [CK20]
to address the efficiency issue. The Piano PIR scheme allows the client to privately query the

2The lower bound is proved in [BIM00].
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graph information with sublinear computation and communication per-query costs after a one-time
preprocessing phase with linear cost. Moreover, the preprocessing phase can be shared for multiple
ANN queries (each ANN query makes multiple accesses to the graph), so the preprocessing cost
can be amortized. Finally, we have to make further customizations and optimizations to both the
graph-based ANN search algorithm and the Piano PIR to make the whole scheme efficient.

Server

𝑣!, 𝑣", … , 𝑣#
① Graph Building

Client

② PIR
Preprocessing 

Local 
Hints

③ ANN Queries

……
④ PIR 
Graph
Accesses

Figure 4.1: The high-level overview of PACMANN. 1) The server builds a graph structure on the
database vectors. 2) The client and the server run the preprocessing protocol for the PIR scheme,
storing the local hint in the client’s storage. 3) The client makes ANN queries. 4) The client runs
the graph traversal algorithm locally, but uses the PIR scheme to access the graph information
remotely.

Contributions. We summarize our contributions as follows:
1. Algorithm Design. We present the design of PACMANN, which builds on a customized

graph-based ANN search algorithm and Piano PIR [ZPSZ24]. In graph-based ANN search
algorithms [MY18, JSDS+19, IM18], each vertex in the graph represents a database vector
and is connected to multiple other vertices based on proximity in a vector (embedding ) space.
Given a query vector, the algorithms usually start from a given vertex and traverse the graph to
find ANNs. In each step of the traversal, the algorithms examine all connected vertices to the
current vertex and move to the next vertex that is closer to the query, until a stopping criterion
is met. To implement the graph traversal algorithm privately, PACMANN requires the client
to locally run graph traversal over carefully-selected subgraphs. To efficiently retrieve the
appropriate subgraph, we modify the Piano PIR scheme [ZPSZ24] to handle batched queries.
Figure 4.1 gives a high-level system overview of PACMANN.

2. Empirical results. We empirically evaluate the performance of PACMANN in terms of
search quality, query latency, communication, and storage costs. Our results show that
PACMANN achieves significantly better search quality than the clustering-based private ANN
search algorithms used by state-of-the-art Tiptoe [HDCG+23] and Wally [ABG+24]. For
example, our implementation finds the most relevant result in around 63% of the queries on the
MSMARCO dataset, compared to 29% for clustering-based algorithms—a 2.1x improvement
in search success rate. In the 100M SIFT dataset, our evaluation shows a 2.5x better recall@10
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Tiptoe (simulated)

Non-private ANN

(a) Results on MS-MARCO dataset.

Tiptoe (simulated)Tiptoe (simulated)

Non-private ANN

(b) Results on SIFT-100M dataset.

Figure 4.2: Tradeoff between search quality and latency. “Linear Alg.” is an SIMD-optimized
linear algorithm that provides a lower bound on the latency of Tiptoe [HDCG+23], the state-
of-the-art private search algorithm. As a safe lower bound, we do not include network latency
for “Linear Alg.”. “Cluster” is a clustering-based algorithm that provides an upper bound on the
quality of Tiptoe. The intersection of the two can be viewed as our (simulated) result for Tiptoe.
We use NGT, a state-of-the-art non-private ANN search algorithm [IM18], to establish an upper
bound on the search quality. We plot PACMANN’s results in both the LAN (5ms RTT) and WAN
(50ms RTT) settings.

compared to Tiptoe. Figure 4.2 shows that PACMANN achieves 90% of the search quality of
the leading non-private ANN algorithm (NGT [IM18]), measured in mean reciprocal ranking
(MRR) and recall. PACMANN also has lower latency than linear computation cost algorithms,
including Tiptoe [HDCG+23] and Preco [SSLD22] when the database is larger than 5M
records in the LAN setting (i.e., when the search engine and the database are co-located,
so network round-trip latency is 5 ms), and 50M records in the WAN setting, respectively.
For example, for a database with 100M records, Tiptoe requires at least 4s of search latency,
whereas PACMANN achieves 1.6s in the LAN setting (a 60% reduction) and 3.1s in the WAN
setting (a 22% reduction). Experimental details can be found in Section 4.5.

4.1.2 Related Work

Most Private Information Retrieval (PIR) schemes are designed for the basic array-type access
where the client knows exactly the location of the record to query. There are some other works
that consider more advanced access patterns like key-value queries [CGN97, PSY23, CD24].
However, ANN search usually requires a more sophisticated search algorithm and thus requires a
more complex access pattern.

Several existing works directly consider the private search problem. In addition to Tiptoe
[HDCG+23], Wally [ABG+24] improves the efficiency of Tiptoe by relaxing the privacy guarantee
to differential privacy, and relying on a large batch of anonymous queries to hide the privacy
of an individual query. Nonetheless, Tiptoe and Wally are based on a simple clustering-based
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algorithm that partitions the vectors into roughly
√
n clusters, and only performs exhaustive

search in one particular cluster during the search phase. This simple algorithm is not competitive
with the state-of-the-art non-private ANN search algorithms. For example, when we evaluate
this algorithm on the MSMARCO dataset, its success rate to find the most relevant result is less
than 30%, while a non-private ANN search algorithm can have 75% of success rate or even
higher. Preco [SSLD22] is another cryptographically private ANN search algorithm that utilizes a
Locality Sensitive Hashing (LSH) based search algorithm. Unfortunately, Preco makes a strong
assumption that there must be two non-colluding servers to store the database, which is not
applicable in many practical scenarios. Preco also requires a linear computation cost on both
servers per query.

In an independent and concurrent work, Zhu et al.[ZPZP24] also propose a privacy-preserving
ANN search algorithm under a different setting in that the database is provided by the client
and outsourced to the server while being encrypted. In that case, the server not only stores the
per-client encrypted database, but can also store per-client state to facilitate the search. Their
solution is based on the HNSW graph-based ANN indexing algorithm [MY18] and Path Oblivious
RAM (ORAM) [SvDS+18]. Our setting is different in that we assume the database is public and
shared among all clients, while the server does not have any per-client storage.

4.2 Formal Definitions

K-Approximate Nearest Neighbor Search (K-ANN). Assume a d-dimensional metric space
with a distance function ∆(·, ·). Given a database containing n vectors, denoted as DB =
{v1, v2, . . . , vn} ∈ Rd×n, and a query vector q ∈ Rd such that a K-approximate nearest neighbor
search algorithm takes the database DB and the query vector q as input, and outputs an index
set I = {i1, . . . , iK} such that the distances between q and vi1 , . . . , viK are minimized, i.e.,
I = {i1, . . . , iK} is an approximation to the true K-nearest neighbors of q in DB. Specifically,
we use the recall or the mean reciprocal rank (MRR) to evaluate the quality of the approximation,
depending on the context.

