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Abstract

Software caches have been widely deployed at scale in today’s comput-
ing infrastructure to improve data access latency and throughput. These
caches consume PBs of DRAM across the industry, necessitating high effi-
ciency— reducing DRAM consumption without compromising the miss ratio.
Meanwhile, modern servers have hundreds of cores per CPU, making thread
scalability a critical requirement for designing software caches. This thesis
explores multiple approaches from system and algorithm perspectives to
improve the efficiency and scalability of software caches.

This thesis has two parts. The first part focuses on new system designs that
allow caches to storemore objects in the cache to achieve a lowmiss ratio. In this
part, I will describe three works. First, I will discuss a large-scale production
key-value cache workload analysis. Second, drawing on insights from the
workload study, I will describe the design of Segcache, a TTL-indexed segment-
structured key-value cache that removes expired objects quickly, uses tiny
object metadata, and enables close-to-linear scalability. Third, I will present
C2DN and demonstrate how to use erasure coding to design a highly efficient
fault-tolerant CDN cache cluster.

The second part focuses on new algorithms that allow the cache to store
more useful objects in the cache, which is also critical for cache efficiency. In
this part, I will discuss four works. First, I will investigate the design of a low-
overhead learned cache. Existing caches that use machine learning often incur
significant storage and computation overheads. I will show a new approach
— learning on the group level, which amortizes overheads and accumulates
more information for better learning. While GL-Cache is faster than existing
learned caches, it is still more complex compared to state-of-the-art heuristics.
In the following chapter, I will discuss two foundational techniques, lazy
promotion and quick demotion, which enable us to design simple yet effective
eviction algorithms. In the third chapter of this part, I will demonstrate an
example using the two techniques, S3-FIFO, a new eviction algorithm only
composed of FIFO queues but achieves higher efficiency and scalability than
11 state-of-the-art algorithms. In the last chapter of this part, I will introduce
SIEVE, a new eviction algorithm that uses a single queue to achieve lazy
promotion and quick demotion. SIEVE is simpler than LRU, but achieves
state-of-the-art efficiency and scalability.

This thesis will demonstrate how we leverage large-scale measurements to
obtain insights for new system and algorithm designs, which allow modern
software caches to achieve high efficiency and close-to-linear scalability. Sev-
eral of the designs, i.e., Segcache, S3-FIFO, and SIEVE, have made into real
world deployment. Moreover, the artifacts open-sourced as part of this thesis,
i.e., libCacheSim and cache traces have been widely used by the community.
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Chapter 1

Introduction

The widespread adoption of personal computing devices, such as laptops and mobile
phones, in the last twenty years has given rise to a multitude of online services, e.g., social
networking, gaming, and shopping. Data is a critical component to support these online
activities. However, data are often stored on bulk storage devices, such as hard disk
drives (spinning disks). Accessing data on spinning disks is very slow, in the order of
10s of milliseconds or longer. Software caches are widely used to bridge the gap between
fast compute and slow storage. The main idea is to store frequently accessed data on
a fast storage device so that future accesses to these data can be served quickly. There
are different types of caches, e.g., hardware caches and software caches. In contrast to
hardware caches, the management of software caches, e.g., eviction, is implemented in
software.

1.1 The Ubiquitous Deployment of Software Caches

Software caches are widely deployed across system stacks in today’s data centers and
personal devices. For example, block caches, e.g., Linux page cache [206], reduce data
access latency; key-value caches, e.g., Memcached [228], and Cachelib [95], are often
used to reduce repeated computation and improve application scalability; and object
caches, such as CDNs, reduce data access latency and bandwidth costs. Large-scale cache
deployments have become the foundation for supporting our digital society. However,
these deployments often consume a huge amount of resources, both storage and com-
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putation. For example, Twitter reports that 100s of TB of DRAM and 100,000s of CPU
cores are used for caching in 2020 [370]; Pinterest’s Memcached fleet consumes 460 TB
of DRAM spanning over 5000 EC2 instances and 70 cache clusters in 2022 [204]; Netflix
caches around 14 PB of application data (not including the movies) using 18,000 servers
in 2022 [255].

The performance of a cache is often measured using twometrics: efficiency and through-
put. Efficiency measures how many requests can be fulfilled by the cache and is often
assessed using miss ratio — the fraction of requests that are cache misses. Throughput is
often reported using the number of requests (including both hits and misses) the cache
can serve per second (MQPS). It is an indicator of the computation resources needed to
serve one request. Besides single-threaded throughput, multi-threaded throughput has
become increasingly critical because modern CPUs possess an abundance of cores; for
example, a high-end AMD server CPU in 2022 features 192 hyper-threads [11].

Even a small reduction in resource (computation and storage) consumption not only
leads to substantial cost savings but also enhances the sustainability of data serving. For
example, a 10% cache size reduction for Twitter translates to a reduction of tens of TB of
DRAM or thousands of servers. Meanwhile, unlike batch computation jobs (e.g., machine
learning training jobs) that can be time-shifted or location-shifted to use less carbon-
intensive energy, stateful services such as caches must always be online and close to the
user (e.g., computation jobs or end-users). As a result, improving resource efficiency
is by far the only solution to reduce both embodied carbon footprint and operational
carbon footprint.

For the aforementioned reasons, researchers have put tremendous effort into improv-
ing software cache efficiency over the past few decades. However, the majority of these
works focus on the eviction algorithm [38, 42, 43, 109, 165, 172, 227, 291, 312, 329, 397].
Besides improving cache efficiency, an increasing number of works looked into the
throughput and scalability of a cache in recent years [118, 203, 276]. These works often
trade off cache efficiency for improved throughput and scalability.
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1.2 Overview

This thesis takes a holistic view of a cache and explores multiple approaches from both
system and algorithm perspectives to improve the efficiency and scalability of a soft-
ware cache. Leveraging observations and insights from production systems, this thesis
demonstrates (1) how to use object grouping, metadata sharing, and proactive expiration
to improve space utilization and reduce the cache miss ratio; (2) how erasure coding
interacts with caching when designing a fault-tolerant cache cluster and demonstrates
a novel way to use erasure coding for caching; and (3) how to make use of machine
learning for cache evictions practical; and (4) how to design simple, scalable, and efficient
software cache eviction algorithms using two new techniques, lazy promotion and quick
demotion. This thesis has two parts: the first focuses on the new key-value cache system
designs, while the second focuses on the new cache eviction algorithm designs. The
remainder of this thesis is outlined as follows.

Chapter 2 provides background information on different types of software caches and
how performance is measured. Then it introduces a new concept called “key-value cache
management system”. A key-value cache management system has two components,
“cache replacement” and “space management”. Cache replacement decides which objects
to store in the cache, and space management decides how objects are stored and looked
up in the cache. Both components play crucial roles in a cache’s performance. A better
cache replacement keeps more useful objects in the cache, and better space management
incurs less overhead, e.g., metadata and fragmentation.

Chapter 3 describes a large-scale analysis of production in-memory key-value cache
workloads at Twitter. Several production workload analyses have fueled research in
improving the effectiveness of in-memory caching systems [25, 259]. However, the
coverage is still sparse, considering the wide spectrum of cache use cases. This chapter
shows the analysis of 153 in-memory key-value cache clusters at Twitter. It characterizes
cache workloads based on traffic pattern, time-to-live (TTL), popularity distribution, and
object size distribution. A fine-grained view of different workloads uncovers the diversity
of use cases: many are more write-heavy or skewed than previously shown, and some
display unique temporal patterns. This work was published at OSDI’20 [370] and invited
to submit to TOS’21 [371].

Inspired by the workload study showing the prevalence of small objects and extensive
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use of TTLs, Chapter 4 describes a new cache storage design, Segcache. Segcache uses a
segment-structured (similar to log-structured storage [264, 292]) design that stores data
in fixed-size segments with three key features: (1) it groups objects with similar creation
and expiration time into the segments for efficient expiration, (2) it approximates some
and lifts most per-object metadata for object metadata sharing and reduction, and (3)
it performs segment-level bulk expiration and eviction with fewer and smaller critical
sections for high scalability. Evaluation using production traces from Twitter shows that
Segcache uses 22-60% less memory than state-of-the-art designs for various workloads.
Segcache simultaneously delivers high throughput under single and multiple threads:
up to 40% higher and 8× than Memcached on 1 and 24 thread(s), respectively. Segcache
improves the space utilization of a key-value cache by reducing the space wasted on
fragmentation, object metadata, and expired objects, all of which contribute to Segcache’s
high efficiency. This work was published at NSDI’21 [372], won a best-paper award, and
has been in production at Twitter and Momento.

Chapter 5 describes the design of an efficient fault-tolerant cache cluster. Content
Delivery Networks (CDNs) deploy cache clusters around the globe so that data can
be delivered to end users both quickly and cheaply. However, servers in edge clusters
often suffer from unavailability. To mitigate the impact (miss ratio spike) from server
unavailability, CDN operators, e.g., Akamai, often add redundancy to the edge cluster
using replication. This chapter explores how to leverage erasure coding to reduce the
storage overhead of redundancy. This chapter shows that direct use of erasure coding
in CDN caches is insufficient due to write load imbalance — erasure-coded chunks are
evicted at different times from the servers. Therefore, it shows a new design, coded
content delivery network (C2DN), which leverages parity chunks to perform distributed
load balancing so that chunks of the same object are evicted at a similar time. Implemented
on top of open-source production software, this chapter demonstrates that C2DN obtains
an 11% lower byte miss ratio than replication-based CDNs, eliminates unavailability-
induced miss ratio spikes, and reduces write load imbalance by 99%. This work was
published at NSDI’22 [373].

Chapter 6 describes the exploration for efficient eviction algorithms for segment/log-
structured caches. Several recent works have looked into machine-learning-assisted cache
eviction algorithms, which we call “learned caches”. This chapter categorizes existing
works into three types of learned caches: object-level learning, learning from distribution,
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and learning from simple experts. The learning granularity in existing approaches is
either too fine (object-level), incurring significant computation and storage overheads, or
too coarse (workload or expert-level) to capture the differences between objects, leaving
a considerable efficiency gap. In this chapter, we introduce a new approach to using
machine learning in caches, which clusters similar objects into groups and performs
learning and eviction at the group level, which we call “group-level learning”. Learning
at the group level accumulates more signals for learning, leverages more features with
adaptive weights, and amortizes overheads over objects, achieving high efficiency and
throughput. We implemented group-level learning on an open-source production cache,
which we call GL-Cache, a group-level learned cache. Group-level learning naturally
maps to a segment-structured cache where each group is a segment. Moreover, the idea
generalizes beyond Segcache and can be used for any cache storage design. Evaluations
on 118 production block I/O and CDN cache traces show that GL-Cache has a higher hit
ratio and higher throughput than state-of-the-art designs. This work was published at
FAST’23 [374].

LRU has been the basis of cache eviction algorithms for decades, with a plethora of
innovations on improving LRU’s miss ratio and throughput. While it is well-known that
FIFO-based eviction algorithms provide significantly better throughput and scalability,
they lag behind LRU onmiss ratio, thus, cache efficiency. Chapter 7 describes a large-scale
measurement of cache eviction algorithms using huge datasets of 6587 block and web
cache workloads collected in the past two decades. This chapter shows a new finding that,
contrary to common wisdom, some FIFO-based algorithms, such as FIFO-Reinsertion
(or CLOCK), are, in fact, more efficient (have a lower miss ratio) than LRU. Moreover, it
demonstrates that quick demotion — evicting most new objects very quickly — is critical
for cache efficiency. Moreover, this chapter illustrates that when enhanced by quick
demotion, not only can state-of-the-art algorithms be more efficient, a simple FIFO-based
algorithm can outperform five complex state-of-the-art in terms of miss ratio.

Built on the lessons in Chapter 7, the next chapter describes a new cache eviction
algorithm that is simple yet effective. Chapter 8 describes a new simple and scalable
FIFO-based algorithm with three static queues (S3-FIFO). Evaluated on 6594 cache traces
from 14 datasets, S3-FIFO has lower miss ratios than state-of-the-art algorithms across
the diverse datasets. Moreover, S3-FIFO’s efficiency is robust — it has the lowest mean
miss ratio on 10 of the 14 datasets and is among the top algorithms on the other datasets.
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The use of FIFO queues enables S3-FIFO to achieve good scalability with 6× higher
throughput compared to optimized LRU at 16 threads. The insight is that most objects in
the cache workloads will only be accessed once in a short window, so it is critical to evict
them early. The key of S3-FIFO is a small FIFO queue that filters out most objects from
entering the main cache. Moreover, this chapter shows that filtering with a small static
FIFO queue has a guaranteed eviction time and higher eviction precision compared to
state-of-the-art adaptive algorithms.

While S3-FIFO is much simpler than state-of-the-art eviction algorithms, it still incurs
non-trivial implementation complexity compared to simple heuristics such as FIFO and
LRU. Taking the insights of lazy promotion and quick demotion in Chapter 7 further,
Chapter 9 describes a new cache eviction algorithm, SIEVE, that is simpler than LRU,while
achieving state-of-the-art efficiency and scalability on web cache workloads. SIEVE can
be implemented in multiple production cache libraries with 20 lines of code. Meanwhile,
it achieves up to 63.2% lower miss ratio than state-of-the-art eviction algorithms such as
ARC. Besides being an eviction algorithm, the simplicity also allows SIEVE to be a cache
primitive that can be used to design more advanced eviction algorithms. We show that
simply replacing LRU in 2Q, ARC, and LeCaR would further boost the efficiency of these
algorithms. This work was published at NSDI’24 [385].

1.3 Dissertation Contributions and Impacts

Caching research has a long history with many efforts devoted to designing more efficient
eviction algorithms [38, 105, 109, 165, 172, 227, 312, 329]. This thesis takes a holistic view
of software caching and explores different perspectives on improving the efficiency of
caching systems. Specifically, the investigations in this thesis were driven by (1) new
workload patterns, such as the dominance of small objects and the wide use of TTLs
(Chapter 3 and Chapter 4); (2) new hardware trends such as the increasing number of
cores per CPU and the asymmetric read and write performance in storage devices (Chap-
ter 4); (3) new requirements, such as the need for fault tolerance in Content Delivery
Network caches (Chapter 5); and (4) new observations, e.g., FIFO with reinsertion is
more efficient than LRU; one-hit wonders are prevalent in cache workloads, and thus
quickly removing them is important (Chapter 7 and Chapter 8).

This thesis makes the following contributions.
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• It describes a large-scale key-value cache workloads study to illustrate how key-
value caches are used in production systems. The study highlights the diversity of
workloads, including write-heavy and skewed patterns, as well as the significance
of TTL in shaping cache behavior. These findings offer insights for optimizing cache
performance and resource utilization.

• To address the challenges identified in the workload analysis, this thesis presents
a new storage layout called Segcache. For the first time, an approximate TTL
index is introduced to the key-value cache to improve efficiency. The new index
enables efficient expiration and eviction of data by grouping objects with similar
lifespans into segments. By approximating and sharing object metadata, the design
significantly reduces storage overhead. Additionally, it performs segment-level bulk
operations to minimize critical section size, thus contributing to high scalability
and performance.

• Recognizing the importance of reliability in Content Delivery Networks, this the-
sis demonstrates the first fault-tolerant CDN cluster that delivers low miss ratio,
high availability, and near-perfect write load balancing. The core contribution lies
in introducing parity rebalance in erasure coding, which enables efficient cache
synchronization across servers.

• While machine learning has shown promise in enhancing cache efficiency, existing
methods suffer from high overheads. To mitigate this, this thesis showcases a group-
level learning approach. By grouping similar objects and training models on these
groups, the new design can reduce storage and computational costs while achieving
high cache efficiency.

• This thesis describes the largest-scale eviction algorithmmeasurement study, which
revealed that lazy promotion and quick demotion are critical for cache performance
and efficiency. This thesis then presents the first FIFO-queue-only eviction algorithm
that leverages this insight. S3-FIFO is efficient and scalable. Meanwhile, it is simpler
than state-of-the-art cache eviction algorithms.

• To further simplify the design of cache eviction algorithm, this thesis presents
SIEVE, an eviction algorithm that performs lazy promotion and quick demotion
using only one queue. SIEVE achieves state-of-the-art efficiency and scalability
while being simpler than LRU.

This thesis introduces a new concept: cache management system. A cache man-
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agement system has two components: cache replacement and space management. A good
cache replacement allows the cache to store more useful objects, and good space manage-
ment allows the cache to store more objects. This thesis demonstrates that both cache
replacement and space management are important for cache efficiency and scalability.
Leveraging insights from large-scale measurements, we demonstrate several approaches
to boost the efficiency and performance of cache management systems.

Moreover, the work in this thesis has impacted both industry and academia.
Adoption in the industry. Several works presented in this thesis have been adopted
for production. For example, Segcache has been adopted for production at Twitter and
Momento; Variants of S3-FIFO have been adopted for production by Google, VMware,
and Redpanda, among others; and SIEVE has been adopted by Meta and many startups.
Adoption in the open-source community. The open-source community has embraced
these innovations, with Segcache re-implemented and open-sourced by Twitter, S3-FIFO
integrated into over 20 open-source libraries and systems, and SIEVE available in even
more cache libraries across 16 programming languages.
Educational Influence. Beyond practical applications, this thesis has also influenced
educational and research communities. Several works, including workload analysis,
S3-FIFO, and SIEVE, are now parts of various courses, blogs, meetups, and reading
groups.
Research artifacts. Additionally, as part of the works in this thesis, we have released
research artifacts to the public domain. They include (1) production cache traces 1,
which have been used in hundreds of subsequent research studies; and (2) a new high-
performance cache simulator, libCacheSim 2, which has been adopted by nearly 100
institutions and companies worldwide.

1The traces can be downloaded at https://ftp.pdl.cmu.edu/pub/datasets/twemcacheWo
rkload/cacheDatasets.

2https://libcachesim.com.
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Chapter 2

Background and related work

2.1 Software caches

While sometimes less noticed, software caches are pervasively deployed across system
stacks in both data centers and personal devices. Figure 2.1 shows a typical web service
architecture with each box representing one service. In the diagram, caches appear in
almost every box. For example, distributed key-value cache clusters, page caches in the
storage servers and personal devices, transient hot object caches in application services,
and CDN caches deployed close to users.

The omnipresent software caches can have different interfaces. For example, dis-
tributed key-value caches often use the Memcached interface, storage caches often use
the block interface, and CDN caches all use the HTTP interface.

Besides the interface, different caches may also use different storage mediums, e.g.,
DRAM and flash. Designing caches for some storage mediums may require meeting extra
metrics. For instance, flash cache designs often have requirements on write amplification
and flash endurance due to limited flash lifetime [225, 320]. The works in this thesis
mostly focus on DRAM caches (except C2DN in Chapter 5) and thus only focus on
efficiency (miss ratio) and throughput scalability.

Along with the differences in interface and storage medium, production caches also
differ in the types of deployments. For example, many application caches, e.g., Facebook’s
social graph [54, 259] cache, are in-process caches using an embedded library. Standalone
caches, like Memcached, often use distributed deployment with consistent hashing for
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Figure 2.1: Software caches are widely deployed in today’s data centers.

partitioning.
Although bearing many differences in the interface, storage medium, and deployment

type, the core functions and features of software caches are similar — storing a subset of
frequently requested data in a limited space to minimize the number of cache misses.

2.2 Metrics of a software cache

We use two metrics to measure a cache’s performance: miss ratio and throughput.
Efficiency. Miss ratio measures the efficiency of a cache. A lower miss ratio means more
requests can be served directly from the cache, translating to faster data access and lower
cost.
Throughput. Throughput measures the number of requests the cache can serve per
second (QPS), which includes both cache hits and cache inserts (from misses). Because
the goal of a cache is to serve data faster, it is critical for a cache to have a high throughput.
Besides the throughput in a single thread, the ability to use multiple cores effectively —
cache scalability is also very important because today’s server CPUs have many CPU
cores, e.g., a high-end AMD server CPU can have 200 cores [11].
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2.3 Key-Value cache management system

For CPU caches and block storage caches, the eviction (and prefetch) algorithm is the
only factor that decides the efficiency. However, distributed key-value caches are more
complex, withmultiple components contributing to the efficiency. Wepropose the concept
of a “key-value cache management system” that has two components: cache replacement
and space management (Figure 2.2). Cache replacement decides which object should be
stored in the cache, while space management decides how objects are stored and looked
up in the cache. Cache replacement decides the replacement effectiveness, and space
management decides the space utilization. Both components play critical roles in the
efficiency of a cache. A cache with better replacement makes more clever decisions on
what objects to store in the cache so that it can have a lower miss ratio. A cache with
better space management wastes less space on fragmentation, metadata, and redundancy,
which allows it to cache more objects in the limited space and achieve a lower miss ratio.

2.3.1 Cache replacement

Cache replacement has three pieces: eviction, admission, and expiration.
Eviction. The eviction algorithm is the most important component of cache replacement
and has been widely studied. For example, Greedy-Dual variants [64, 193], LFU vari-
ants [22, 105], MultiQueue [397], LIRS [165], ARC [227], 2Q [172], TinyLFU [108, 109],
LHD [38], Hyperbolic [48], LRB [312], LeCaR[329] and CACHEUS [291] among many
other eviction algorithms have been designed to improve cache efficiency for different
workloads.
Admission. While the eviction algorithm has always been critical for cache efficiency,
cache admission has gained increasing popularity in recent years [27, 43, 202, 219, 348].
Cache admission decides whether to store an object during a cache miss. Because KV-
cache workloads often follow Zipf distribution (Chapter 3) with many objects receiving
one or very few requests (long tail), rejecting unpopular objects from entering the cache
can reduce cache pollution and miss ratio. Moreover, cache admission also reduces
wearout and tail latency for flash caches.
Expiration. Time-to-live (TTL) is widely used in KV-cache workloads (Chapter 3).
Therefore, timely removing expired objects becomes important for cache efficiency. Unlike
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Figure 2.2: A KV-cache management system consists of two components: cache replace-
ment and space management, both of which affect cache efficiency.

eviction, which removes objects that may be requested in the future, expired objects
cannot be used and should be removed as quickly as possible. Adding an index on
TTL or expiration time limits scalability and increases object metadata size. Therefore,
production systems use different approaches. For example, Memcached uses scanning,
and Redis uses sampling to find and remove expired objects. However, scanning and
sampling consume a non-trivial amount of CPU cycles and provide no guarantee on how
long expired objects may overstay in the cache.

2.3.2 Space management

Variable-sized objects and small objects introduce three challenges to KV-cache efficiency.
First, variable-sized memory allocations lead to fragmentation [293]. Second, object
metadata wastes precious cache space when objects are small. Third, the index for lookup
may consume too much DRAM for tiny objects. Therefore, space management in a key-
value management system includes three ingredients: storage layout, indexing structure,
and object metadata.
Storage layout Storage layout decides how objects are placed on the storage device.
External management, such asmalloc and file systems, are common choices, especially for
systems not dedicated to caching (caching is one of themany features). However, external
management often suffers from fragmentation problems [293], as well as occasional
long tail latency [273]. For flash cache, it further introduces tail latency and endurance
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problems [320].
Slab storage organizes the heap based on object size class and is the most common

option for in-memory caches such as Memcached and Cachelib. Slab storage divides
space into fixed-sized slabs, and each slab is further carved into equal-sized chunks
to store data. The chunks in one slab have the same size, but different slabs can have
different chunk sizes. Compared to using “malloc”, slab storage does not incur external
fragmentation, thus, having a bounded memory usage — an important property for
reducing memory over-provisioning in production. However, slab storage has internal
fragmentation where space is wasted when an object is smaller than the chunk holding
it. Besides, slab storage can only evict objects with sizes similar to the incoming object
and often suffers from slab calcification: when object size distribution changes over time,
there are insufficient slabs with the high-demand chunk size. Rebalancing slabs (evicting
all objects from a slab and changing the chunk size) may solve the calcification problem,
but when and how to rebalance remains a challenging research problem.

To reduce fragmentation, log-structured storage is employed in some KV-cache sys-
tems [14, 203]. However, log storage limits the eviction algorithm to FIFO variants,
significantly reducing cache efficiency.
Indexing structure When a workload mostly consists of tiny objects (< 100B), the in-
dexing structure (B-tree or hash table) may consume too much memory. Reducing an
indexing structure’s memory consumption is critical for both DRAM caches and flash
caches because (1) the huge DRAM requirement may limit the usable space of a flash
cache, and (2) the index reduces the usable space for DRAM caches. A common solution
is to use a set-associative cache, which combines the cache with the hash table. For exam-
ple, Twitter designs an in-memory cuckoo cache to cache tiny objects, and Meta designs
a set-associative flash cache for tiny objects in Cachelib. However, a set-associative cache
causes conflict misses, increasing the miss ratio. In Chapter 4, we demonstrate a different
approach to reducing the hash table’s memory consumption by sharing metadata.
Object metadata The second problemwith caching tiny objects is the object metadata size.
When objects are small, the per-object metadata becomes relatively large. For example,
Memcached uses 56 bytes of metadata per object. However, many production caches
have a mean object size of around 100 bytes (Chapter 3). The large per-object metadata
wastes huge space. Therefore, reducing the per-object metadata without compromising
features is important to improve a cache’s efficiency.
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Chapter 3

Understanding Production Key-value
Cache Workloads

Using in-depth measurements to examine how existing systems are used, the diverse
patterns in the workloads, and the versatile requirements of the applications (users)
is an important step before we can improve existing systems and design new systems.
Key-value caches have been deployed in production systems for over two decades and
have become a mature component of modern infrastructure. But how are they different
from traditional caches, such as page caches? This chapter goes in-depth to explore the
in-memory key-value cache workloads at Twitter.

3.1 Background

3.1.1 Service Architecture and Caching at Twitter

Twitter started its migration to a service-oriented architecture, also known as microser-
vices, in 2011 [325]. Around the same time, Twitter started developing its container
solution [15, 16] to support the impending wave of services. Fast forward to 2020, the
real-time serving stack is mostly service-oriented, with hundreds of services running
inside containers in production. As a core component of Twitter’s infrastructure, in-
memory caching has grown alongside this transition. Petabytes of DRAM and hundreds
of thousands of cores are provisioned for caching clusters, which are containerized.
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At Twitter, in-memory caching is a managed service, and new clusters are provi-
sioned semi-automatically to be used as look-aside cache [259] upon request. There
are two in-memory caching solutions deployed in production, Twemcache, a fork of
Memcached[228], is a key-value cache providing high throughput and low latency. The
other solution, named Nighthawk, is Redis-based and supports rich data structures and
replication for data availability. In this work, we focus on Twemcache because it serves
the majority of cache traffic.

Cache clusters at Twitter are considered single-tenant1 based on the service team
requesting them. This setup is very beneficial to workload analysis because it allows us to
tag use cases, collect traces, and study the properties of workloads individually. A multi-
tenant setup will make similar studies extremely difficult, as researchers have to tease out
individual workloads from the mixture and somehow connect them to their use cases. In
addition, smaller but distinct workloads can easily be overlooked or mischaracterized
due to low traffic.

Unlike other cache cluster deployments, such as social graph caching [41, 54] or
CDN caching [154, 347], Twemcache is mostly deployed as a single-layer cache, which
allows us to analyze the requests directly from clients without being filtered by other
caches. Previous work [154] has shown that layering has an impact on properties of
cachingworkloads, such as popularity distribution. This single-tenant, single-layer design
provides us the perfect opportunity to study the properties of the workloads.

3.1.2 Twemcache Provisioning

There are close to 200 Twemcache clusters in each data center as of 2020. Twemcache
containers are highly homogeneous and typically small, and a single host can runmany of
them. The number of instances provisioned for each cache cluster is computed from user
inputs including throughput, estimated dataset sizes, and fault tolerance. The number
of instances of each cluster is automatically calculated first by identifying the correct
bottleneck and then applying other constraints, such as the number of connections to
support. The size of production cache clusters ranges from 20 to thousands of instances.

1Although each cluster is single-tenant, each tenant might cache multiple types of objects of different
characteristics.
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Figure 3.1: Slab-based memory management for bounded memory fragmentation. While
Memcached uses object eviction, Twemcache uses slab eviction, which evicts all objects
in one slab and returns the slab to a global pool.

3.1.3 Overview of Twemcache

Twemcache forked an earlier version of Memcached with some customized features. In
this section, we briefly describe some of the key aspects of its designs.
Slab-based memory management Twemcache often stores small and variable-sized
objects in the range of a few bytes to 10s of KB. On-demand heap memory allocators
such as ptmalloc[135], jemalloc[161] can cause large and unbounded external memory
fragmentation in such a scenario, which is highly undesirable in production environment,
especially when using smaller containers. To avoid this, Twemcache inherits the slab-
based memory management from Memcached (Figure 3.1). Memory is allocated as
fixed size chunks called slabs, which default to 1 MB. Each slab is then evenly divided
into smaller chunks called items. The class of each slab decides the size of its items.
By default, Twemcache grows item size from a configurable minimum (default to 88
bytes) to just under a whole slab. The growth is typically exponential, controlled by a
floating point number called growth factor (default to 1.25), though Twemcache also
allows precise configuration of specific item sizes. Higher slab classes correspond to
larger items. An object is mapped to the slab class that best fits it, including metadata.
In Twemcache, this per-object metadata is 49 bytes. By default, a slab of class 12 has
891 items of 1176 bytes each, and each item stores up to 1127 bytes of key plus value.
Slab-based allocator eliminates external memory fragmentation at the cost of bounded
internal memory fragmentation.
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Eviction in slab-based cache To store a new object, Twemcache first computes the slab
class by object size. If there is a slabwith at least one free item in this slab class, Twemcache
uses the free item. Otherwise, Twemcache tries to allocate a new slab into this class. When
memory is full, slab eviction is needed for allocation.

Some caching systems, such as Memcached, primarily perform item-level eviction,
which happens in the same slab class as the new object. Memcached uses an approximate
LRU queue per slab class to track and evict the least recently used item. This works
well as long as object size distribution remains static. However, this is often not true in
reality. For example, if all keys start with small values that grow over time, new writes
will eventually require objects to be stored in a higher slab class. However, if all memory
has been allocated when this happens, there will be effectively no memory to give out.
This problem is called slab calcification and is further explored in subsubsection 3.3.6.
Memcached developed a series of heuristics to move memory between slab classes, and
yet they have been shown as non-optimal [151, 231, 232, 234] and error prone [233].

To avoid slab calcification, Twemcache uses slab eviction only (Figure 3.1). This allows
the evicted slab to transition into any other slab class. There are three approaches to
choosing the slab to evict: choosing a slab randomly (random slab), choosing the least
recently used slab (slabLRU), and choosing the least recently created slab (slabLRC).
In addition to avoiding slab calcification, slab-only eviction removes two pointers from
object metadata compared to Memcached. We further compare object eviction and slab
eviction in section 3.5.

3.1.4 Cache Use Cases

At Twitter, it is generally recognized that there are three main use cases of Twemcache:
caching for storage, caching for computation, and caching for transient data. We remark
that there is no strict boundary between the three categories, and production clusters are
not explicitly labeled. Thus the percentages given below are rough estimates based on
our understanding of each cache cluster and its corresponding application.
Caching for Storage Using caches to facilitate reading from storage is the most common
use case. Backend storage, such as databases, usually has a longer latency and a lower
bandwidth than in-memory cache. Therefore, caching these objects reduce access latency,
increases throughput, and shelters the backend from excessive read traffic. This use case
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Figure 3.2: Resources consumed for the three cache use cases.

has received the most attention in research. Several efforts have been devoted to reducing
miss ratio [36, 38, 48, 86, 87, 108, 154, 369] , redesigning for a denser storage device to fit
larger working sets [41, 113, 320], improving load balancing [76, 80, 98] and increasing
throughput [118, 203].

As shown in Figure 3.2, although only 30% of the clusters fall into this category, they
account for 65% of the requests served by Twemcache, 60% of the total DRAM used, and
50% of all CPU cores provisioned.
Caching for Computation Caching for computation is not new — using DRAM to cache
query results has been studied and used since more than two decades ago [10, 215]. As
real-time stream processing and machine learning (ML) become increasingly popular,
an increasing number of cache clusters are devoted to caching computation-related data,
such as features, intermediate and final results of ML prediction, and so-called object
hydration — populating objects with additional data, which often combines storage
access and computation.

Overall, caching for computation accounts for 50% of all Twemcache clusters in cluster
count, 26%, 31%, and 40% of request rate, cache sizes, and CPU cores.
Transient data with no backing store The third typical cache usage evolves around
objects that only live in the cache, often for short periods of time. It is not caching in the
strict sense, and therefore has received little attention. Nonetheless, in-memory caching
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is often the only production solution that meets both the performance and scalability
requirements of such use cases. While data loss is still undesirable, these use cases really
prize speed and tolerate occasional data loss well enough to work without a fallback.

Some notable examples are rate limiters, deduplication caches, and negative result
caches. Rate limiters are counters associated with user activities. They track and cap user
requests in a given time window and prevent denial-of-service attacks. Deduplication
caches are a special case of rate limiters, where the cap is 1. Negative result caches
store keys from a larger database that are known to be misses against a smaller, sparsely
populated database. These caches short-circuit most queries with negative results and
drastically reduce the traffic targeting the smaller database.

In our measurements, 20% of Twemcache clusters are under this category. Their
request rates and cache sizes account for 9% and 8% of all Twemcache request rates and
cache sizes. Meanwhile, they account for 10% of all CPU cores of Twemcache clusters.

3.2 Methodology

3.2.1 Log Collection

Twemcache has a built-in non-blocking request logging utility called klog that can keep
up with designed throughput in production. While it logs one out of every 100 requests
by default, we dynamically changed the sampling ratio to 100% and collected week-long
unsampled traces from two instances of each Twemcache clusters. Collecting unsampled
traces allows us to avoid drawing potentially biased conclusions caused by sampling.
Moreover, we chose to collect traces from two instances instead of one to prevent possible
cache failure during log collection and to compare results between instances for higher
fidelity. Barring cache failures, the two instances have no overlapping keys.

3.2.2 Log Overview

We collected around 700 billion requests (80 TB in raw file size) from 306 instances of 153
Twemcache clusters, which include all clusters with a per-instance request rate of more
than 1000 queries-per-sec (QPS) at the time of collection. To simplify our analysis and
presentation, we focused on the 54 largest caches, which account for 90% of aggregated
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Figure 3.3: a) Production miss ratio of the top ten Twemcache clusters ranked by request
rates, the bar shows the max and min miss ratio across one week. Note that the Y-axis is
in the log scale. b) The ratio between the max and min miss ratio is small for most caches.

QPS and 76% of allocated memory. In the following sections, we use Twemcache work-
loads to refer to the workloads from these 54 Twemcache clusters. Although we only
present the results of these 54 caches, we did perform the same analysis on the smaller
caches, and they don’t change our conclusions.

3.3 Production Stats and Workload Analysis

In this section, we start by describing some common production metrics to provide a
foundation for our discussion, and then move on to workload analyses that can only be
performed with detailed traces.

3.3.1 Miss Ratio

Miss ratio is one of the key metrics that indicate the effectiveness of a cache. Production
in-memory caches usually operate at a low miss ratio with small miss ratio variation.