Single Server (Preprocessing) Private K-ANN. A single-server preprocessing private ANN
protocol is run between a stateful client and a server. The protocol consists of two phases:
preprocessing phase and query phase.

1. Preprocessing: The preprocessing phase is run before the query phase and could involve
the communication between the client and the server. The server will receive the vector
database DB ∈ Rd×n as input.

2. Queries: The query phase can include multiple (adaptive) queries from the client. Each
query is a vector q ∈ Rd. The client and the server can have multiple rounds of communica-
tion for each query. At the end, the client will output K indices where the corresponding
vectors are the K-approximate nearest neighbors of q in DB.

Intuitively, the privacy of a private ANN protocol requires that the server learns negligible
information about the query vector q. We will define the privacy of a private ANN protocol with a
simulation-based definition. A single-server private ANN protocol satisfies privacy if there exists
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a simulator Sim such that for any probabilistic polynomial-time adversary A acting as the server,
the views of A in the following two experiments are computationally indistinguishable:

• Real: the client interacts with A(1λ,DB) who acts as the server. In each query step, A may
adaptively choose the next query q for the client. The client is invoked with q as input.

• Ideal: the simulated client Sim(1λ, n) interacts with A(1λ,DB) who acts as the server and
A still may adaptively choose the next query q for the client. However, the simulator is
invoked with only the knowledge of the size of the database, and without the information of
the chosen query q.

Throughout this paper, we assume the adversary is semi-honest. That is, the adversary follows
the server’s protocol specification but may try to learn additional information from the server’s
view. We leave the extension to malicious adversaries as future work3.

4.3 Our Graph-based ANN Construction

As a starting point, we describe our ANN search algorithm construction without privacy con-
siderations. Our construction relies on a customized version of the graph-based ANN search
algorithm.

Figure 4.3: An illustration of the graph-based ANN search algorithm on a 2D space. The starting
vertex is located around the upper left part of the graph, and the query vector is shown as a blue
star. We highlight the path that the algorithm takes to reach the approximate nearest neighbor.

3We could potentially use the verifiable PIR techniques [BDKP22] to upgrade the security to malicious adversaries.
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4.3.1 Preliminary: Generic Graph-based ANN Search Blueprint
Many popular graph-based ANN search algorithms such as NSW [MPLK12], HNSW [MY18],
DiskANN [JSDS+19], NGT [IM18], and FINGER [CCJ+23] follow the same technical blueprint:
the algorithm builds a graph based on the input vectors during the preprocessing phase, and
then performs a graph traversal algorithm to find the approximate nearest neighbors for a given
query vector. We provide a graphical illustration of this process in Figure 4.3 and a pseudocode
description in Figure 4.4.

Preprocessing. The preprocessing phase takes in n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n from a
metric space and builds an indexing graph G where the n vertices represent the vectors. Different
algorithms may have different ways of selecting graph edges. One common approach (e.g., seen
in [JSDS+19]) is to connect each vertex vi to several nearest neighbors, i.e. vectors that are
close to vi in the metric space, as well as multiple distant neighbors to ensure the diversity of the
neighbor list [WXYW21]. Most recent ANN algorithms use more advanced structures on top of
the indexing graph (e.g. hierarchical structure in HNSW [MY18] or auxiliary tree-structure in
NGT [IM18]) to improve the search efficiency.

Query. Given a query vector q, the query algorithm performs a graph traversal algorithm on
the index graph G and outputs a vertex u∗ as the approximate nearest neighbor of q. The search
algorithm starts from an entry point ustart, often picked as the closest vertex to the centroid of
DB. We denote the set of neighbors of a node v as N(v). In each hop, the search algorithm
greedily moves from the current vertex v to its neighbor in N(v) that is the closest to the query
vector q. The algorithm terminates when the number of hops reaches a certain threshold or a local
minimum is met, i.e. none of the neighbors is closer to q than the current iterate. This can be
easily extended to outputting K approximate nearest neighbors by keeping track of the visited
vertices and outputting the top K nearest vertices in the visited set.

4.3.2 Our Customized Graph Building Algorithm
To make graph-based ANN search private, PACMANN imposes two constraints: (1) We retain the
single graph structure, as opposed to adding auxiliary structures, as is done in the non-private
setting. This is done to facilitate the upgrade to the privacy-preserving version. (2) We enforce
regularity on the graph’s out-degree distribution. This prevents information leakage from the
number of neighbors accessed. These properties are not met by existing ANN algorithms, and we
customize the graph-building algorithm to meet them. We now describe the high-level idea to
build a regular C-out directed indexing graph.

Start from an unbalanced graph. Our first observation is that we can take advantage of existing
ANN libraries to find nearby neighbors for all vectors in the database and treat them as the
candidate neighbors in the graph. Specifically, we find 2C approximate nearest neighbors as
neighbor candidates for each vertex using an existing ANN library (e.g., NGT [IM18]), then trim
the candidate list to C candidates with the sparse-neighborhood-graph (SNG) heuristic [AM93].
Roughly, SNG sorts the candidates by their distance to the vertex and adds candidates to the
neighbor list one by one. It only adds a candidate if it is not too close to a neighbor already in the
list; this is done to ensure diversity (see Figure 4.5 for the details).
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Figure 4.4: Description of the graph based ANN search algorithm including the optional opti-
mizations. The pseudocode can be read in the following two ways: 1) the non-highlighted part
describes the generic graph-based ANN search algorithm; 2) the full description, including the
optimizations we introduced in Section 4.4.2, describes our customized version of the algorithm.
In the non-private setting, the algorithm is run on the server. In the private setting, the client will
run the query algorithm locally, and use Batched Piano PIR to perform the information retrieval
dynamically and privately.

Graph-based ANN Search Algorithm
Preprocessing.
• Input: a set of n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n.
• Output: a directed graph G with n vertices corresponding to the n vectors in DB, and entry

point(s) ustart, u
1
start, . . . , u

√
n

start.

1. G← ANN.BuildGraph(DB); // Description in Section 4.3.2

2. Let the closest vector to the centroid be the starting vertex ustart =
argminu∈[n]∆(vu,

1
n

∑
j∈[n] vj).

3. Let the extra starting vertices be
√
n random vertices u1

start, . . . , u
√
n

start sampled from [n].

Query.
• Parameters: max hop number H , beam search width m denoting the number of parallel

paths to explore.
• Input: a query vector q ∈ Rd.
• Output: an index u∗ such that vu∗ is recognized as an approximate nearest neighbor of q.

1. Let u = ustart.

2. Let u1, . . . , um be the top m vertices in u1
start, . . . , u

√
n

start that are closest to q.

3. For t = 1, 2, . . . , H:
• Update u as follows:

Read the neighbor list N(u) from G and all vectors vj for j ∈ N(u) from DB.

Let u′ = argminj∈N(u) ∆(vj, q).

If ∆(u′, q) ≤ ∆(u, q), update u← u′.
• Similarly, update u1, . . . , um.