We present the miss ratios of the top ten Twemcache clusters ranked by request rates
in Figure 3.3a where the dot shows the mean miss ratio over a week, and the error bars
show the minimum and maximum miss ratio. Eight out of the ten Twemcache clusters
have a miss ratio lower than 5%, and six of them have a miss ratio close to or lower than
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Figure 3.4: The number of requests and objects being accessed every second for two cache
nodes.

1%. The only exception is a write-heavy cache cluster, which has a miss ratio of around
70% (see subsubsection 3.3.3 for details about write-heavy workloads). Compared to
CDN caching [154], in-memory caching usually has a lower miss ratio.

Besides a low miss ratio, miss ratio stability is also very important. In production, it is
the highest miss ratio (and request rate) that decides the QPS requirement of the backend.
Therefore, a cache with a low miss ratio most of the time, but sometimes a high miss ratio
is less useful than a cache with a slightly higher but stable miss ratio. Figure 3.3b shows
the ratios of mrmax

mrmin
over the course of a week for different caches, where mr stands for

miss ratio. We observe that most caches have this ratio lower than 1.5. In addition, the
caches that have larger ratios usually have a very low miss ratio.

Low miss ratios and high stability, in general, illustrate the effectiveness of production
caches. However, extremely low miss ratios tend to be less robust, which means the
corresponding backends have to be provisioned with more margins. Moreover, cache
maintenance and failures become a major source of disruption for caches with extremely
low miss ratios. The combination of these factors indicates there’s typically a limit to how
much cache can reduce read traffic or how little traffic backends need to provision for.

3.3.2 Request Rate and Hot Keys

Similar to previously observed [25], request rates show diurnal patterns (Figure 3.4).
Besides, spikes in request rates are also very common because the cache is the first
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responder to any change from the frontend services and end users.
When a request rate spike happens, a common belief is that hot keys cause the

spikes [76, 155]. Indeed, load spikes often are the results of hot keys. However, we
notice it is not always true. As shown in Figure 3.4, at times, when the request rate (top
blue curve) spikes, the number of objects accessed in the same time interval (bottom red
curve) also has a spike, indicating that the spikes are triggered by factors other than hot
keys. Such factors include client retry requests, external traffic surges, scan-like accesses,
and periodic tasks.

In addition to request rate spikes, caches often show other irregularities. For example,
in subsubsection 3.3.6, we show that it is common to see sudden changes in object size
distribution. These irregularities can happen for various reasons. For instance, users
change their behavior due to a social event, the frontend service adds a new feature (or
bug), or an internal load test is started.

As a critical component in the infrastructure, caches stop most of the requests from
hitting the backend, and they should be designed to tolerate these workload changes to
absorb the impact.

3.3.3 Types of Operations

Twemcache supports eleven different operations, of which get and set are the most
heavily used by far. In addition, write-heavy cache workloads are very common at Twitter.

Relative usage comparison

We begin with the operations used by Twemcache workloads. Twemcache sup-
ports eleven operations get, gets, set, add, cas (check-and-set), replace, append,
prepend, delete, incr and decr2. As shown in Figure 3.5a, get and set are the two
most common operations, and the average get ratio is close to 90% indicating most of the
caches are serving read-heavy workloads. Apart from get and set, operations gets,
add, cas, delete, incr are also frequently used in Twemcache clusters. However,
compared to get and set, these operations usually account for a smaller percentage of
all requests. Nonetheless, these operations serve important roles in in-memory caching.

2See https://github.com/memcached/memcached/wiki/Commands for details about each
command.
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Figure 3.5: a) The ratio of operation in each Twemcache cluster, box shows the 25th and
75th percentile, the red bar inside the box shows the median ratio, and whiskers are 10th
and 90th percentile. b) write ratio distribution CDF across Twemcache clusters.

Therefore, as suggested by the author of Memcached, they should not be ignored [241].

Write ratio

Although most caches are read dominant, Figure 3.5a shows that both get and
set ratios have a large range across caches. We define a workload as write-heavy if
the percentage sum of set, add, cas, replace, append, prepend, incr and decr

operations exceeds 30%. Figure 3.5b shows the distribution of the write ratio across
caches. More than 35% of all Twemcache clusters are write-heavy, and more than 20%
have a write ratio higher than 50%. In other words, in addition to the well-known use
case of serving read-heavy workloads, a substantial number of Twemcache clusters are
used to serve write-heavy workloads. We identify the main use cases of write-heavy
caches below.
Frequently updated data. Caches under this category mostly belong to the cache for
computation or transient data (subsection 3.1.4 & 3.1.4). Updates are accumulated in the
cache before they get persisted, or the keys eventually expire.
Opportunistic pre-computation. Some services continuously generate data for potential
consumption by itself or other services. One example is the caches storing recent user
activities, and the cached data are read when a query asks for recent events from a
particular user. Many services choose not to fetch relevant data on demand, but instead
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Figure 3.6: a) More than half of caches have mean TTL shorter than one day. b) Only 20%
of caches use single TTL. c) The smallest TTL in each cache can be very long. d) TTL
ranges in workloads are often large.

opportunistically pre-compute them for amuch larger set of users. This is feasible because
pre-computation often has a bounded cost, and in exchange read queries can be quickly
fulfilled by pre-computed results partially or completely. Since this is a tradeoffmainly for
user experience, the caches under this category see objects with fewer reuse. Therefore,
the write ratio is often higher (>80%), and object access (read+write) frequency is often
lower. In one case, we saw one cluster with a mean object frequency close to 1.
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Figure 3.7: The working set size grows over time when TTL is not considered. However,
when TTL is considered, the working set size is capped.

3.3.4 TTL

Two important features that distinguish in-memory caching from a persistent key-value
store are TTL and cache eviction. While evictions have been widely studied [38, 48], TTL
is often overlooked. Nonetheless, TTL has been routinely used in production. Moreover,
as a response to GDPR [128], the usage of caching TTL has become mandatory at Twitter
to enforce data retention policies. TTL is set when an object is first created in Twemcache
and decides its expiration time. Request attempts to access an expired object will be
treated as misses, so keeping expired objects in the cache is not useful.

We observe that in-memory caching workloads often use short TTLs. This usage
comes from the dynamic nature of cached objects and the usage for implicit deletion.
Under this condition, effectively and efficiently removing expired objects from the cache
becomes necessary and important, which provides an alternative to eviction in achieving
low miss ratios.

TTL Usages

We measure the mean TTLs used in each Twemcache cluster and show the TTL
distribution in Figure 3.6a. The figure shows that TTL ranges fromminutes to days. More
than 25% of the workloads use a mean TTL shorter than twenty minutes, and less than
25% of the workloads have a mean TTL longer than two days. Such a TTL range is longer
than DNS caching (minutes) [173], but shorter than common CDN object caching (days
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to weeks). If we divide caches into short-TTL caches (TTL ≤ 12 hours) and long-TTL caches
(TTL > 12 hours). Figure 3.6a shows 66% of all Twemcache clusters have a short mean
TTL.

In addition to the mean TTL distribution, we have also measured the number of TTLs
used in each cache. Figure 3.6b shows that only 20% of the Twemcache workloads use
a single TTL, while the rest majority use more than one TTL. In addition, we observe
that over 30% of the workloads use more than ten TTLs and there are a few workloads
using more than 1000 TTLs. In the last case, some clients intentionally scatter TTLs over
a pre-defined time range to avoid objects expiring at the same time. This technique is
called TTL jitter. In another case, the clients seek the opposite effect — computing TTLs
so that a group of objects will expire at the same, predetermined time.

Besides the number of TTLs used, the smallest TTL and the TTL range, defined as
the ratio between TTLmax and TTLmin, are also important for designing algorithms that
remove expired objects (see section 3.6). Figure 3.6c shows that the smallest TTL in each
cache varies from 10s of seconds to more than half day. In detail, around 30 to 35% of the
caches have their smallest TTL shorter than 300 seconds, and over 25% of caches have
the smallest TTL longer than 6 hours. Figure 3.6d shows the CDF of each workload’s
TTL range. We observe that fewer than 40% of the workloads have a relatively small TTL
range (< 2× difference), while almost 25% of the caches have TTLmax

TTLmin
over 100.

Below we present the three main purposes of TTL to better explain how TTL settings
relate to the usages of the caches.
Bounding inconsistency. Objects stored in Twemcache can be highly dynamic. Because
cache updates are best-effort, and failed cache writes are not always retried, it is possible
that objects stored in the in-memory cache are stale. Therefore, applications often use TTL
to bound inconsistency, which is also suggested in the AWS Redis documentation [282].
TTLs for this purpose usually have relatively large values, in the range of days. Some
Twitter services further developed soft TTL to achieve a better tradeoff between data
consistency and availability. The main idea of soft TTL is to store an additional, often
shorter TTL as part of the object value. When the application decodes the value of a
cached object and notices that the soft TTL has expired, it will refresh the cached value
from its corresponding source of truth in the background. Meanwhile, the application
continues to use the older value to fulfill current requests without waiting. Soft TTL is
typically designed to increase with each background refresh, based on the assumption
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that newly created objects are more likely to see a high volume of updates and therefore
inconsistency.
Implicit deletion. In some caches, TTL reflects the intrinsic life span of stored objects.
One example is the counters used for API rate limiting, which are declared as the maxi-
mum number of requests allowed in a time window. These counters are typically stored
in cache only, and their TTLs match the time windows declared in the API specification.
In addition to rate limiters, GDPR-required TTL would also fall into this category, so no
data would live in cache beyond the duration permitted under the law.
Periodic refresh. TTL is also used to promote data freshness. For example, a service that
calculates how much a user’s interest matches a cluster/community using ML models
can make “who-to-follow” types of recommendations with the results. The results are
cached for a while because user characteristics tend to be stable in the very short term,
and the calculation is relatively expensive. Nonetheless, as users engage with the site,
their portraits can change over time. Therefore such a service tends to recompute the
results for each user periodically, using or adding the latest data since the last update.
In this case, TTL is used to pace a relatively expensive operation that should only be
performed infrequently. The exact value of the TTL is the result of a balance between
computational resources and data freshness, and can often be dynamically updated based
on circumstances.

Working Set Size and TTL

Having the majority of caches use short TTLs indicate that the effective working set
size (WSSE) — the size of all unexpired objects should be loosely bounded. In contrast,
the total working set size (WSST ), the size of all active objects regardless of TTL, can be
unbounded.

In our measurements, we identify two types of workloads shown in Figure 3.7. The
first type (Figure 3.7a) has a continuously growing WSST , and it is usually related
to user-generated content. With new content being generated every second, the total
working set size keeps growing. The second type of workload has a large growth rate in
WSST at first, and then the growth rate decreases after this initial fast-growing period, as
shown in Figure 3.7b. This type of workload can be users related, the first quick increase
corresponds to the most active users, and the slow down corresponds to less active users.
Although the two workloads show different growth patterns in total working set size,
the effective working set size of both arrive at a plateau after reaching its TTL. Although
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Figure 3.8: Some workloads showing small deviations from Zipfian popularity. a) The
least popular objects are less popular than expected. b) The most popular objects are less
popular than expected.

the WSSE may fluctuate and grow in the long term, the growth rate is much slower
compared toWSST .

Bounded WSSE means that, for many caches, there exists a cache size that the cache
can achieve the compulsory miss ratio. If an in-memory caching system can remove
expired objects in time. This suggests the importance of quickly removing expired objects
from the cache, especially for workloads using short TTLs. Unfortunately, while eviction
has been widely studied [38, 48, 193], expiration has received little attention. And we
will show in subsection 3.6.2, existing solutions fall short on expiration.

3.3.5 Popularity Distribution

Object popularity is another important characteristic of a caching workload. Popularity
distribution is often used to describe the cachebility of a workload. A popular assumption
is that cache workloads follow Zipfian distribution [53], and the frequency-rank curve
plotted in the log-log scale is linear. A large body of work optimizes system performance
under this assumption [76, 98, 117, 170, 211, 281].

Measuring all Twemcache workloads, we observe the majority of the cache workloads
still follow Zipfian distribution. However, some workloads show deviations in two ways.
First, unpopular objects appear significantly less than expected (Figure 3.8a), or the
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Figure 3.9: a) Most of the workloads follow Zipfian popularity distribution with large
confidence R2. b) The parameter α in the Zipfian distribution is large, and the popularity
of most workloads is highly skewed (α > 1).

most popular objects are less popular than expected (Figure 3.8b). The first deviation
happens when objects are always accessed multiple times so that there are few objects
with frequency smaller than some value. The second deviation happens when the client
has an aggressive client-side caching strategy so that the most popular objects are often
cached by the client. In this case, the cache is no longer single-layer.

Although these deviations happen, they are rare, and we believe it is still reasonable
to assume that in-memory caching workloads follow the Zipfian distribution. Since most
parts of the frequency-rank curves are linear in the log-log scale, we use linear fitting3

confidence R2 [1] as the metric for measuring the goodness of fit. Figure 3.9a shows the
results of the fitting. 80% of all workloads have R2 larger than 0.8, and more than 50%
of workloads have R2 larger than 0.9. These results indicate that the popularity of most
in-memory caching workloads at Twitter follows the Zipfian distribution. We further
measure the parameter α of the Zipfian distribution shown in Figure 3.9b. The figure
shows that most of the α values are in the range from 1 to 2.5, indicating the workloads
are highly skewed.

3We remark that linear regression is not the correct way to model Zipf distribution from the view of
statistics, we perform this to align with existing works [53].
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Figure 3.10: Mean key, value, object size distribution and mean value
key

size ratio across all
caches.

3.3.6 Object Size

One feature that distinguishes in-memory caching from other types of caching is the object
size distribution. We observe that similar to previous observations [25], the majority of
objects stored in Twemcache are small. In addition, size distribution is not static over
time, and both periodic distribution shifts and sudden changes are observed in multiple
workloads.

Size Distribution

We measure the mean key size and value size in each Twemcache cluster and present
the CDF of the distributions in Figure 3.10. Figure 3.10a shows that around 85% of
Twemcache clusters have a mean key size smaller than 50 bytes, with a median smaller
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Figure 3.11: Heatmap showing request size distribution over time for four typical caches.
X-axis is time, Y-axis is the object size using slab class size as bins, and the color shows
the fraction of requests that fall into a slab class in that time window.

than 38 bytes. Figure 3.10b shows that the mean value size falls in the range from 10 bytes
to 10 KB, and 25% of workloads show a mean value size smaller than 100 bytes, and the
median is around 230 bytes. Figure 3.10c shows the CDF distribution of the mean object
size (key+value), which is very close to the value size distribution except at small sizes.
Value size distribution starts at size 1, while object size distribution starts at size 16. This
indicates that for some of the caches, the value size is dramatically smaller than the key
size. Figure 3.10d shows the ratio of mean value and key sizes. We observe that 15% of
workloads have a mean value size smaller than or equal to the mean key size, and 50% of
workloads have a value size smaller than 5× key size.
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Size Distribution Over Time

In the previous section, we investigated the static size distribution of all objects ac-
cessed in the one-week time of each Twemcache cluster. However, the object size dis-
tribution of workloads is usually not static over time. In Figure 3.11, we show how the
size distribution changes over time. The X-axis shows the time, and the Y-axis shows the
size of objects (using slab class size as bins), the color shows how many of the objects in
one time window fall into each slab class. We observe that some of the workloads show
diurnal patterns (Figure 3.11a, 3.11b), while others show changes without strict patterns.

Periodic/diurnal object size shifts can come from the following sources, a) value for
the same key grows over time. and b) size distribution correlates with temporal aspects
of key access. For example, text content generated by users in Japan is shorter/smaller
than those by users in Germany. In this case, it is the geographical locality that drives the
temporal pattern. On the other hand, we do not yet have a good understanding of how
most sudden, non-recurring changes happen. Current guesses include user behavior
changes during events and a temporary change in production settings.

Both short-term and long-term size distribution shifts pose additional challenges to
memorymanagement in caching systems. Theymake it hard to control or predict external
fragmentation in caches that use heap memory allocators directly, such as Redis. For
slab-based caching systems, such changes can cause slab calcification. In subsection 3.6.5,
we discuss why existing techniques do not completely address the problem.

3.4 Further Analysis of Workload Properties

We have shown the properties of the in-memory caching workloads at Twitter. In this
section, we show the relationship between the properties, and how they relate to major
caching use cases.

3.4.1 Correlations between Properties

Throughout the analysis in previous sections, we observe some workload characteristics
have strong correlations with the write ratio. For example, write-heavy workloads usually
use short TTLs. Presented in Figure 3.12a, the dashed red curve shows the mean TTL
distribution of write-heavy workloads, and the solid blue curve shows the mean TTL
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Figure 3.12: Write-heavy workloads tend to show short TTL, small object access frequency,
relatively large deviations from Zipfian popularity distribution, and are usually less
skewed (small α).

distribution of read-heavy workloads. Around 50% of the write-heavy workloads have
mean TTL shorter than 10 minutes, while for read-heavy workloads, this is 15 hours.
Further, the Pearson coefficient between write ratio and log 4 of mean TTL (Table 3.1) is
-0.63 indicating a negative correlation, confirming that large write ratio workloads usually
have short TTLs.

Besides TTL, write-heavy workloads also show low object frequencies. We present the
mean object frequency (in terms of the number of accesses in the traces) of read-heavy and
write-heavy workloads in Figure 3.12b. It shows that read-heavy workloads have a mean
frequency mostly in the range from 6 to 1000, with 75% percentile above 200. Meanwhile,
write-heavy workloads have a mean frequency mostly between 1 and 100, with 75%

4We choose to use log of TTL and frequency because of their wide ranges in different workloads.
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Table 3.1: Correlation between write ratio and other properties

Property Pearson coefficient with write ratio

log(TTL) -0.6336
log(Frequency) -0.7414
Zipf fitting R2 -0.7690
Zipf alpha -0.7329

percentile below 10. We further confirm this relationship with the Pearson coefficient
between write ratio and log of frequency, which is -0.7414 (Table 3.1), suggesting the low
object access frequency in write-heavy caches.

In addition, the popularity of write-heavy workloads has relatively larger deviations
from Zipfian distribution, and the fitting confidence R2 is usually much smaller than
that of read-heavy workloads (Figure 3.12c). Moreover, the α parameter of Zipfian
distribution in write-heavy workloads is usually small, as shown in Figure 3.12d. It shows
the write-heavy workloads have a median α around 0.9, and the median of read-heavy
workloads have an α around 1.4.

3.4.2 Properties of Different Cache Use Cases

Here we further explore common properties exhibited by each of the three major caching
use cases as described in subsection 3.1.4.

Caching for Storage

Caches for storage usually serve ready-heavy workloads, and their popularity distri-
butions typically follow the Zipfian distribution with a large parameter α in the range
of 1.2 to 2.2. While this type of workload is highly skewed, they are easier to cache, and
in production, 95% of these clusters have miss ratios of around or less than 1%. Being
more cacheable and having smaller miss ratios do not indicate they have small working
set sizes. In our observation, 7 of the top 10 caches (ranked by cache size) belong to this
category.

Because these caches store objects persisted in the backend storage, any modifications
to the objects are explicitly written to both the backend and the cache. Therefore the TTLs
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used in these caches are usually large, in the range of days. There is no specific pattern
for object size in this type of cache, and the value can be as large as tens of KB, or as small
as a few bytes. For example, the number of favorites a tweet received is persisted in the
backend database and sometimes cached.

Caching for Computation

Caches under this category serve both read-heavy and write-heavy traffic depend-
ing on the workloads. For example, machine learning feature workloads are usually
read-heavy showing a good fit of Zipfian popularity distribution. While intermediate
computation workloads are normally write-heavy and show deviations from Zipfian.
Compared to caching for storage, workloads under this category use shorter TTLs, usually
determined by the application requirement. For example, caches storing intermediate
computation data usually have TTLs of no more than minutes because other services
will consume the data in a short time. For features and prediction results, the TTLs
are usually in the range of minutes to hours (some up to days) depending on how fast
the underlying data change and how expensive the computation is. The mean TTLs we
observe for caches under this category is 9.6 hours. There are no particular patterns in
object sizes in these caches.

Since objects stored in these caches are indirectly related to users and contents, the
workloads usually have large key spaces and total working set sizes. For example, a cache
storing the distance between two users will require a N2 cache size where N denotes the
number of users. However, because these caches have short TTLs, the effective working
set sizes are usually much smaller. Thus removing expired objects can be more important
than eviction for these caches.

As real-time stream processing becomes more popular, we envision there will be more
caches being provisioned for caching computation results. Because the characteristics are
different from caching for storage, they may not benefit equally from optimizations that
only aim to make the read path fast and scalable, such as optimistic cuckoo hashing [118].
Therefore, including evaluation against caching-for-computation workloads that are
write-heavy and more ephemeral will paint a more complete picture of the capabilities of
any caching system.
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Transient Data with No Backing Store

There are two characteristics associated with this type of cache: Caches under this
category usually have short TTLs, and the TTLs are often used to enforce implicit object
deletion (subsection 3.3.4). In addition, objects in these caches are usually tiny and we
observe an average object size of 54 bytes. Although caches of this type only contribute
9% of total Twemcache clusters request rate and 8% of total cache sizes, they currently
play an irreplaceable role in site operations.

3.5 Eviction Algorithms

We have shown the characteristics of in-memory cache workloads in the previous sec-
tions. In this section, we use the same cache traces to investigate the impact of eviction
algorithms. This evaluation considers production algorithms offered by Twemcache and
other production systems.

3.5.1 Eviction algorithm candidates

Object LRU and object FIFO. LRU and FIFO are the most common algorithms used in
production caching systems [14, 328]. However, they cannot be applied to systems using
slab-based memory management, such as Twemcache, without modification. Therefore,
we evaluate LRU and FIFO assuming the workloads are served using a non-slab-based
caching system while ignoring memory inefficiency caused by external fragmentation.
As a result, we expect the results to have a bias toward the effectiveness of LRU and FIFO
compared to the three slab-based algorithms. Production results for these two algorithms
might be worse than what is suggested in this section, depending on the workloads.
slabLRU and slabLRC. These two algorithms are part of eviction algorithms offered
in Twemcache. slabLRU and slabLRC are equivalent to LRU and FIFO but executed at
a level much coarser granularity of slabs rather than a single object. Twitter employs
these algorithms to alleviate the effect of slab calcification and also to reduce the size of
per-object metadata.
Random slab eviction. Besides slabLRU and slabLRC, Twemcache also offers Random
slab eviction, which globally picks a random slab to evict. This algorithm is workload-
agnostic with robust behavior, and therefore used as the default policy in production.
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Figure 3.13: Four typical miss ratio results: a) all algorithms have similar performance,
b) LRU is slightly better than others, c) FIFO is better than others, d) slabLRU is much
better than others.

However, Random is rarely the best of all algorithms and is non-deterministic. Therefore,
we do not include it in comparison.
Memcached-LRU. Memcached adapted LRU by creating one LRU queue per slab class.
We call the resulting eviction algorithm Memcached-LRU, which does not enable Mem-
cached’s slab auto-move functionality. We did, however, evaluate Memcached-LRU with
slab auto-move turned on, and most of the results are somewhere between LRU and
slabLRU. The rest of the paper omits this combination.
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Figure 3.14: The inter-arrival gap distribution corresponding to the workloads in Fig-
ure 3.13b and Figure 3.13c respectively.

3.5.2 Simulation Setup

We built an open-source simulator called libCacheSim [368] to study the steady-state
miss ratio of the different eviction algorithms. Specifically, we use five-day traces to warm
up the caches, then use one-day traces to evaluate cache miss ratios. Each algorithm is
applied against all traces and then grouped by results.

In terms of cache sizes, our simulation always starts with 64MB of DRAM and chooses
the maximum as 2× their current memory in production. We stop increasing the size for
a particular workload when all algorithms have reached the compulsory miss ratio. Note
that when plotting, the size range is truncated to better present the trend.

3.5.3 Miss Ratio Comparison

The outcome of our comparison can be grouped into four types, and representatives of
each are shown in Figure 3.13.

The first group shows comparable miss ratios for all algorithms in the cache sizes we
evaluated. For this type ofworkload, the choice of eviction algorithms has a limited impact
on the miss ratio. Production deployments may very well favor simplicity or decide based
on other operational considerations such as memory fragmentation. Twemcache uses
random slab eviction by default because random eviction is simple and requires less
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metadata.
The second type of result shows that for some workloads, LRU works better than

others. Such a result is often expected because LRU protects recently accessed objects
and is well-known for its miss ratio performance in workloads with the strong temporal
locality.

The third type of result shows that FIFO is the best eviction algorithm (Figure 3.13c).
This result is somewhat surprising since it does not conform to what is typically observed
in caching of other scenarios such as CDN caching. We give our suspected reasons below.
Figure 3.14 shows the inter-arrival time distribution of the two workloads in Figure 3.13b
and Figure 3.13c respectively. The inter-arrival time is the number of requests between two
accesses to the same object. Figure 3.14a shows a smooth inter-arrival time curve, while
Figure 3.14b shows a curve with multiple segments. For workloads with inter-arrival time
like Figure 3.14a, LRU can work better than FIFO because it promotes recently accessed
objects, which have a higher chance of being reused soon. This promotion protects the
recently accessed objects but demotes other objects that are not reused recently. Demoting
non-recently used objects can be an unwise decision if some of the demoted objects will
be reused after 106 requests, such as the ones shown in Figure 3.14b. In contrast, FIFO
treats each stored object equally; in other words, it protects the objects with a large inter-
arrival gap. Therefore, for workloads similar to the one in Figure 3.14b, FIFO can perform
better than LRU. Such workloads may include scan type of requests such as a service that
periodically sends emails.

The last type of result shows that in some workloads, slabLRU performs much better
than any other algorithms. The main reason is that the workloads showing this type of
result have periodic/diurnal changes. Figure 3.11b shows the object size distribution
over time of the workload corresponding to Figure 3.13d. We suspect this is due to the
following reason, but we leave the verification as future work. Although LRU and FIFO
are not affected by any change in object size distribution, they cannot respond to workload
change instantly. In contrast, slabLRU can quickly adapt to a newworkload when the new
workload uses a different slab class because it prioritizes the slabs that have more recent
access. From another view, slabLRU gives a larger usable cache size for the newworkloads
(slab class). Figure 3.13d shows that the difference between algorithms reduces at larger
cache sizes, this is because the benefit of having a large usable cache size diminishes as
cache size increases. Moreover, in these workloads, Memcached-LRU sometimes has
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Figure 3.15: Miss ratio evaluation under different cache sizes.

better performance than LRU, but for most of the workloads, Memcached-LRU is worse
(not shown in the figure) because of the missing capability of moving slabs. Thus it has a
smaller usable cache size. When Memcached-LRU has better performance at small cache
sizes, we suspect that the changing workloads cause thrashing for LRU and FIFO [36].
Since Memcached-LRU can only evict objects from the same slab class as the new object, it
protects the objects in other slab classes from thrashing, thus showing better performance.

In most cases, both miss ratio and the difference between algorithms decrease as cache
capacity increases. We observe that within our simulation configuration, which stops
at or before 2× current size, the difference between algorithms eventually disappears.
This suggests that to achieve a low miss ratio in real life, it can be quite effective to create
implementations that increase the effective cache capacity, such as through metadata
reduction, adopting higher capacity media, or data compression.

Given there are more than a couple of workloads showing each of the four result
types, we would like to explore whether there is one algorithm that is often the best or
close to the best most of the time.

In the next section, we explore how often each algorithm is the best with a special
focus on LRU and FIFO.
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3.5.4 Aggregated Statistics

In this section, we evaluate the same set of algorithms as in subsection 3.5.3, focusing
on four distinct cache sizes and presenting the aggregated statistics. Because different
workloads have different working set sizes and compulsory miss ratios, we choose the
four cache sizes in the following way. We define the ultimate cache size su to be the size
where LRU achieves compulsory miss ratio for a workload. However, if LRU can not
achieve compulsory miss ratio at 2× production cache size, we use 2× production cache
size as su. We choose large cache size to be 90% of su, and medium, small and very small
cache sizes to be 60%, 20% and 5% of su respectively. We remark that, at Twitter, 76% of
the caches have cache sizes larger than the large cache size category, and 34% of the rest
have cache sizes within 10% of the large cache size.

We show the miss ratio comparison in Figure 3.15a, where each bar shows the fraction
ofworkloads forwhich a particular algorithm is the best. We see that at the large cache size,
slabLRU is the best for around 10% of workloads, and this fraction gradually increases as
we reduce cache size. This increase is because for smaller cache sizes, quickly adapting to
workload change is more valuable. Besides this, FIFO has similar performance compared
to LRU at small, medium, and large size categories. And only at very small cache sizes, LRU
becomes significantly better than FIFO. This is because at relatively large cache sizes,
promoting recently accessed objects is less crucial. Instead, not demoting other objects
is more helpful in improving the miss ratio, especially for workloads having multiple
segments in inter-arrival time like the one shown in Figure 3.14b.

Figure 3.15a suggests of the workloads, FIFO is as good as LRU at reasonably large
cache sizes. Nowwe explore the magnitude by which FIFO is better or worse compared to
LRU on eachworkload. Figure 3.15b shows the relativemiss ratio difference between FIFO
and LRU:

(
mrFIFO−mrLRU

mrLRU

)
, wheremr stands for miss ratio, for each workload at different

cache sizes. When the value on X-axis is positive, it indicates that FIFO has a higher miss
ratio, and LRU has better performance, while a negative value indicates the opposite. We
observe that all the curves except the one for a very small cache size are all close to being
symmetric around the x-axis value 0. This indicates that across workloads, FIFO and LRU
have similar performance for small, medium, and large cache sizes. For the very small
size category, we observe LRU being significantly better than FIFO, this is because for
workloads with temporal locality, promoting recently accessed objects becomes crucial
at very small cache sizes. In production, most of the caches are running at cache sizes
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larger than or close to the large category. We believe that for most in-memory caching
workloads, FIFO and LRU have similar performance at reasonably large cache sizes.

The fact that FIFO and LRU often exhibit similar performance in production-like
settings is important because using LRU usually incurs extra computational and memory
overhead compared to FIFO [199, 203]. For example, implementing LRU in Memcached
requires extra metadata and locks, some of which can be removed if FIFO is used.

3.6 Implications

In this section, we show how our observations differ from previous work, and what the
takeaways are for informing future in-memory caching research.

3.6.1 Write-heavy Caches

Although 70% of the top twenty Twemcache clusters serve read-heavy workloads (sub-
subsection 3.3.3), write-heavy workloads are also common for in-memory caching. This
is not unique to Twitter. Previous work [25] from Facebook also pointed out the existence
of write-heavy workloads, although their prevalence of them was not discussed due to
the limited number of workloads. Furthermore, write-heavy workloads are expected
to increase in prominence as the use case of caching for computation increases (subsec-
tion 3.1.4). However, most of the existing systems, optimizations, and research assume a
read-heavy workload.

Write-heavy workloads in caching systems usually have lower throughput and higher
latency, because thewrite path usually involvesmorework and can triggermore expensive
events such as eviction. In Twitter’s production, we observe that serving write-heavy
workloads tend to have higher tail latencies. Scaling writes with many threads tends
to be more challenging as well. In addition, as discussed in section 3.4, write-heavy
workloads have shorter TTLs with less skewed popularity, which are in sharp contrast to
read-heavy workloads. This calls for future research on designing systems and solutions
that consider performance on write-heavy workloads.
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3.6.2 Short TTLs

In subsubsection 3.3.4, we show that in-memory caching workloads frequently use short
TTLs, and the usage of short TTLs reduces the effective working set size. Therefore,
removing expired objects from the cache is far more important than evictions in some
cases. In this section, we show that existing techniques for proactively removing expired
objects (termed proactive expiration) are not sufficient. This calls for future work on
better proactive expiration designs for in-memory caching systems.
Transient object cache. An approach employed for proactive expiration (especially for
handling short TTLs), proposed in the context of in-memory caches at Facebook [259], is
to use a separate memory pool (called transient object pool) to store short-lived objects.
The transient object cache consists of a circular buffer of size twith the element at index i

being a linked list storing objects expiring after i seconds. Every second, all objects in the
first linked list expire and are removed from the cache, then all other linked lists advance
by one.

This approach is effective only when the cache user uses a mix of very short and long
TTLswith the short TTL usually in the range of seconds. Since objects in the transient pool
are never evicted before expiration, the size of the transient pool can grow unbounded
and cause objects in the normal pool to be evicted . In addition, the TTL threshold of
admitting into a transient object pool is non-trivial to optimize.

As we show in Figure 3.6b, 20% of the Twemcache workloads use a single TTL. For
these workloads, the transient object pool does not apply. For the workloads using
multiple TTLs, we observe that fewer than 35% have their smallest TTL shorter than 300
seconds, and over 25% of caches have the smallest TTL longer than 6 hours (Figure 3.6c).
This indicates that the idea of a transient object cache is not applicable to a large fraction
of Twemcache clusters.
Background crawler. Another approach for proactive expiration, which is employed in
Memcached, is to use a background crawler that proactively removes expired objects by
scanning all stored objects.

Using a background crawler is effective when TTLs used in the cache do not have a
broad range. While scanning is effective, it is not efficient. If the cache scans all the objects
every Tpass, an object of TTL t can be scanned up to 1 + ⌈ t

Tpass
⌉ times before removal, and

can overstay in the system by up to Tpass. The cache operator, therefore, has to make a
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tradeoff between wasted space and the additional CPU cycles and memory bandwidth
needed for scanning. This tradeoff gets harder if a cache has a wide TTL range, which
is common as observed in subsection 3.3.4. While the Twemcache workloads are single
tenant, the wide TTL range issue would be further exacerbated for multi-tenant caches.

Figure 3.6d shows that TTLs used within each workload have a wide range. Close to
60% of workloads have a maximum TTL more than twice as long as the minimum and
25% of workloads show a ratio at or above 100. This indicates that for the 25% of caches if
we want to ensure all objects are removed within 2× their TTLs, objects with the longest
TTL will be scanned 100 times before expiration.

The combination of transient object cache with background crawler could extend the
coverage of workloads that can be efficiently expired. However, the tradeoff between
wasted space and the additional CPU cycles and memory bandwidth consumed for
scanning would still remain. Hence, future innovation is necessary to fundamentally
address use cases where TTLs exhibit a broad range.

3.6.3 Highly Skewed Object Popularity

Our work shows that the object popularity of in-memory caching can be far more skewed
than previously shown [41], or compared to studies on web proxy workloads [53] and
CDNworkloads [154]. We suspect this has a lot to dowith the nature of Twitter’s product,
which puts great emphasis on the timeliness of its content. It remains to be seen whether
this is a widespread pattern or trend. Cacheworkloads are alsomore skewed compared to
NoSQL databases such as RocksDB [89], which is not surprising because database traffic
is often already filtered by caches, and has the most skewed portion removed via cache
hits. In other words, in-memory caching and NoSQL databases often observe different
traffic even for the same application. Besides these two reasons, sampling sometimes
results in bias in the popularity modeling, and we avoid this by collecting unsampled
traces. Our observation that the workloads still follow Zipfian distribution with large
alpha value emphasizes the importance of addressing load imbalance [117, 211, 281].
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3.6.4 Object Size

Similar to previously reported [25], we observe that objects cached in in-memory caching
are often tiny (subsection 3.3.6). As a result, in-memory caches are not always bound by
memory size; instead, close to 20% of the Twemcache clusters are CPU-bound.