4. Let u = argminu′∈{u,u1,...,u√
n}∆(u′, q).

5. Output u∗ = u.

We temporarily add directed edges between each vertex and its C neighbor candidates in both
directions to ensure the graph is well-connected, i.e. so that each vertex has at least C inbound
and C outbound directed edges.
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Balancing the graph. We now have a graph that could be highly unbalanced in terms of the
degrees. We use a sampling technique to balance the graph. That is, for each directed edge
(x→ y), we keep it with a probability of C/InboundDegree(y). This ensures that a vertex will
have C inbound edges in expectation after the sampling process. Then, we ensure that each vertex
has exactly C outbound edges. For those vertices with more than C outbound edges, we again
use the SNG heuristic to trim the outbounds to C. For those vertices with fewer than C outbound
edges, we connect them to vertices selected uniformly at random.

A detailed description of our customized graph building algorithm is provided in Figure 4.5.

4.4 PACMANN: Private Graph-based ANN
We next describe how PACMANN protects query privacy over our customized graph-based ANN
search algorithm in Section 4.3. We start with a basic, inefficient construction, then show how
PACMANN optimizes it. Due to space constraints, we present the full construction of PACMANN

in Section 4.4.3.

4.4.1 Private Graph-based ANN Search with PIR
As a strawman scheme, one could try to protect query privacy by implementing the search
algorithm with generic cryptographic primitives, such as fully homomorphic encryption [Gen09].
and/or multi-party computation [CD+15]. However, the search algorithm of graph-based ANN is
inherently iterative and adaptive in that during the graph traversal process, each hop’s vertex is
dynamically determined by both the previous hop’s vertex and also the query vector. Handling
such (adaptive) iteration is a common challenge in designing cryptographic protocols 4 as observed
by previous works [BFK+09, DdSGOTV22, CGG+24, GHAHJ22, HKP21]

Localized Searching. Our main idea is to perform the iterative graph traversal algorithm on
the client side, completely removing the privacy concern of performing iterative computation
on the server. Naively, this would require the client to store the whole indexing graph, which is
impractical in terms of storage cost. Instead, we let the client dynamically and privately retrieve
subgraph information from the server. Specifically, during search, the client can retrieve the
neighbor list N(vi) of the current vertex vi and also all vectors in the neighbor list from the server
for each hop. The client then computes the distances between the query vector q and all the
neighbor vectors in N(vi) locally, and chooses the closest neighbor within that set. This process
is repeated until the search terminates.

Protecting Retrieval Privacy with PIR. Even without directly observing the query vector, the
server can infer non-trivial information from the vertex indices retrieved by the client. For example,
if the server learns that the client retrieves many vertices whose underlying records represent

4The standard FHE or MPC techniques are designed for the so-called circuit model, where the computation flow
is fixed and known in advance. Although the circuit model is indeed Turing-complete, it does not naturally support
a random-access memory and control flow operations like if-else conditions. In the context of graph-based ANN
search, we do need to (adaptively) read the graph from a random access memory, so the standard techniques are not
directly applicable.
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Our Graph Building Algorithm: ANN.BuildGraph.
Input: a set of n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n and a target degree C.

Output: a directed regular C-out graph G with n vertices corresponding to the n vectors in
DB.

Subroutine: ANN.TrimNeighbors(u, L,C). // Given a vertex u and a list of neighbors L,
return the picked C neighbors of u in L with the SNG heuristic.

1. Let w be the number of vertices in L and let (i1, . . . , iw) be the sorted indices in L
according to the distance to the vector vu (ascendingly).

2. Let Kept← ∅, Dscd← ∅.
3. For j = i1, . . . , iw:

(a) If ∃j′ ∈ Kept such that ∆(vj, vj′) < ∆(vj, vu), label j as discarded. // SNG heuristic

(b) If j is not discarded, insert j into Kept. Otherwise, insert j into Dscd.

(c) Terminate if |Kept| = C.

4. If |Kept| < C, insert the first C − |Kept| vertices in Dscd to Kept.
5. Return Kept.

Graph Building.
1. For each u ∈ [n]:

(a) Let Nu be the set of 2C approximate neighbor indices to vu obtained by an underlying
ANN algorithm.

(b) Trim Nu to C neighbors: let Nu ← ANN.TrimNeighbors(u,Nu, C).

(c) For all u′ ∈ N(u), add directed edges (u→ u′) and edge (u′ → u) to the graph G.

2. Fix InDegree(u) to be the in-degree of vertex u in the current graph G.

3. For each edge (i, j) ∈ G: keep the edge in G with probability C
InDegree(j) .

4. For each u ∈ [n]:

(a) Denote NG(u) as the set of outbounds of u in G.

(b) If |NG(u)| < C: add edges from u to random vertices in [n] until |NG(u)| = C.

(c) If |NG(u)| > C: let NG(u)← ANN.TrimNeighbor(u,NG(u), C).

5. Output the graph G.

Figure 4.5: Description of our graph building algorithm ANN.BuildGraph.

documents about food topics, the server can infer that the client is searching for information about
foods. Thus, the final challenge is how the client can retrieve the graph information (including the
neighbor lists and the vectors) without revealing which vertex it is retrieving.
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We use a Private Information Retrieval (PIR) scheme for this purpose. Standard PIR [CGKS95]
allows a client to retrieve one or multiple entries from a server-stored database of n entries without
revealing the indices of the entries to the server.

To integrate a PIR scheme into our private graph-based ANN search algorithm, we can run a
standard PIR protocol for a database storing all the vertex information in the graph, where each
entry i stores the vector vi and also the neighbor list N(i). Whenever the client needs to access
the graph, it issues a PIR query to retrieve the information privately. Notice that by merging the
vector information and also the neighbor information into a single database, we can finish each
hop in one round of communication.

Specifically, we choose to use our Piano PIR scheme (Chapter 2) as the underlying PIR scheme.
Piano achieves practical efficiency for the single-server setting, matching our requirements. Given
a database with n entries, Piano achieves Õ(

√
n) computation and communication per query with

Õ(
√
n) client storage after a one-time preprocessing phase that incurs linear computation and

communication costs. Other alternatives of single-server PIRs [GZS24, RMS24, WLZ+23] could
also be used in our construction for similar efficiency guarantees.

In the algorithm description, we use the following syntax of to capture the Piano PIR function-
ality with the batch-mode interface:

• hint← PIR.Prep(1λ,DB): given the security parameter 1λ and the database DB, generate
the preprocessed PIR hint hint.

• msg ← PIR.BatchQuery(hint, batch): given the PIR hint and a batch of query indices
batch ⊆ [n], the client generates the PIR query message msg.

• ans← PIR.BatchAnswer(DB,msg): upon receiving the batched PIR query message msg,
the server generates the batched answer ans.

• (β, hint′) ← PIR.BatchRecover(hint, ans, batch): given the batched answer ans and the
PIR hint hint, recover the answers β and update the hint to hint′. Here, β is a set that
includes all the successful query indices and their corresponding answers. That is, β
includes the tuples (i,DB[i]) for all i ∈ batch that are successfully queried.

By applying the Piano PIR scheme to our private ANN construction, after a linear cost prepro-
cessing phase, each PIR query in the graph traversal algorithm will incur Õ(

√
n) computation and

communication cost. Again, if we assume the search algorithm takes H hops and each hop requires
the client to retrieve the information of C neighbors, the overall running time of the scheme will
be Õ(HC

√
n). As long as H · C is o(

√
n), the resulting scheme will have sublinear computation

cost, being more efficient than the prior private ANN schemes [HDCG+23, SSLD22].

Tradeoff and Practicality of Preprocessing. Despite significant online efficiency improvements,
the Piano PIR client must download the whole database (i.e., the indexing graph) in a streaming
fashion during the preprocessing phase. Here, streaming means that the client only stores a small
portion of the database to preprocess at a time, but the total amount of data the client has to
download is still the whole database. Therefore, our scheme is more suitable for a client with
a good network connection. In our evaluation where we assume a good network connection (1
Gbps), the preprocessing phase takes around 5 minutes and 3 GB of client storage space for a
database with 100 million vectors, and the total download communication is around 60GB. An
alternative approach to reduce the preprocessing cost is to have a second server to preprocess
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the database and directly provide the client with the preprocessed results, as suggested in many
existing PIR schemes [ZPSZ24, LP23b, GZS24, KCG21].

4.4.2 Necessary Optimizations

In practice, we observe that the total number of visited vertices in the graph-based search algorithm
(that is, the product between max hop number H and the graph out-degree C) tends to be around a
few hundreds or thousands. We describe the necessary optimizations here and conduct an ablation
study in the evaluation section to show the effectiveness of these optimizations in Section 4.5.
Empirically, we observe that our optimizations reduce the concrete computation cost by 76%, and
the overall latency by nearly 70% (including the communication time).

Beam search. The basic description of the graph-based ANN search algorithm Figure 4.4
traverses the graph in a single path. In practice, we can explore m multiple paths in parallel. This
approach is used in other graph-based ANN algorithms [JSDS+19]. Although doing so increases
the query cost per hop, we observe that beam search significantly reduces the total hops to reach a
given search quality, and is thus essential to reducing the overall latency.

Fast Starting. Intuitively, if the starting vertex is already very close to the query vector q, we
can reach the approximate nearest neighbors with fewer hops. With fast starting, we let the client
store around O(

√
n) vertices’ information locally, and scan all these vertices to find those that

are already close to q to start the searching algorithm. We get this benefit for free, because Piano
PIR already requires the client to store Õ(

√
n) vectors locally, which are selected uniformly at

random.

Batched PIR Query. We observe that the PIR queries in each hop are parallel and can be handled
in a single batch. We can use a batching technique called partial batch retrieval (PBR) [SSLD22]
to further improve the efficiency. In PBR, we can use a pseudorandom permutation to permute
the database upfront, and then partition the permuted database into B sub-databases where each
sub-database has n/B entries. On average, each sub-database will have Q/B queries given a
batch of Q queries (if we are using beam search, Q = mC). By doing this, each PIR query will
be issued to a sub-database of size n/B instead of the full database, saving the computation and
communication cost. To ensure privacy, the client has to issue a fixed number of queries for
each sub-database, say choosing the number T = 1.5Q/B. If fewer than T queries are in the
same sub-database, the client submits dummy queries. If more than T queries are in the same
sub-database, the client only submits the first T queries and discards the rest. For example, if
we have a batch size Q = 32 and set partition number B = 16 and T = 3, around 90% of the
queries in the batch will be successfully submitted in expectation. 5 Intuitively, if each vertex has
32 neighbors, our retrieval process can retrieve nearly 30 neighbors’ information with a single

5We can approximate this process with randomly throwing Q balls into B bins, each with a maximum load of T ,
and calculate how many balls are discarded due to overflow in expectation. Given some fixed order of throwing the
balls, the probability that the i-th thrown ball is thrown into a fully-loaded bin is always Pr[Bin(i− 1, 1/B) ≥ T ].
Here, Bin(t, p) denotes the Binomial distribution – that is, the number of successful trials in t repeated, independent
trials where each trial has success probability of p. Then, the expected number of discarded balls (i.e., failed queries)
in total is

∑Q
i=1 Pr[Bin(i− 1, 1/B) ≥ T ].
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batched query. Since the graph tends to be highly-connected, we observe that even with a mild
query failure probability, the algorithm still finds good results with more hops.

Assume we are using the Piano PIR scheme that has O(
√
n) computation/communication

cost per query. If we split the database into B sub-databases, the total cost for a Q-size batch will
be O

((
Q
B
+B

)
·
√

n
B

)
. The optimal selection will be B = Θ(Q) and the cost will be O(

√
Qn).

This gives us a O(
√
Q) improvement in the efficiency compared to naively issuing Q independent

queries that has O(
√
nQ) cost.

4.4.3 Putting Everything Together

We include the full description of our algorithm in Figure 4.6. The algorithm further involves
the local caching optimization that the client will keep track of all queried vertices and avoid
repetitive queries.

Preprocessing. We use the same graph building algorithm as in Figure 4.5 to build a graph G from
the vectors DB. We then combine the neighbor list of each vertex with its vector to build a new
database DB′ = {(vi, N(i))}i∈[n]. Then, we randomly sample

√
n starting vertices u1

start, . . . , u
√
n

start

from [n]. We then run the client-side preprocessing algorithm of Piano and let the client store the
hint hint. Further, we let the client download those starting vertices and their vectors and neighbor
lists from the server.

Query for K-approximate nearest neighbors of vector q ∈ Rd. We generalize the search
algorithm to the following exploration process. The client can maintain two sets of vertices
locally: 1) visited including all vertices that the client has already visited and stored their vectors
and neighbor lists, and 2) developed including all vertices that the client has already visited and
retrieved all their neighbors’ information. The client can maintain visited as a priority queue where
the closer vertices to q are at the front. Each time the client can pick multiple vertices from visited
and fetch their neighbors’ information in parallel. The client will move those picked vertices from
visited to developed, and add their neighbors to visited. We collect all those neighbors’ indices
as batch and issue a batched PIR query to the server. After receiving the batched answer, the
client will recover all the successful queries and push them to visited. The client also needs to
update the local hint hint after each query. We can repeat this process until the max hop number
is reached. Finally, the client can output the top K nearest vertices in visited and developed to the
query vector q.

We summarize the main result in the following theorem.
Theorem 4.4.1. Assume there exists one-way functions. Consider a database with n vectors in
Rd. Assuming a non-private graph-based ANN algorithm that preprocesses the database into a
C-degree graph, and searches for the approximate nearest neighbors with H hops in the graph.
Then, by applying the Piano PIR scheme, we can build a private ANN scheme with the following
efficiency, while achieving the same search quality as the non-private graph ANN:

• Preprocessing: Õ(n(d+ C)) client and server time and O(n(d+ C)) communication;
• Query: Õ(H ·

√
Cn·(d+C)) client and server time and O(H ·

√
Cn·(d+C)) communication.