On the other hand, small objects signify the relatively large overhead of metadata.
Memcached stores 56-byte with each object, and Twitter’s current production cache uses
38-byte metadata with each object. Reducing object metadata further can yield substantial
benefits for caching tiny objects.

In addition, we observe that compared to value size, the key size can be large in some
workloads. For 60% of the workloads, the mean key size and mean value size are in the
same order of magnitude. This indicates that reducing key size can be very important for
these workloads. Many workloads we observed have namespaces as part of the object
keys, such as NS1:NS2:...:id. This format is commonly used to mirror the naming
in a multi-tenant database, which is also observed at Facebook [66]. Namespaces thus
can occupy large fractions of precious cache space while being highly repetitive within a
single cache cluster. However, there are no known techniques to “compress” the keys. To
encourage and facilitate future research on this, we keep the original but anonymized
namespace in our open-sourced traces.

Several recent works [38, 48] on reducing miss ratio (improving memory efficiency)
focused on improving eviction algorithms and often adding more metadata. Given our
observations here, we would like to call more attention to the optimization of cache
metadata and object keys.

3.6.5 Dynamic Object Size Distribution

In subsubsection 3.3.6, we show that the object size distribution is not static, and the
distribution shifts over time can cause out-of-memory (OOM) exceptions for caching
systems using external allocators, or slab calcification for those using slab-based memory
management. In order to solve this problem, one solution, employed by Facebook, is
to migrate slabs between slab classes by balancing the age of the oldest items in each
class [259]. Earlier versions of Memcached approached this problem by balancing the
eviction rate of each slab class. Since version 1.6.6, Memcached has also moved to use the
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solution of balancing the age as mentioned above.
Besides efforts in production systems, slab assignment, and migration have also been

a hot topic in recent research [61, 85, 86, 151]. However, to the best of our knowledge,
the problem has only been studied under a “semi-static” request sequence. Specifically,
the research so far assumes that the miss ratio curve or some other properties of each
slab class hold steady for a certain amount of time, which often precludes periodic and
sudden changes in object size distribution.

In general, the temporal properties of object sizes in the cache are not well understood
or quantified. As presented in Figure 3.11c and Figure 3.11d, it is not rare to see unexpected
changes in size distribution only lasting for a few hours. Sometimes it is hard to pinpoint
the root cause of such changes. Nonetheless, we believe that temporal changes related
to object size, whether recurring or as a one-off, usually have drivers with roots beyond
the time dimension. For example, the tweet size drift throughout the day may very well
depend on the locales or geo-location of active users. Some caches may be shared by
datasets that differ in size distribution and access cycles, resulting in different distributions
dominating the access pattern at different instants of the day. In this sense, studying
the object size distribution over time could very well provide deeper insights into the
characteristics of the datasets being cached. Considering the increasing interest in using
machine learning and other statistical tools to study andpredict caching behavior, we think
object size dynamics might provide a good proxy to evaluate the relationship between
basic dataset attributes and their behavior in the cache, allowing caching systems to make
smarter decisions over time.

3.7 Related Work

Due to the nature of this work, we have discussed several related works in detail through-
out the chapter.

Multiple caching and storage system traces were collected and analyzed in the past [25,
29, 66, 154, 155, 259]; however, only a limited number of reports focus on in-memory
caching workloads [25, 155, 259]. The closest work to our analysis is Facebook’s Mem-
cached workload analysis [25], which examined five Memcached pools at Facebook.
Similar to the observations in this work [25], we observe the sizes of objects stored in
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Twemcache are small, and diurnal patterns are common in multiple characteristics. After
analyzing 153 Twemcache clusters at Twitter, in addition to previous observations [25],
we show that write-heavy workloads are popular. Moreover, we focus on several aspects
of in-memory caching that have not been studied to the best of our knowledge, including
TTL and cache dynamics. Although previous work [25] proposed analytical models on
the key size, value size, and inter-arrival gap distribution, the models do not fully capture
all the dimensions of production caching workloads such as changing working set and
dynamic object size distribution. Compared to synthetic workload models, the collection
of real-world traces that we collected and open-sourced provide a detailed picture of
various aspects of the workloads of production in-memory caches.

Besides workload analysis on Memcached, there have been several workload analyses
on web proxy [20, 21, 24, 307] and CDN caching [154, 344]. The photo caching and
serving infrastructure at Facebook has been studied [154], with a focus on the effect of
layering in caching along with the relationship between content popularity, age, and
social-network metrics.

In addition to caching in web proxies and CDNs, the effectiveness of caching is often
discussed in workload studies [29, 265] of file systems. However, these works primarily
studied the cache to the extent of its effectiveness in reducing traffic to the storage system
rather than on aspects that affect the design of the cache itself. Besides, file system caching
is different from distributed in-memory caches due to a variety of reasons. For example,
a file system cache usually stores objects of fixed-sized chunks (512 bytes, 4 KB or larger),
while in-memory caches store objects of a much wider size range (subsection 3.3.6).
Moreover, scans are common in file systems, while rare in in-memory key-value caches.
Because of the similarities in the interface, in-memory caching is sometimes discussed
together with key-value databases. Three different RocksDB workloads [66] at Facebook
have been studied in depth, with a focus on the distribution of key and value sizes, locality,
and diurnal patterns in different metrics. Although Twemcache and RocksDB have a
similar key-value interface, they are fundamentally different because of their design and
usage. RocksDB stores data for persistence, while Twemcache stores data to provide low
latency and high throughput without persistence. In addition, compared to RocksDB,
TTL, and evictions are unique to in-memory caching.
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3.8 Chapter Summary

In-memory caching systems such as Memcached [228] and Redis [283] are heavily used
by modern web applications to reduce access to storage and avoid repeated computations.
Their popularity has sparked a lot of research, such as reducing miss ratio [38, 48, 86, 87],
or increasing throughput and reducing latency [31, 118, 189, 203]. On the other hand, the
effectiveness and performance of in-memory caching can be workload-dependent. And
several important workload analyses against production systems [25, 259] have guided
the explorations of performance improvements with the right context and tradeoffs in
the past decade.

Nonetheless, there remains a significant gap in the understanding of current in-
memory caching workloads. Firstly, there has been a lack of comprehensive studies
covering the wide range of use cases in today’s production systems. Secondly, there have
been new trends in in-memory caching usage since the publication of previous work [25].
Thirdly, some aspects of in-memory caching received little attention in the existing studies,
but are known as critical to practitioners. For example, TTL is an important aspect of con-
figuring in-memory caching, but it has largely been overlooked in research. Last but not
least, unlike other areas where open-source traces [284, 285, 349, 350] or benchmarks [89]
are available, there has been a lack of open-source in-memory caching traces. Researchers
have to rely on storage caching traces [38], key-value database benchmarks [118, 203] or
synthetic workloads [211] to evaluate in-memory caching systems. Such sources either
have different characteristics or do not capture all the characteristics of production in-
memory caching workloads. For example, key-value database benchmarks and synthetic
workloads don’t consider how object size distribution changes over time, which impacts
both miss ratio and throughput of in-memory caching systems.

This chapter bridges this gap by collecting and analyzing workload traces from 153
Twemcache [324] clusters at Twitter, one of the most influential social media companies
known for its real-time content. Our analysis sheds light on several vital aspects of in-
memory key-value cache overlooked in existing studies and identifies areas that need
further innovations. The traces used in this paper are made available to the research
community at https://ftp.pdl.cmu.edu/pub/datasets/twemcacheWorklo
ad/.

To the best of our knowledge, this is the first work that studied over 100 different
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cache workloads covering a wide range of use cases. We believe these workloads are
representative of cache usage at social media companies and beyond and hopefully
provide a foundation for future key-value cache system designs. Here’s a summary of
the discoveries:

• In-memory key-value cache does not always serve read-heavy workloads; write-
heavy (defined as write ratio > 30%) workloads are very common, occurring in
more than 35% of the 153 cache clusters we studied.

• TTL must be considered in the in-memory key-value cache because it limits the
effective (unexpired) working set size. Efficiently removing expired objects from
the cache needs to be prioritized over cache eviction.

• In-memory key-value cache workloads follow approximate Zipfian popularity
distribution, sometimes with very high skew. The workloads that show the most
deviations tend to be write-heavy workloads.

• The object size distribution is not static over time. Some workloads show both
diurnal patterns and experience sudden, short-lived changes, which pose challenges
for slab-based key-value caches such as Memcached.

• Under reasonable cache sizes, FIFO often shows similar performance as LRU, and
LRU often exhibits advantages only when the cache size is severely limited.
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Chapter 4

Segment-structured Key-Value Cache

The previous chapter discusses the observations in key-value cache workloads, such as
small object sizes, wide use of TTLs, and dynamic object size distribution. These patterns
are dramatically different from the traditional block caches, which often store uniform-size
blocks and are accessed by local applications without going through networks.

This chapter shows that most key-value cache designs do not explicitly optimize for
small objects or TTLs, which motivates the design of Segcache, a new storage layout
for key-value cache that (1) uses an approximate-TTL index to remove expired objects
quickly and (2) segment-structured storage to reduce fragmentation and object metadata
overhead.

4.1 Background

As a critical component of the real-time serving infrastructure, caches prefer to store data,
especially small objects, in DRAM. DRAM is expensive and energy-hungry. However,
existing systems do not use the costly DRAM space efficiently. This inefficiency mainly
comes from three places. First, existing solutions are not able to quickly remove expired
objects. Second, metadata overhead is considerable compared to typical object sizes.
Third, internal or external memory fragmentation is common, leading to wasted space.
While improvements of admission [42, 43, 109, 113], prefetching [369], and eviction
algorithms [36, 38, 48, 86, 87, 193, 312] have been the main focus of existing works on
improving memory efficiency [38, 43, 48, 109], little attention has been paid to addressing
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Table 4.1: Comparison of research systems (with corresponding baselines).

System Memory
Allocator

Memory
fragmentation

Improve
expiration

Object
metadata size

Throughput

Memory
efficiency

improvement
approach

MICA Log No No Decrease Higher Worse

Memshare Log No No Increase Lower Memory partitioning
and sharing

pRedis Malloc External No Increase Lower Better eviction
Hyperbolic Malloc External No Increase Lower Better eviction

LHD Slab Internal No Increase Lower Better eviction
MemC3 Slab Internal No Decrease Higher Small metadata
Segcache Segment No Yes Minimal Higher Holistic redesign

Table 4.2: Techniques for removing expired objects

Technique Remove all expired? Is removal cheap?

Deletion on access No Yes
Checking LRU tail No Yes
Transient item pool No Yes
Full cache scan Yes No
Random sampling No No

expiration and metadata reduction [118, 293]. On the contrary, many systems add more
per-object metadata to make smarter decisions about what objects to keep [38, 86, 291,
369].

We summarize recent advancements in in-memory caching systems in Table 4.1 and
discuss them below.

4.1.1 TTL and expiration in caching

TTLs are extremely common in caching. As a result, object expiration is an integral part
of all existing solutions.
The prevalence of TTL. TTLs are used by users of Memcached and Redis [133, 229,
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282, 379], Facebook [41], Netflix [218]. In Twitter’s production, all in-memory cache
workloads use TTLs between one minute and one month. A TTL is specified at write
time to determine how long an object should remain accessible in the caching system.
An expired object cannot be returned to the client, and a cache miss is served instead.

Cache TTLs serve three purposes. First, clients use TTLs to limit data inconsis-
tency [282, 370]. Writing to the cache is usually best-effort, so it is not uncommon
for data in the cache and database to fall out of sync. Second, some services use TTLs to
prompt periodic re-computation. For example, a recommendation system may only want
to reuse cached results within a time window and recompute periodically to incorporate
new activities and content. Third, TTLs are used for implicit deletion. A typical scenario
is rate-limiting. Rate limiters are counters associated with some identities. Services often
need to cap requests from a particular identity within a predefined time window to
prevent denial-of-service attacks. Services store rate limiters in distributed caches with
TTLs so that the counts can be shared among stateless services and reset periodically.
Another increasingly common scenario is using TTLs to ensure data in caches comply
with privacy laws [128, 303].
Lazy expiration. Lazy expiration means expiration only happens when an object is
reaccessed. Deletion on access is the most straightforward approach adopted by many
production caching systems. If a system uses lazy expiration only, an object that’s no
longer accessed can remain in memory long past expiration.
Proactive expiration. Proactive expiration is used to reclaim memory occupied by
expired objects more quickly. Although there has been no academic research on this topic
to the best of our knowledge, we identified four approaches introduced into production
systems over the years, as summarized in Table 4.2.

Checking LRU tail is used by Memcached. Before eviction is considered, the system
checks a fixed number of objects at the tail of the LRU queue and removes expired objects.
Operations on object LRU queues reduce thread scalability due to the extensive use of
locking for concurrent accesses [38, 48]. Additionally, this approach is still opportunistic
and therefore doesn’t guarantee the timely removal of expired objects. Many production
caches track billions of objects over a few LRU queues, so the time for an object to percolate
through the LRU queue is very long.

Transient object pool was introduced by Facebook [259]. It makes a special case for
the timely removal of objects with small TTLs. The main idea is to store such objects
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separately, and only allow them to be removed via expiration. However, choosing the TTL
threshold is non-trivial and can have side effects [370]. Although Memcached supports
it, it is disabled by default.

Full cache scan is a popular approach adopted by Memcached and CacheLib [41].
As the name indicates, this solution periodically scans all the cached objects to remove
expired ones. A full cache scan is very effective if the scan is frequent, but it wastes
resources on objects that are not expired, which can be the vast majority.

Random sampling is adopted by Redis. The key idea is to periodically sample a subset
of objects and remove expired ones. In Redis, if the percentage of the expired objects in
the sample is above a threshold, this process continues. While sampling is cheaper per
run, the blind nature of sampling decides that it is both inefficient and not very effective.
Users have to accept that the sampling can only keep the percentage of expired objects
at a pre-configured threshold. Meanwhile, the cost can be higher than a full cache scan
due to random memory access. There have been some production incidents where Redis
could not remove enough expired objects and caused unexpected evictions [321].

Despite the various flaws, proactive expiration is highly regarded by developers
of production systems. When asked to replace LRU for a better eviction strategy in
Memcached, the maintainer states that “pulling expired items out actively is better than almost
any other algorithmic improvement (on eviction) I could think of.” [229] Meanwhile, Redis’
author mentioned that “Redis 6 expiration will no longer be based on random sampling but
will take keys sorted by expiration time in a radix tree.” 1

In summary, efficiently and effectively removing expired objects is an urgent problem
that needs to be solved in current caching systems.

4.1.2 Object metadata

We observe that the objects stored in in-memory caches are small [370], and the mean
object sizes (key+value) of Twitter’s top four production clusters are 230, 55, 294, and 72
bytes, respectively. This observation aligns with the observations at Facebook [25].

Existing systems are not efficient in storing small objects because they store a consider-
able amount of metadata per object. For example, Memcached stores 56 bytes of metadata

1As of Redis v6.0.6, this change is not implemented yet.
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Figure 4.1: Slab memory allocation (left) and object-chained hash table (right) in Mem-
cached.

with each object 2, which is a significant overhead compared to typical object size. All
of the metadata fields are critical for Memcached’s operations, and cannot be dropped
without first removing some functionalities or features.

There have been several attempts at Twitter to cut metadata overhead. For example,
Pelikan’s slab-based storage removes object LRU queues and reuses one pointer for both
the hash chain and free object chain. As a result, it reduces object metadata to 38 bytes.
However, this prevents Pelikan from applying the LRU algorithm to object eviction and
results in a higher miss ratio compared to Memcached in our evaluation. Pelikan also
introduced Cuckoo hashing [266] as a storage module for fixed-size objects, only storing
6 bytes (or 14 bytes with cas) of metadata per key.

Several works have also looked at reducing metadata size. RAMCloud [293] and
FASTER [70] use a log-structured design to reduce object metadata. However, their
designs target key-value stores instead of key-value caches (See discussion in section 4.4).
MemC3 [118] redesigns the hash table with Cuckoo hashing and removes LRU chain
pointers. However, it does not consider some operations such as cas for atomic updates,
and does not support TTL expiration or other advanced eviction algorithms.

22 × 8 bytes LRU pointers, 8 bytes hash pointer, 4 bytes access time, 4 bytes expire time, 8 bytes object
size, 8 bytes cas (compare-and-set, used for atomic update).

59



4.1.3 Memory fragmentation

Memory management is one of the fundamental design aspects of an in-memory caching
system. Systems that directly use external memory allocators (e.g., malloc) such as Redis
are vulnerable to external memory fragmentation and OOM.

To avoid this problem, other systems such as Memcached use a slab-based memory
allocator, allotting a fixed-size slab at a time, which is then explicitly partitioned into
smaller chunks for storing objects, as shown in Figure 4.1 (left). The chunk size is decided
by the class id of a slab and configured during startup. A slab-basedmemory allocator
is subjected to internal memory fragmentation at the end of each chunk and at the end of
each slab.

Using a slab-based allocator also introduces the slab calcification problem, a phe-
nomenon where some slab classes cannot obtain enough memory and exhibit higher
miss ratios. Slab calcification happens because slabs are assigned to classes using the
first-come-first-serve method. When popularity among slab classes changes over time,
the newly popular slab classes cannot secure more memory because all slabs have been
assigned. This has been studied in previous works [61, 151, 370]. Memcached automat-
ically migrates slabs between classes to solve this problem, however, it is not always
effective [235, 237, 239, 240]. Re-balancing slabs may increase the miss ratio because
all objects on the outgoing slab are evicted. Moreover, due to workload diversity and
complexity in slab migration, it is prone to errors and sometimes causes crashes in
production [236, 238].

Overall, existing production systems have not yet entirely solved thememory fragmen-
tation problem. Among the research systems, log-structured designs such as MICA [199,
203], memshare [87] and RAMCloud [293] do not have this problem. However, they
cannot perform proactive expiration and are limited to using basic eviction algorithms
(such as FIFO or CLOCK) with low memory efficiency.

4.1.4 Throughput and scalability

In addition to memory efficiency, throughput and thread scalability are also critical for
in-memory key-value caches. Memcached’s scalability limitation is well documented
in various industry benchmarks [242, 259]. The root cause is generally attributed to the
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Figure 4.2: Overview of Segcache. A read request starts from the hash table (right), and a
write request starts from the TTL buckets (left).

extensive locking in the object LRU queues, free object queues, and the hash table. Several
systems have been proposed to solve this problem. Some of them remove locking by using
simpler eviction algorithms and sacrificing memory efficiency [118, 203]. Some introduce
opportunistic concurrency control [118], which does not work well with write-heavy
workloads. Some other works use random eviction algorithms to avoid concurrent reads
and writes [38, 48], which do not address all the locking contention. Moreover, they
reduce throughput due to the large number of random memory accesses.

4.2 Design principles and overview

The design of Segcache follows three principles.
Be proactive, don’t be lazy. Expired objects offer no value, so Segcache eagerly removes
them for memory efficiency.
Maximize metadata sharing for economy. To reduce the metadata overhead without
loss of functionality, Segcache maximizes metadata sharing across objects.
Perform macro management. Segcache operates on segments to expire/evict objects in
bulk with minimum locking.

At a high level, Segcache contains three components: a hash table for object lookup,
an object store comprised of segments, and a TTL-indexed bucket array (Figure 4.2).
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4.2.1 TTL buckets

Indexing on TTL facilitates the efficient removal of expired objects. To achieve this,
Segcache first breaks the spectrum of possible TTLs into ranges. We define the time-
width of a TTL range t1 to t2 (t1 < t2) as t2−t1. All objects in the range t1 to t2 are treated as
having TTL t1, which is the approximate TTL of this range. Rounding down guarantees an
object can only be expired early, and no object will be served beyond expiration. Objects
are grouped into small fix-sized groups called segments (see next section), and all the
objects stored in the same segment have the same approximate TTL. Second, Segcache
uses an array to index segments based on approximate TTL. Each element in this array is
called a TTL bucket. A segment with a particular approximate TTL value is associated
with the corresponding TTL bucket. Within each bucket, segments are chained and
sorted by creation time.

To support a wide TTL range from a few seconds to at least one month without
introducing too many buckets or losing resolution on the lower end, Segcache uses 1024
TTL buckets, divided into four groups. From one group to the next, the time-width
grows by a factor of 16. In other words, Segcache uses increasingly coarser buckets to
efficiently cover a wide range of TTLs without losing relative precision for typical TTL
buckets. The boundaries of the TTL buckets are chosen in a way that finding the TTL
bucket only requires a few bit-wise operations. We show that this design allows Segcache
to efficiently and effectively remove expired objects in subsection 4.2.5.

4.2.2 Object store: segments

Segcache uses segments as the basic building blocks for storing objects. All segments are
of configurable size, with a default of 1 MB. Unlike slabs in Memcached, Segcache groups
objects by approximate TTL, not by size. A segment in Segcache is similar to a small log
in log-structured systems. Objects are always appended to the end of a segment, and
once written, the objects cannot be updated (except for incr/decr atomic operations).
However, unlike other log-structured systems [87, 203, 264, 292, 293], where available
DRAM is either used as one continuous log or as segments with no relationship between
each other, segments in Segcache are sorted by creation time, linked into chains, and
indexed by approximate TTLs.
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In Segcache, each non-empty TTL bucket stores pointers to the head and tail of a
time-sorted segment chain, with the head segment being the oldest. A write request in
Segcache first finds the right TTL bucket for the object and then appends to the segment
at the tail of the segment chain. When the tail segment is full, a new segment is allocated.
If there is no free segment available, eviction is triggered (subsection 4.2.6).

4.2.3 Hash table

As shown in previous works [118], the object-chained hash tables (Figure 4.1 (right)) lim-
its the throughput and scalability in the existing production systems [228, 324]. Segcache
uses a bulk-chaining hash table similar to MICA [203] and Faster [70].

An object-chained hash table uses object chaining to resolve hash collisions. The
throughput of such a design is sensitive to hash table load. Collision resolution requires
walking down the hash chain, incurring multiple random DRAM accesses and string
comparisons. Moreover, object chaining imposes a memory overhead of an 8-byte hash
pointer per object, which is expensive compared to the small object sizes.

Instead of having just one slot per hash bucket, Segcache allocates 64 bytes of memory
(one CPU cache line) as eight slots in each hash bucket (Figure 4.2). The first slot stores
the bucket information and the following six slots store object information. The last slot
stores either object information or a pointer to the next hash bucket (when more than
seven objects hash to the same bucket). This chaining of hash buckets is called bulk
chaining. Bulk chaining removes the need to store hash pointers in the object metadata
and improves the throughput of hash lookup by minimizing random accesses.

The bucket information slot stores an 8-bit spin lock, an 8-bit slot usage counter, a
16-bit last-access timestamp, and a 32-bit cas value. Each item slot stores a 24-bit segment
id, a 20-bit offset in the segment, an 8-bit frequency counter, and a 12-bit tag. The tag of
a key is a hash used to reduce the number of string comparisons when hash collisions
happen.

4.2.4 Object metadata

Segcache achieves low metadata overhead by sharing metadata across objects. Segcache
facilitates metadata sharing at two places: the hash table bucket and the segment. Objects
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in the same segment share creation time, TTL, and reference counter, while objects in the
same hash bucket share last-access timestamp, spinlock, cas value, and hash pointer.

Because objects in the same segment have the same approximate TTL and are written
around the same time, Segcache computes the approximate expiration time of the whole
segment based on the oldest object in the segment and the approximate TTL of the TTL
bucket. This approximation skews the clock and incurs early expiration for objects later in
the segment. As we will show in our evaluation, early expiration has a negligible impact
on the miss ratio.

Segcache also omits object-level hash chain pointers and LRU chain pointers. Bulk
chaining renders the hash chain pointer unnecessary. The LRU chain pointers are not
needed because both expiration and eviction are performed at the segment level. Segcache
further moves up metadata needed for concurrent accesses (reference counter) into the
segment header. In addition, to support cas, Segcache maintains a 32-bit cas value per
hash bucket and shares it between all objects in the hash bucket. While sharing this value
may increase false data race between different objects hashed to the same hash bucket,
in practice, the impact of this compromise is negligible due to two reasons. First, cas
traffic is usually orders of magnitude lower than simple read or write, as observed in
production environment [370]. Second, one cas value is shared only by a few keys, the
chance of concurrent updates on different keys in the same hash bucket is small. In the
case of a false data race, the client usually retries the request.

The final composition of object metadata in Segcache contains one 8-bit key size, one
24-bit value size, and one 8-bit flag. And Segcache stores only 5 bytes3 of metadata with
each object, which is a 91% reduction compared to Memcached.

4.2.5 Proactive expiration

In Segcache, all objects in one segment are written sequentially and have the same
approximate TTL, which makes it feasible to remove expired objects in bulk. Proactive
removal of expired objects starts with scanning the TTL buckets. Because segments linked
in each TTL bucket are ordered by creation time and share the same approximate TTL,
they are also ordered by expiration time. Segcache uses a background thread to scan

3The 5-byte does not include the shared metadata, which is small per object. And it also does not include
the one-byte frequency counter, which is stored as part of the object pointer in the hash table.
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the first segment’s header in each non-empty TTL bucket. If the first segment is expired,
the background thread removes all the objects in the segment, then continues down the
chain until it runs into one segment that is not yet expired, at which point it will move
onto the next TTL bucket.

Segcache’s proactive expiration technique uses memory bandwidth efficiently. Other
than reading the expired objects, each full scan only access a small amount of consecutive
metadata — the TTL bucket array. This technique also ensures that memory occupied by
expired objects is promptly and completely recycled, which improves memory efficiency.

As mentioned before, objects are subject to early expiration. However, objects are
usually less useful near the end of their TTL. Our analysis of production traces at Twitter
shows that a small TTL reduction makes a negligible difference (if any) in the miss ratio.

4.2.6 Segment eviction

While expiration removes objects that cannot be used in the future and is preferred over
eviction, the cache cannot rely on expiration alone. All caching systems support eviction
when necessary to make room for new objects.

Eviction decisions can affect the effectiveness of cache in terms of the miss ratio, thus
have been the main focus of many previous works [38, 48, 82, 193, 263, 320]. Segcache
does not update objects in place. Instead, it appends new objects and marks the old ones
as deleted. Therefore, better eviction becomes even more critical.

Unlike most existing systems performing evictions by objects, Segcache performs
eviction by segments. Segment eviction could evict popular objects, increasing the miss
ratio. To address this problem, Segcache uses a merge-based eviction algorithm. The
basic idea is that by combining multiple segments into one, Segcache selectively retains
a relatively small portion of the objects that are more likely to be accessed again and
discards the rest. This design brings out several finer design decisions. First, we need
to pick the segments to be merged. Second, there needs to be an algorithm making
per-object decisions while going through these segments.
Segment selection. The segments merged during each eviction are always from a single
TTL bucket. Within this bucket, Segcache merges the first N consecutive, un-expired, and
un-merged (in current iteration) segments (Figure 4.3). The new segment created from
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Figure 4.3: Merge-based segment eviction.

the eviction inherits the creation time of the oldest evicted segment. This design has the
following benefits. First, the created segment can be inserted in the same position as the
evicted segments in the segment chain andmaintains the time-sorted segment chain prop-
erty. Second, objects in the created segment still have relatively close creation/expiration
time, and the merge distorts their expiration schedules minimally.

While within one TTL bucket, the segment selection is limited to consecutive ones,
across TTL buckets, Segcache uses a round-robin policy to choose TTL buckets.
One-pass merge and segment homogeneity. When merging N consecutive segments
into one, Segcache uses a dynamic threshold for retaining objects to implment the merge
operation in a single pass. This threshold is updated after scanning every 1

10
of a segment

and aims to retain 1
N
bytes from each segment being evicted.

The rationale for retaining a similar number of bytes from each segment is that
objects and segments created at a similar time are homogeneous with similar properties.
Therefore, no segment is more important than others. Figure 4.4a shows the relative
standard deviation (RSD, std

mean
) of the mean object size in consecutive segments and

across random segments, and Figure 4.4b compares the RSD of live bytes in consecutive
and random segments. Both figures demonstrate that consecutive segments are more
homogeneous (similar) than random segments. As a result, retaining a similar number
of bytes from each is reasonable. However, we remark that the current segment selection
and merge heuristics may not be the optimal solution in some cases, and deserve more
exploration.
Selecting objects. So far, one question remains unsolved: what objects should be retained
in an eviction? An eviction algorithm’s effectiveness is determined by its ability to predict
future access based on past information. Under the independent reference model (IRM),
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a popular model used for cache workloads, an object with a higher frequency is more
likely to be re-accessed. And it has been shown to be effective by many works [108, 302].

Similar to greedy dual size frequency [82], Segcache uses the frequency-over-size
ratio to rank objects. Therefore it needs a frequency counter that is memory-efficient,
computationally cheap, and scalable. Meanwhile, it should allow Segcache to be burst-
resistant and scan-resistant. Moreover, The counter needs to provide higher accuracy for
less popular objects (opposite of the counter-min sketch). This is critical for cache eviction
because the highly-popular objects are always retained (cached), and the less popular
objects decide the miss ratio of a cache. Segcache uses a novel one-byte counter (stored
in the hash table), which we call approximate and smoothed frequency counter (ASFC), to
track frequencies.
Approximate counter. ASFC has two stages. When the frequency is smaller than 16
(the last four bits of the counter), it always increases by one for every request. In the
second stage, it counts frequency similar to a Morris counter [346], which increases with
a probability that is the inverse of the current value.
Smoothed counter. Segcache uses the last access timestamp, which is shared by objects
in the same hash bucket, to rate-limit updates to the frequency counters. The frequency
counter for each object is incremented at most once per second. This technique is effective
in absorbing sudden request bursts.

Simple LFU is susceptible to cache pollution due to request bursts and non-constant
data access patterns. While several approaches such as dynamic aging [23, 108], and
window-based frequency [176] have been proposed to address this issue, they require
additional parameters and/or extensive tuning [22]. To avoid extra parameters, Segcache
resets the frequency of retained objects during evictions, which has a similar effect as
window-based frequency.

The linear increase at low frequency and probabilistic increase at high frequency allow
ASFC to achieve higher accuracy for less popular objects. Meanwhile, the approximate
design allows ASFC to be memory efficient, using one byte to count up to 28× 28 requests.
The smoothed design of ASFC allows Segcache to be burst-resistant and scalable.
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Figure 4.4: a) The relative standard deviation of mean object size in consecutive segments
and random segments. b) Relative standard deviation of live bytes in consecutive seg-
ments and random segments.

4.2.7 Thread model and scalability

Segcache is designed to scale linearly with the number of threads by using a combination
of techniques such as minimal critical sections, optimistic concurrency control, atomic
operations, and thread-local variables. Most notably, because object life cyclemanagement
is at the segment level, only modifications to the segment chains require locking, which
avoids common contention spots related to object-level bookkeeping, such as maintaining
free-object queues. This macro management strategy reduces locking frequency by four
orders of magnitude in our default setting compared to what would be needed in a
Memcached-like system.

More specifically, no locking is needed on the read path except to increment object
frequency, which is at most once every second. On the write path, because segments
are append-only, inserting objects can take advantage of atomic operations. However,
we observe that relying on the atomic operation is insufficient to achieve near-linear
scalability with more than eight threads. To solve this, each thread in Segcache maintains
a local view of active segments (the last segment of each segment chain), and the active
segments in each thread can be written only by that thread. Although the segments
are local to each thread for writes, the objects that have been written are immediately
available for reading by other threads. During an eviction, locking is required when
segments are being removed from the segment chain. However, the critical section of
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removing a segment from the chain is very tiny compared to object removal, which is
lock-free. Moreover, evicting one segment means evicting thousands of objects, so segment
eviction is infrequent compared to object writes.

4.3 Implementation and Evaluation

Table 4.3: Traces used in evaluation

Trace Workload type # requests TTLs (TTL: percentage) Write ratio Mean
object size

production
miss ratio

c content 4.2 billion 1d: 65%, 14d: 27%,
12h: 7%

7% 230 bytes 1-5%

u1 user 6.5 billion 5d:1.00 1% 290 bytes <1%
u2 user 4.5 billion 12h:1.00 3% 55 bytes <1%
n negative cache 1.6 billion 30d:1.00 2% 45 bytes ∼1%

mix

content + user
+ negative cache
+ transient item

12 billion
30d: 14%, 14d:11%,
24h: 23%, 12h: 38%,
2min:12%

7% 243 bytes NA

In this section, we compare the memory efficiency, throughput, and scalability of
Segcache against several research and production solutions, using traces from Twitter’s
production. Specifically, we are interested in the following questions,

• Is Segcache more memory efficient than alternatives?
• Does Segcache provide comparable throughput to state-of-the-art solutions? Does

it scale well with more cores?
• Is Segcache sensitive to design parameters? Are they easy to pick or tune?

4.3.1 Implementation

Segcache is implemented as a storagemodule in the open-sourced Pelikan project. Pelikan
is a cache framework developed at Twitter. The Segcache module can both work as a
library or be setup as a Memcached-like server. Our current implementation supports
multiple worker threads, with a dedicated background thread performing proactive
expiration. For our evaluation, eviction is performed by worker threads as needed, but it
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Figure 4.5: Relative miss ratio of different systems (baseline Pelikan is 1), lower is better.

is easy to use the same background thread to facilitate background eviction. We provide
configurable options to change the number of segments tomerge for eviction and segment
size. The source code can be accessed at http://www.github.com/pelikan-io/
pelikan and archived at http://www.github.com/thesys-lab/segcache.

4.3.2 Experiment setup

Traces

We used week-long unsampled traces from production cache clusters at Twitter (Ta-
ble 4.3, the same as in previous work [370]). Trace c comes from a cache storing tweets
and their metadata, which is the largest cache cluster at Twitter. Trace u1 and u2 are both
user related, but the access patterns of the two workloads are different, so different TTLs
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Figure 4.6: Relative memory footprint to achieve a certain miss ratio, lower is better.

are used. Notably, they are separated into two caches in production because effective and
efficient proactive expiration was not achievable prior to Segcache. Trace n is a negative
result cache, which stores the keys that do not exist in the database, a common way of
using cache to shield databases from unnecessary high loads.

Although Twitter’s production deployments are single-tenant, multi-tenant deploy-
ments are also common because of better resource utilization [25]. To evaluate the
performance under multi-tenant workloads, we merged workloads from four types of
caches: user, content, negative cache, and transient item cache.

Baselines

Memcached used in our evaluation is version 1.6.6 with segmented LRUs. It sup-
ports lazy expiration and checks the LRU tail for expiration. We ran Memcached in two

71



modes, one with cache scanning enabled (s-Memcached), which scans the entire cache
periodically to remove expired objects; the other with scanning disabled (Memcached).
Other expiration techniques are enabled in both modes. Our evaluation also includes
pelikan_twemcache (PCache), Twitter’s Memcached equivalent, and successor to Twem-
cache [12]. Compared to Memcached, PCache has smaller object metadata without LRU
queues and only performs slab eviction [381]. We implemented LHD [38] and Hyper-
bolic [48] on top of PCache since original implementations are not publicly available.
These systems do not consider object expiration. To make the comparisons fairer, we
add random sampling to remove expired objects in these two systems, which is also how
Redis performs expiration. In the following sections, r-LHD and r-Hyperbolic refer to
these enhanced versions. Note that adding random sampling to remove expired objects
does not significantly impact the throughput, and we observe less than a 10% difference.