• Storage: Õ(
√
n · (d + C)) client storage and no additional server storage except the

database.
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Proof. The proof follows directly from the efficiency of the Piano PIR scheme when we consider
a database with n entries and each entry stores a vector in Rd and a neighbor list of size C.
Moreover, by applying the batched optimization we described in Section 4.4.2, we further reduce
the computation and communication cost of each PIR query by

√
C. The privacy proof is fairly

straightforward, as the server only sees multiple Piano PIR queries from the client. We can
construct a simulator for the Ideal experiment that simulates the server’s view by invoking the
simulator of the Piano PIR scheme for each query issued from the client. It follows from the
privacy of the Piano PIR scheme that the two views (the Real and the Ideal experiments) are
computationally indistinguishable.

4.5 Evaluation
We evaluate PACMANN’s performance in terms of search quality and latency and compare it
against two baselines: a state-of-the-art private ANN search algorithm, Tiptoe [HDCG+23], and a
non-private ANN search algorithm, NGT [IM18]. Our evaluation results show that PACMANN

achieves better search quality with lower online query latency than Tiptoe in two real datasets,
SIFT and MS-MARCO. We provide more details in Section 4.5.3, including a detailed breakdown
of the preprocessing, storage, and communication cost, and a discussion about quantization and
the alternative implementations.

4.5.1 Evaluation Setup

Our open-source implementation6 uses Python for data preprocessing and Golang for the core
algorithm, including the graph ANN algorithm and the PIR scheme. Details of the implementation
are provided in Section 4.5.3. The experiments are run on a single server with a 2.4GHz Intel
Xeon E5-2680 CPU and 256 GB of RAM. We evaluate the latency numbers on two simulated
network settings, the local area network (LAN) setting with 5ms round-trip-time (RTT) and
the wide area network (WAN) setting with 50ms RTT. Although our implementation supports
multi-threading optimization, we only use a single thread for all the experiments for a fair
comparison.

Quality Metrics
Recall: Recall is the standard metric used in evaluating the quality of ANN algorithms [ABF20].
For each query q, if the algorithm outputs a K-index set I , and the top K ground truth indices are
I∗, the recall@K is defined as: Recall@K = |I∗∩I|

K
.

Mean Reciprocal Rank (MRR): MRR is a standard quality metric for information retrieval sys-
tems [NRS+16]. Given a query q, assume there is a ground truth index i∗ such that DB[i∗] is the
most relevant entry. If the client outputs a list of indices that actually contains i∗ at the j-th rank
where j ≤ K, the reciprocal rank (denoted as RR@K) score is 1/j. Otherwise, RR@K is 0.
MRR is defined as the average of RR@K over multiple queries.

Datasets
6https://github.com/privsearch/private-search-temp
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PACMANN: Private Graph ANN with Preprocessing
Preprocessing.
• Server Side Preprocessing: Input: a set of n vectors DB = {v1, v2, . . . , vn} ∈ Rd×n.

Runs G← BuildGraph(DB).

Randomly sample
√
n starting vertices u1

start, . . . , u
√
n

start from [n].

Let DB′ = {(vi, N(i))}i∈[n] where N(i) is the neighbor list of i in G.
• Client Side Preprocessing:

Stores hint← PIR.Prep(1λ,DB′). // Involving communication with the server.

Downloads the representative indices u1
start, . . . , u

√
n

start from the server.

For all u ∈ {ui
start}i∈[√n], downloads DB′[u] = (vu, N(u)) from the server.

Query for K-approximate nearest neighbors of vector q ∈ Rd.
• Parameters: max hop number H and beam search width m.

• Client Side Algorithm.

Let visited = {ui
start}i∈[√n] be a priority queue where the closest vertices to q are at the

front.

Let developed = ∅.
For t = 1, 2, . . . , H:

− Let u1, . . . , um be the top m indices in visited and move them from visited to developed.

− Let batch = ∪i∈[m]N(ui) be the union of the neighbor lists of u1, . . . , um.

− Remove those indices in batch that are already in visited ∪ developed.

− Send msg← PIR.BatchQuery(hint, batch) to the server.

− Upon receiving ans from the server, run (β, hint′)← PIR.Recover(ans, hint). where β
is a set that includes all the successful query indices and their corresponding answers.

− For each successful query tuple (u, (vu, N(u))) ∈ β, add u to visited and store the
vector vu and neighbor list N(u) locally.

− Update the local PIR hint hint← hint′.

Finally, for all u ∈ visited ∪ developed, compute the distance ∆(vu, q). Output the k
indices with the smallest distances.

• Server Side Algorithm.

Upon receiving a PIR batch query message msg from the client, run ans ←
PIR.BatchAnswer(DB′,msg) and return ans.

Figure 4.6: Our private ANN scheme with preprocessing.
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SIFT Dataset [JTDA11] We use the first 100 million 128-dimensional vectors from the SIFT
dataset for our evaluation. We vary the database size by picking the first 2 million to 100 million
vectors. We test 1,000 top-10 queries in the SIFT query set for each configuration, and measure
the average recall@10 (the top-10 ground truth nearest neighbors for each query are provided by
the dataset).
MS-MARCO Dataset. [NRS+16] The dataset contains 3.2 million text documents with more than
5000 test queries such that the top 1 relevant document is provided. We follow the same procedure
as in the Tiptoe paper [HDCG+23] to process the dataset: 1) embed the documents and the queries
into a 768-dimensional vector space with sentence-BERT [RG19]; 2) reduce the dimensions
to 192 with PCA. We follow the same quality evaluation metric as in the Tiptoe paper that we
compute the average MRR@100 for the first 1000 queries.

Baselines
• Tiptoe (Simulated). We aim to compare our scheme against the state-of-the-art private ANN

search algorithm, Tiptoe [HDCG+23]. Due to resource constraints, we were unable to run the
full Tiptoe system, in which the dominating cost comes from the clustering step that requires
dozens of servers running hundreds of core-hours as reported in the original paper. Hence, we
simulated Tiptoe by using two baselines as follows.

Latency lower bound: Linear Algorithm. The Tiptoe algorithm computes n inner products
per query with preprocessed homomorphic encryption. As a latency lower bound, 7 we
implement a linear time algorithm that only computes the inner product between the query
and each database vector in plaintext. We optimized the implementation using AVX-512
instructions. The throughput of this algorithm is approximately 11.9 GB/s, matching the
memory bandwidth of the machine. Finally, we do not include network latency for this
baseline.

Quality upper bound: Cluster. We replicate the clustering-based ranking algorithm used in
Tiptoe with full precision (32-bit)8. We cluster the vectors into

√
n clusters offline. For

each query, we find the closest cluster centroid, and search for the nearest neighbor within
the cluster.