Because we do not modify the networking stack, we focus our evaluation on the
storage subsystem. We performed all evaluations by close-loop trace replay on dedicated
hosts in Twitter’s production fleet. The hosts have dual-socket Intel Xeon Gold 6230R
CPU, 384 GB DRAMwith one 100 Gbps NIC.

Metrics

We use three metrics in our evaluation to measure the memory efficiency, throughput,
and scalability of the systems.
Relative miss ratio. Miss ratio is the most common metric in evaluating memory
efficiency. Because workloads have dramatically different miss ratios in production (from
a few percent to less than 0.1%) and compulsory miss ratios, directly plotting miss ratio
is less readable. Therefore, we use relative miss ratio (defined as mr

mrbaseline
wheremr stands

for miss ratio and the baseline is PCache) in the presentation.
Relative memory footprint. Although miss ratio is a common metric, a sometimes
more useful metric is how much memory footprint can be reduced at a certain miss ratio.
Therefore, in subsection 4.3.3, we show this metric using PCache memory footprint as
the baseline.
Throughput and scalability. Throughput is measured in million queries per second
(MQPS) and used to quantify a caching system’s performance. Scalability measures the
throughput running on a multi-core machine with the number of hardware threads from
1 to 24 in our evaluations.
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4.3.3 Memory efficiency

In this section, we compare the memory efficiency of all systems. We present the relative
miss ratio at two cache sizes4 in Figure 4.5. (1) The “large cache” is the cache sizewhen the
miss ratio of Segcache reaches the plateau (<0.05% miss ratio reduction when the cache
size increases by 5%). Miss ratios achieved at large cache sizes are similar to production
miss ratios. (2) we choose the “small cache” size as 50% of the large cache size.

Compared to the best of the five alternative systems, Segcache reduces miss ratios by
up to 58%. Moreover, it performs better on both the single-tenant and the multi-tenant
workloads. This large improvement is the cumulative effect of having timely proactive
expiration, small object metadata, no memory fragmentation, and a merge-based eviction
strategy.

We observe that Memcached and PCache have comparable miss ratios in most work-
loads (except workloadmix because PCache is not designed for multi-tenant workloads).
While comparing Memcached and s-Memcached, we observe that adding full cache
scanning capability significantly reduces the miss ratio by up to 40%, which indicates
the importance of proactive expiration. However, as we show in subsubsection 4.3.4,
cache scanning is expensive and reduces throughput by almost half for some workloads.
Moreover, we observe that workload n and mix do not benefit from full cache scanning.
Workload n shows no benefit because it uses a single TTL of 30 days and no objects
expire in the evaluation. Although workloadmix has a mixture of short and long TTLs, it
shows no benefit because the objects of different TTLs are from different workloads with
different object sizes, and are stored in different slab classes with different LRU queues.
As a result, checking LRU tail for expiration is effective at removing expired objects and
scanning provides little benefit. Overall, we observe that proactively removing expired
objects can effectively reduce miss ratio and improve memory efficiency.

State-of-the-art research caching systems, r-LHD and r-Hyperbolic use ranking to
select eviction candidates and often reduce miss ratio compared to LRU. In our evaluation,
r-Hyperbolic shows lower miss ratio compared to Memcached and PCache, while r-LHD
is only better on workload c. r-LHD is designed for workloads with a mixture of scan
and LRU access patterns (such as block access in storage systems), while in-memory
caching workloads rarely show scan requests. This explains why it has higher miss ratios.

4We experimented with twenty cache sizes, and the two set of results presented here are representative.
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Figure 4.7: Impact of object metadata size on miss ratio. Workload n has smaller object
sizes as compared to workload c and hence enjoys larger benefits from reduction from
object metadata.

We have also evaluated r-LHD and r-Hyperbolic without sampling for expiration (not
shown), and as expected, they have higher miss ratios due to the wasted cache space
from expired objects.

An alternative way of looking at memory efficiency is to determine the cache size
required to achieve a certain miss ratio. We show the relative memory footprints of
different systems in Figure 4.6, using PCache as the baseline. The figures show that
for both the production miss ratio and a higher miss ratio, Segcache reduces memory
footprint by up to 88% compared to PCache, 60% compared toMemcached, 56% compared
to s-Memcached, and 64% compared to r-Hyperbolic.

Ablation study

In Figure 4.5, we observe that s-Memcached reduces miss ratio by up to 35% compared
to Memcached, which demonstrates the importance of proactive expiration, one of the
key design features of Segcache. Besides proactive expiration, another advantage of
Segcache over previous systems is smaller object metadata. To understand its impact, we
measure the relative miss ratio of increasing object metadata in Segcache (Figure 4.7). It
shows that reducing object metadata size can have a large miss raito impact for workloads
with small object sizes. Workload c has relatively large object sizes (230 bytes), and
reducing the metadata from 56 bytes to 8 bytes reduces the miss ratio by 6-8%. While
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Figure 4.8: Throughput of different systems, the higher the better.

workload n has small object sizes (45 bytes) and reducing object metadata size provides
a 20-38% reduction in miss ratio. This result indicates reducing object metadata size is
very important, and it is a critical component contributing to Segcache’s high memory
efficiency.

4.3.4 Throughput and scalability

Single-thread throughput

Besides memory efficiency, the other important metric of a cache is the throughput.
Figure 4.8 shows the throughput of different systems. Compared to other systems, PCache
and Segcache achieve higher throughput, up to 2.5× faster than s-Memcached, up to

75



0 6 12 18 24
Number of threads

0
20
40
60

Th
ro

ug
hp

ut
 (M

QP
S)

Memcached
s-Memcached
Segcache

Figure 4.9: Scalability

Small cache Large cache0.6

0.8

1.0

1.2

Re
la

tiv
e 

m
iss

 ra
tio eviction

2
3
4
6
8
10

(a)Number of segments to merge
Small cache Large cache0.8

0.9

1.0

Re
la

tiv
e 

m
iss

 ra
tio 100 KiB

500 KiB
1 MiB
2 MiB
4 MiB

(b) Segment size

Figure 4.10: Sensitivity analysis.

3× faster than r-Hyperbolic, and up to 4× faster than r-LHD. The reason is that PCache
performs slab eviction only, and Segcache performs merge-based segment eviction. Both
systems perform batched and sequential bookkeeping for evictions, which significantly
reduces the number of random memory accesses and makes good use of the CPU cache.
In addition, PCache and Segcache do not maintain an object LRU chain, which leads to
less bookkeeping and also contributes to the high throughput.

Although r-LHD and r-Hyperbolic have lower miss ratios than Memcached, their
throughput is also lower. The reason is that both systems use random sampling during
evictions, which causes a large number of randommemory accesses. Onemajor bottleneck
of a high-throughput cache is the poor CPU cache hit ratio, and optimizing CPU cache
utilization has been one focus of improving the throughput [203, 220]. Although r-LHD
proposes to segregate object metadata for better locality [38], it requires adding more
object metadata, and hence would further decrease memory efficiency.
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Thread scalability

We show the scalability results in Figure 4.9, where we compare Segcache with Mem-
cached and s-Memcached. Figure 4.9 shows that compared to Memcached, Segcache has
a higher throughput and close-to-linear scalability. With 24 threads, Segcache achieves
over 70 MQPS, a 19.9× boost compared to using a single-thread, while Memcached only
achieves 9 MQPS, 3.4× of its single-thread throughput. The reason why Segcache can
achieve close-to-linear scalability is the effect of multiple factors as discussed in sub-
section 4.2.7. While there is not much throughput difference between Memcached and
s-Memcached, s-Memcached is deadlocked when running with more than 8 threads.

Note that we do not present the result of PCache in this figure because it does not
support multi-threading. We also do not show the result of r-LHD and r-Hyperbolic
because we could not find any simple way to implement a better locking than the one in
Memcached. Although r-LHD and r-Hyperbolic removes the object LRU chain and lock,
the slab memory allocator still requires heavy locking.

4.3.5 Sensitivity

In this section, we study the effects of parameters in Segcache using workload c (from
Twitter’s largest cache cluster). The most crucial parameter in Segcache is the number
of segments to merge for eviction, which balances between processing overhead and
memory efficiency. Figure 4.10a shows how the miss ratio is affected by the number of
merged segments. Compared to retaining no objects (the bar labeled eviction), using
merge-based eviction reduces the miss ratio by up to 20%, indicating the effectiveness
of merge-based eviction. Moreover, it shows that the point for the minimal miss ratio is
between 3 and 4. Merging two segments or more than four segments increases the miss
ratio, but not significantly.

There are two reasons why merging too few segments leads to a high miss ratio.
First, merging too few segments can lead to unfilled segment space. For example, when
merging only two segments, 50% of the bytes are retained from each segment in one pass.
If the second segment does not have enough live objects, the new segment will have space
wasted. Second, the fidelity of predicting future accesses on unpopular objects is low.
Merging fewer segments means retaining more objects, so it requires distinguishing un-
popular objects, and the decision can be inaccurate. Meanwhile, merging fewer segments
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means triggering eviction more frequently, giving objects less time to accumulate hits.
On the other hand, merging too many segments increases the miss ratio as well. Be-

cause merging more segments means setting a higher bar for retained objects, some
important objects can be evicted. In our evaluation, we observe three and four are, in gen-
eral, good options. However, merging more or fewer segments does not adversely affect
the miss ratio significantly and still provides a lower miss ratio than current production
systems. Therefore, we consider this parameter a stable one that does not require tuning
per workload.

Besides the number of segments to merge, another parameter in Segcache is the
segment size. We use the default 1 MB in our evaluation; Figure 4.10b shows the impact
of different segment sizes. It demonstrates that segment size has little impact on the miss
ratio, which is expected. Because the fraction of objects retained from each segment does
not depend on the segment size, thus not affecting the miss ratio.

4.4 Discussion

4.4.1 Alternative proactive expiration designs

Besides the TTL bucket design in Segcache, there are other possible solutions for proac-
tive expiration. For example, a radix tree or a hierarchical timing wheel can track object
expiration time. However, neither is as memory efficient as Segcache. In fact, any design
that builds an expiration index strictly at the object level requires two pointers per object,
an overhead with demonstrated impact for our target workloads. The radix tree may also
use an unbounded amount of memory to store the large and uncertain number of expira-
tion timestamps. In addition, performing object-level expiration and eviction requires
more random memory access and locking than bulk operations, limiting throughput and
scalability.

4.4.2 In-memory key-value cache vs store

In the literature, we observe several instances where there is a mix-up of volatile key-
value caches (such as Memcached) and durable key-value stores (such as RAMCloud and
RocksDB). However, from our viewpoint, these two types of systems are significantly
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different in terms of their usage, requirements, and design. Indeed, one of the main
contributions is to identify the opportunity to approximate object metadata and share
them (time, pointers, reference counters, version/cas number) across objects. Time
approximation in particular is not as tolerated in a traditional key-value store. Below we
discuss the differences between caches and stores.
TTL. TTLs are far more ubiquitous in caching than in key-value store [41, 133, 218, 259,
321]. We described Twitter’s use of TTLs in detail in [370]. In comparison, many datasets
are kept in key-value stores indefinitely.
Eviction. Eviction is unique to caching. In addition, eviction is extremely common in
caching. A production cache running at 1M QPS with 10% writes, which can be new
objects or on-demand fill from cache misses, will evict 100K objects every second. Re-
purposing compaction and cleaning techniques in log-structured storage may not be
able to keep up with the write rate needed in caching. On the other hand, caches have
considerable latitude in deciding what to store and can choose more efficient mechanisms.
Design requirements. In-memory caches are often used in front of key-value stores to
absorb most read requests or to store transient data with high write rates. Production
users expect caches to deliver much higher throughput and/or much lower tail latencies.
In contrast, key-value stores are often considered sources of truth. As such they prioritize
durability (crash recovery) and consistency over latency and throughput.

The differences between cache and store allow us to make some design choices in
Segcache that are not feasible for durable key-value stores (even if they are in memory).

4.5 Related work

4.5.1 Memory efficiency and throughput

Approaches for improving memory efficiency fall into two categories: improving eviction
algorithms and adding admission algorithms.
Eviction algorithm. A vast number of eviction algorithms have been proposed in
different areas starting from the early 90s [166, 227, 263, 397]. However, most focus on
the cache replacement of databases or page cache, which are different from a distributed
in-memory cache because cached contents in databases and page cache are typically
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fixed-size blocks with spatial locality. In recent years, several algorithms have been
proposed to improve the efficiency of in-memory caching, such as LHD [38], Hyperbolic
caching [48], pRedis [267], and mPart [60]. However, all of them add more object
metadata and computation, which reduces usable cache size and reduces throughput,
which has significant repercussions for caches with small objects.

Segcache uses a merge-based eviction strategy that retains high-frequency small-sized
objects from evicted segments, which is similar to a frequency-based eviction algorithm
such as LFU [23, 176] and GDSF [82]. However, unlike some of these systems that require
parameter tuning, Segcache uses ASFC, which avoids these problems. In addition to the
eviction algorithm, two major components contributing to Segcache’s low miss ratio are
efficient, proactive expiration, and object metadata sharing, which are unique to Segcache.
Admission control. Adding admission control to decide which object should be inserted
into the cache is a popular approach for improving efficiency. For example, Adaptsize [43],
W-TinyLFU [108, 109], flashshield [113] are designed in the recent years. Admission
control is effective for CDN caches, which usually have high one-hit-wonder ratios (up
to 30%) with a wide range of object sizes (100s of bytes to 10s of GB). Segcache does
not employ an admission algorithm because most of the in-memory cache workloads
have low one-hit-wonder ratios (<5%) and relatively small object size ranges. Moreover,
adding admission control often adds more metadata and extra computation, hurting
efficiency and throughput.
Other approaches. There are several other approaches to improving efficiency, such
as optimizing slab migration strategy in Memcached [61, 151], compressing cached
data [357], and prefetching data [369]. Reducing object metadata size has also been
considered in previous works [118]. However, for supporting the same set of functions
(including expirations, deletions, cas), these approaches need more than twice as much
object metadata as Segcache.
Throughput and scalability. A large fraction of works on improving throughput and
scalability focus on durable key-value stores [61, 199, 220], which are different from
key-value caches as discussed in section 4.4. Segcache is inspired by these works and
further improves throughput and scalability by macro management using approximate
and shared object metadata.
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4.5.2 Log-structured designs

Segcache’s segment-structured design is inspired by several existing works that employ
log-structured design [61, 77, 203, 264, 292, 293] in storage and caching systems. The
log-structured design has been widely adopted in storage systems to reduce random
access and improve throughput. For example, log-structured file systems [292] and LSM-
tree databases [288] transform random disk writes to sequential writes. Recently, log-
structured designs have also been adopted in in-memory key-value store [61, 77, 264, 293]
to improve both throughput and scalability.

For in-memory caching,MICA [203] usesDRAMas one big log to improve throughput,
but it uses FIFO for eviction and does not optimize for TTL expiration. Memshare [87]
also uses a log-structured design and has the concept of segments. However, Memshare
optimizes for multi-tenant cache by moving cache space between tenants to minimize
miss ratio based on each tenant’s miss ratio curve. Memshare uses a cleaning process
to scan N segments, evict one segment, and keep N − 1 segments where the goal is to
enforce memory partitioning between tenants. In terms of performance, scanning N

(N = 100 in evaluation) segments and evicting one incurs a high computation overhead
and negatively affects the throughput. Moreover, to compute the miss ratio of different
tenants, Memshare adds more metadata to the system, which reduces memory efficiency.

Systems employing a log-structured design benefit from reduced metadata size and
memory fragmentation and increased write throughput, for example, several of the
existing works [118, 288, 293] and including Segcache. Compared to these existing
works, Segcache achieves a higher memory efficiency by approximating and sharing object
metadata, proactive TTL expiration, and using ASFC to retain fewer bytes during eviction
while providing a low miss ratio (10% - 25% bytes from each segment are retained in
Segcache compared to 75% in RAMCloud [293] and 99% in Memshare [87]).

In a broad view, Segcache can be described as a dynamically-partitioned and approximate-
TTL-indexed log-structured cache. However, one of the key differences between Segcache
and log-structured design is that Segcache is centered around the indexed and sorted
segment chain. Both objects in a segment and segments in the chains are time-sorted and
indexed by approximate TTLs for metadata sharing, macro management, and efficient
TTL expiration.
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4.6 Chapter Summary

Achieving high memory efficiency, high throughput, and high scalability simultaneously
in caching systems is challenging. This chapter presents Segcache, a new cache storage
design that achieves all three desired properties. Segcache is a TTL-indexed, dynamically
partitioned, segment-structured cache in which objects of similar TTLs are stored in
a small, fixed-size log called a segment. Segments are first grouped by TTL and then
naturally sorted by creation time. This design makes the timely removal of expired
objects both simple and cheap. As a cache, Segcache performs eviction by merging a
few segments into one, retaining only the most important objects, and freeing the rest.
Managing the object life cycles at the segment level allows most metadata to be shared
within a segment and metadata bookkeeping to be performed with a limited number of
tiny critical sections. These decisions improve memory efficiency and scalability without
sacrificing throughput or features.

Below are some highlights of our contributions:
• To the best of our knowledge, Segcache is the first cache design that can efficiently
remove all objects immediately after expiration. This is achieved through TTL-
indexed, time-sorted segment chains.

• This chapter proposed and demonstrated the “object sharing economy”, a concept
that reduces per-objectmetadata to just 5 bytes per object, a 91% reduction compared
to Memcached, without compromising on features.

• The single pass, merge-based eviction algorithm uses an approximate and smoothed
frequency counter to balance between retaining high-value objects and effectively
reclaiming memory.

• This chapter introduced a “macro management strategy” in managing a cache
system. It shows that replacing per-request bookkeeping with batched operations
on segments can significantly improve throughput and provide close-to-linear
thread scalability.

• This chapter evaluated Segcache using a wide variety of production traces and
compared results with multiple state-of-the-art designs. Segcache reduces memory
footprint by 42-88% compared to Twitter’s production system and 22-58% compared
to the best of state-of-the-art designs.
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Chapter 5

Coded Content Delivery Network Cache

Besides key-value caches deployed inside cloud data centers, there is another important
category of key-value cache 1 — Content Delivery Networks cache, which is often de-
ployed at the edge of the Internet. CDN operators deploy edge clusters in ISP and IXP
close to end users so that they can cache and deliver popular content to users quickly
and cheaply. CDNs are one of the foundations of today’s Internet because most of the
content does not need to be transferred over the unreliable Internet.

Because of the importance of CDNs, having a reliable service is paramount. This
chapter looks into the design of reliable Content Delivery Network caches with a focus on
reliability within each cluster. This chapter will demonstrate how to use erasure coding
to reduce redundancy overhead for fault tolerance. However, naive use of erasure coding
does not work in distributed caches because each cache performs evictions independently.
This causes the chunks on different servers to be evicted at different times. When a server
becomes unavailable, the chunks needed to recover the original objects may have already
been evicted from the cluster. To solve the key problem in reliable distributed caching,
this chapter introduces parity rebalance, a mechanism that will align the write rates and
eviction rates on different servers, allowing servers to perform “synchronized” evictions
without coordination.

1In some works, a CDN cache is also called an object cache. The main difference between a key-value
cache and an object cache in those works is the object size — a cache serving workloads with small objects
is called a key-value cache, and a cache serving large objects is called an object cache. However, the size
boundary is often arbitrary. Because all the object caches also have a key-value interface, we refer to a cache
using a key-value interface as a key-value cache, including the CDN cache.
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5.1 Background

CDN Architecture. A CDN is a large distributed system with hundreds of thousands
of servers deployed around the world [99, 260]. The servers are grouped into clusters,
where each cluster is deployed within a data center on the edge of the Internet. The CDN
cluster caches content and serves it on behalf of content providers, such as e-commerce
sites, entertainment portals, social networks, news sites, media providers, etc. By caching
content in server clusters proximal to the end users, a CDN improves performance by
providing faster download times for clients. Unlike storage systems, CDN servers do
not store the original content copies. When the requested content is not available in the
cluster (cache miss), the content is retrieved from other CDN clusters or the origin servers
operated by the content provider.
Bucket-based request routing. When a user requests an object, such as a web page or
video, the global load balancer of the CDN routes the request to a cluster that is proximal to
the user [75]. Next, the local load balancerwithin the cluster routes the request to one or
more servers within the chosen cluster that can serve the requested object. As an example,
in Akamai’s CDN, these routing steps are performed as DNS lookups. A content provider
CNAMEs its domain name (e.g., for all of its media objects) to a sub-domain whose
authoritative DNS server is the CDN’s global load balancer. At the global load balancer,
this sub-domain is CNAME’d to a cluster-local load balancer that assigns the sub-domain
to a cluster server using consistent hashing [219].

CDN request routing stands in contrast to sharding in key-value caches, such as
Memcached and Redis, where consistent hashing is often applied at a per-object granu-
larity [259, 370]. In CDNs, load balancing decisions are taken on the granularity of groups of
objects called buckets. Each bucket, in a DNS-based load balancer, corresponds to a domain
name that is resolved to obtain one or more server IPs that host objects in that bucket.
This resolution is computed using consistent hashing. Since the number of buckets is
limited in the range of 100s, the computation is performed and cached when a cluster
server becomes available or unavailable.
CDN Performance Requirements. A CDN aims to serve content faster than a customer’s
origin by a specified speedup factor. This factor is commonly part of a service level
agreement (SLA) between the CDN and the content provider. The SLA is monitored
by recording download times from a globally distributed set of locations for the same
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content using both CDN and origin servers. Hence, the goal is to ensure good “tail”
performance in every time interval for every content provider from every cluster.
Operating Costs of a CDN. CDNs seek to minimize the operating cost, which consists
of the following main categories. (i) Bandwidth: A major component of the operating cost
of a CDN is bandwidth, accounting for roughly 25% of operating costs. The bandwidth
cost can be further broken down, the bandwidth cost caused by cache miss traffic called
midgress [318] that accounts for roughly 20%, while the rest is the cost of egress i.e., the
traffic from the CDN servers to clients. CDNs have a great cost incentive to reduce the
byte miss ratio and the midgress traffic since a CDN gets paid by content providers for
the traffic to end users. The midgress traffic between CDN clusters and the origin is
purely a cost overhead for the CDN. Even modest reductions in midgress translate into
large cost savings since the bandwidth costs tens of millions of dollars per year for a large
CDN[318].
(ii) SSDwearout: A secondmajor cost component is server deprecationwhich accounts for
about 25% of the operating cost of a large CDN. Hardware replacements are particularly
expensive for small edge clusters due to the large geographic footprints of CDNs. SSDs
are a key component due to the high IOPS requirements of CDN caching. Unfortunately,
using SSDs in caching applications is challenging due to their limitedwrite endurance [41,
113, 305, 320]. With deployments of TLC and QLC SSDs, reducing SSD write rates has
become evenmore critical. Besides reducing the average write rate within a cluster, CDNs
also seek to reduce the variance of write rates of different servers and their SSDs. Large
variance leads to some SSDs not achieving their intended lifetime (e.g., 3 years) as well
as high tail latency (see subsection 5.2.4). Consequently, CDNs seek to reduce the peak
write rate, ideally balancing write rates across all SSDs in a cluster.

5.2 Production CDN Trace Analysis

This section motivates the design of C2DN by analyzing three sets of traces from produc-
tion Akamai clusters.

We collected request traces from two typical Akamai 10-server clusters (cluster cache
size 40 TB), one mainly serving web traffic and the other mainly serving video traffic.
These traces comprise anonymized loglines for every request from every server over a
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Figure 5.1: a) Size distributions show that large objects contribute to most of the unique
bytes and b) most requests are for small objects.

Table 5.1: Read and write load for a 10-server production cluster.

Per-server load (TB) Max Min Mean Max/min

Weekly read 225.2 167.9 191.2 1.3
Weekly write 16.54 6.69 12.57 2.5

period of 7 and 18 days, respectively. The web trace totals 6 billion requests (1.7 PB) for
273 million unique objects (79.8 TB). The video trace totals 600 million requests (2.1 PB)
for 130 million unique objects (224 TB).

Additionally, we collected availability traces from 2190 Akamai clusters over 31 days.
The trace consists of snapshots taken every 5 minutes from each cluster’s local load
balancer. Each snapshot contains the number of available servers as determined by the
load balancer. The smallest cluster has two servers, the largest cluster has over 500 servers,
and the median cluster size is 17 servers. We observe that cluster size has a wide range,
and around 40% of clusters have fewer than or equal to 10 servers.

5.2.1 Diversity in workloads and object sizes

CDNs mix different types of traffic in clusters to fully use their resources. For example,
different “classes” of trafficwith small and large object sizes, such as web assets and video-
on-demand, are mixed to balance the utilization of the cluster’s CPUs as well as network
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Figure 5.2: a) Server unavailabilities are mostly transient. b) Object miss ratios spike after
server unavailability both with and without state-of-the-art replication.

and disk bandwidth [317]. Consequently, object sizes vary widely [43]. Figure 5.1a and
Figure 5.1b show the size distribution for our production traces, weighted by unique
objects and by request count, respectively. As expected, object sizes vary from a few
bytes to a few GBs. Fig 5.1a shows that the majority of traffic and cache space is used by large
objects. Furthermore, objects smaller than 1 MB make up less than 15% and 12% of the
total working set in web and video, respectively. Fig 5.1b shows that the majority of the
requests are for small objects with 95% of requests in web-dominant workload smaller than
1 MB, and 50% of requests in video-dominant workload smaller than 1 MB.

5.2.2 Unavailability is common and transient

Unavailability is common. Across all clusters, server unavailabilities occur in 45.2% of
the 5-minute snapshots. For clusters with only ten servers (the same size as the cluster
we collect request traces from), we observe that 30.5% of 5-minute time snapshots show
server unavailability. Moreover, we observe that unavailability affects only a small number
of servers at any given time: 85% of unavailabilities affect less than 10% of servers in
large clusters, and 84% of unavailabilities affect no more than a single server in a ten-
server cluster. These unavailability rates can appear high compared to published failure
rates in large data centers [123, 243, 278, 280, 295] and HPC-systems [301]. However,
environmental conditions can be more challenging in small edge clusters. For example,
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edge locations often have less efficient cooling systems than highly optimized hyper-scale
data centers; edge clusters also have less power redundancy, such as redundant battery
and generator backups [260]. Moreover, CDN clusters employ a rigorous definition of
server unavailability. When a server does not meet the performance requirement, it is
deemed as unavailable by the load balancer. These types of unavailability are rarely
reported by data centers and HPC systems. Unfortunately, the unavailability logs do not
provide a causal breakdown of failure events.
Unavailability is mostly transient. Figure 5.2a shows a CDF of the durations of unavail-
abilities. We observe that unavailabilities can last between 20 minutes and 24 hours with
a median duration of 200 minutes. These short unavailabilities are mostly caused by
performance degradation, such as unexpected server overload and software issues (e.g.,
application/kernel bugs or upgrades). Besides, we observe a long tail of unavailability
durations, with around 16% exceeding 24 hours and 2% exceeding an entire week. These
cases may be related to hardware issues. Qualitatively, our observations are similar to
storage systems in the sense that unavailabilities are common, and most unavailabilities
are not permanent.

5.2.3 Mitigating unavailability is challenging

Upon detecting an unavailability, the load balancer removes the corresponding server
from the consistent hash ring and reassigns their buckets to other servers [219]. We
evaluate how a bucket’s object miss ratio is affected by unavailability using the video
trace. Figure 5.2b shows that the object miss ratio in a CDN cluster without any redun-
dancy increases by more than 2× relative to no unavailability over the same time period.
This spike disproportionally affects a small group of content providers because of bucket-based
routing (subsection 5.2.1). The high latency resulting from cache misses can lead to SLA
violations.

The state-of-the-art mitigation technique for server unavailability at large CDNs is
replicating buckets across two servers2. When one server becomes unavailable, requests
are routed to the other server, which is likely to hold the object. Figure 5.2b shows
that replication reduces the intensity of the miss ratio spike. However, we find that

2For operational flexibility, CDNs do not replicate servers as primary/backup. CDNs implement
replication using additional virtual nodes for a bucket on the consistent hash ring [178, 246].
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replication does not remove the miss ratio spike. In contrast to storage systems, where
replication guarantees durability, in CDN clusters, servers perform cache evictions independently.
Objects that are admitted to two caches at the same time may be evicted at different times.
This is particularly common if the two caches evict objects at very different rates, making
replication ineffective. We next discuss why this case is more common than one might
expect.

5.2.4 The need for write load balancing

We measure the read and write load balance across servers in a CDN cluster. To make
the analysis independent from eviction decisions, we present the read and write rates
based on compulsory misses from the web trace Table 5.1 shows that the server with the
highest read load serves 1.3×more traffic than the server with the lowest read load. The
server with the highest write load writes around 2.5×more bytes than the server with
the lowest write load.

Write load imbalance causes three problems. First, imbalance reduces the effectiveness
of replication. A server with a 2.5× higher write rate also has a 2.5× higher eviction rate.
So, a newly admitted object will traverse the cache with the highest write load 2.5× faster
than the onewith the least write load. Consequently, buckets mapped to these servers will
have many objects for which only a single copy is cached in the cluster. We find that for
25% of objects, only a single copy exists in the cluster, which leads to the miss ratio spike
observed during unavailabilities (Figure 5.2b). Second, SSD write load imbalance often
causes high tail latency. Specifically, high write rates frequently trigger garbage collection,
which can delay subsequent reads by tens of milliseconds [47, 352, 353, 367]. Third, the
imbalance can lead to short SSD lifetimes due to concentrated writes on some SSDs, and
thus higher replacement rates [41, 320], which increases CDN cost (section 5.1).

5.3 C2DN System Design

C2DN’s design goals are to: (1) eliminate miss ratio spikes caused by server unavail-
ability and (2) balance write loads across servers in the cluster. Erasure coding is a
promising tool to improve availability under server unavailability. We first describe a
naive implementation, called C2DN-NoRebal, based on a straightforward application of
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erasure coding (subsection 5.3.1). C2DN-NoRebal fails to achieve the targeted goals, and
we identify write and eviction imbalance as the key challenge. We then describe a new
technique to overcome this challenge (subsection 5.3.2) that exploits the unique aspects
of the use of erasure coding in the context of CDNs.

5.3.1 Erasure coding and C2DN-NoRebal

Erasure coding is widely used in production storage systems for providing high availability
with low resource overhead [174, 249, 278]. Conceptually, erasure coding an object involves
dividing the object intoK data chunks and creating P parity chunks, which are mathemat-
ical functions of the data chunks. Such a scheme, called a (K,P ) coding scheme, enables
the system to decode the full object from any K out of the K + P chunks. Thus, caching
K + P chunks on different servers provides tolerance to P server unavailabilities. As
individual chunks are only a fraction 1/K of the original object’s size, coding reduces
space overhead compared to replicating full objects3.

As CDNs use bucket-based routing (section 5.1), coding needs to be applied at the
level of buckets rather than objects. Specifically, the K data chunks of all the objects
belonging to a bucket are grouped into K distinct data buckets respectively. Similarly, the
corresponding P parity chunks are grouped into P distinct parity buckets. These buckets
(data and parity) are each assigned to a distinct server in the cluster. Note that while the
routing happens at the level of buckets, requests are still served at the level of objects.
Hence we will use the term buckets in the context of the assignment and chunks in the
context of serving specific objects.

The application of erasure coding to CDNs is shown in Figure 5.3. To serve a user
request, a server reads one chunk from the local cache and at leastK − 1 chunks from
other servers to reconstruct the requested object. To find the location of data and parity
chunks, C2DN-NoRebal relies on a simple extension of bucket-based consistent hashing.
The location of the first chunk is the server the bucket containing the object hashes to.
Then, subsequent K + P − 1 chunks are read from the subsequent K + P − 1 servers on
the consistent hash ring.

Owing to the reduced storage overhead, C2DN-NoRebal provides cost benefits by
3The space overhead of an (K,P ) coding scheme is K+P

K . For example, forK = 3, P = 1, space overhead
is 1.33× as opposed to 2× in two-replication.
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reducing the average byte miss ratio when compared to replication (as seen in our
experiments in section 5.5). However, C2DN-NoRebal fails to eliminate the object miss
ratio spike during unavailability (section 5.5). Specifically, we find that coded caches are
even more sensitive to write load imbalance than replication. For replication, eviction
rate imbalance may cause the second (backup) copy to be evicted, which is required
when a server becomes unavailable. Whereas for a coded cache, eviction rate imbalance
could lead to any of the individual chunks being evicted, which leads to an effect we
call partial hits: less than K chunks of the object are cached in the cluster, and this
prohibits the reconstruction of the object. A partial hit only requires fetching the missing
chunks but incurs the same round-trip-time latency as a miss and thus does not provide
a speedup. Further, partial hits become even more frequent during server unavailability,
thus deeming C2DN-NoRebal less effective.

2. 3.

DonXW ClXsWer

1.

1. Read local cache.
2. Read oWher daWa chXnks.
3. Read pariW\ if needed.

HTTP

DNS

FronWend

Cache

WAN
Origin
SerYer

C2DN Cluster

Figure 5.3: Architecture of C2DN.

5.3.2 Parity rebalance and C2DN

Having identified write imbalance as a key challenge for erasure coding in CDNs, we
next show how we exploit parities in overcoming these imbalances. Our main idea is to
assign parity buckets to servers in a way that mitigates the write load imbalance caused by
data bucket assignment.

Like the state-of-the-art in CDNs and C2DN-NoRebal, C2DN applies consistent hash-
ing to assign the data buckets (Figure 5.4). We define a server’s data write load as the
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Figure 5.4: C2DNbucket assignment. C2DN assigns data buckets using consistent hashing,
which guarantees a consistent mapping across unavailabilities, but causes load imbalance

number of bytes written (i.e., admitted) to the cache, counting only data buckets. We
also define a bucket’s parity write load as the bytes written counting only parity buck-
ets. Every server records the data write load and each bucket’s parity write load since
the cluster’s last unavailability event. After an unavailability event, parity buckets are
reassigned by the load balancer using this information. The load balancer calculates
an assignment of parity buckets to servers to balance the write load. This assignment
is a non-trivial calculation as not every assignment is feasible: parity chunks cannot be
assigned to a server that holds a data chunk of the same object. In general, C2DN’s parity
bucket assignment problem is NP-hard by reduction from the Generalized Assignment
Problem [68].
C2DN’s parity bucket assignment algorithm. We obtain an approximate solution in
polynomial time using a MaxFlow formulation (Figure 5.5). The solution provides us
with feasible server assignments for each parity bucket. We empirically observe that by
assigning the parity bucket to the least loaded server among the feasible servers, the
write load on each server is well balanced. The inputs to the algorithm are:

1. parity write load of bucket n (sn),
2. data write load on server i (li),
3. total write load on the cluster (W),
4. current assignment of data buckets to servers,
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to balance the load using a MaxFlow formulation.

5. available servers in the cluster (A).

The flow graph (Figure 5.5) is constructed using a source-node (S), parity-nodes
corresponding to each parity bucket, server-nodes corresponding to each server in the
cluster, and a sink-node (T). We add an edge from the source-node (S) to each parity-
node nwith a capacity equal to the bucket’s parity write load (sn). We add edges from
parity-nodes to the server-nodes if the corresponding parity bucket can be placed on that
server, i.e., the data chunks of the bucket are not assigned to the server. The capacity
of these edges is again the bucket’s parity write load (sn). Finally, we add edges from
server-nodes to the sink-node (T) with a capacity equal to the server’s remaining write
load budget, which is max(

⌈
W
|A|

⌉
− li, 0).

After solving MaxFlow(S,T), C2DN iterates over parity buckets. Each parity bucket
is assigned to the least loaded server with a positive flow from the parity-node to the
server-nodes. This leads to a well-balanced assignment. The assignment is also feasible
as no positive flow exists between a parity bucket and the servers holding this bucket’s
data chunks.
Extension to heterogeneous servers. We incorporate heterogeneous servers by setting
the capacity of the edge in the graph between server-nodes to sink-node (T) proportional
to the size of the server.
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5.3.3 C2DN resolves partial hits

Having shown how to balance write loads across servers within the cluster, we show that
this is sufficient to solve the issue of partial hits. Specifically, we find that the probability
of a partial hit diminishes for large caches.

We formulate our proof under the simplifying assumptions of the independent refer-
ence model (IRM4), which is used widely in caching analysis [9, 116]. While our proof
can be extended to a range of eviction policies [223], we assume the Least-Recently-
Used (LRU) policy for simplicity. We empirically observe that FIFO, which is used in
open-source caches such as Apache Trafficserver [14] and our empirical evaluation in
section 5.5, behaves similarly to LRU.

We remark that we do not require explicit coordination of individual eviction decisions
among the caches. Our theorem states that under IRM, in C2DN, if one chunk of an object
is present in a cache, then the other chunks are almost surely present in the other caches.
Theorem 1. Under IRM and LRU, in C2DN, for an object with chunks x1, . . . , xn, for any
1 ≤ i, j ≤ n., and as the cache size grows large

P [chunk xi is in cache | chunk xj is in cache ]→ 1 (5.1)

Our proof uses the fact that balanced write loads lead to equal characteristic times [116,
124, 296], which is the time it takes for a newly requested chunk to get evicted from each
server’s LRU list. Since data and parity chunks of an object are requested simultaneously
and the characteristic time is the same, the chunks are also evicted simultaneously, and
partial hits become rare. Details can be found in our original paper [373].

5.4 C2DN Implementation

In addition to design goals (1) and (2), C2DN’s implementation seeks to (3) minimize
storage/ latency/ CPU overheads and (4) remain compatible with existing systems to
facilitate deployment. This entails subtle implementation challenges.

4In the IRM, an object i’s requests arrive according to a Poisson process with a rate λi, independent
of the other objects’ requests. With recent theoretical advances [163], our proof can be extended to not
assume the IRM.
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Figure 5.6: Microbenchmarks. a) With vector instruction in modern CPU, decoding is
very efficient with high throughput, the sub-chunk size to achieve maximum throughput
across configurations is around 32-64 KB. b) Modern SSD achieves maximum throughput
with I/O size larger than 32 KB.

Enabling transparent coding. A key architectural question is which system component
encodes and decodes objects into/from data and parity chunks. A natural choice might
be to encode objects at the origin servers. However, this would require changes to thou-
sands of heterogeneous origin software stacks — a barrier to deployment. Additionally,
encoding at the origin would increase origin traffic as each cache miss needs to fetch both
data and parity chunks, e.g., with K = 3, P = 1 the origin traffic would increase by 33%.
Thus, C2DN fetches uncoded objects from origins and encodes chunks within the CDN
cluster. Additionally, any decoding operation is also performed within the cluster for
transparency on the client side.
Selective erasure coding. While encoding and decoding are fast due to broad CPU
support for vector operations, the overhead of fetching becomes significant for small
objects. As the majority of requests are for small objects (subsection 5.2.1), we can reduce
processing overheads by using replication for small objects. C2DN applies coding to large
objects, which account for most of the production cluster’s cache space (subsection 5.2.1).
Of course, with selective coding, we now need to count uncoded objects as part of the
data write load in subsection 5.3.2.

To decide the size threshold of coding, we perform two microbenchmarks studying
how coding block size affects coding throughput and SSD bandwidth. Figure 5.6a
shows that even on a five-year-old Skylake Xeon, decoding is very efficient with per-
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core throughput over 200 Gbps (data fits in CPU cache) at a block size of 32 KB. This
benchmark result suggests that decodingwill not be a bottleneck at a reasonable block size
(e.g., 32 KB) compared to NIC bandwidth. Figure 5.6b shows the relationship between
SSD bandwidth and I/O size (setup as in section 5.5). We again find that a block size of
32-64 KB achieves the peak SSD bandwidth. Based on these results, C2DN codes object
larger than 128KB so that each chunk is at least 42KB for a (3, 1) coding scheme.

This hybrid approach enables load balancing and space efficiency with no overhead
for most requests. One might ask why C2DN relies on replication for small objects after
section 5.1 showed that replication continues to suffer from miss ratio spikes. We find
that erasure coding large objects is sufficient to balance eviction rates (using C2DN’s
parity rebalance), making replication effective for small objects.
Parity rebalance and parity look up. As described in § 5.3.2, C2DN formulates the parity
bucket assignment problem as a Max Flow problem. We solve the problem using Google-
OR [272], which implements the push-relabel algorithm [83]. The time complexity of this
algorithm is O(n2

node ∗
√
nedge). where nnode is the number of nodes (#buckets + #servers)

and nedge is the number of edges (≈#buckets× #servers). In production systems, #buckets
is in the range of 100s for a 10-server cluster. Thus, the time complexity simplifies to
O(#buckets3). Empirically, we observe low run times as well, for e.g., for 100 buckets and
10 servers, C2DN’s parity bucket assignment runs within 50 µs. Also, note that the parity
bucket mapping is calculated in the background (off the critical path) and only when
there is an unavailability event. From our analysis, we observe around 5.6 unavailability
events on an average day.
Support for large file serving, HTTP streaming, and byte-range requests. To minimize
latency, CDNs stream large objects to clients. We achieve compatibility with streaming by
subdividing data and parity chunks (for very large objects) into smaller parts which we
call sub-chunks. C2DN’s encoding and decoding work on the sub-chunk level as shown
in Figure 5.7. We implement streaming by serving sub-chunks as they become available.
For byte-range requests, C2DN fetches the sub-chunks overlapping with the requested
byte-range.
Delayed fetch of parity sub-chunks. C2DN can serve a request with any K sub-chunks
(out of K + P ). Because serving with data sub-chunks requires no decoding, C2DN first
fetches all K data sub-chunks. C2DN only fetches parity sub-chunks after a heuristic
wait period to overcome stragglers. We record the time until the first data sub-chunk
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Figure 5.7: Support for HTTP streaming. C2DN efficiently supports HTTP streaming and
byte-range requests by splitting large files into sub-chunks and performs coding on sub-
chunks level.

is returned. If, after an additional 20% wait time, fewer than K data sub-chunks have
arrived, C2DN fetches parity sub-chunks.
Hot object cache (HOC). To facilitate serving hot objects, C2DN caches decoded sub-
chunks in DRAM so that if an object is popular, it will be served directly and efficiently
from DRAM, thus avoiding fetching and possible decoding.
Metadata lookups. In the case of a HOC miss, C2DN needs to know if the object was
encoded or replicated. Storage systems can rely on external metadata for this case, which
is not available in CDNs. Thus, C2DN stores metadata with each cached object, indicating
whether the object is coded or not. On a HOC miss, C2DN first looks up the object in
its local SSD cache. If the metadata indicates a coded object, C2DN fetches chunks from
other caching servers within the cluster. In the case of a local cache miss, C2DN retrieves
the object from other CDN clusters or the origin servers, then C2DN serves the object to
the end-user, stores it locally, and encodes or replicates based on the object size.

Table 5.2: Object and byte miss ratio from prototype

System Replication(CDN) C2DN C2DN reduction

Object miss ratio 0.242 0.227 6.4%
Byte miss ratio 0.118 0.105 11%

5.5 Evaluation

To study a more comprehensive parameter range, we use simulations.
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The highlights of our evaluation are: (1) C2DN eliminates miss ratio spikes after
unavailabilities. Additionally, C2DN reduces byte miss ratio by 11%, enabling significant
bandwidth cost savings at scale. (2) C2DN reduces write load imbalance by 99%. (3)
C2DN achieves the same latency, and lower average SSD write rates with only a 14%
increase in CPU utilization.

5.5.1 Experimental methodology and setup

Traces. We evaluate C2DN using the two production traces described in section 5.2. In
the following sections, we focus on the video trace and the results for the web trace are
similar.
Prototype evaluation setup. We emulate a CDN’s geographic distribution by placing sets
of clients, a 10-server CDN cluster, and an origin data center in different AWS regions.
CDN servers use i3en.6xlarge VMs with 80 GB in-memory cache and 10 TB disk cache.
To reduce WAN monetary bandwidth costs of the experiments, we measure latency via
spatial sampling [332, 333] for 2% of requests. The remaining requests are generated in
the same region.

Unless specified otherwise, we use Reed-Solomon codes (K = 3, P = 1). We only
code objects larger than 128 KB (section 5.3). The prototype experiments use four days
of requests to warm up caches. Measurements are then taken for three days of requests.
This corresponds to replaying 1.18 PB of traffic in total from local and remote clients in
each prototype experiment.
Simulation setup. We implement a request-level cluster simulator. While the simulator
does not capture system overheads, it is useful in comparing various schemes for the full
duration of the trace and for various cache sizes (which are prohibitively expensive to
perform using prototype experiments.) Simulations use 18-day long traces (compared
to 7 days with the prototype). Unless otherwise stated, the simulator uses the same
configuration as the prototype.
Baselines. We compare C2DN to three baselines. (1) No-replication does not provide
fault tolerance and incurs no space overhead. (2) Replication (CDN) replicates each
object with two replicas. We use the (CDN) suffix as this is most similar to the approach
deployed today. (3)C2DN-NoRebal aC2DNvariant based on consistent hashingwithout
parity rebalance. In addition to C2DN, which uses one parity chunk and tolerates one
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unavailability, we have also evaluated C2DN-n5k3 and C2DN-n6k3, which uses two and
three parity chunks and can tolerate two and three unavailabilities, respectively.

5.5.2 Miss ratio without unavailability
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Figure 5.8: Byte miss ratio of the four systems.

We evaluate miss ratios of the competing systems under normal operation, i.e., without
unavailability. Table 5.2 shows the object miss ratio and byte miss ratio of Replication
(CDN) and C2DN obtained from the prototype experiments. We observe that C2DN
reduces object miss ratio by 6.4% and byte miss ratio by 11.0%. These improvements
are direct results of the reduced storage overhead in C2DN. On a large scale, these
improvements lead to significant bandwidth savings.

To understand the sensitivity of byte miss ratio improvements to cache size, we show
simulation results in Figure 5.8. For smaller cache sizes, C2DN improves byte miss ratios
by up to 20%. Benefits diminish for cache sizes above 200 TB (5× production cache size).
For object miss ratios, the effect is qualitatively similar. Overall, the reduction in the
miss ratio bridges the efficiency gap between No-replication and Replication (CDN) and
reduces the overhead of providing redundancy in CDN edge clusters.

We also observe that C2DN improvesmiss ratios compared to C2DN-NoRebal because
C2DN balances the write loads (eviction rates) across servers and reduces the probability
of partial hits. However, this effect is small, suggesting that most of C2DN’s miss ratio
reduction comes from reduced storage overhead. The advantage of C2DN over C2DN-
NoRebal will become clear in the following section, where we find that C2DN-NoRebal
does not provide effective fault tolerance.
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5.5.3 Miss ratio under unavailability
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Figure 5.9: System performance under unavailability.

We now consider unavailabilities and evaluate the object miss ratio as the primary
performance metric affecting latency and speedup. The first experiment introduces single
unavailability after warming up the cache. We then measure the relative object miss
ratio change: mr(un)−mr(av)

mr(av)
for each 5-minute time interval, where mr(un) and mr(av)

stand for miss ratio with unavailability and without unavailability, respectively. A second
experiment considers two simultaneous unavailabilities.

Figure 5.9a show the relative object miss ratio increase where the single unavailability
event occurs 100 minutes after warmup. As expected, No-replication does not provide
fault tolerance, leading to a large (2.2× as seen in 5.2b) miss ratio spike. Replication
(CDN) and C2DN-NoRebal have similar performance with 25% miss ratio spikes.

The miss ratio of C2DN is not affected for several hours after the unavailability event.
This is because C2DNwith one parity chunk can tolerate one unavailability effectively. In
the long term, miss ratios for all systems increase as the cluster’s total capacity is reduced.
For C2DN, the increase in the miss ratio becomes visible only after around 300 minutes
past unavailability. During unavailability, data that should be written to the unavailable
servers are written to the other available servers. The extra writes take a long time to
impact the miss ratio of a cluster with a large cache size. We remark that the exact length
of such no performance degradation is not fixed and is dependent on the trace.
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Figure 5.10: System performance under unavailability (continued).

The reason for themiss ratio spike in Replication (CDN) andC2DN-NoRebal—despite
using redundancy — is the severe write and eviction rate imbalance in these systems
(subsection 5.2.3 and 5.2.4). This imbalance leads to unprotected objects: an object is
unprotected if only a single copy is cached in the cluster. For C2DN-NoRebal, unprotected
objects are objects with fewer than K + 1 chunks cached in the cluster.

Figure 5.9b shows the fraction of (un)protected objects in Replication (CDN). We
observe that more than 25% of objects can be unprotected. The fraction of unprotected
objects initially increases with cache size and then decreases. This pattern is because only
highly popular objects are cached when the cache size is small, and hence the chance of
having both replicas is higher. On the other hand, replicas are less likely to be evicted
when the cache size is very large. Figure 5.10a shows the fraction of unprotected objects
in C2DN-NoRebal and C2DN. Since K =3 and P =1, objects with fewer than 4 chunks are
unprotected. For caches smaller than 300 TB, up to 24% of the objects in C2DN-NoRebal
are unprotected. In contrast, C2DN protects nearly 100% of cached objects across all
cache sizes and effectively eliminates miss ratio spikes.

So far, we have only focused on one unavailability. When a CDN operator seeks to
tolerate more than one unavailability, C2DN’s advantage over replication increases as
the space requirements for erasure coding scale significantly better. As an empirical data
point, we consider two unavailabilities and compare two-replication and three-replication
with C2DN-n5k3 and C2DN-n6k3. C2DN-n5k3 (C2DN-n6k3) uses two (three) parity
chunks with 66% (100%) storage overhead and can tolerate two (three) unavailabilities.
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Figure 5.11: With two simultaneous unavailabilities, two replication (CDN) shows a big
spike when the unavailability happens. Three replication and C2DN-n5k3 still show a
small spike due to evicted replica/chunk. C2DN-n6k3 completely eliminates the spike.

In contrast, two-replication and three-replication tolerate one and two unavailabilities
with 100% and 200% storage overhead, respectively.

Figure 5.11 shows that compared to two-replication, C2DN-n5k3 and three-replication
significantly reduce the miss ratio spike from over 80% to less than 20%. Furthermore,
the miss ratio spike disappears entirely with C2DN-n6k3, which has the same storage
overhead as two-replication.

5.5.4 Write (Read) load balancing

Table 5.3: Write load on servers in Replication (CDN) and C2DN

.
System/server load Max Min Mean Max/min

CDN write (TB) 16.83 9.26 13.48 1.82
C2DN write (TB) 8.44 8.40 8.42 1.00

We quantify how well systems balance write load across servers. Balancing writes is
the key to mitigating miss ratio spikes and helps control SSD tail latency and endurance.

Table 5.3 shows bytes written per server in our prototype experiments. The busiest
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(b) First byte large objects
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(c) Full response small objects
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Figure 5.12: First-byte and full response latency of serving small and large objects in CDN
and C2DN.

server in Replication (CDN) writes 16.8 TB compared to 8.4 TB for the busiest server in
C2DN.With half the write rate, C2DNmay double SSD lifetime and reduce tail latency by
up to an order of magnitude [366]. The write imbalance in Replication (CDN) between
peak and minimum write rate is 1.82×. In contrast, the write imbalance in C2DN is
less than 1.005×. We also observe that C2DN reduces read imbalance from 1.69× for
Replication (CDN) to 1.34×. The read imbalance in C2DN remains as parity rebalancing
(subsection 5.3.2) focuses exclusively on write rate.

We further explore the effects of load balancing across various cache sizes using
simulations. If M is the write (read) load on the server with maximum write (read)
load andm is the minimum write (read) load across the servers, then write (read) load
imbalance = M−m

m
. Figure 5.10b shows that C2DN eliminates write imbalance for all

cache sizes. When averaged across cache sizes, C2DN reduces the write load imbalance
by 99.9% compared to No-replication, 99.8% compared to Replication (CDN), and 99.5%
compared to C2DN-NoRebal. C2DN also reduces the read load imbalance: by 93.9%
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compared to No-replication, 78.9% compared to Replication (CDN), and 70.5% compared
to C2DN-NoRebal on an average across the different cache sizes.

5.5.5 Latency

We quantify potential latency overheads by measuring the time-to-first-byte (TTFB)
and content download time (CDT) of our prototype implementations of C2DN and
Replication (CDN). In each case, we separatelymeasure the latency distribution for objects
below the 128KB coding threshold (“small” objects) and for objects above the threshold
(“large” objects). Figure 5.12a and Figure 5.12b show the cumulative distributions of
TTFB for small and large objects, respectively. For small objects, we find that the TTFB
distributions for C2DN and Replication (CDN) are similar, as expected: C2DN does not
code these objects. C2DN slightly improves the TTFB distribution (shifting to the left)
due to its lower object miss ratio. For large objects, we find about a 1 ms overhead in
TTFB at low percentiles (25th-60th percentile). The slight increase is for cache hits due to
fetching the first sub-chunk from K servers before serving the object.

We now consider CDT. In practice, this metric is more relevant for large objects
than the TTFB. Figure 5.12c and Figure 5.12d show a cumulative distribution of the
content download time for small and large objects, respectively. Again we find that small
objects behave similarly in Replication (CDN) and C2DN, with slightly better latency for
C2DN due to a lower object miss ratio. For large objects, C2DN and Replication (CDN)
have a similar CDT. The overheads of fetching chunks are hidden by our streaming
implementation based on sub-chunks (section 5.4).

We remark that C2DN improves the tail latency in all cases (barely visible in the
CDFs). For example, C2DN reduces the P90 TTFB by up to 3× compared to Replication
(CDN). We attribute this to a lower miss ratio and the mitigation of stragglers using
parity chunks to serve requests. This is as expected based on prior work on using coding
to reduce tail latency [281].

5.5.6 Overhead assessment

We quantify the resource overheads of our C2DN prototype.
CPU usage. Figure 5.13a measures CPU utilization in fractional CPU cores for userspace
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Figure 5.13: Resource usage. C2DN uses slightly more CPU resources and slightly more
read disk IOPS than CDN, however, C2DN reduces write disk IOPS, especially at peak.

and kernel tasks, respectively. C2DN generally leads to higher CPU usage. The userspace
CPU usage is higher due to the encoding and decoding of objects, and the kernel CPU
usage is higher due to additional network and disk I/Os. Overall, CPU usage increases
by 14% on average with a similar increase in the kernel and userspace CPU usage.

The increase in the CPU overhead is small as C2DN performs the encoding and
decoding operation only on a fraction of requests. For the current coding size threshold
of 128 KB, the number of requests served with coded objects is around 50%, while the
number of bytes served using coded objects is close to 90%. Also, recall that most requests
for coded objects do not need to be decoded as the object is recreated by concatenating
data chunks in the output buffer. Decoding only happens in the case of stragglers and
partial hits. In fact, only 6% of requests require decoding in our experiments. These cases
happen primarily due to the straggler problem (individual slow servers); actual data
chunk misses (partial hits) occur for less than 0.6% of requests. A future version of C2DN
may further reduce CPU overheads by using kernel-bypass networking or increasing the
object size threshold for coding. Increasing the threshold can happen with minimal side
effects, as we show in the next section.
Disk usage. Figure 5.13b compares disk IOPS of Replication (CDN) and C2DN for reads
and writes. For reads, we observe that C2DN uses 23% more IOPS in the mean and
less at the tail. Read-IOPS increase by 2% at the P99 and decrease by 11% at the P99.9
(we calculate this percentile across time and servers). For writes, C2DN uses 24% fewer
write IOPS in the mean. The tail write IOPS decreases by 46% at the P99 and 50% at the
P99.9. The read IOPS increases because C2DN fetches at leastK = 3 chunks to serve an
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object if coded. However, due to 1) most of the requests being for small uncoded objects,
and 2) the presence of DRAM hot object cache, the increase in reading IOPS is much
smaller than 3×. While the mean read IOPS increases, the peak read IOPS is similar
or lower in C2DN. We attribute this to better load balancing in C2DN. Write IOPS in
C2DN is significantly reduced when compared to Replication (CDN). C2DN has a lower
storage overhead than Replication (CDN) and thus writes less to disk. In addition, the
improvement in the miss ratio that C2DN provides further reduces the number of write
operations. Besides, C2DN also improves the tail write IOPS, which is due to a better
load balancing strategy of erasure coding and parity rebalance.
Intra-cluster network usage. C2DN uses network bandwidth within the cluster, about
0.9 Gbps in the mean and 2.3 Gbps at the P95. In conversations with CDN operators,
this internal bandwidth usage is feasible for production clusters, as these links generally
show little usage. For example, production CDN clusters use dedicated 10-Gbps-NICs
for communication within the cluster.

5.5.7 Sensitivity analysis

We discuss the sensitivity of C2DN to its parameters.
Coding size threshold. The size threshold for coding impacts the performance inmultiple
ways. By reducing the size threshold, C2DN encodes more objects, improving cache
space usage and load balance across cluster servers. At the same time, it leads to more
CPU and I/Os (due to coding and fetching) and increases the latency for small objects.
The size distribution in Figure 5.1a shows that small objects contribute a small fraction of
cache space usage. Thus, the potential benefit of coding diminishes as we decrease the
size threshold for coding. At the same time, C2DNwould use more cluster resources. We
observe that reducing the size threshold to below 128 KB does not significantly benefit
the object and byte miss ratio. Increasing the size threshold to over 8 MB increases the
byte miss ratio by 2.79% and the write load imbalance by 258%. We believe that 128 KB is
a good tradeoff for our production traces.
Coding parameter K. Most of this section assumed C2DN configured with K = 3.
We explore the impact of parameters K and P on miss ratio and write load balancing.
We find that increasing K and keeping P constant reduces miss ratios for C2DN but
increases miss ratios for C2DN-NoRebal. When adding chunks, the probability of getting
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partial hits increases for C2DN-NoRebal due to unbalanced eviction rates between servers.
Because C2DN uses parity rebalance to achieve similar eviction rates between servers, the
miss ratio decreases with increasing K due to lower storage overhead. While the impact
of coding parameters has different impacts on miss ratios for C2DN-NoRebal and C2DN,
the impact on load balancing is similar, as K increases, because an object is broken into
more (and smaller) chunks, both the read and write load imbalance in C2DN-NoRebal
and C2DN reduce.
Different workloads. Throughout this section, we have used the video trace. We
repeated our evaluation for the week-long web trace (section 5.2). Compared to the
video trace, the web trace has a significantly smaller working set. The video trace has a
compulsory byte miss ratio of 0.1 and a compulsory object miss ratio of 0.21. In the web
trace, the compulsory miss ratio is 0.06 for both byte and object miss ratios. In addition,
compared to the video trace, the web trace has a more diverse object size range, as shown
in Figure 5.1a. Less than 10% of large objects (possibly large software) contribute to more
than 90% of the cache space usage. Therefore, the fraction of requests that require coding
is significantly smaller. In prototype experiments with the web trace, only 3% of all
requests are served coded. However, the 3% of requests account for 80% of served traffic.
As a comparison, in the video trace, the prototype serves about 50% of requests from
coded objects (with only 6% requiring decoding). Consequently, coding overheads on the
web trace are negligible. In terms of the miss ratio, we observe a 10% reduction in object
miss ratio and a 6% reduction in byte miss ratio. The write imbalance for Replication
(CDN) is 1.72×, which is reduced to 1.03× in C2DN. The read imbalance for Replication
(CDN) is 4.8×, which is reduced to 2.5× in C2DN.
Different eviction algorithms. Throughout this section, we have used FIFO as the
eviction algorithm for the cache. FIFO provides stable performance on SSDs and extends
the lifetime of an SSD by minimizing device write amplification [41, 113, 320]. Many
open source caches such as Apache Trafficserver [14] and Varnish [328] use FIFO. To
understand the impact of the eviction algorithm, we evaluate the Least-recently-used
algorithm (LRU) using simulation. We observe a slight reduction in both object and byte
miss ratios for all systems. All other results are qualitatively and quantitatively the same.
Variants of replication. Besides two-replication for all objects, CDNs have explored
systems that replicate based on popularity. Specifically, only popular objects are repli-
cated on two servers to reduce space overheads. As might be expected from our findings
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that write imbalance matters, popularity-based replication does not provide good fault
tolerance. In simulation experiments, we observe object miss ratio spikes by 82%. Inter-
estingly, we also observe that popularity-based replication leads to an even worse load
imbalance than Replication (CDN), which explains the high miss ratio spike.

5.6 Discussion

DNS vs anycast-based CDN request routing. Different CDNs use different global load-
balancing architectures. Akamai is well known for its DNS architecture [300]. Limelight,
Wikipedia [347], and Cloudflare rely on anycast. While these designs have different
performance implications, both rely on algorithms like consistent hashing. In DNS-based
systems, consistent hashing is applied by the cluster-local load balancer to return the IP
of the server responsible for the shard. Anycast-based systems typically route requests to
any server in a cluster, and the server uses consistent hashing to identify another server
that likely stores the object. Server unavailability, storage overheads of redundancy, and
write imbalance are important problems in all CDN designs. While the cluster-local load
balancer in our prototype relies on DNS, the principle design components of C2DN can
be equally applied in anycast systems. We also expect that C2DN’s benefits will transfer
with similar quantitative improvements.
Larger clusters and multiple unavailabilities. In clusters of large size, multiple concur-
rent unavailabilities are not uncommon. As evaluated in section 5.5, we find that C2DN
is more effective in this setting as erasure coding is more efficient at tolerating multiple
unavailabilities than replication. For large clusters, server unavailabilities become more
common. We thus recommend either using a coding scheme with more parity chunks or
handling the cluster as multiple smaller clusters.

5.7 Related work

While there is extensive work on caching, coding, load balancing, and flash caching, our
work is uniquely positioned at the intersection of these areas. We discuss work by area.
Erasure coding in storage systems. Prior work has characterized the cost advantage
offered by coding over replication in achieving data durability in distributed storage sys-
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tems [342, 391]. Erasure codes are deployed in RAID [270], network-attached-storage [8],
peer-to-peer storage systems [186, 197, 286, 359], in-memory key-value store [79, 380, 382],
and distributed storage systems [249, 277, 279, 343]. Coding for CDNs differs due to the
unique interplay of coding and caching and the two-sided transparency requirement
(section 5.3). Additionally, CDNs employ coding for different reasons (performance)
than storage systems (durability), which magnifies overhead concerns.
Caching for coded file systems. Several recent works have explored augmenting erasure-
coded storage systems with a cache to reduce latency [6, 141, 210, 281]. Aggarwal et al.
[6] proposed augmenting erasure-coded disk-based storage systems with an in-memory
cache at the proxy or the client-side that cache encoded chunks. Halalai et al.[141] propose
augmenting geo-distributed erasure-coded storage systems by caching a fraction of the
coded chunks in different geo-locations to alleviate the latency impact of fetching chunks
from remote geo-locations. EC-Cache [281] employs erasure coding in the in-memory
layer of a tiered distributed file system such as Alluxio (formerly [195]). Although
EC-Cache is technically a cache, there is no interaction between coding and caching in
EC-Cache since it operates in scenarios where the entire working set fits in memory, i.e.,
no evictions are considered. In contrast, C2DN focuses on CDN clusters with working
sets in the hundreds of TB and starkly different tradeoffs, workload characteristics, and
challenges as compared to file systems. In the area of cooperative caching [13, 149, 298],
nodes synchronize caching decisions via explicit communication. In contrast, C2DN
proves that explicit communication is not required to synchronize the eviction of the K
chunks, which significantly decreases overheads.
Chunking and caching. Prior work has explored the challenge of serving large files over
HTTP, e.g., CoDeeN [339]. Similar to C2DN, CoDeeN breaks a large file into smaller
chunks. A chunk cache miss does not require transferring the whole large file from the
origin. In contrast to CodeeN, C2DN addresses unavailability tolerance, which is not
provided by chunking alone.
Load balancing. Load balancing and sharding are well-studied topics [4, 5, 58, 59, 112,
126, 139]. To reduce the load imbalance, John et al. study the power of two choices that
reduces the imbalance [58]. In addition, to serve skewed workloads, Fan et al. [117]
study the effect of using a small and fast popularity-based cache to reduce load imbalance
between different caches in a large backend pool. Yu-ju et al. [150] designed SPORE to
use a self-adapting, popularity-based replication to mitigate load imbalance. Rashmi et
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al. [281]used erasure coding to reduce read load imbalance for large object in-memory
cache. In summary, prior work on load balancing focuses on read load balancing, with
little attention paid to write load balancing.

Load imbalance in consistent hashing can be solved with additional lookups via
probing [245]. Unfortunately, these lookups are costly in CDNs (particularly for DNS-
based systems). Additionally, this approach cannot be applied for erasure-coded caches
due to the constraint that parity chunks should not be colocated with data chunks. In
contrast to using load balancing to achieve a similar SSD replacement time, Mahesh et
al. [30] used parity placement to achieve differential SSD ages so that SSDs of a disk array
fail at different times.
Flash cache endurance. Flash caching is an active and challenging research area. A line
of work [190, 225, 262, 299, 304, 305, 320] shows how eviction policies can be efficiently
implemented on flash. Flashield [113] proposes to extend SSD lifetime via smart admis-
sion policies. All these systems focus on a single SSD. Our work focuses on wear-leveling
across servers in a cluster, which significantly extends the lifetime of a cluster.

5.8 Chapter Summary

Content Delivery Networks (CDNs) carry more than 70% of Internet traffic and continue
to grow [88]. Large CDNs achieve this by operating thousands of clusters deployed
worldwide, allowing users to download content with low network latency.

In this chapter, we present C2DN, a CDN design that achieves both high availability
and high resource efficiency. To achieve high resource efficiency, we apply erasure coding
to large cached objects. This requires overcoming multiple CDN-specific challenges, such
as the eviction of object chunks due to write rate imbalances. In fact, we show that a naive
application of erasure coding fails to achieve the goal. The core of our design is a new
technique that enables CDNs to balance eviction rates and write loads across servers in
each cluster. We exploit the fact that erasure coding enables more flexibility in assigning
chunks to multiple servers. Our key insight here is that the chunk assignment can be
reduced to a known mathematical optimization problem called Max Flow Problem.

The core contributions of this chapter are a novel chunk placement scheme for
consistent-hashing-based load balancing in CDN clusters and a low-overhead imple-
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mentation of erasure coding for CDNs that can serve the different traffic requirements of
production systems. Specifically, by solving an instance of the Max Flow problem, we
assign objects with near-optimal balance in eviction and write rates for CDN servers and
their SSDs. As a consequence, C2DN can reduce storage overheads and bandwidth costs.
Finally, equal write rates across servers essentially function as a cluster-wide distributed
wear-leveling for the servers’ SSDs, significantly extending lifetimes.

This chapter makes the following contributions.
• We show that server unavailability is common in CDN clusters by analyzing a

month-long trace from over 2000 load balancers of a large CDN. We show that the
state-of-the-art approach of replicating objects within a cluster does not eliminate
miss ratio spikes after server unavailability events.

• We design C2DN with a hybrid redundancy scheme using replication and erasure
coding, alongwith a novel approach for parity placement. C2DN reduces the storage
overhead of providing fault tolerance and hence lowers the miss ratio. Moreover,
by leveraging the parity assignment, C2DN balances the write loads and eviction
rates across cache servers.

• We implement C2DN on top of the Apache Traffic Server (ATS) [14] and evalu-
ate it using production traces. We show that C2DN provides an 11% miss ratio
reduction compared to the state-of-the-art, and C2DN eliminates the miss ratio
spikes caused by server unavailabilities. Further, C2DN decreases the write load
imbalance between servers by 99%.
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Part III

Efficient and Scalable Cache Eviction
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Chapter 6

Group-level Learned Cache

The eviction algorithm is themost important component of a cache. A good cache eviction
algorithm allows the cache to store more useful objects in the cache and achieve a lower
miss ratio. However, determining which objects should be kept in the cache is non-trivial.
Many previous works have looked into using machine learning to learn the data access
patterns and compare the usefulness of objects. However, existing solutions often incur
huge overheads because they have to (1) store a huge number of features together with
each object and (2) run a machine learning inference on many sampled objects at each
eviction.

This chapter introduces a new way to perform learning in caching: group-level learn-
ing, which learns at a coarser granularity so that the overheads can be amortized. Mean-
while, each object group receives more requests and, thus, more information compared
to each object, which eases the learning.

6.1 Background and motivation

6.1.1 Learning in caching

To make cache eviction algorithms adaptive across workloads, cache size, and over time,
recent works have explored the idea of using machine learning in caching [38, 42, 113,
291, 312, 329, 369]. These approaches can be broadly classified into three classes, which
come with their pros and cons, as discussed below and summarized in Table 6.1.
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Table 6.1: Comparison of different learned caches (numbers describe the example sys-
tems).

Learning
approach

Example
system

Learning
granularity

No.
Features

Overhead
(Bytes/obj)

Potential
efficiency

Throughput
relative to FIFO

Object-level
learning

LRB object 44 189 high 0.001-0.01

Learning from
simple experts

Cacheus expert 2 32 low 0.2-0.25

Learning from
distribution

LHD workload 2 24 medium 0.2-0.25

Group-level
learning

GL-Cache object
group

7 <1 high 0.3-0.8

Object-level learning

Object-level learning performs learning on each object. Multiple works have studied
the prediction of object reuse distance [42, 46, 120, 208, 306, 312, 356, 364] and popular-
ity [71, 119, 251, 390]. By predicting reuse distance, a learned cache can mimic Belady’s
algorithm [39], which evicts the object requested the furthest in the future using an
oracle. However, predicting reuse distance is challenging [312] because an object’s reuse
distance is not only inherent to the object but is also affected by the access patterns of the
workload. For example, the reuse distance will increase if a request burst or scan happens
between the two requests to the same object. Moreover, cache workloads often follow Zipf
distributions [25, 41, 66, 370]. Thus, most objects only get a limited number of requests.
This leads to limited object-level information for learning. Meanwhile, it is these less popular
objects that often affect cache efficiency [369]. As a result, existing works introduce ap-
proximations and proxies for learning reuse distance. For example, LRB [312] introduces
Belady Boundary to reduce the range of reuse distance. While learning reuse distance is
challenging, with careful feature engineering, large enough data, and a complex model,
object-level learning may have the potential to achieve the highest hit ratio among all
learned caches. However, object-level learning incurs prohibitively high storage and
computation overheads.
Storage overhead. Both training and inference require extra storage. While the storage
overhead of training data is often negligible with optimizations such as sampling and
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offloading to cheaper storage, inference data pose a significantly higher storage overhead.
To make predictions on the object level, the cache needs to track features for each object.
For example, LRB [312] stores 44 features (189 bytes) per object. Moreover, this large
per-object metadata overhead is prohibitively high because it needs to reside in DRAM
for frequent updates. Using fewer features is possible, but it leads to worse performance
(section 6.3).
Computation overhead. Both training and inference add computation overhead. While
training data collection and frequent re-trainings consume CPU cycles, the inference is
the major source of computation overhead. The prediction in object-level learning uses
dynamic features (e.g., object age), and the prediction results cannot be reused over
time. Therefore, object-level learning needs to sample objects and perform inference at
each write (eviction). For example, LRB samples 32 objects and copies their features to
a matrix for inference for each eviction. In our measurement, each eviction (including
feature copy, inference, and ranking) takes 200 µs on one CPU core, indicating that the
cache can evict at most 5,000 objects on a single core per second. As a comparison, a
production server achieves over 100,000 requests per second [259].