• NGT. NGT is one of the state-of-the-art non-private ANN search algorithms. We use the
implementation from the GoNGT library [IM18]. We compare our scheme against NGT in
terms of search quality.

4.5.2 Implementation Details
We describe our implementation of the two components below.

Graph-based ANN. The graph-based ANN algorithm can be divided into two parts: the graph
building part and the query part. The graph building part follows our description in Figure 4.5 and
sets the outbound number C = 32. The query part strictly follows our description in Figure 4.6.

7We compared the simulated online latency with the actual numbers reported in the original paper [HDCG+23],
and the simulated latency is 8% less than the reported latency. See the detailed results in Section 4.5.3.

8Our reimplementation of the clustering-based algorithm reached 0.15 MRR@100 on the MS-MARCO dataset,
which is better than the 0.13 MRR@100 reported in the Tiptoe paper [HDCG+23].
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Batched PIR. We implement a batch-mode version of the Piano PIR scheme [ZPSZ24] by first
implementing the single-query version of the Piano PIR scheme with 128-bit security parameter,
then wrapping it with a batch-mode interface. The interface simply splits the whole database into
B partitions, and then runs a single-query Piano PIR scheme on each partition parallelly. Given
a batch of Q queries, we simply identify which partition each query belongs to, and then make
Q/B queries at each partition to ensure privacy. We choose B = 16 and Q = 32 in our evaluation.
Moreover, we implement the automatic maintenance for the client state. We keep track of the
consumed hints in the client’s space and automatically run another preprocessing phase when the
hints are exhausted.

4.5.3 Evaluation Results

PACMANN provides a favorable tradeoff between privacy, search quality, and latency. We
first measure the tradeoff between search quality and query latency. Specifically, by increasing
the number of rounds and the number of parallel queries in each round, our algorithm can achieve
higher search qualities at the cost of higher latency. The results are shown in Figure 4.2. We
consider a wide range of search quality requirements, where the lower bound is set by the cluster
search algorithm (replicating the Tiptoe search algorithm), and the upper bound is set by the
non-private ANN algorithm, NGT. We observe that our scheme provides a wide range of tradeoffs
between quality and latency, and can indeed achieve approximately 90% of NGT’s search quality.
In the SIFT-100M dataset, the advantage of our scheme is more significant, and even with 91%
recall@10, our scheme still has a lower latency than the linear algorithm baseline.

Scalability: PACMANN outperforms Tiptoe in latency and accuracy on datasets of at least
2M-50M records. We next evaluate the scalability of our scheme by scaling the database size
up to 100 million vectors. We tune the parameters of our scheme to achieve 0.90 recall@10 for
each data point; that is, 9 out of 10 of the search results are indeed ground truth top-10 nearest
neighbors on average. The results are shown in Figure 4.7. We observe that in the LAN setting
where the computation time is dominant, our scheme beats the linear algorithm baseline when
the database size is larger than 5M. In the WAN setting where the communication time is more
dominant, our scheme beats the linear baseline when the database size is larger than 50M. We
observe that the number of rounds to achieve a certain recall@10 increases roughly logarithmically
with the database size, and we know from the theoretical analysis that PIR cost scales with

√
n.

This suggests that the total latency of our scheme increases sublinearly with the database size.

Ablation study: Our optimizations give a 70% latency reduction. Finally, we conduct an
ablation study on the 10M subset of the SIFT dataset to evaluate the optimizations in Section 4.4.2:
1) Beam Search: The number of parallel paths in the beam search algorithm is increased from 1
to 3. 2) Fast Starting: The client starts the search by choosing the starting vertices from Õ(

√
n)

preprocessed vertices. 3) Batched PIR: We enable the batch-mode PIR for each round of the
search.

We compare four configurations in Figure 4.8, where we increase the number of rounds until
the quality reaches 0.90 recall@10. The beam search optimization significantly reduces the
maximum number of rounds needed to achieve the same quality by 3x. Adding the fast-start
strategy furtuher reduces the required rounds by 20%. When we enable the batch-mode PIR,
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Figure 4.7: Latency results on different
database sizes, sampled from the SIFT dataset.
We tune the parameters of our scheme to
achieve 0.90 recall@10 for each data point;
For each data point, the total latency is the sum
of the actual computation time and the round-
trip time of the communication, multiplied by
the number of rounds. We plot both the LAN
setting (5ms rtt) and the WAN setting results
(50ms rtt) in this figure.

Figure 4.8: Ablation study on the 10M sub-
set of SIFT (WAN setting). Given a fixed
configuration, we increase the max number of
rounds until the quality reaches 0.90 recall@10.
“No Opt” means no optimizations are enabled.
“Beam” means the beam search optimization.
“FS” means the fast starting strategy. “Batch”
means we enable the batch-mode Piano PIR.
Our full implementation enables all the opti-
mizations.

we observe that the computation time in each round is reduced by 4x, but, as we mentioned
in Section 4.4.3, we do introduce some query failures, which we need to balance with the slight
increase in the number of rounds.

4.5.4 Detailed Breakdown

Finally, we provide a detailed breakdown of the costs of our scheme in Table 4.1. We pick two
representative parameter settings for the MS-MARCO dataset and the SIFT dataset, all achieving
90% of the quality of the state-of-the-art non-private ANN search algorithm. The graph building
time is significant for both datasets, taking 8.5 minutes for the MS-MARCO dataset and 343.5
minutes for the SIFT dataset. However, the graph building only happens once on the server
side. The PIR preprocessing is per-client, but it is relatively cheap, taking 9.1 seconds for the
MS-MARCO dataset and 271.6 seconds for the SIFT dataset. The most expensive part is that
during the preprocessing, the client has to scan over the whole index structure in a streaming
fashion, incurring large communication cost. For each online query, the latency and computation
time match our analysis in Section 4.5.3. Notably, the communication cost on the critical path
is relatively low, taking 1.5MB for the MS-MARCO dataset and 14.4MB for the SIFT dataset.
Notice that the client has to update its local state after each query. We see that the maintenance
time per query is relatively cheap, but the communication cost is high, taking 60.1MB for the
MS-MARCO dataset and 399.4MB for the SIFT dataset. Theoretically, the client stores around
Õ(n) amount of local state. Empirically, we see that the client stores 0.6GB of data for the
MS-MARCO dataset and 2.9GB of data for the SIFT dataset, and the scaling factor matches our

90



MS-MARCO (3M) SIFT (100M)

Preprocessing
Graph Buliding Time 8.5 min 343.5 min

PIR Preprocessing 9.1 s 271.6 s
Communication 2.7 GB 59.6 GB

Online per query
Latency 1.1 s 3.0 s

Computation Time 0.10 s 1.48 s
Online Communication 1.5 MB 14.4 MB

Rounds 20 32

Maintenance per query
Time 0.19 s 1.99 s

Communication 60.1 MB 399.4 MB

Client Storage 0.6 GB 2.9 GB

Table 4.1: Detailed breakdown of our results on different datasets in the WAN setting. We list
the preprocessing, online query, and maintenance costs. The graph-building cost happens only
once. The PIR preprocessing cost is incurred when each client joins the system. The online query
cost is the cost on the critical path of the search queries. Following each online query, there is
a necessary one-round maintenance to update the client state. We use 16 threads for the graph
building and one thread for other parts. The corresponding quality for the experiments is 0.266
MRR@100 for MS-MARCO and 0.90 recall@10 for SIFT.

theoretical analysis.

Discussion on quantization and comparing against Tiptoe. We noticed that the original Tiptoe
implementation uses 4-bit quantization for the vectors to further trade off the search quality for the
latency. In our evaluation, we use the full 32-bit precision for all the algorithms. Thus, the quality
of the clustering-based algorithm should be considered an upper bound for the actual Tiptoe
algorithm. For the latency, the “Linear Algorithm” baseline should be a good approximation of
the actual Tiptoe algorithm. As an example, if we extrapolate the reported numbers of Tiptoe’s
algorithm based on the Table 6 and Table 7 in the original paper [HDCG+23] to the MS-MARCO
dataset, the latency will be around 0.27 seconds. 9

Alternative Implementations. As alternatives, one can indeed use other PIR schemes to imple-
ment our graph-based ANN algorithm. As an example, using another recent single-server PIR
scheme, SimplePIR [HHCG+22] (used also in Tiptoe [HDCG+23]), comes with a tradeoff. In

9The authors of Tiptoe reported the total core-second is 145 seconds for their experiment on a dataset with 360
million 192 dimensional vectors. The full Tiptoe system contains three parts: “preprocessing”, “ranking” and “URL”
where the “ranking” part corresponds to our ANN search experiment. According to Table 7 in the paper, it should
take about (1.9/(6.5 + 1.9 + 0.6)) = 21% of the cost. Thus, an estimation of the time on a single-core for the 3.2M
size MS-MARCO dataset will be 145× 21%× 3.2×106

360×106 ≈ 0.27s, which is close to our simulated “Linear Algorithm”
latency (0.25 seconds).
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the 10M SIFT dataset experiment, we can save the offline communication cost from roughly 6GB
to around 300MB, but this would increase the online latency from 1.5s to roughly 90s according
to our estimation as follows. We tested the throughput of the SimplePIR scheme on our server,
which is around 10 GB/s. Then, we are making in total 25 rounds of graph explorations where
each round having 96 parallel queries. The batching technique allows each individual query to be
made in a sub-database of 16 times smaller than the whole database (around 6GB). Therefore, the
total estimated time would be 25× 96× 6GB

16×10GB/s ≈ 90s.

4.6 Theoretical Implications

We focused on the practical aspects of our scheme in the main body. Although graph-based ANN
search has been empirically shown to be successful in practice, the theoretical understanding of
the graph-based ANN search is still very limited. Here, we provide some theoretical insights into
the graph-based private ANN search given the existing theoretical results.
Definition 4.6.1 ((c, r)-Approximate Nearest Neighbor). Given n vectors DB = {v1, v2, . . . , vn} ∈
Rd×n and a distance function ∆(·, ·), we say that an algorithm is a (c, r)-approximate nearest
neighbor search algorithm if for any vector q ∈ Rd such that the true minimal distance between q
and any vector in DB is at most r, the algorithm outputs an index i such that ∆(vi, q) ≤ c · r with
at least constant probability.

For the low-dimension case where d = Θ(log n), we refer the reader to Prokhorenkova and
Shekhovtsov [PS20] for the detailed discussion. Here, we will focus on the high-dimensional
regime (also known as the sparse data case) such that the dimension d = ω(log n), which
is the most common setting for ANN search (recall that most embedding spaces are at least
100-dimensional).

Two notable theoretical results can be leveraged to analyze the graph-based ANN search.
Laarhoven [Laa18] proves the following theorem:
Theorem 4.6.2 (Laarhoven [Laa18]). Consider a database contains n independently random
vectors in the unit sphere in Sd−1 and the distance is measured by Euclidean distance. For c > 1,
there exists a (c, r)-graph-based ANN search algorithm with the O(n1+ρ+o(1)) space complexity
and O(nρ+o(1)) query time complexity while taking only O(1) hops in the graph, where

ρ ≥ c4

2c4 − 2c2 + 1
.

We call this setting the average case setting. Intuitively, we can think about nρ in the above
theorem roughly denoting the average degree of the graph. For example, if we aim to have a
2-approximation ANN, then ρ ≈ 0.64. We see that with the approximation factor c getting worse,
limc→∞ ρ(c) = 1

2
.

On the other hand, Diwan et al. [DGM+24] studied the problem of building a navigable graph.
On a high level, a navigable graph provides the guarantee for “in-distribution” queries for ANN
search, that is, when the query vector will be exactly some vector in the database. They showed
the following theorem:

92



Theorem 4.6.3 ([DGM+24]). For any n vectors in Rd, it is possible to build a navigable graph
with average degree of at most 2

√
n lnn. Moreover, the “greedy-routing” strategy always

succeeds in finding the correct vector in the database with at most 2 hops.

The above two theorems provide the following theoretical insights: for the high-dimensional
regime, to achieve a strong guarantee on the ANN search, the average degree of the graph will be
roughly n

1
2
+o(1), and the query hop number will only be a constant. Therefore, if we use the same

PIR technique to make the graph-based ANN search private, the underlying graph-information
database is of size n

3
2
+o(1), where the total number of entries is n and each entry is of size n1/2+o(1).

It is interesting to see that this is not a typical setting of the PIR literature, because the entry
size is much larger than a constant. If we plug in the best parameters of the client-preprocessing
PIR [ZPSZ24, NGH24] into the Laarhoven’s algorithm, we will get the following result:
Theorem 4.6.4. Assume the existence of one-way functions. For c > 1, there exists a (c, r)-graph-
based private ANN search algorithm for Euclidean distance in the average case setting (random
vectors on the unit sphere Sd−1) with the following properties:

• Preprocessing cost: Õ(n1+ρ+o(1)) communication and computation cost;
• Query cost:

Õ(n1/2+ρ+o(1)) computation cost;

Õ(nρ+o(1)) communication cost;
• Storage cost:

Client: Õ(n1/2);

Server: Õ(n1+ρ+o(1)).

Here,

ρ ≥ c4

2c4 − 2c2 + 1
.

Specifically, we need to use the new result in Nguyen et al. [NGH24] for optimizing the
client storage. Notice that based on the existing client-specific preprocessing PIR lower bounds
[CK20, PY22, LMWY20], to privately access a data structure of size N , the product between the
client storage S and the online time T satisfies S×T = Ω(N). In this sense, the above theoretical
result is nearly tight in terms of the client storage and online query time if we follow the graph-
based ANN paradigm: the client storage is Õ(n1/2) and the online query time is Õ(n1/2+ρ+o(1)),
while the product matches the data structure size of n1+ρ+o(1).