Learning-from-simple-experts

Several works use reinforcement learning to choose between multiple simple experts
(eviction algorithms). For example, LeCaR [329] uses two experts (LRU and LFU). At
each eviction, LeCaR chooses one expert tomake an eviction decision based on the experts’
weights. Similar designs can be found in ACME [18], FRD [269], and Cacheus[291],
which use different experts and weight adjustment methods.

By using more than one algorithm for eviction, learning-from-simple-experts can
adapt to changing access patterns. The overhead and efficiency of learning-from-simple-
experts depend on the experts. Existing systems use simple experts and thus incur lower
overhead than object-level learning. However, existing systems suffer from two problems.
First, a delay exists between a bad eviction and an update on the expert’s weight. The
cache only discovers a bad prior eviction when the evicted object is requested again. This
challenge, commonly known as “delayed rewards” in reinforcement learning [19, 142,
175, 319], limits the efficiency of caches that use learning-from-simple-experts. Second,
the cache efficiency is bounded by the experts selected; an efficient policy requires a
good understanding of the workload. Learning-from-simple-experts cannot leverage
features that the experts do not consider. If a feature is important to the workload and
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not considered by any of the experts, then learning-from-simple-experts will not provide
a high hit ratio. Some works used more experts [136] to capture more features. However,
using more experts incurs higher overheads because it needs more computation and
space to evaluate expert performance and update experts’ weights.

Learning-from-distribution

The third type of learned cache models the request probability distribution and makes
decisions based on the distribution. For example, LHD [38] uses the request probability
distribution to calculate hit density (hits-per-space-consumed) as a metric for eviction.
Specifically, LHD learns the request probability as a function of ages and thenmodulates it
with size to arrive at hit density. LHD is simple yet effective and does not require expensive
inference computation to compare objects. However, LHD’s hit density is calculated
based only on two features: age and size, and it is non-trivial to track probability with
more features. Besides, LHD cannot change relative feature importance (how features
are composed). Furthermore, because hit density does not change monotonically over
time, LHD must sample objects to rank at each eviction, limiting its throughput due to
slow random memory access.
Takeaways. We summarize the potential efficiency and overhead of the three types of
learned caches in Table 6.1. We observe that object-level learning has a high potential to
achieve high efficiency, but it incurs huge storage and computation overheads. Learning-
from-distribution only considers a limited number of features and has lower overhead
with lower potential for high efficiency. Although having a lower learning overhead,
learning-from-distribution requires random sampling during each eviction, which limits
its throughput. Learning-from-simple-experts highly depends on the experts used. Exist-
ing systems such as LeCaR and Cacheus achieve a higher hit ratio than a single expert
but still leave a large hit ratio gap compared to other learned caches (subsection 6.3.3).

6.2 GL-Cache: Group-level learned cache

To enable a better trade-off between learning granularity and learning overhead, we
propose learning at the level of object groups (which we term “group-level learning”).
The key idea behind group-level learning is to learn the usefulness of groups of objects
(called “utility”). Based on this idea, we designed Group-level Learned Cache (GL-
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Figure 6.1: Overview of GL-Cache. Objects are clustered into groups for learning: feature
tracking, model training, and inference are performed on the group level.

Cache), which learns the object-group utility and evicts the least useful object groups.
We first give a high-level overview of GL-Cache’s design and then go into the details of
each component.

6.2.1 Overview of GL-Cache

Figure 6.1 shows an overview of GL-Cache. In GL-Cache, objects are clustered into fixed-
size groups when writing to cache (subsection 6.2.3). The training module in GL-Cache
collects training data online and periodically trains a model to learn the utility of object
groups (subsection 6.2.5). The inference module predicts object-group utility and ranks
object groups for eviction. Group-level learning requires group-level eviction: when
the cache is full, object groups are evicted using a merge-based eviction which merges
multiple groups into one, evicts most objects, and retains a small portion of popular
objects (subsection 6.2.6).

6.2.2 Group-level learning

group-level learning has several advantages over existing learned caches:
Grouping amortizes overheads. Learning in caching incurs both computation and
storage overheads. In group-level learning, these overheads are amortized over multiple
objects in the group. In terms of storage, instead of adding huge per-object metadata, the
metadata overhead is only added for each group. As a result, each object only incurs a tiny
overhead on average (less than one byte in our implementation). The cost of inference
computation is also amortized over objects. Compared to object-level learning, which
performs one inference per eviction, each inference in group-level learning is used to
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Figure 6.2: Objects grouped using write time have more similar (smaller coefficient of
variation) mean reuse time than objects grouped randomly. As group size increases,
write-time-based grouping becomes closer to random grouping.

evict a group of objects.
Grouping accumulatesmore signal. Many cacheworkloads follow aZipf distribution [53,
370], and most of the objects receive very few requests. Because an object group has
many objects, it often receives more requests than an individual object. More requests
lead to more information on the group level compared to the object level, which makes it
easier to learn and predict.

While group-level learning is promising, several challenges need to be addressed to
leverage the power of learning:

• How to cluster objects into groups (subsection 6.2.3)?
• How to compare the usefulness of object groups (subsection 6.2.4)?
• How to learn the utility of object groups (subsection 6.2.5)?
• How to perform evictions at group level (subsection 6.2.6)?

While the ideas of grouping [372] and learning [312] have been studied independently
in the context of caching, the combination of the two ideas in group-level learning leads
to the unique challenges of understanding, defining, and learning group utility. We discuss
these challenges and how GL-Cache overcomes them in this section.
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Figure 6.3: Different object groups written at different times exhibit a large variation in
mean reuse time.

6.2.3 Object groups

Using group-level learning, both learning and eviction are performed at the granularity
of an object group, which usually contains tens to thousands of objects. Object grouping
happens when an object enters the cache, and an object should not switch groups for
two reasons. First, changing groups invalidates the learning pipeline. When an object
is added to or removed from a group, the accumulated group information becomes
stale and cannot be used for learning. Second, in implementation, changing groups
often requires copying data on the storage device. Therefore, the grouping of an object
is decided when entering the cache using simple static object features. Depending on
workload types, such features include time, tenant id, content type, object size, etc. In
this work, we focus on grouping based on write time, which is available in all systems
and hence more generalizable.

Similar to observations made in prior works [291, 372], we observe that objects written
at a similar time exhibit similar behaviors. Using traces from the evaluation, we measure
the mean reuse time variation of objects in (1) write-time-based groups and (2) random
groups. Figure 6.2 plots the mean coefficient of variation (standard deviation over mean)
of 100,000 groups for the two grouping methods at different group sizes. Compared to
random groups, write-time-based groups aggregate objects with closer mean reuse time.
Besides reuse time, we have similar observations on the frequency and the group utility
defined below (not shown due to the space limit).

While objects within each write-time-based group have similar reuse, object groups
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created at different times exhibit dramatically different mean reuse times. Using a group
size of 100 objects on the same trace, Figure 6.3 shows that some groups exhibit more than
10× higher mean reuse time than others. These high-reuse-time groups are potentially
good candidates for eviction. The two observations illustrate the feasibility of group-level
learning using write-time-based grouping: objects inside groups are similar. Grouping
by write time also allows an efficient implementation using a log-structured cache.

6.2.4 Utility of object groups

Identifying a good eviction candidate in object-based eviction has been well-studied.
When object size is uniform, Belady [39] algorithm evicts the object that is requested the
furthest in the future. When object size is not uniform, identifying the optimal candidate
is NP-hard [44]. A common approximation is to evict the object that has the largest time
till the next request over object size (called “size-aware Belady”). However, no metric
exists that applies to object groups, and it is not trivial to adapt object-level metrics to
the group level. In this section, we define an object-group utility function to measure
object-group usefulness. A group with a lower utility is less useful and hence should be
preferred for eviction. Because identifying the optimal object for eviction (when objects
do not have the same size) can be reduced to identifying the optimal group for eviction,
and the former is NP-hard [44], finding the optimal group for eviction is also NP-hard.
Therefore, we define an empirical group utility that satisfies several properties.

Desired properties

(1) Because large objects occupy more space, the utility should consider object sizes.
Groups composed of larger objects should have lower utilities.
(2) Similar to Belady, the utility should consider the time till the next access of objects
in the group. A group of objects that are requested further in the future should have a
lower utility. Importantly, the utility definition should properly handle objects with no
future requests.
(3) When the group size is one object, group-level learning becomes object-level learning.
In this case, ranking using the defined utility should produce the same result as Belady.
(4) The utility should be easy and accurate to track online. Calculating the ground truth
(used for training) requires future information, but the cache cannot wait indefinitely to
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Figure 6.4: The read flow in GL-Cache.

calculate it. This property requires that within a limited time horizon, the online tracked
utility should be close to the utility calculated with complete future information. In other
words, objects requested further in the future, including the ones with no future requests,
should contribute less to the utility.

Utility definition

We observe that the cost of evicting one object is always only one miss. After a cache
miss, the evicted object will be inserted into the cache. Meanwhile, the benefit of evicting
one object o is proportional to its size so and time till next access To(t) from current time t.
Therefore, similar to the cost-benefit analysis in LFS [292] and RAMCloud [264, 293], we
define the utility of an object as its cost (one miss) over benefit (freed space multiplied
by time till its next request).

Uo(t) =
1

To(t)× so
(6.1)

Because GL-Cache evicts object groups, we further define the group utility as the sum of
object utilities.

Ugroup(t) =
∑

o∈group

1

To(t)× so
(6.2)

The utility of a group measures the penalty of evicting the group or the benefit of
keeping the group. Groups with lower utilities are thus better candidates for eviction. We
remark that this is one definition of group utility that both satisfies the desired properties
and performs well in our experience (section 6.3). With this definition, we compare
object-group utility and evict the group with the lowest utility. Since the true utility relies
on the time till the next request and can only be calculated with future information, we
design GL-Cache, which learns a model that can predict a group’s utility based on its
features.
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6.2.5 Learning object-group utility in GL-Cache

GL-Cache learns a functionF that calculates a group’s utility given its features: F(Xgroup) =

Ugroup where Xgroup is the features of an object group.
Object-group features. Features play a crucial role in learning [103, 147]. We consider
two types of features in GL-Cache. The first type is static features, which includes request
rate, write rate, miss ratio in the time window when the group was created (the write
time of the first object), and mean object size. The second type is dynamic features, which
includes age (in seconds), the number of requests, and the number of requested objects.
Dynamic features increase over time. Static features do not change after creating a group
and capture the workload and cache states (e.g., daily scan, request spike) during group
creation time. We focus on these states because access pattern changes are often reflected
in these metrics. For example, object groups created from scans are good candidates for
evictions, and they often co-appear with increased request rates, write rates, and miss
ratios. Compared to many of the existing works [312, 364], which mostly use dynamic
features, GL-Cache uses far fewer dynamic features because tracking dynamic features is
computationally expensive. We observe that adding more dynamic features only brings
marginal hit ratio improvement, which does not justify the added computation overhead.

In total, GL-Cache uses seven features occupying 20 bytes for each group or 28 bytes
if mean object size and creation time are not already tracked.
Learning model and objective function. GL-Cache uses gradient boosting machines
(GBM) because tree models do not require feature normalization, and they have been
shown to work well in previous works [42, 312] as well as many production environ-
ments [294, 338]. We formulate the learning task as a regression problem that minimizes
the mean square loss (L2) of object-group utilities. We also explored the ranking objective
function without observing a significant difference.
Training. GL-Cache trains a model using online collected training data, which consists
of features and utilities of object groups. GL-Cache generates new training data by
sampling cached object groups, and it copies the features of the sampled groups into a
pre-allocated memory region. The utilities of the sampled groups are initialized to zero
at the beginning and calculated over time. When an object o from a sampled group is
requested, GL-Cache can calculate the To(t) (time till next request since sampling) and
object utility using Eq. 6.1 and add the object utility into the group utility. GL-Cache then
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marks the object to ensure that it only contributes to the group utility once. It is possible
that some objects may not be requested before training, and the online calculated group
utility may be lower than the true utility. However, as mentioned in subsection 6.2.4,
these objects contribute marginally to the group utility due to their large reuse time.

In addition, a sampled group may be evicted before being used for training. Such
evictions halt the tracking of group utility. Inspired by prior works [227, 291], GL-Cache
keeps ghost entries for objects which have not been factored into group utility. A future
request on the ghost entry will update the group utility, bringing it closer to the true
utility.

Figure 6.4 shows the read flow in GL-Cache. A successful hash table lookup may find
two types of entries: a pointer to the object or a ghost entry. If it is a regular object, GL-
Cache first updates the group features. Further, if the object is on a sampled group and
has not contributed to the group utility, GL-Cache also updates the group utility before
returning the data to the user. If it is a ghost entry, GL-Cache updates the corresponding
utility and removes the ghost entry from the hash table, then returns a cache miss.

Given the access patterns change over time, the model needs to be retrained regularly.
GL-Cache retrains the model every day (i.e., using wall clock time as a reference) because
many real-world events that trigger requests repeat on a daily basis, such as cron jobs. In
contrast, the other option of retraining every certain number of requests may cause the
system to enter metastable failure [55, 153] when an access pattern change increases the
system load. Besides, GL-Cache chooses to retrain from scratch each time because tree
models do not benefit from continuous training. Moreover, the inference overhead grows
with training iterations because a new tree is added to the model in each iteration.
Inference. When GL-Cache needs to perform evictions, it predicts the utilities of all
object groups and ranks them. GL-Cache uses the inference/ranking result for multiple
evictions, which reduces the frequency of inference and thus the computation overhead.
We denote eviction fraction Feviction as the fraction of ranked groups to evict using one
inference. That is, GL-Cache performs an inference every Feviction ×Ngroup groups where
Ngroup is the total number of groups. In our evaluation, Nranked−group is the total number
of groups, but we remark that one can also sample some groups for inference if the total
number of groups is too large. Also, the groups are evicted over time on demand rather
than all at once, and neither training nor inference need to be on the critical path of
request serving. In summary, GL-Cache only needs to perform 1

Feviction
inferences to write
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Figure 6.5: Object group utility prediction and merge-based group eviction in GL-Cache.

a full cache of objects.

6.2.6 Evictions of object groups

Learning at the object-group level introduces an interesting challenge to cache eviction:
unlike most caches which evict one object each time, GL-Cache evicts a group of objects.
Although evicting object groups leads to lower overhead due to batching and amortization,
it may evict objects that are still popular. GL-Cache optimizes the group eviction by using
a merge-based eviction, similar to Segcache [372]. Upon each eviction, GL-Cache picks
the least useful object group and merges it with the Nmerge − 1 object groups that are closest
with respect to write time. The merge process retains Sgroup objects from the merged groups
and evicts all other objects. The retained objects form a new group, and the originalNmerge

groups are evicted. This is the only time that an object changes its group membership in
GL-Cache. Unlike group selection, which uses ranking, object selection uses a simple
metric based on object age and size: 1

size·age where age is the time since the last access. We
choose to use this metric because recency and size are the two most common metrics
used in other eviction algorithms (section 6.1). GL-Cache performs heavyweight online
learning at the group level to identify the best groups to evict. It leverages lightweight
object-level metrics to retain a few highly useful objects. This two-level eviction approach
enables GL-Cache to achieve a superior tradeoff between learning overhead and cache
efficiency.

In summary, each eviction evicts Nmerge groups of objects and retains one group of
objects, as illustrated in Figure 6.5. The features (except mean object size) of the merge-
produced group take the mean values of the Nmerge merged groups. Note that only the
first object group is picked based on the group utility; the next Nmerge − 1 object groups
are chosen as ones with write time close to the first group. This ensures that objects
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Table 6.2: Parameters used in the design.

Parameter Meaning

Sgroup Size of an object group (in number of objects or bytes)
Nmerge Number of object groups to merge each eviction
Feviction Each inference evicts Feviction fraction of ranked groups

in the new group after a merge-based eviction are still close in write time and similar.
In contrast, objects from the Nmerge least useful groups may not be similar. Clustering
similar objects into groups is critical for effective group-level learning. In our experience,
merging the Nmerge least useful groups shows lower efficiency with up to 20% decrease
in hit ratio.

Compared to evicting one object each time, group-based eviction evicts more objects
than needed at each eviction, which may reduce the efficiency upper bound group-level
learning can achieve. However, we show in subsection 6.3.2 that evicting object groups
can achieve hit ratios very close to Belady, indicating that group eviction will not be the
bottleneck for cache efficiency.

6.2.7 A spectrum of GL-Cache

GL-Cache has three parameters in its design (Table 6.2): the size of each object group
Sgroup, the number of object groups tomerge at each evictionNmerge, and howmanygroups
are evicted using one inference which is determined by Feviction. Varying these parameters
leads to a spectrum of algorithms for optimizing hit ratio and throughput. A larger Sgroup

reduces learning granularity; a larger Nmerge retains fewer objects; and a larger Feviction

reduces the ranking frequency. Each of these changes reduces the computation overhead
with a potential hit ratio drop. Therefore, GL-Cache allows the users to navigate the
trade-off between cache efficiency and throughput. For scenarios that are more sensitive
to overheads, such as local cache deployments, GL-Cache can provide higher throughput
with a slightly lower hit ratio, and vice versa. In subsection 6.3.6, we show that these
parameters generalize well across workloads.
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Table 6.3: Three sets of 128 traces were used in the evaluation.

Dataset # traces # requests (millions) Source

CloudPhysics [333] 103 2115 VM disk I/O
MSR [252] 14 410 Disk I/O
Wikimedia [312] 1 2804 CDN requests

6.3 Evaluation

In this section, we evaluate GL-Cache to answer the following questions.
• Will group-based eviction limit the efficiency upper bound when compared to object-

based eviction (subsection 6.3.2)?
• Can GL-Cache improve hit ratio and efficiency over other learned caches (subsec-

tion 6.3.3)?
• Can GL-Cache meet production-level throughput requirements and how much over-

head does GL-Cache add (subsection 6.3.4)?
• How does GL-Cache improve efficiency without compromising throughput (subsec-

tion 6.3.5)?

6.3.1 Experiment methodology

Prototype system. GL-Cache groups objects using write time and can be efficiently im-
plemented using a log-structured cache. Hence, we implement GL-Cache on top of Seg-
cache [372], an open-source production in-memory cache that uses segment-structured
(log-structured) storage. We map an object group in GL-Cache to a “segment” in Seg-
cache and replace FIFO with the learned model. We use the XGBoost [358] library to
implement our GBM models and use the default values for all parameters. GL-Cache
has three parameters (Table 6.2). In our evaluation, GL-Cache uses 1 MB group size,
merges five groups at each eviction, and evicts 5% of ranked groups after each infer-
ence. We compare GL-Cache with Segcache [372], a segment-structured cache used by
Twitter; Cachelib [41], Meta’s production cache library, which uses slab storage and a
throughput-optimized LRU for eviction; TinyLFU [109], implemented within Cache-
lib by Meta engineers. We have also implemented LHD [38] on top of Pelikan’s slab
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storage [97].
Micro-implementation. In addition to the prototype system, we build a storage-oblivious
implementation of GL-Cache in C on top of libCacheSim [368] to compare different evic-
tion algorithms. Our implementation mimics Memcached’s design but has neither a net-
working stack nor object value storage, and we call it micro-implementation. Compared
to the prototype, the micro-implementation only performs eviction-related metadata op-
erations and does not consider storage layout or system overheads such as fragmentation.
We use two sets of parameters (Table 6.2) to demonstrate the spectrum of GL-Cache.
The first demonstrates a better efficiency and uses Sgroup = 60 objects, Nmerge = 2 groups,
Feviction = 0.02. We call this system GL-Cache-E. The second demonstrates a higher
throughput using Sgroup = 200 objects, Nmerge = 5 groups and Feviction = 0.1, and we call
it GL-Cache-T. We remark that the parameters are not tuned per workload. Thus GL-
Cache may provide better performance (hit ratio or throughput) with workload-specific
fine-tuning.

Besides GL-Cache, we implement Cacheus [291] in C following the authors’ open-
source Python implementation. For LHD [38] and LRB [312], our micro-implementation
used code open-sourced by the authors. We use default parameters except for changing
the LRB optimization target from byte miss ratio to object miss ratio (implemented by
LRB’s author). Besides state-of-the-art designs, we have also implemented FIFO, LRU,
and size-aware Belady [44].

GL-Cache trains the first model after running one day of workload (using timestamps
from the traces). Before a model is trained, it uses FIFO to perform evictions, GL-Cache
then trains the model once a day from scratch, which has little overhead as discussed in
subsection 6.2.5.
Workloads. We use a wide variety of traces representing a diverse set of workloads from
three dataset sources (Table 6.3). The CloudPhysics [333] dataset includes 103 block I/O
traces with different CPU/DRAM configurations and access patterns. Each trace records
the I/O requests from a VM for around one week. Because 86% of the VMs had DRAM
sizes between 1 GB and 16 GB with a median of 3880 MB, we performed evaluations at
1 GB, 4GB, and 16 GB cache sizes. We present only 1 GB and 16 GB for space reasons.
We have also evaluated GL-Cache using 14 block I/O traces (we ignore the traces which
contain fewer than 5 million requests) from Microsoft Research Cambridge (MSR) [252].
Because the working set sizes of MSR traces exhibit a very wide range, we set cache sizes
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for each trace at 0.01%, 0.1%, and 1% of each trace’s footprint (size of all objects). Besides
block I/O request traces, we have also evaluated GL-Cache with the Wikimedia CDN
trace used in previous works such as LRB [312] and LFO [42]. All the workload traces
have at least three fields: the timestamp, id, and size of the requests.

We ran micro-implementation experiments on the Cloudlab [107] Utah site using
m510 nodes with Intel Xeon D-1548 CPU, 64GB ECCDDR4DRAM. Andwe ran prototype
experiments on the Cloudlab Clemson site using c6420 nodes with Intel Xeon Gold 6142
CPU and 384 GB of DRAM.
Metrics. We replayed traces by reading and writing to a local cache in a closed loop and
measured hit ratio and throughput. Because all traces are week-long traces, we started
measurements after finishing the first three days’ requests to make sure the cache is
properly warmed up under all the configurations considered. We present evaluations
using a one-day warmup time in subsection 6.3.6, which shows that the observations
remain the same as with a three-day warmup.

We report aggregated results from 103 CloudPhysics traces and 14 MSR traces using
box plots for the micro-implementation results. Due to the diversity of the workloads,
both hit ratio and throughput have wide ranges. Hence, for ease of visual presentation,
we report results compared to FIFO using the following two metrics: hit ratio increase over
FIFO defined as HRalg−HRFIFO

HRFIFO
where HR stands for hit ratio; throughput relative to FIFO

defined as Ralg

RFIFO
where R is the throughput. The box plots have the following format:

the orange line inside the box is the median, the box shows 25 and 75 percentiles, and
the whiskers show 10 and 90 percentiles. Because several other factors in the prototype
systems (e.g., storage layout) affect efficiency and throughput, for ease of understanding,
we focus our evaluation on the micro-implementation results. We present raw hit ratio
and throughput numbers using the prototype systems for one representative trace in
subsection 6.3.3 and subsection 6.3.4.

6.3.2 Group-based eviction

Group-level learning evicts most objects in the selected groups. The bulk eviction may
limit the efficiency of group-level learning. To understand the limitation of group eviction,
we compare oracle-assisted group evictionwith oracle-assisted object eviction (size-aware
Belady [44]). The oracle-assisted group eviction uses the same design as GL-Cache except
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Figure 6.6: With oracle assistance, group eviction can achieve a similar hit ratio improve-
ment as object eviction.
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Figure 6.7: Prototype evaluation of a CloudPhysics trace.

using future request time to calculate group utility and retain objects. Size-aware Belady
evicts the object that has the largest (Tnext − Tnow)× so where Tnext is the time of the next
request, and so is the object size.

We compare these two approaches using CloudPhysics traces. Figure 6.6 shows that
group-based eviction can achieve a hit ratio similar to object-based eviction at both small
and large cache sizes. The similar hit ratios suggest that group eviction will not become
the bottleneck for achieving high efficiency. While the algorithms in this comparison use
oracle information, in the following sections, we show how GL-Cache can use learning to
replace the oracle and achieve high cache efficiency.
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Figure 6.8: Hit ratio increase over FIFO. GL-Cache runs under two modes, GL-Cache-E is
the efficient mode, GL-Cache-T is the throughput mode.

6.3.3 Cache efficiency

We compare the efficiency of GL-Cache with state-of-the-art designs in both the prototype
and the micro-implementation. Figure 6.7a shows hit ratios for the prototype running one
CloudPhysics trace at different sizes. Compared to other systems, GL-Cache consistently
achieves the best efficiency, providing a significant hit ratio increase (up to 40%) over the
best of all baselines. Compared to Segcache, which uses the same storage layout with
FIFO-based group eviction, group-level learning increases the hit ratio by 60% at 8 GB.
Cachelib uses a throughput-optimized LRU and has the lowest hit ratio among all the
baselines. LHD and TinyLFU use two object features to make eviction decisions: LHD
models hit density based on age and size; TinyLFU uses frequency to filter out unpopular
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objects and uses recency to evict objects. Leveraging more than one feature to choose
eviction candidates allows LHD and TinyLFU to achieve higher hit ratios. However, not
using more features puts an upper bound on their potential. In comparison, GL-Cache
evicts groups based on seven features covering recency, frequency, cache, and workload
states at group creation time (miss ratio, write rate, request rate). Considering multiple
features in conjunction with learned importance allows GL-Cache to make better eviction
decisions and achieves a higher hit ratio. Evaluations on the other traces show similar
results.

To compare with more algorithms and on more traces, we show hit ratio results from
the micro-implementation on CloudPhysics and MSR traces in Figure 6.8. Because of the
wide range of hit ratios across traces, we show the relative hit ratio increase compared to
FIFO instead of the raw hit ratios. We observe that both LRU and Cacheus improve FIFO’s
hit ratio, but only by a single-digit percentage for the median workload on both datasets.
Meanwhile, LRB, LHD, and GL-Cache increase FIFO’s hit ratio more prominently.

Among LRB, LHD, and GL-Cache-E, LRB has the smallest observed hit ratio im-
provement. We conjecture that learning at the object level receives limited information
on each object since cache workloads often follow Zipf distributions, and thus is more
challenging to learn compared to learning at the group level. Compared to LHD, we
observe that GL-Cache-E shows similar efficiency on CloudPhysics traces. However, on
MSR traces, GL-Cache-E is more efficient than LHD with a 60% hit ratio increase for
a median workload at the small size. This observation suggests that leveraging more
features to make eviction decisions can be very useful for some workloads at certain cache
configurations.

Compared to GL-Cache-E, GL-Cache-T trades hit ratio for higher throughput (subsec-
tion 6.3.4). However, we observe that GL-Cache-T’s efficiency is still on-par with LRB.
Overall, we observe that GL-Cache improves the hit ratio by up to 37.8% compared to
LHD and 87% compared to LRB (not shown in the figure). While LRB uses more fea-
tures/information than other eviction algorithms, it does not always provide the highest
hit ratio. More information leads to higher efficiency only when the information is useful
and well-utilized. We conjecture that perhaps not all the features in LRB are useful, and
the model may not be making the best use of the features.

When comparing prototype and micro-implementation results, we observe that the
hit ratio difference also depends on the storage design. GL-Cache uses log-structured

133



Table 6.4: Comparing LRB and GL-Cache-E on the Wikimedia trace used in LRB pa-
per [312]. We use miss ratio because it is more commonly used in web caches.

Algorithm Miss ratio Throughput (MQPS)
Size (GB) 20 200 2000 20 200 2000
FIFO 0.39 0.16 0.025 7.62 7.91 9.68
LRB 0.24 0.048 0.016 0.01 0.04 0.07
GL-Cache-T 0.24 0.065 0.017 4.97 6.53 4.89
GL-Cache-E 0.20 0.041 0.013 2.55 3.91 4.20

storage, and the difference between prototype and micro-implementation is smaller
(<10%); LHD uses slab storage, and sometimes the prototype can have a significantly
lower hit ratio (>20%) compared to the micro-implementation. This large difference
comes from fragmentation and slab calcification problems [151, 372]. However, we did
not find a way to efficiently implement LHD on top of log-structured storage because
it requires the storage to have the capability of evicting (removing) any cached object,
while log-structured storage can only efficiently support sequential write and removal.

Besides block I/O cache traces, we have also evaluated GL-Cache using theWikimedia
CDN trace from LRB evaluations. Table 6.4 shows that learning helps LRB to achieve
miss ratios 35% to 70% lower than FIFO. Compared to LRB, GL-Cache-E further reduces
the miss ratio by up to 16%. In summary, the evaluations on three datasets totaled 118
traces illustrating the high efficiency and generality of group-level learning.

6.3.4 Throughput and overheads

Not only does GL-Cache achieve a high hit ratio, but GL-Cache also achieves high through-
put. Figure 6.7b shows the throughput of GL-Cache in the prototype. We observe that
compared to production systems (Cachelib, Segcache), GL-Cache achieves a similar
throughput, indicating that GL-Cache meets the throughput requirement of a produc-
tion system. Moreover, compared with eviction algorithms such as LHD and TinyLFU,
GL-Cache is 2-3× faster.

Besides the prototype evaluation, Figure 6.9 compares the throughput of GL-Cache
with several state-of-the-art algorithms evaluated on all CloudPhysics and MSR traces.
While LRU achieves throughput close to FIFO, all advanced eviction algorithms exhibit a
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Figure 6.9: Throughput relative to FIFO.

significant slowdown compared to FIFO. However, among all learned caches, GL-Cache
is significantly faster than others. Compared to LRB, GL-Cache-E has a 228× higher
throughput, and GL-Cache-T has a 586× higher throughput on average at the small
cache size. Compared to the fastest of all learned caches, GL-Cache-E is on average 64%
faster, and GL-Cache-T is on average 3× faster at the small cache size. Similarly, on the
Wikimedia trace (Table 6.4), GL-Cache-E is tens to hundreds of times faster than LRB
and achieves almost half of FIFO’s throughput.

GL-Cache achieves high throughput because it needs very few metadata updates on
cache hits and misses. On a cache hit, GL-Cache only needs to update the last access time
and group utility if it is on a sampled group (subsection 6.2.5). On a cache miss, GL-
Cache does not need to update any metadata most of the time; occasionally, it performs
a group eviction and evicts 100s to 1000s of objects. In contrast, other systems must
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Figure 6.10: Feature importance across traces.
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Figure 6.11: Feature breakdown across example traces.

update multiple metadata entries on both cache hits and cache misses. For example,
TinyLFU needs to maintain the frequency counting sketch and the LRU chain; LHD
needs to sample 32 objects, thus having 32 random DRAM accesses for each eviction.
Segcache is simpler than GL-Cache in per-request operations. However, the lower hit
ratio of Segcache leads to its reduced throughput because of more evictions.

The second reason for GL-Cache’s high throughput is that the overheads of training
and inference are amortized. Because GL-Cache uses fewer features to learn simpler
high-level patterns instead of per-object access patterns, it uses a simple model and is
only retrained once a day. In our measurement, each training consumes 10 - 50 ms of one
CPU core (not amortized by the number of training samples). In addition, each inference
consumes 0.4 - 3 ms of one CPU core and is triggered every time 5% of ranked groups
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Figure 6.12: Feature utility case study.

are evicted. Because each inference evicts many groups and each eviction evicts many
objects, the inference computation is amortized. The amortization is the key reason for
GL-Cache’s high throughput compared to other learned caches. Moreover, although
training and inference are not on the critical path of request serving, our throughput
evaluation measures run time including both training and inference.

While throughput evaluations show the low computation overhead of GL-Cache,
machine learning in caching also introduces storage overhead. First, GL-Cache uses
DRAM to store 8000 training samples. The training data storage is pre-allocated and
small (256 KB) compared to the cache size (GBs). For deployments with very limited
memory, the training data can also be stored on the storage device. Second, each object
group in GL-Cache uses 28 bytes of features — each object thus adds less than one byte.
Besides the group-level features, GL-Cache tracks each object’s last access time using 4
bytes. In total, GL-Cache uses 5 bytes of object metadata for eviction. As a comparison,
LRU requires two pointers with 16 bytes of metadata per object, and LRB uses 192 bytes
of features per object.

6.3.5 Understanding GL-Cache’s efficiency

So far we have demonstrated that GL-Cache has a higher miss ratio and throughput than
existing systems. While amortized overhead explains the high throughput, this section
explores how learning helps GL-Cache achieve high efficiency.

Most eviction algorithms use one or two object features to decide which object to
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evict. For example, LRU evicts the object with the largest access age (recency), LeCaR
and Hyperbolic [48] use recency and frequency to make eviction decisions, LHD relies
on access age and object size to choose eviction candidates. In contrast, object-level
learned cache such as LRB uses 44 features covering different measurements of recency
and frequency, as well as object size, to compare objects. Similarly, GL-Cache uses
seven features to compare object groups. To better understand GL-Cache’s efficiency, we
examine how GL-Cache uses these features.

We obtained the feature importance score directly from XGBoost. The importance
score is calculated using the number of times a feature is used to split the data across all
trees and may not represent the ground truth. Figure 6.10 shows the normalized feature
importance scores of different features across traces obtained from the models trained
for each trace. We observe that across traces, frequency and age have relatively high
scores with medians of around 0.3. This aligns well with existing literature on eviction
algorithms, which mostly use recency and frequency to make eviction decisions. The next
important feature is the mean object size, which is essential for algorithms that consider
variable-size objects. Besides these features, the workload and cache states (request rate,
miss ratio, write rate) at the group creation time have similar scores with a median of
around 0.05. When summed up, they have a similar importance as the object size.