Gap between Theory and Practice. Notably, the above theoretical results on graph-based ANN
algorithms are based on the analysis of “high-degree” graphs, where the average degree is Ω(

√
n),

and the query hop number is a small constant. In practice, we see a different combination: popular
graph-based ANN algorithm implementations usually pick a much smaller average degree, e.g., 32
or 64, while making the query hop number larger (e.g. scaling with the logarithm of the database
size). It remains an interesting open question whether there exists a strong theoretical result for
small-degree graphs with a search process invoking a large number of hops.
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4.7 Conclusion
We present PACMANN, a new private ANN search scheme that allows clients to perform nearest
neighbor search queries over hundreds of millions of vectors while preserving the queries’ privacy.
PACMANN achieves significantly better search quality compared to the state-of-the-art private
ANN search schemes and has lower latency in large-scale datasets. PACMANN could potentially
be applied to a wide range of information retrieval applications including conventional search and
retrieval-augmented generation.

Limitations. PACMANN has several limitations, which may present opportunities for future
work. First, it inherits the drawbacks of the single-server preprocessing PIR schemes and requires
the client to download the whole indexing structure offline in a streaming manner. Therefore,
PACMANN will not be suitable for network-constrained scenarios. PACMANN also does not
naturally support dynamic updates to the database, and handling dynamic updates has been a
challenging open problem in the preprocessing PIR literature. Finally, PACMANN is designed
under the assumption that the database is public, so we do not consider server-side privacy. We
leave these questions as interesting future directions.
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Part III

Conclusion
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Conclusion

Summary of the Thesis. In this thesis, we introduce two novel PIR constructions, Piano and Quar-
terPIR, which achieve sublinear computation and communication costs following preprocessing.
These constructions transform the practical PIR landscape by delivering near real-time response
times for databases containing billions of entries, while maintaining modest communication and
storage requirements. We demonstrate the practical utility of our PIR constructions through
a key application—private information searching—where we develop Pacmann, a new private
approximate nearest neighbor search algorithm. Pacmann emerges as the first private search
algorithm to simultaneously deliver high search quality and fast response times for databases
containing hundreds of millions of entries. The fundamental concept underlying Pacmann – the
separation of client computation from server storage using sublinear PIR schemes – establishes a
new paradigm for designing practical privacy-preserving algorithms.

On-going Work. As of writing this thesis, the author is working on the following directions:
• Reducing the Online Communication Cost of Preprocessing PIR with OWF. Our QuarterPIR

work shows that the online communication cost of preprocessing PIR with OWF can be reduced
to Õ(n1/4). On the other hand, we also show that the online communication cost can be reduced
to polylogarithmic with stronger assumptions such as LWE. The author and his collaborators
have identified a potential new direction that may help close this gap with the help of coding
theory and a recursion technique for privately programmable pseudorandom function.

• Optimal Sublinear PIR with Information-Theoretic Security. Piano and QuarterPIR assume
a minimum cryptographic assumption that one-way functions exist. Is it possible to achieve
similar results without any cryptographic assumption? Two recent results [ISW24, SWZ25]
show new information-theoretic PIR constructions that achieve sublinear query computation
complexity, but with sub-optimal storage overhead. The author and his collaborators are working
on a new practical PIR construction that achieves the optimal storage-computation tradeoff with
information-theoretic security.

Future Directions. We present a brief, non-exhaustive list of interesting future directions in the
context of PIR and private search:

• Handling Dynamic Databases. Although preprocessing PIR constructions achieve a sig-
nificant advantage in efficient query processing, a key limitation is that they are usually
designed for static databases. For many real-world applications, the database is dynamic
and frequently updated, requiring the PIR system to support efficient updates. The exist-
ing techniques for supporting updates in preprocessing PIR [ZPSZ24, HPPY24] remain
inefficient in practice, and there is a strong need for more efficient solutions.

• Hybrid Preprocessing PIR. Throughout the thesis, we have focused on the client-specific
preprocessing PIR paradigm, where the client ultimately stores the preprocessing result.
On the other hand, researchers have shown significant progress in the server-specific
preprocessing PIR paradigm [BIM00, LMW23, LLFP24] that allows the server to store an
encoded version of the database. It remains an open question whether we can combine the
advantages of both paradigms to achieve a more efficient PIR system.

• Access Control in PIR. The existing PIR constructions focus on hiding the query from the
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server, but do not provide any access control mechanism. In practice, access control is
nearly as important as privacy, as it is vital to the security and integrity of the information
retrieval service. It is an interesting direction to explore how to integrate access control
mechanisms into PIR systems without compromising the clients’ privacy and the servers’
efficiency.

• Integrating with Secure Hardware Technology. Several secure hardware technologies,
such as Intel SGX [CD16], ARM TrustZone [PS19] and Nvidia Confidential Comput-
ing [DGK+23], have been developed to provide secure execution environments for privacy-
preserving applications. Given their practicality and efficiency, it would be interesting to
explore the integration between PIR and secure hardware technologies to further improve
the performance and provide more advanced features for PIR systems.

Final Remarks
As we conclude this research journey, I find myself reflecting on what privacy research truly
means today. Our generation has lived through the digital revolution and has already lost much
of its privacy. The digital trails we’ve left – on social media, shopping sites, location apps, and
countless other services – have permanently exposed our personal information. This raises an
important question: Why study privacy technologies when the damage has already been done?

The answer is simple yet powerful: while we cannot take back the privacy we’ve lost, we
can build better protections for the future. Throughout the Internet’s development, society
consistently chose convenience and growth over privacy protection. Companies built digital
empires by exploiting our personal data, while consumers eagerly adopted these services without
understanding the privacy implications. I believe that the fundamental drive behind this repetitive
pattern is the widespread assumption that privacy and efficiency are always at odds.

Our research on Private Information Retrieval (PIR) and privacy-preserving information
search shows this trade-off isn’t necessary: even complex information systems can have strong
privacy protection without becoming significantly slower or less useful, by incorporating carefully
designed privacy-preserving technologies.

Beyond PIR, we see similar progress in other privacy technologies like Zero-Knowledge
Proofs (ZKP), Homomorphic Encryption (HE), and Secure Multi-Party Computation (SMPC).
Once thought too impractical for real use, these approaches are becoming increasingly efficient.
Together, these advances show that privacy, efficiency, and even business goals can work together
in well-designed systems.

The incoming era of artificial intelligence poses a bigger challenge to privacy: generative
models have created an even greater hunger for nearly all available information. We must not
repeat our past mistakes from the Internet era. AI development needs strong ethical guidelines
that prioritize privacy and security, ensuring the technology serves people rather than exploits
them.

Building a privacy-native information system requires a long-term commitment across re-
searchers, developers, and policy makers. We hope our research inspires both academics and
industry to keep developing privacy technologies – not just for ourselves, but for everyone who
will inherit the digital world we’re shaping today.
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