While we observe that the most commonly used features (recency, frequency, size)
are critical, we also observe that no feature is dominant across all traces. Figure 6.11
shows the feature importance score for 12 randomly selected traces. For some traces,
frequency is more important, with an importance score of 0.6. For others, recency or size
is more important. GL-Cache weighing features differently across traces suggests that
GL-Cache can effectively adapt the feature importance to each workload. For comparison,
the algorithms leveraging more than one feature often combine the features in a way
that cannot adapt to workloads. For example, Hyperbolic scores an object using frequency

age
,

leaving the relative importance of frequency and age unchanged across workloads.
Figure 6.12 uses one trace to illustrate the importance of GL-Cache adaptively using

multiple features. It shows how gradually including more features improves the hit ratio.
We observe that the combination of frequency, recency, and size at small sizes (1 GB
and 4 GB) leads to a large hit ratio increase (e.g., 80% at 1 GB). Meanwhile, frequency
alone is insufficient and can only increase the hit ratio by 10% at 1 GB. Using all features
increases the hit ratio modestly on this trace compared to only using frequency, age,
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Figure 6.13: Impact of group size.

and size. Moreover, Figure 6.12 shows that feature importance could change with cache
sizes. Object size is more important at 1 GB cache size, while frequency becomes more
important than other features at 16 GB. This could be because small objects contribute
more hits per consumed byte than large objects, so caching small objects is better when
the cache size is small. Meanwhile, when most small objects are cached at a larger cache
size, choosing between large objects depends on request frequency. This observation
suggests that in GL-Cache, the choice and use of features adapt not only to the workloads
but also to different configurations such as cache sizes.

In summary, learning at the group level can leverage multiple features to adapt to
both workload and cache sizes, enabling higher cache efficiency.

6.3.6 Sensitivity analysis

We have discussed the three parameters used by GL-Cache in subsection 6.2.7, and we
have shown the two modes of GL-Cache: one achieves higher efficiency (GL-Cache-E),
and the other achieves higher throughput (GL-Cache-T). This section shows in detail
how these parameters affect hit ratio and throughput. In addition, we show that the
warmup time does not significantly change the hit ratios.
Group size. A smaller group indicates a finer granularity for learning and evictions.
Varying group size affects both throughput and efficiency. First, reducing group size
increases storage and computation overhead due to finer learning granularity. As a
result, throughput increases with group size, as shown in Figure 6.13. Second, the hit
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Figure 6.14: Impact of eviction fraction Feviction.

ratio increases when the group size increases from 1 (object-level learning) to 20, then
decreases as the group size further increases from 60 to 1600. A smaller group indicates
that each eviction evicts fewer objects, enabling a higher hit ratio. However, when the
group size is too small, each group gets too few requests for group feature learning to
be effective, thus decreasing the hit ratio. The non-monotonic hit ratio change (hit ratio
first increases then decreases) also explains why object-level learning achieves a lower
hit ratio than GL-Cache.
Eviction Fraction. GL-Cache evicts Feviction fraction of ranked groups between each
inference to reduce computation overhead and better tolerate inaccurate predictions. The
more groups (larger Feviction) evicted per inference, the fewer inferences, thus higher
throughput. However, a larger Feviction means more (useful) groups are evicted after
each inference, resulting in a lower hit ratio. Figure 6.14 shows that increasing Feviction

reduces hit ratio and increases throughput.
Number of groups to merge. The last tunable parameter in GL-Cache is the number of
groups to merge at each eviction. Because GL-Cache evicts the majority of the objects on
the Nmerge groups and retains one group worth of objects, merging more groups means
that GL-Cache retains fewer objects from each group. Retaining fewer objects reduces
the computation needed at each eviction, but it also reduces efficiency. Figure 6.15 shows
that increasing the number of merged groups increases throughput and reduces the hit
ratio.

Besides the above three parameters, the learning component also introduces several
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Figure 6.15: Impact of the number of groups to merge at each eviction.

parameters, such as training data size and retraining frequency. GL-Cache retrains the
model once a day because many events (such as cron jobs and diurnal patterns) happen
on a daily basis. Wall clock time sometimes is more important than virtual time (reference
count) and has also been recognized by researchers from Google when they use neural
networks to predict the lifetime of a memory allocation [217]. The retraining interval
affects both efficiency and performance. Note that more frequent retraining does not
always lead to a higher hit ratio because shorter retraining intervals reduce the accuracy
of the group utilities used for training as they are accumulated over time. We observe that
the best retraining interval depends on the workload — some workloads show higher hit
ratios with half-day retraining, and some others benefit from two-day retraining. While
fine-tuning retraining intervals can improve the hit ratio by up to 10%, one-day retraining
achieves a good performance across workloads as shown. Besides training frequency,
another parameter in training is the number of training samples. Because GL-Cache
learns high-level access patterns, which we conjecture is easier to learn than per-object
behavior, GL-Cache does not require a large amount of training data. While we cannot
prove that 8000 training samples are sufficient for all workloads under all scenarios, we
find that it is sufficient for the diverse traces in our evaluation.

The sensitivity analysis shows that GL-Cache is relatively robust to parameter changes.
The parameters of GL-Cache-E and GL-Cache-T were chosen based on evaluations of
10 random traces. Our results show that these two sets of parameters work well across
the diverse traces in the evaluation. However, like in any other system, a general set of
parameters provides reasonable performance but does not guarantee the best performance.
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Figure 6.16: A spectrum of GL-Caches allow users to tradeoff between hit ratio and
throughput.

Per-workload fine-tuning can potentially provide larger benefits. GL-Cache provides
the opportunity for users to explore the trade-off between efficiency and throughput.
Figure 6.16 shows the throughput and hit ratio of GL-Cache compared to baselines (we
do not plot multiple close-by points of GL-Cache for clarity). In both prototype and
micro-implementation evaluations, GL-Cache achieves higher throughput than systems
with a similar hit ratio or a higher hit ratio than systems with a similar throughput.
Deployments with less computation power can use GL-Cache in a high-throughput mode
with a slightly lower hit ratio. And deployments that are less sensitive to computation
may use GL-Cache to achieve a higher hit ratio.

Our evaluation so far used a warmup time of three days to make sure the cache is
warmed up for any trace under any size. We have also evaluated with a one-day warmup
time and presented the results in Figure 6.17. We observe that although the absolute
values exhibit some differences, the overall trends on hit ratio increase are similar when
compared to using a three-day warmup time (Figure 6.8). In addition to the hit ratio
results, throughput results using a one-day warmup are also similar to that of a three-day
warmup. Similarly, evaluations on the MSR and Wikimedia traces also exhibit little
difference between using one-day and three-day warmup times.
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Figure 6.17: Using one-day warmup, evaluated on CloudPhysics traces.

6.4 Related work

The study of cache designs has a long history with the majority of works focusing on
improving cache efficiency. With increasing complexity in cache management, many
recent works have also improved the throughput and scalability.
Better eviction algorithms. Most works improving cache efficiency focus on cache
eviction algorithms, especially how to define and use recency, frequency, and size to
make better eviction decisions. For example, ARC [227] uses two LRU lists to balance
between recency and frequency; CAR [33], LIRS [165, 191, 393], Clock-pro [166], 2Q [172],
SLRU [154], LRU-K [263] use a different metric to measure recency; variants of LFU [23,
176], LRFU [105], tinyLFU [108, 109, 110, 111] and hyperbolic [48] use a combination of
frequency and recency to make evictions; various greedy-dual algorithms [82, 193, 392]
use two metrics (e.g., frequency and size) to choose eviction candidates. In addition,
several learned caches have been designed in the past few years, as discussed in detail in
subsection 6.1.1. Compared to existing learned caches, GL-Cache employs group-level
learning, which amortizes overheads and accumulates stronger learning signals to make
better eviction decisions. Moreover, existing learning approaches to caching cannot
be directly applied to group-level learning due to challenges such as comparing object
groups’ usefulness.
Improve cache throughput. Most algorithms that improve efficiency trade throughput
for higher efficiency. With increasing complexity in cache systems, throughput and
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scalability become critical. MICA [203] uses a holistic design with a lossy hash table and
partitioned log-structured DRAM storage to achieve high throughput and scalability;
Segcache [372] uses an approximate-TTL-indexed segment-chain with batched eviction
to achieve high throughput and scalability; MemC3 [118] uses a cuckoo hash table and
Clock eviction to improve scalability; Cachelib [41] reduces LRU promotion frequency to
improve scalability. These systems often use weaker eviction algorithms such as FIFO,
Clock, or weak LRU. Compared to these works, GL-Cache improves efficiency without
sacrificing throughput. Specifically, GL-Cache and Segcache share some design aspects
such as object grouping. However, Segcache primarily innovates on the design of storage
layout for key-value caches, and it uses FIFO for eviction. Instead, GL-Cache focuses on
using learning for evictions, which is the key to GL-Cache’s efficiency gains.
Use of machine learning to improve system efficiency. Machine learning has seen in-
creasing use to improve system efficiency. For example, Google uses machine learning to
improve the efficiency of data center operations [127]. Microsoft uses machine learning to
improve database query optimizer [171]. Prior works have designed learned components
to replace various parts of a system, such as index [100, 101, 185, 254] and query opti-
mizer [221, 222] in databases, straggler mitigation in inference systems [183, 184], and
FTL for SSD [316]. Moreover, many other works look into automatic database tuning us-
ing machine learning [194, 327]. In caching, in addition to the three categories of learned
cache evictions that we have discussed in section 6.1, recent works have also looked into
using sub-sampling to reduce learned cache’s time horizon [334], using machine learning
to predict memory access [146], designing cache admission [138, 181], designing cache
prefetching [201, 314, 369] predicting hot records in LSM-Tree storage [377], using deep
recurrent neural networkmodels for content caching [251], usingMarkov cachemodel for
size-aware cache admission policy [43]. Compared to these works, GL-Cache is the first
system to perform learning on a group of entities and navigates efficiency-throughput
trade-offs using coarse-grained learning granularity.

6.5 Chapter Summary

This chapter introduces three types of learned caches: “object-level learning”, “learning-
from-distribution”, and “learning-from-simple-experts”. One of the biggest challenges of
deploying a learned cache is the overhead.
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This chapter then presents Group-level Learned Cache (GL-Cache), which leverages
group-level learning to overcome these challenges. GL-Cache clusters similar objects
into groups using write time and evicts the least useful groups using a merge-based
eviction. GL-Cache introduces a group utility function to rank groups, which enables
group-based eviction to achieve efficiency similar to object-based eviction. GL-Cache uses
a hybrid approach for eviction: it performs the heavyweight learning at the group level
(thus amortizing the overheads) to identify the best groups to evict. And it leverages
lightweight object-level metrics to retain a few highly useful objects from evicted groups.
This two-level eviction enables GL-Cache to achieve a superior trade-off between learning
overhead and cache efficiency.

We implemented GL-Cache in an open-source production cache and also developed a
storage-oblivious implementation for running microbenchmarks. We compare GL-Cache
with state-of-the-art designs on 118 production block I/O and CDN cache traces. Com-
pared to object-level learning (LRB), group-level learning allows GL-Cache to achieve a
228× higher throughput on average. Moreover, GL-Cache achieves a slight improvement
in hit ratio compared to LRB, with a 7% increase on average and 25% at P90 (10% of
the traces) compared to LRB. Compared to the learned cache with the highest hit ratio,
GL-Cache increases the hit ratio by 3% on average and 13% at the P90 tail, with a 64%
higher throughput. Varying group sizes allow GL-Cache to change learning granularity,
leading to a spectrum of algorithms. Along with two other system parameters, this
spectrum enables users to navigate the trade-off between efficiency and throughput.

This chapter makes the following contributions.
• It classifies existing learned caches into three categories based on learning granular-
ity and propose a new approach for learning in caching — group-level learning.
group-level learning amortizes overheads over objects in the group to achieve high
throughput. By leveragingmultiple group features and accumulatingmore training
signals, group-level learning also achieves a high hit ratio.

• It presents the design and implementation of GL-Cache, which overcomes the
challenges by using group-level learning to achieve high cache efficiency with low-
overhead learning. For the first time, a group-level utility function is defined and
used for cache eviction.

• GL-Cache was evaluated using a diverse set of 118 production traces to illustrate
and understand the high efficiency and high throughput of group-level learning.
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Chapter 7

Cache Eviction with Lazy Promotion and
Quick Demotion

Compared to existing learned caches, GL-Cache achieves a low overhead with a low
miss ratio. However, learning still poses a large overhead compared to simple heuristics.
Moreover, we find that while block cache workloads can achieve high efficiency using
GL-Cache, many web cache workloads do not benefit from group-level learning. When
comparing GL-Cache with Segcache, which uses the simple FIFO-merge eviction algo-
rithm, I found that Segcache often achieves a lower miss ratio on the Twitter key-value
cache workloads. I dug deeper to understand the reason, which led to the discovery of
the two new techniques that will be introduced in this chapter.

7.1 Introduction

Caching is a well-known and widely deployed technique to speedup data accesses [45, 87,
91, 114, 121, 166, 167, 170, 211, 281, 308, 383], reduce repeated computation [125, 290, 370]
and data transfer [42, 43, 64, 202, 312, 317, 320, 373]. The core of a cache is the eviction
algorithm, which chooses the objects stored in the limited cache space. Two metrics
describe the performance of an eviction algorithm: efficiency measured by the miss ratio
and throughput measured by the number of requests served per second.

The study of cache eviction algorithms has a long history [39, 90, 92, 310] with a
majority of the work centered around LRU. LRUmaintains a doubly-linked list, promoting
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objects to the head of the list upon cache hits and evicting the object at the tail of the
list when needed. Belady and others found that memory access patterns often exhibit
temporal locality — “the most recently used pages were most likely to be reused in the
immediate future”. Thus, LRU using recency to promote objects was found to be better
than FIFO [39, 93].

Most eviction algorithms designed to achieve high efficiency start from LRU. For
example, many algorithms such as ARC [227], SLRU [177, 250], 2Q [172, 177, 206],
MQ [397] andmulti-generational LRU [244], usemultiple LRUqueues to separate hot and
cold objects. Some algorithms, e.g., LIRS [165] and LIRS2 [393], maintain an LRU queue
but use different metrics to promote objects. While other algorithms, e.g., LRFU [105],
EE-LRU [309], LeCaR [329] and CACHEUS [291], augment LRU’s recency with different
metrics. In addition, many recent works, e.g., Talus [36], improve LRU’s ability to handle
scan and loop requests.

Besides efficiency, there have been fruitful studies on enhancing LRU’s throughput
performance and thread scalability. Each cache hit in LRU promotes an object to the
head of the queue, which requires updating at least six pointers guarded by locks. These
overheads are not acceptable in many deployments that need high performance [32, 115,
276, 354]. Thus, performance-centric systems often use FIFO-based algorithms to reduce
LRU’s overheads. For example, FIFO-Reinsertion and CLOCK variants [90, 258, 310]
have been developed as LRU approximations. It is often perceived that these algorithms
trade miss ratio for better throughput and scalability [33, 118, 166, 172, 258].

Via a large-scale simulation study on 6587 traces with 858 billion requests from 12
sources collected in the past two decades, we make a case for breaking away from LRU
completely and instead designing eviction algorithms based on FIFO.

FIFO provides many benefits compared to LRU, including less metadata, less computa-
tion, better scalability [115, 372] and flash friendliness [70, 226, 340, 378]. However, FIFO
alone often leaves a large efficiency headroom. To reduce FIFO’smiss ratio while retaining
its benefits, we introduce two techniques — Lazy Promotion and Quick Demotion.

Lazy Promotion (LP) performs promotion only at the eviction time. An example
technique is “reinsertion”, which puts the eviction candidate back into the cache if
requested since the last insertion. Common wisdom suggests that FIFO with Lazy
Promotion is a form of weak LRU and less efficient than LRU [33, 118, 166, 172, 258].
However, our large-scale simulation study shows that such “weak LRUs” are more efficient than
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LRU (section 7.3).
Quick Demotion (QD) removes most objects quickly after they are inserted. We show

that the opportunity cost of waiting for new objects to traverse through the queue(s)
is too high. We demonstrate the importance of QD by modifying five state-of-the-art
eviction algorithms (including non-LRU based) — adding a small probationary FIFO
queue (10% of the cache size) and a metadata-only ghost queue to track FIFO eviction
history. Evaluations show that QD-enhanced algorithms reduce the miss ratio from
the corresponding state-of-the-art algorithm by 2.8% on average on the 6587 traces. In
comparison, ARC can only reduce LRU’s miss ratio by 6.4%, and QD-enhanced ARC
reduces LRU’s miss ratio by 7.9%.

We further demonstrate a simple eviction algorithm QD-LP-FIFO by applying the
aforementioned Lazy Promotion and Quick Demotion on top of FIFO. QD-LP-FIFO uses
a probationary FIFO queue (QD) in front of a main cache using the CLOCK eviction
algorithm (FIFO + LP). QD-LP-FIFO is simple yet efficient. Our evaluations on the 6587
traces show that QD-LP-FIFO achieves lower miss ratios than state-of-the-art eviction
algorithms. For example, QD-LP-FIFO reduces LIRS’s miss ratios by 1.8% and LeCaR’s
miss ratios by 4.9% on average. We believe that further innovations in better Lazy Promo-
tion and Quick Demotion techniques will lead to a class of simple and efficient eviction
algorithms. Moreover, we envision that future eviction algorithms can be designed like
building LEGO by adding different LP and QD techniques to a base algorithm such as
FIFO.

This chapter makes two main contributions:

• Contrary to the common belief that LRU approximations are less efficient, we show
that FIFO with Lazy Promotion (e.g., FIFO-Reinsertion/CLOCK) achieves a lower
miss ratio than LRU.

• We demonstrate that Quick Demotion is critical for efficient caching. Equipped
with QD, a simple FIFO-based algorithm can have a lower miss ratio than complex
state-of-the-art designs.
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Figure 7.1: The cache abstraction.

7.2 Why FIFO and What it needs

The benefits of FIFO over LRU have been explored in many previous works [115, 118, 370,
372]. For example, FIFO has less metadata (if any) and requires no metadata update on
each cache hit, and thus is faster and more scalable than LRU. In contrast, LRU requires
updating six pointers on each cache hit, which is not friendly for modern computer
architecture due to random memory accesses and extensive locking. Moreover, FIFO is
always the first choice when implementing a flash cache because it does not incur write
amplification [41, 70, 226, 378]. Although FIFO has throughput and scalability benefits,
it is well-known that FIFO provides lower efficiency (higher miss ratio) than LRU.

To understand the various factors that affect the miss ratio, we introduce a cache
abstraction. A cache can be viewed as a logically total-ordered queue with four opera-
tions: insertion, removal, promotion, and demotion. Objects in the cache can be
compared and ordered based on some metric (e.g., time since the last request), and the
eviction algorithm evicts the least valuable object based on the metric. Insertion and
removal are user-controlled operations, where removal can either be directly invoked
by the user or indirectly via the use of time-to-live (TTL). Promotion and demotion
are cache internal operations used to maintain the logical ordering between objects.

We observe that most eviction algorithms use promotion to update the ordering
between objects. For example, all the LRU-based algorithms promote objects to the head
of the queue on cache hits, which we call eager promotion. Meanwhile, demotion
is performed implicitly: when an object is promoted, other objects are passively demoted.
We call this process passive demotion, a slow process as objects need to traverse
through the cache queue before being evicted. However, we will show that instead of
eager promotion and passive demotion, eviction algorithms should use Lazy Promotion
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Table 7.1: Datasets used in this work (traces with less than 1 million requests or 10,000
objects are excluded).

trace
collections

approx
time

#
traces

cache
type

# request
(million)

# object
(million)

MSR [252] 2007 13 block 410 74
FIU [182] 2008 9 block 514 20
Cloudphysics[333] 2015 106 block 2,114 492
CDN 1 2018 219 object 3,728 298
Tencent Photo [394] 2018 2 object 5,650 1,038
Wiki CDN [349] 2019 3 object 2,863 56
Tencent CBS [387, 389] 2020 4030 block 33,690 551
Alibaba [2, 198, 341] 2020 652 block 19,676 1702
Twitter [370] 2020 54 KV 195,441 10,650
Social Network 1 2020 219 KV 549,784 42,898
CDN 2 2021 1273 object 37,460 2,652
Social Network 2 2021 7 mixed 6,807 1,436

(section 7.3) and Quick Demotion (section 7.4).

7.3 Lazy Promotion

To avoid popular objects from being evicted in FIFO while not incurring much perfor-
mance overhead, we propose adding Lazy Promotion on top of FIFO (called LP-FIFO),
which promotes objects only when they are about to be evicted. Lazy Promotion aims to retain
popular objects with minimal effort. An example of LP-FIFO is FIFO-Reinsertion: an
object is inserted back at eviction time if it has been requested while in the cache.

LP-FIFO has several benefits over always promotion (promoting on every access)
used in LRU-based algorithms. First, LP-FIFO inherits FIFO’s throughput and scalability
benefits because few metadata operations are needed when an object is requested. For
example, FIFO-Reinsertion only needs to update a Boolean field upon the first request to
a cached object without locking. Second, performing promotion at eviction time allows
the cache to make better decisions by accumulating more information about the objects,
e.g., how many times an object has been requested.
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Figure 7.2: The fraction of the 6587 traces on which an algorithm has a lower miss ratio.
FIFO-Reinsertion and 2-bit CLOCK are more efficient than LRU, with a lower miss ratio
on most traces.

Figure 7.3: Lazy Promotion often leads to Quick Demotion. Using FIFO-Reinsertion as
an example, the newly-inserted object G will be pushed down by both objects requested
before (e.g., B, D) and after G. In contrast, only objects requested after G can push G

down in LRU.

To understand LP-FIFO’s efficiency, we performed a large-scale simulation study on
6587 production traces from 12 data sources (Table 7.1), which include open-source
and proprietary datasets collected between 2007 and 2021. The 12 datasets contain 858
billion (11,311 TB) requests and 61.8 billion (2,114 TB) objects, and cover different types of
caches, including block, KV, and object caches. We further divide the traces into block and
web (including Memcached and CDN). We choose small/large cache size as 0.1%/10%
of the number of unique objects in the trace.

We compare the miss ratios of LRU with two LP-FIFO algorithms: FIFO-Reinsertion 1

and 2-bit CLOCK. 2-bit CLOCK tracks object frequency up to three, and an object’s
frequency decreases by one each time the CLOCK hand scans through it. Objects with

1Note that FIFO-Reinsertion, 1-bit CLOCK, and Second Chance are different implementations of the
same eviction algorithm.
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zero frequency are evicted.
Common wisdom suggests that these two LP-FIFO examples are LRU approximations

and will exhibit higher miss ratios than LRU [33, 118, 166, 172, 258]. We suspect this
impression came from the 1960s when LRU and CLOCK were designed for virtual
memory page replacement. We conjecture that CLOCK may not work as well as LRU for
such workloads because LRU can better adapt to sudden working set changes. According
to Denning, memory access patterns show abrupt changes between phases [93]. However,
we do not observe such patterns in the block and web cache workloads. However, we
found that LP-FIFO often exhibits miss ratios lower than LRU. Figure 7.2 shows that
FIFO-Reinsertion is better than LRU on more than 70% of the web traces across the two
cache sizes and over 90% of the block traces on the small cache size. Similarly, over 90%
of the web traces favor 2-bit CLOCK over LRU, and this observation holds across datasets.
In addition, FIFO-Reinsertion and 2-bit CLOCK reduce LRU’s miss ratio by 1% and 2.5%
on average (not shown in the figure) across all the traces.

Two reasons contribute to LP-FIFO’s high efficiency. First, Lazy Promotion often leads
to Quick Demotion (section 7.4). For example, under LRU, a newly-inserted object G is
pushed down the queue only by 1) new objects and 2) cached objects that are requested
after G. However, besides the objects requested after G, the objects requested before
G (but have not been promoted, e.g., B, D) also push G down the queue when using
FIFO-Reinsertion (Figure 7.3). Second, compared to promotion at each request, object
ordering in LP-FIFO is closer to the insertion order, which we conjecture is better suited
for many workloads that exhibit popularity decay — old objects have a lower probability
of getting a request.

While LP-FIFO surprisingly wins over LRU in miss ratio, it cannot outperform state-
of-the-art algorithms. We next discuss another building block that bridges this gap.

7.4 Quick Demotion

Efficient eviction algorithms not only need to keep popular objects in the cache but also
need to evict unpopular objects fast. In this section, we show that Quick Demotion
(QD) is critical for an efficient eviction algorithm, and it allows FIFO-based algorithms to
achieve state-of-the-art efficiency.
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Figure 7.4: Cache resource consumption by objects in different algorithms. More efficient
algorithms spend fewer resources on unpopular objects.

Because demotion happens passively in most eviction algorithms, an object typically
traverses through the cache before being evicted. Such traversal gives each object a
good chance to prove its value to be kept in the cache. However, cache workloads often
follow Zipf popularity distribution [25, 41, 51, 370] with most objects being unpopular.
This is further exacerbated by 1) the scan and loop access patterns in the block cache
workloads [38, 291, 329], and 2) the vast existence of dynamic and short-lived data, the use
of versioning in object names, and the use of short TTLs in the web cache workloads [370].
We believe the opportunity cost of new objects demonstrating their values is often too high: the
object being evicted at the tail of the queue may be more valuable than the objects recently
inserted.

Removing low-value objects faster is not a new idea and has been discussed under
various contexts, such as removing scan pages [38, 165], correlated accesses [172], and
one-hit wonders [219, 348]. These observations have inspired eviction algorithms such as
2Q [172], MQ [397], ARC [227], SLRU [154], LHD [38], and Hyperbolic [48]. However,
we find that the demotion in existing algorithms is often not fast enough.

We compute and plot how different algorithms spend cache resources on objects of
varying popularity. The resource consumption of an object is calculated using Cobj =∑

(Teviction−Tinsertion)×Sobj similar to the idea in the previouswork [38]. Throughout this
work, we assume objects to be uniform in size so that we can focus on the effect of access
patterns on efficiency. Figure 7.4 shows two representative traces, and Table 7.2 shows
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Table 7.2: The miss ratios of the algorithms in Figure 7.4.

algorithm/workload LRU ARC LHD Belady

MSR 0.5263 0.4899 0.5131 0.4438
Twitter 0.2005 0.1841 0.1756 0.1309

Figure 7.5: An example of QD: add a probationary FIFO queue to an existing cache.

the corresponding miss ratios. ARC and LHD often spend fewer resources on unpopular
objects than LRU, thus showing lower miss ratios. Between ARC and LHD, ARC spends
fewer resources on unpopular objects and has a notably lower miss ratio than LHD on
the MSR trace. We have a similar observation on the Twitter trace as well. Moreover,
among all four algorithms, Belady [39] always spends the fewest resources on unpopular
objects and has significantly lower miss ratios. In summary, efficient algorithms often
spend fewer resources on unpopular objects.

To further illustrate the importance of Quick Demotion, we mount a simple QD
technique on top of state-of-the-art eviction algorithms (Figure 7.5). The QD technique
consists of a small probationary FIFO queue storing cached data and a ghost FIFO queue
storing metadata of objects evicted from the probationary FIFO queue. The probationary
FIFO queue uses 10% of the cache space and acts as a filter for unpopular objects: objects
not requested after insertion are evicted early from the FIFO queue. The main cache runs
a state-of-the-art algorithm and uses 90% of the space. And the ghost FIFO stores as many
entries as the main cache. Upon a cache miss, the object is written into the probationary
FIFO queue unless it is in the ghost FIFO queue, in which case, it is written into the main
cache. When the probationary FIFO queue is full, if the object to evict has been accessed
since insertion, it is inserted into the main cache. Otherwise, it is evicted and recorded in
the ghost FIFO queue.

We add this FIFO-based QD technique to five state-of-the-art eviction algorithms,
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(a) Block workloads, small size (0.1% of all objects)

ARC LIRS CACHEUS LHD LeCaR QD-LP-FIFO0.0

0.1

0.2

M
iss

 R
at

io
 R

ed
uc

tio
n 

Fr
om

 F
IF

O QD Original

(b) Block workloads, large size (10% of all objects)

Figure 7.6: Evaluated on the block cache traces, QD-enhanced algorithms outperform
state-of-the-art algorithms at both small and large cache sizes. QD-LP-FIFO achieves
similar or better miss ratio reduction compared to state-of-the-art algorithms.

ARC [227], LIRS [165], CACHEUS [291], LeCaR [329] and LHD [38]. We used the
open-source LHD implementation from the authors, implemented the others following
the corresponding papers, and cross-checked with open-source implementations 2. We
evaluated the QD-enhanced and original algorithms on the 6587 traces. Because the
traces have a wide range of miss ratios, we choose to present each algorithm’s miss ratio
reduction from FIFO calculated as mrFIFO−mralgo

mrFIFO
.

Figure 7.6 and Figure 7.7 show that the QD-enhanced algorithms further reduce
the miss ratio of each state-of-the-art algorithm on almost all percentiles. For example,
QD-ARC (QD-enhanced ARC) reduces ARC’s miss ratio by up to 59.8% with a mean
reduction of 1.5% across all workloads on the two cache sizes, QD-LIRS reduces LIRS’s

2All state-of-the-art algorithms are complex, and we found two different open-source LIRS implementa-
tions used in previous works have bugs.
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Figure 7.7: Evaluated on the web cache traces, QD-enhanced algorithms outperform
state-of-the-art algorithms at both small and large cache sizes. QD-LP-FIFO achieves
similar or better miss ratio reduction compared to state-of-the-art algorithms.

miss ratio by up to 49.6% with a mean of 2.7%, and QD-LeCaR reduces LeCaR’s miss
ratio by up to 58.8% with a mean of 4.8%. Note that because of the large number and
wide coverage of traces, the best state-of-the-art algorithm ARC can only reduce the miss
ratio by 14.2% and 6.4% on average compared to FIFO and LRU.

The gap between the QD-enhanced algorithm and the original algorithm is wider 1)
when the state-of-the-art is relatively weak, 2) when the cache size is large, and 3) on the
web workloads. With a weaker state-of-the-art, the opportunity for improvement is larger,
allowing QD to provide more prominent benefits. For example, QD-LeCaR reduces
LeCaR’s miss ratios by 4.8% average, larger than the reductions on other state-of-the-art
algorithms. When the cache size is large, unpopular objects spend more time in the cache,
and Quick Demotion becomes more valuable. For example, QD-ARC and ARC have
similar miss ratios on the block workloads at the small cache size. But QD-ARC reduces
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ARC’s miss ratio by 2.2% on average at the large cache size. However, when the cache
size is too large, e.g., 80% of the number of objects in the trace (not shown), we observe
that adding QD may increase the miss ratio. At last, QD provides more benefits on the
web workloads than the block workloads. We conjecture that web workloads have more
short-lived data and exhibit stronger popularity decay, which leads to a more urgent
need for Quick Demotion.

While Quick Demotion can reduce miss ratios, it further increases the complexity
of the already complicated state-of-the-art algorithms. To reduce complexity, we add
the same QD technique on top of the 2-bit CLOCK discussed in section 7.3 and call it
QD-LP-FIFO. QD-LP-FIFO uses two FIFO queues to cache data and a ghost FIFO queue to
track evicted objects. It is not hard to see QD-LP-FIFO is simpler than all state-of-the-art
algorithms — it requires at most one metadata update on a cache hit and no locking for
any cache operation. Therefore, we believe it will be faster and more scalable than all
state-of-the-art algorithms. Besides enjoying all the benefits of simplicity, QD-LP-FIFO
also achieves lower miss ratios than state-of-the-art algorithms (Figure 7.6 and Figure 7.7).
For example, compared to LIRS and CACHEUS, QD-LP-FIFO reduces miss ratio by 1.8%
and 2.3% on average across the 6587 traces. While the goal of this work is not to propose
a new eviction algorithm, QD-LP-FIFO illustrates how we can build simple yet efficient
eviction algorithms by adding Quick Demotion and Lazy Promotion techniques to a
simple base eviction algorithm such as FIFO.

7.5 Discussions

LP and QD techniques. We have demonstrated reinsertion as an example of LP (sec-
tion 7.3) and the use of a small probationary FIFO queue as an example of QD (section 7.4).
However, these are not the only techniques. For example, reinsertion can leverage dif-
ferent metrics to decide whether the object should be reinserted. Besides reinsertion,
several other techniques are often used to reduce promotion and improve scalability, e.g.,
periodic promotion [276], batched promotion [345], promoting old objects only [41],
promoting with try-lock [148]. Although these techniques do not fall into our strict
definition of Lazy Promotion (promotion on eviction), many of them effectively retain
popular objects from being evicted. On the Quick Demotion side, besides the small proba-
tionary FIFO queue, one can leverage other techniques to define and discover unpopular
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objects such as Hyperbolic [48] and LHD [38]. Moreover, admission algorithms, e.g.,
TinyLFU [108, 109, 110], Bloom Filter [43, 219], probabilistic [41] and ML-based [113]
admission algorithms, can be viewed as a form of QD — albeit some of them are too
aggressive at demotion (rejecting objects from entering the cache).

We remark that QD bears similarity with some generational garbage collection algo-
rithms [94, 275] which separately store short-lived and long-lived data in young-gen and
old-gen heaps. Therefore, ideas from garbage collection may be borrowed to strengthen
cache eviction algorithms.

We believe that the design of QD-LP-FIFO opens a door to designing simple yet
efficient cache eviction algorithms by innovating on LP and QD techniques. And we
envision future eviction algorithms can be designed like building LEGO — adding lazy
promotion and quick demotion on top of a base eviction algorithm.
Why “X” is not better than QD-LP-FIFO. Eviction algorithms that use multiple queues
(e.g., ARC, 2Q, and 2Q variants in many production systems [41, 206, 228, 250]) share
similarities with QD-LP-FIFO. However, there are two major differences between QD-LP-
FIFO and previous works. First, QD-LP-FIFO only uses FIFO queues, and promotion to a
different queue (e.g., main cache) only happens when an object is being evicted. Second,
QD-LP-FIFO uses a tiny fixed-size FIFO queue (10% of cache size) for Quick Demotion,
while previous works use much larger (e.g., 50% of cache size) or adaptive queue sizes.
Ideally, the adaptive algorithms (e.g., ARC) should provide similar or lower miss ratios
than Quick Demotion. However, our study suggests otherwise. There are a few reasons
behind this. First, the adaptive algorithms’ methods to adjust queue size are not optimal.
For ARC, we observe that manually limiting the queue size and slowing down the queue
size adjustment often reduce miss ratios. Second, Lazy Promotion is resistant to request
bursts and better suited for workloads with popularity decay (section 7.3). We observe
that replacing the LRU queues in ARC with FIFO-Reinsertion also reduces the miss ratio.
In general, adaptive algorithms, such as ARC and CACHEUS, adapt their parameters
based on a limited number of past requests, which may not predict the future well.
Limitations. Throughout this work, to focus on how access patterns affect cache efficiency,
we ignore other factors, such as object size and TTL, which are important for web cache
workloads. While the Lazy Promotion andQuickDemotion techniqueswe have discussed
are not size-aware, designing size-aware Lazy Promotion andQuickDemotion techniques
are worth pursuing in the future.
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7.6 Chapter Summary

To the best of our knowledge, this is by far the largest eviction algorithm study— 60,000×
larger than previous work [291] in terms of request count. Contrary to the common
belief, we discover that LP-FIFO (e.g., FIFO-Reinsertion/CLOCK) is better than LRU in
terms of miss ratio (in addition to its well-known benefits on throughput and scalability).
Moreover, we demonstrate the importance of Quick Demotion for efficient caching by
adding a probationary FIFO queue to five state-of-the-art eviction algorithms. The QD-
enhanced algorithms can further improve the state-of-the-art algorithms’ efficiency. This
study illustrates the importance of lazy promotion and quick demotion for eviction
algorithms’ efficiency. And it demonstrates a new LEGO-like approach to designing
future eviction algorithms.
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Chapter 8

S3-FIFO: FIFO Queues are All You Need

The previous chapter demonstrates an efficient cache eviction algorithm that needs lazy
promotion and quick demotion. Moreover, it shows that adding a small FIFO queue
on top of state-of-the-art algorithms to filter out most new and unpopular objects can
improve their efficiency.

This chapter will examinewhy quick demotion is critical for an efficient cache eviction
algorithm. This chapterwill show thatmost of the objects in the cache are one-hit wonders.
Therefore, quickly removing them is critical for cache efficiency. Moreover, while many
complex techniques are used in state-of-the-art eviction algorithms, surprisingly, the
effective component is just evicting new objects very quickly. With this discovery, this
chapter will demonstrate a new algorithm that combines a small FIFO queue and a
large FIFO-Reinsertion queue. The small FIFO queue is used for quick demotion, while
the reinsertion in the large FIFO queue achieves lazy promotion. This new eviction
algorithm, S3-FIFO, is not only efficient but also very scalable because FIFO queues can
be implemented using lock-free queues.

8.1 Background

Software caches are ubiquitously deployed today, e.g., inside end-user devices [179, 202],
at the edge of the Internet [26, 34, 43, 57, 117, 119, 248, 261, 300, 317, 364, 365, 373], and
across system stacks in a data center [106, 115, 121, 224, 259, 267, 281, 290, 311, 355, 383,
384]. While the data stored in different types of caches have different names, e.g., block,
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page, object, and asset, we use the term “objects” for ease of discussion.

8.1.1 Metrics of a cache

The heart of a cache is the eviction algorithm, which decides the objects to store in the
limited space.
Efficiency. Amore efficient (sometimes called more “effective”) eviction algorithm retains
more useful objects in the cache and provides a lower miss ratio, which measures the
fraction of requests that must be fetched from the backend. While request miss ratio is the
most common efficiency metric, some cache deployments aiming to reduce bandwidth
usage, e.g., proxy caches, also evaluate byte miss ratio: the fraction of bytes that need to be
fetched from the origin.
Throughput. A cache’s throughput measures the number of requests it can serve per
second (QPS). Having higher throughput reduces the number of CPU cores required to
serve a workload.
Scalability. Modern CPUs have a large number of cores. For example, AMD EPYC 9654P
has 192 cores [11]. A cache’s scalability measures how its throughput increases with
the number of CPU cores. Ideally, a cache’s throughput would scale linearly with the
number of CPU cores. However, in many eviction algorithms, read operations necessitate
metadata updates under locking. Therefore, they cannot fully harness the computation
power of modern CPUs.
Flash writes. While DRAM is the most commonly used storage medium for caching,
many systems today also use flash for its higher density, lower price, and lower power
consumption. Flash lifetime becomes a critical metric when using flash for caching
because flash only supports a limited number of writes [7, 49, 225, 320]. Moreover, small
random writes on flash cause device-level write amplification, which not only reduces
the flash lifetime but also increases read and write tail latency [143, 144, 196, 367]. To
achieve a more manageable flash lifetime, most production flash cache systems, e.g.,
Apache Trafficserver [14], Memcached Extstore [230], Cachelib large object cache [41],
and Google Colossus flash cache [378], use FIFO or FIFO-reinsertion. Besides the flash
eviction algorithm, many systems also employ admission algorithms, e.g., bloom filter or
machine-learning-based algorithms, to select “good” data to write to flash [69, 113].
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Simplicity and generality. A cache eviction algorithm’s complexity and generality are
two additional factors that play a critical role in its adoption. While complexity is often
inversely correlated with throughput and scalability, a simple design can offer benefits
beyond just improved performance metrics, such as fewer bugs and reduced maintenance
overhead. Linux Kernel developers stated that “Predicting which pages will be accessed
in the near future is a tricky task. The kernel not only often gets it wrong, but it also wastes
a lot of CPU time to make the incorrect choice” [205]. Generality is crucial for similar
reasons. If the same data structure and eviction algorithm can be used for different types
of caches, it can help reduce the development and maintenance overheads. A similar
argument can also be found in previous work from Meta [41].

8.1.2 Prevalence of LRU-based cache

Cache workloads exhibit temporal locality: recently accessed data are more likely to be
re-accessed. Therefore, Least-Recently-Used (LRU) is more efficient than FIFO and is
widely used in DRAM caches [41, 50, 228, 330]. Moreover, advanced eviction algorithms
designed to improve efficiency are mostly built upon LRU. For example, ARC [227],
SLRU [177], 2Q [172], EELRU [309], LIRS [165], TinyLFU [109], LeCaR [329], and
CACHEUS [291] all use one or more LRU queues to order objects.

Albeit efficient, LRU and LRU-based algorithms have three problems. First, LRU is
often implemented using a doubly-linked list, requiring two pointers per object, which
becomes a large overhead when the object is small. As a result, Twitter and Meta have
designed specialized compact caches for workloads having small objects [41, 97, 372].

Second, LRU promotes objects to the head of the queue (called promotion) upon
each cache hit, which performs at least six random memory accesses protected by a
lock, significantly limiting the cache’s scalability [121, 268]. For example, the RocksDB
developers “confess” that the LRU caches in RocksDB are the scalability bottleneck [104].
Therefore, a new cache using CLOCK [90] eviction has been implemented to address this
problem in 2022 [289].

Third, LRU is not flash-friendly. The object eviction order in LRU is different from the
insertion order, which leads to random writes on flash, and reduces flash lifetime.
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8.2 Motivation

While the last few decades of eviction algorithm study are centered around LRU, we
believe modern eviction algorithms should be designed with FIFO queues instead of
LRU queues. FIFO can be implemented using a ring buffer without per-object pointer
metadata, and it does not promote an object upon each cache hit, thus removing the
scalability bottleneck. However, FIFO falls behind LRU and state-of-the-art eviction
algorithms in efficiency.
What does FIFO need? The primary limitation of FIFO is its inability to retain frequently
accessed objects, so the most straightforward improvement is to insert these objects back.
FIFO-Reinsertion 1 is an algorithm that keeps track of object access and reinserts accessed
objects during eviction. Compared to LRU, FIFO-Reinsertion incurs a lower overhead
on a cache hit, requiring no operation or just an atomic set for the first request to an
object. However, reinsertion alone is insufficient, and FIFO-Reinsertion still lags behind
state-of-the-art eviction algorithms on efficiency (subsection 8.4.2).

Our insight is that a cache experiences more one-hit wonders (objects having no access after
insertion) than what common full trace analyses suggested [219, 348], highlighting the importance
of swiftly removing most new objects. Specifically, we observe a median one-hit-wonder
ratio of 26% across 6594 production traces. However, for a random request sequence
containing 10% of unique objects in the trace, 72% of the objects have only one request in
the sequence.

Figure 8.1: A shorter sequence has a higher one-hit-wonder ratio.

1FIFO-Reinsertion, Second chance, and CLOCK are different implementations of the same algorithm.
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Figure 8.2: Left two: the one-hit-wonder ratio decreases with sequence length (as a fraction
of the unique objects in the full sequence) for synthetic Zipf traces. Different curves show
different skewness α. We plot both linear and log-scale X-axis for ease of reading. Right
two: production traces show similar observations. Note that the X-axis shows the fraction
of objects in the trace, much smaller than the number of possible objects in the backend.
Therefore, the production curves capture the left region of the Zipf curves.

8.2.1 More one-hit wonders than expected

The term “one-hit-wonder ratio” measures the fraction of objects that are requested only
once in a trace. It is commonly used in content delivery networks (CDNs) due to large
one-hit-wonder ratios [34, 219].

Although the one-hit-wonder ratio varies between different types of cache workloads,
we find that shorter request sequences (consisting of fewer unique objects) often have
higher one-hit-wonder ratios. In the subsequent analysis, we measure sequence length using
the number of unique objects.

Figure 8.1 illustrates this observation using a toy example. The request sequence
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comprises seventeen requests for five objects, out of which one object (E) is accessed once.
Thus, the one-hit-wonder ratio for the sequence is 20%. Considering a shorter sequence
from the 1st to the 7th request, two (C, D) of the four unique objects are requested only
once, which leads to a one-hit-wonder ratio of 50%. Similarly, the one-hit-wonder ratio
of a shorter sequence from the 1st to 4th request is 67%. More formally, we make the
following observation.
Observation. Assume that the object popularity of a request sequence follows the Zipf distribution
with the least popular object having one request, and there are M unique objects in total. Then
the one-hit-wonder ratio of the complete sequence is 1

M
. For any sub-sequence ending with a

one-hit wonder, if the sub-sequence contains C unique objects, the expected one-hit-wonder ratio
F(x = C) monotonically decreases with the sequence length x measured in the number of objects.

The intuition is that most objects are unpopular (rank higher than C + 1 in Zipf
distribution for a cache of size C) and have an expected number of requests between 0
and 1. If they show up in the sub-sequence, it is very likely that they will not get another
request within the sub-sequence.

This setting can be viewed as a variant of the coupon-collector problem where we
haveM unique coupons in total, and the probability of collecting coupon i follows the
Zipf distribution. We would like to know the number of coupons we have collected only
once when we have C unique coupons.

We use Monte Carlo simulations to find how F(x) changes with the sequence length
x (measured in the number of objects). We first generate Zipf request traces of different
skewness α under independent reference model [74], then take random sub-sequences
and measure the one-hit-wonder ratios. We repeat 100 times and report the mean. The
results are plotted in Figure 8.2a and Figure 8.2b. We show both linear and log-scale X axes
for clarity. The one-hit-wonder ratio decreases with increasing sequence length. Between
different curves, more skewed workloads exhibit lower one-hit-wonder ratios at the same
sequence length because unpopular objects have a lower probability of appearing in more
skewed workloads.

We have also performed the same measurement on production traces. Figure 8.2c and
Figure 8.2d show a block trace (MSR hm_0) and aweb trace from Twitter (cluster 52). The
curves look different from the Zipf curves at first glance. This is because the production
traces are not long enough to capture all objects in the backend systems, and it is not
possible to know the total number of objects that can be requested. As a result, the X-axis
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Figure 8.3: The one-hit-wonder ratio across 6594 traces (Table 8.1). The whiskers show
P10 and P90, and the triangle shows the mean.

shows the fraction of objects in the trace. Therefore, the production curves only capture
the left region of the synthetic curves, and we observe that they match the synthetic
curves. For example, when comparing Figure 8.2a and Figure 8.2c, we see curves in both
figures have steep drops at the beginning before slowing down. Moreover, the Twitter
trace is known to be more skewed [370], and it shows a larger drop than the MSR trace,
which matches the observation on the Zipf traces. Compared to the one-hit-wonder ratio
of the full trace at 13% (Twitter) and 38% (MSR), a random sub-sequence containing
10% objects shows a one-hit-wonder ratio of 26% on the Twitter trace and 75% on the
MSR trace. The increase is more significant when the sequence length is further reduced.

We further evaluated 6594 production traces (more details in Table 8.1). Figure 8.3
shows the one-hit-wonder ratios of all traces at different sequence lengths. Compared to
the full traces with a median one-hit-wonder ratio of 26%, sequences containing 50% of
the objects in the trace show a median one-hit-wonder ratio of 38%. Moreover, sequences
with 10% and 1% of the objects exhibit one-hit-wonder ratios of 72% and 78%, respectively.

Because the cache size is always much smaller than the trace footprint (the number
of objects in the trace), evictions start after encountering a short sequence of requests.
This observation suggests that if the cache size is set as 10% or 1% of the trace footprint,
approximately 72% and 78% of the objects would not be reused before eviction.

We further corroborate the observation with cache simulations. Figure 8.4 shows the
distribution of object frequency at eviction. Our trace analysis (Figure 8.2d) shows that
the Twitter trace has a 26% one-hit-wonder ratio for sequences of 10% trace length. The
simulation shows a similar result: 26% and 24% of the objects evicted by LRU and Belady
are not requested after insertion at a cache size of 10% of the trace footprint. Similarly,
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Figure 8.4: The frequency of objects at eviction.

the MSR trace exhibits a higher one-hit-wonder ratio of 75% for sequences of 10% trace
length (Figure 8.2d), and Figure 8.4 shows that 82% and 68% of the objects evicted by
LRU and Belady have no reuse. This suggests that these one-hit wonders are often good eviction
candidates, and one may not need highly sophisticated eviction algorithms.

8.2.2 The need for quick demotion

Based on the observation, a cache should filter out these one-hit wonders because they
occupy space without providing benefits. It is a common practice to employ Bloom Filters
to reject one-hit wonders from entering the cache in CDNs [219, 348]. However, a Bloom
Filter rejects objects too fast with a lack of precision since it rejects all objects that have not
been seen before. It causes the second requests to all objects to be cache misses, which
often leads to mediocre efficiency (subsection 8.4.2).
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Filtering out one-hit wonders bears some resemblance to designing scan-resistant
cache eviction algorithms, as objects requested during a scan are often one-hit wonders.
Researchers have developed a variety of algorithms for storage workloads that can avoid
cache pollution and thrashing caused by scanning requests, e.g., ARC [227], LRU-K [263],
2Q [172], EELRU [309], LIRS [165], LeCaR [329], CACHEUS [291], and LHD [38].
However, existing algorithms cannot guarantee the minimum andmaximum time one-hit
wonders stay in the cache before being removed. We find these algorithms sometimes
evict too fast or too slowly, and their complexities make it difficult to reason about the
behavior (subsection 8.5.1).

This raises the question: can we simply use a small probationary FIFO queue to
guarantee that one-hit wonders are removed after a fixed number of objects are inserted?

8.3 Design and implementation

As mentioned in subsection 8.1.1, a cache eviction algorithm needs to be simple and
scalable besides being efficient. This section presents S3-FIFO, a simple and scalable
eviction algorithm that consists of only static FIFO queues.

We start by defining the LRU queue and FIFO queue. An LRU queue updates object
ordering during cache hits by promoting the requested object to the head of the queue.
A FIFO queue does not update ordering during cache hits, and objects are evicted in the
insertion order. However, evicted objects may be reinserted into the queue to preserve
hot objects. As mentioned in subsection 8.1.2, most eviction algorithms are built with
LRU queue, and only a few algorithms, e.g., FIFO-Reinsertion, use FIFO queue because
conventional wisdom suggests LRU queue can provide a lower miss ratio.

8.3.1 S3-FIFO design

S3-FIFO uses three FIFO queues: a small FIFO queue (S), a main FIFO queue (M), and a
ghost FIFO queue (G). We choose S to use 10% of the cache space based on experiments
with 10 traces and find that 10% generalizes well.M then uses 90% of the cache space.
The ghost queue G stores the same number of ghost entries (no data) asM.
Cache read. S3-FIFO uses two bits per object to track object access status [375] similar to
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Figure 8.5: An illustration of S3-FIFO.

a capped counter with frequency up to 3. Cache hits in S3-FIFO atomically increment the
counter by one. Note that most requests for popular objects require no update.
Cache write. New objects are inserted into S if not in G. Otherwise, it is inserted into
M. When S is full, the object at the tail is either moved toM if it is accessed more than
once or G if not. And its access bits are cleared during the move. When G is full, it evicts
objects in FIFO order.M uses an algorithm similar to FIFO-Reinsertion but tracks access
information using two bits. Objects that have been accessed at least once are reinserted
with one bit set to 0 (similar to decreasing frequency by 1). We illustrate the algorithm in
Figure 8.5 and the pseudo-code below.

Algorithm 1 Read in S3-FIFO algorithm.
Require: The requested object x, small FIFO queue S , main FIFO queueM
1: function read(x)
2: if x in S or x in M then ▷ Cache Hit
3: x.freq←min(x.freq + 1, 3) ▷ Frequency is capped to 3
4: else ▷ Cache Miss
5: insert(x)
6: x.freq← 0
7: end if
8: end function

Handling different access patterns. One important pattern we identified in subsec-
tion 8.2.1 is the large one-hit-wonder ratio a cache experiences due to the limited cache
space. The small FIFO queue S can quickly evict these one-hit wonders so they do not
occupy the cache for a long time. This allows S3-FIFO to save the precious cache space for
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Algorithm 2 Insert in S3-FIFO algorithm.
Require: The requested object x, small FIFO queue S , main FIFO queueM, ghost FIFO queue G
1: function insert(x)
2: while cache is full do
3: evict()
4: end while
5: if x in G then
6: insert x to head ofM
7: else
8: insert x to head of S
9: end if
10: end function

Algorithm 3 Evict in S3-FIFO algorithm.
Require: The requested object x, small FIFO queue S , main FIFO queueM, ghost FIFO queue G
1: function evict
2: if S.size ≥ 0.1 · cache size then
3: evictS()
4: else
5: evictM()
6: end if
7: end function
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Algorithm 4 Evict from the small queue S.
Require: The requested object x, small FIFO queue S , main FIFO queueM, ghost FIFO queue G
1: function evictS
2: evicted← false
3: while not evicted and S.size > 0 do
4: t← tail of S
5: if t.freq > 1 then
6: insert t toM
7: ifM is full then
8: evictM()
9: end if
10: else
11: insert t to G
12: evicted← true
13: end if
14: remove t from S
15: end while
16: end function

Algorithm 5 Evict from the main queueM.
Require: The requested object x, small FIFO queue S , main FIFO queueM, ghost FIFO queue G
1: function evictM
2: evicted← false
3: while not evicted andM.size > 0 do
4: t← tail ofM
5: if t.freq > 0 then
6: Insert t to head ofM
7: t.freq← t.freq-1
8: else
9: remove t fromM
10: evicted← true
11: end if
12: end while
13: end function
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more valuable objects. Besides one-hit wonders caused by unpopular objects in skewed
cache workloads, many block cache workloads have scan and loop access patterns. Like
one-hit wonders, blocks accessed during scans are quickly removed to avoid cache pol-
lution and thrashing. However, blocks not part of a scan but mixed in the scan are also
moved to G in this process. Nevertheless, when these “good” blocks are requested again
in the near future, they will be inserted intoM and stay for a longer time.

Table 8.1: Datasets used in this work, the ones with no citation are proprietary datasets. For old
datasets, we exclude traces with less than 1 million requests. The trace length used in measuring
the one-hit-wonder ratio is measured in the fraction of objects in the trace.

Trace Approx Cache Duration # Traces # Request Request # Object Object One-hit-wonder ratio
collections time type (days) (million) (TB) (million) (TB) full trace 10% 1%

MSR [252, 253] 2007 Block 7 13 410 10 74 3 0.56 0.74 0.86
FIU [182] 2008 Block 9-28 9 514 1.7 20 0.057 0.28 0.91 0.91
Cloudphysics [333] 2015 Block 7 106 2,114 82 492 22 0.40 0.71 0.80
CDN 1 2018 Object 7 219 3,728 3640 298 258 0.42 0.58 0.70
TencentPhoto [395] 2018 Object 8 2 5,650 141 1,038 24 0.55 0.66 0.74
WikiMedia CDN 2019 Object 7 3 2,863 200 56 13 0.46 0.60 0.80
Systor [187, 188] 2017 Block 26 6 3,694 88 421 15 0.37 0.80 0.94
Tencent CBS [389] 2020 Block 8 4030 33,690 1091 551 66 0.25 0.73 0.77
Alibaba [198, 341] 2020 Block 30 652 19,676 664 1702 117 0.36 0.68 0.81
Twitter [370] 2020 KV 7 54 195,441 106 10,650 6 0.19 0.32 0.42
Social Network 1 2020 KV 7 219 549,784 392 42,898 9 0.17 0.28 0.37
CDN 2 2021 Object 7 1273 37,460 4,925 2,652 1,581 0.49 0.58 0.64
Meta KV [3] 2022 KV 1 5 1,644 958 82 76 0.51 0.53 0.61
Meta CDN [3] 2023 Object 7 3 231 8,800 76 1,563 0.61 0.76 0.81

8.3.2 Implementation

The FIFO queues can be implemented either using linked lists or ring buffers. Linked-list-
based implementation can be added to existing LRU-based caches more easily. However,
it has three drawbacks. First, it uses two pointers per object. On workloads with tiny
objects [226, 372], this poses a huge storage overhead. Second, traversing through the
queue requires random memory accesses. Third, eviction and insertion in linked-list-
based implementation require expensive atomic operations: compare-and-set, which
reduces the scalability.

In contrast, a ring-buffer-based implementation has less overhead and is more scalable
but may not be compatible with existing LRU-based caching systems. When using a
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ring buffer to implement S3-FIFO, the ring buffer maintains the FIFO order, with each
slot storing the object or a pointer. Eviction requires bumping the tail pointer in the
ring buffer. Although more scalable with lower storage overhead, a ring-buffer-based
implementation wastes space when the workload contains many deletion operations
because the space of deleted objects cannot be reused until eviction.

Although S3-FIFO has three logical FIFO queues, it can also be implemented with
one or two FIFO queue(s). Because objects evicted from S may enterM, they can be
implemented using one queue with a pointer at the 10% mark. However, combining
S andM reduces scalability because removing objects from the middle of the queue
requires locking.

The ghost FIFO queue G can be implemented as part of the indexing structure. For
example, we can store object fingerprint and insertion time of ghost entries in a bucket-
based hash table [61, 70, 203, 372]. The fingerprint is a 4-byte hash of the object ID. The
insertion time is a virtual timestamp, counting the number of objects inserted into G thus
far. Let SG denote the size of the ghost queue. If the current time is N (i.e., there were
N insertions into G), then all the entries whose timestamp is lower than N − SG are no
longer in G. A ghost entry is removed from the hash table when the object is requested
or during hash collision — when the slot is needed to store another entry.

8.3.3 Overhead analysis

Computation. S3-FIFO performs an atomic write upon the first and second request
to an object without locking. There is no operation after the second request. Because
most requests are for popular objects (more than two requests), S3-FIFO thus performs
negligible metadata updates on cache hits. Cache miss requires evicting an object from S
orM. Evicting from S requires inserting the tail object intoM or G. And evicting from
Mmay involve reinserting the tail object back toM. However, if an object is not accessed,
it requires no reinsertion. Therefore, the number of reinsertions is much smaller than the
cache hits in practice. Moreover, removing the tail object and inserting an object to the
head of a queue can be implemented lock-free using atomic operations.
Storage. The ghost queue G stores the same number of objects (without data) as the main
queue. Assuming the mean object size is 4 KB, and an object id uses 4 bytes, then G uses
0.09% of the cache size. Each cached object uses two bits to track access, consuming less
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than 0.01% of the cache size. Moreover, the two bits can often be piggybacked on unused
bits in object metadata. If the FIFO queues are implemented using ring buffers, S3-FIFO
can remove the two LRU pointers, saving 16 bytes per object or 0.4% of the cache size.

8.4 Evaluation

In this section, we evaluate S3-FIFO to answer the following questions.
• How does S3-FIFO’s efficiency compare with the state-of-the-art eviction algo-

rithms?
• Is S3-FIFO more scalable compared to state-of-the-art?
• Can lessons learned from S3-FIFO help flash cache design?

8.4.1 Evaluation setup

Traces. We evaluated S3-FIFO using a large collection of 6594 production traces from 14
datasets, including 11 open-source and 3 proprietary datasets. These traces span from
2007 to 2023 and cover key-value, block, and object CDN caches. In total, the datasets
contain 856 billion requests for 61 billion objects, and 21,088 TB traffic for a total of 3,753
TB of data. Because many large-scale distributed caching systems are multi-tenanted and
the traces represent workloads served by more than one server, we split four datasets
(CDN 1, CDN 2, Tencent CBS, and Alibaba) with tenant information into per-tenant
traces for an in-depth study of the workloads. More details of the datasets can be found
in Table 8.1.
Simulator. We implemented S3-FIFO and the state-of-the-art eviction algorithms (de-
scribed in subsection 8.4.2) in libCacheSim [368]. We referenced and verified the results
with multiple open-source simulator implementations [17, 62, 63, 207, 212, 322]. For
all state-of-the-art algorithms, we used the parameters described in the original papers.
LibCacheSim is designed and tuned for high-throughput cache simulations and can
process up to 20 million requests on a single CPU core.

We have also implemented a distributed fault-tolerant computation platform that
allows us to run thousands of simulations in parallel. The platform’s design does not
affect simulation accuracy and is out of the scope of this work. We describe it in a separate
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(b) Small cache size, 0.1% trace footprint

Figure 8.6: Each algorithm’s miss ratio reduction (from FIFO) at different percentiles
across all traces. A larger reduction is better.

blog post 2.
This distributed computation platform and the Cloudlab testbed [107] enable us

to evaluate different algorithms and cache sizes on our large datasets (Table 8.1). The
simulation processed the datasets in close to 100 passes using different algorithms, cache
sizes, and parameters. We estimated that over 80,000 billion requests were processed
using a million CPU-core hours.

Unless otherwise mentioned, we ignore object size in the simulator because most
production systems use slab storage for memory management, for which evictions are
performed within the same slab class (objects of similar sizes). However, we remark
that supporting object size is non-trivial for systems that do not use slab-based memory
management. Moreover, we do not consider the metadata size in different algorithms,

2https://blog.jasony.me/random/tool/2023/08/01/distributed-computation
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although S3-FIFO often requires fewer metadata than other algorithms. We evaluated the
algorithms at multiple different cache sizes, and we present one large size using 10% of
the trace footprint (number of objects in the trace) and one small size at 0.1% of the trace
footprint. At 0.1% trace footprint, the cache size may be too small for some traces, so we
ignore a trace if the cache size is smaller than 1000 objects. For byte miss ratio evaluation,
we considered object size and used the trace footprint in bytes instead of objects.

Because the large number of traces used in the evaluation have a very wide range of
miss ratios, we choose to present themiss ratio reduction compared to FIFO: MRfifo−MRalgo

MRfifo

whereMR stands for miss ratio. If an algorithm has a miss ratio higher than FIFO, we
calculate FIFO’s miss ratio reduction compared to the algorithm and take the negative
value: −MRalgo−MRfifo

MRalgo
, which bounds the value between -1 and 1. This avoids the impact

of outliers on the mean value.
Prototype. We have implemented S3-FIFO in Cachelib [95]. Cachelib uses slab memory
management, which pre-allocates all memory during initialization and is highly opti-
mized for LRU-based eviction algorithms. Its extensive usage of metaprogramming and
many LRU-based optimizations (e.g., compressed pointers) tightly couple different com-
ponents. Therefore, we implemented S andM using linked lists and G using a hash table.
We implemented a trace replay tool that replays traces in a closed loop for benchmarking.
Because the backend often decides the latency and throughput of cache misses, we focus
on the cache hit performance and on-demand fill cache misses using pre-generated data
object value. We compared S3-FIFO with three algorithms implemented by Cachelib
developers: LRU, a variant of 2Q, and TinyLFU. Cachelib developers have devoted huge
efforts to improving the throughput and scalability of the three algorithms with tech-
niques such as lock combining, delayed LRU promotion, try-lock-based promotion, and
compressed pointers. Besides Cachelib, we also evaluated Segcache, the state-of-the-art
scalable key-value cache using open-source code [372].
Open source. We have open-sourced the code and data with more information at the
end of the paper.
Evaluation setup. We performed all evaluations on Cloudlab [107]. The simulations
used multiple types of nodes from the Clemson site, depending on node availability. The
prototype evaluation used c6420 nodes from the Clemson site. We turned off turbo boost,
pinned one thread to one core, and used numactl to allocate all memory pages on the
same NUMA node.
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8.4.2 Efficiency (miss ratio)

Miss ratio. The primary criticism of the FIFO-based eviction algorithms is their efficiency,
the most important metric for a cache. We compare S3-FIFO with state-of-the-art eviction
algorithms designed in the past few decades. The algorithms used in the comparison
are either deployed in production or commonly used in other papers. We use all effi-
ciency results from simulation because it allows us to (1) study different types of cache
workloads, e.g., block, key-value, and object, (2) focus on and isolate the impact of the
eviction algorithm, and (3) requires fewer computation resources to scale up to evaluate
the huge datasets. Figure 8.6 shows the (request) miss ratio reduction (compared to
FIFO) of different algorithms across traces. At the large cache size, S3-FIFO has the largest
reductions across almost all percentiles than other algorithms. For example, S3-FIFO
reduces miss ratios by more than 32% on 10% of the traces (P90) with a mean of 14% on
the large cache size.
TinyLFU [109] is the closest competitor. TinyLFU uses a 1% LRU window to filter out
unpopular objects and stores most objects in a SLRU cache. TinyLFU’s good performance
corroborates our observation that quick demotion is critical for efficiency. However,
TinyLFU does not work well for all traces, with miss ratios being lower than FIFO on
almost 20% of the traces (the P10 point is below -0.05 and not shown in the figure). This
phenomenon is more pronounced when the cache size is small, where TinyLFU is worse
than FIFO on close to 50% of the traces.

There are two reasons why TinyLFU falls short. First, the 1% window LRU is too
small, evicting objects too fast. Therefore, increasing the window size to 10% of the cache
size (TinyLFU-0.1) significantly improves the efficiency at the tail (bottom of the figure).
However, increasing the window size reduces its improvement on the best-performing
traces (Figure 8.6a). Second, when the cache is full, TinyLFU compares the least recently
used entry from the window LRU and main SLRU, then evicts the less frequently used
one. This allows TinyLFU to be more adaptive to different workloads. However, if the
tail object in the SLRU happens to have a very high frequency, it may lead to the eviction
of an excessive number of new and potentially useful objects.
LIRS [165] uses LRU stack (reuse) distance as the metric to choose eviction candidates.
Because one-hit wonders do not have reuse distance, LIRS utilizes a 1% queue to hold
them. This small queue performs quick demotion and is the secret source of LIRS’s high
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efficiency. Similar to TinyLFU, the queue is too small, and it falls short on some cache
workloads. However, compared to TinyLFU, fewer traces show higher-than-FIFO miss
ratios because the inter-recency metric in LIRS is more robust than the frequency in
TinyLFU. In particular, TinyLFU cannot distinguish between many objects with the same
low frequency (e.g., 2), but these objects will have different inter-recency values. The
downside is that LIRS requires a more complex implementation than TinyLFU.
2Q [172] has the most similar design to S3-FIFO. It uses 25% cache space for a FIFO
queue, the rest for an LRU queue, and also has a ghost queue. Besides the difference
in queue size and type, objects evicted from the small queue are not inserted into the
LRU queue. Having a large probationary queue and not moving accessed objects into
the LRU queue are the primary reasons why 2Q is not as good as S3-FIFO. Moreover,
the LRU queue does not provide observable benefits compared to the FIFO queue (with
reinsertion) in S3-FIFO.
SLRU [154, 177] uses four equal-sized LRU queues. Objects are first inserted into the
lowest-level LRUqueue and promoted to higher-level queues upon cache hits. An inserted
object is evicted if not reused in the lowest LRU queue, which performs quick demotion
and allows SLRU to show good efficiency. However, unlike other schemes, SLRU does
not use a ghost queue, making it not scan-tolerant because popular objects mixed in the
scan cannot be distinguished. Therefore, we observe that SLRU performs poorly on many
block cache workloads (not shown).
ARC uses four LRU queues: two for data and two for ghost entries. The two data queues
are used to separate recent and frequent objects. Cache hits on objects in the recency
queue promote the objects to the frequency queue. Objects evicted from the two data
queues enter the corresponding ghost queue. The sizes of queues are adaptively adjusted
based on hits on the ghost queues. When the recency queue is small, newly inserted
objects are quickly evicted, enabling ARC’s high efficiency. However, ARC is less efficient
than S3-FIFO because the adaptive algorithm is not sufficient. We discuss with more
details in subsection 8.5.2.
Recent algorithms, including CACHEUS [291], LeCaR [329], LHD [38], and FIFO-
Merge [372], are also evaluated. However, we find these algorithms are often less compet-
itive than the traditional ones. In particular, FIFO-merge was designed for log-structured
storage and key-value cache workloads without scan resistance. Therefore, similar to
SLRU, it performs better on web cache workloads but much worse on block cache work-
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loads.
Common algorithms, such as B-LRU (Bloom Filter LRU), CLOCK, and LRU, are weaker
than the ones discussed. CLOCK and LRU do not allow quick demotion, so their miss
ratio reductions are small. B-LRU rejects all one-hit wonders at the cost of the second
request for all objects being cache misses. Because of these misses, B-LRU is worse than
LRU in most cases. Because an object’s second request often arrives soon after the first
request (temporal locality), the small FIFO queue in S3-FIFO allows these requests to be
served as cache hits.
Adversarial workloads for S3-FIFO. We studied the limited number of traces on which
S3-FIFO performed poorly and identified one pattern. Most objects in these traces are
accessed only twice, and the second request falls out of the small FIFO queue S, which
causes the second request to these objects to be cache misses. We remark that these
workloads are adversarial formost algorithms that partition the cache space, e.g., TinyLFU,
LIRS, 2Q, and CACHEUS. Because the partition for newly inserted objects is smaller than
the cache size, it is possible that the second request is a cache hit in LRU and FIFO, but
not in these advanced algorithms.

This request pattern resembles a scan becausemost objects are not requested very soon
after the first request. However, it is not a typical scan because any object may show this
pattern, and the objects showing this pattern may not be requested consecutively. In our
large datasets, we find that the second request often arrives within one minute in these
workloads. Therefore, the second request being a miss is a problem only when the cache
size is very small, e.g., 1000s of objects. Moreover, using an adaptive algorithm to adjust
the queue size can often mitigate the problem, and we discuss more in subsection 8.5.2.
Miss ratio per dataset. We have shown the results across all 6594 traces. However,
the number of traces from each dataset differs, and the result could be affected by the
dominating dataset. Figure 8.7 shows themeanmiss ratio reduction on each dataset using
selected algorithms. We observe that S3-FIFO often outperforms all other algorithms by
a large margin. Moreover, it is the best algorithm on 10 out of the 14 datasets using a
large cache size and 7 out of the datasets using a small cache size. As a comparison, no
other algorithm is the best on more than 3 datasets.

Besides being the best on most datasets, S3-FIFO is also more robust than other algorithms —
S3-FIFO is among the top three most efficient algorithms on 13 of the 14 datasets at the
large cache size. As a comparison, TinyLFU and LIRS are among the top algorithms on

180



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Miss ratio reduction from FIFO

fiu (block)
MSR (block)

CloudPhysics (block)
Systor (block)

Tencent (block)
Alibaba (block)

Social Network KV
Meta KV

Twitter KV
CDN1
CDN2

TencentPhoto CDN
Meta CDN

Wikimedia CDN
S3-FIFO ARC 2Q TinyLFU-0.1 LIRS CACHEUS LHD

(a) Large cache size

0.00 0.05 0.10 0.15
Miss ratio reduction from FIFO

fiu (block)
MSR (block)

CloudPhysics (block)
Systor (block)

Tencent (block)
Alibaba (block)

Social Network KV
Meta KV

Twitter KV
CDN1
CDN2

TencentPhoto CDN
Meta CDN

Wikimedia CDN
S3-FIFO ARC 2Q TinyLFU-0.1 LIRS CACHEUS LHD

(b) Small cache size

Figure 8.7: Themeanmiss ratio reduction of different algorithms on each dataset. TinyLFU
on the TencentPhoto dataset at the large size is -0.11 and not shown.

some datasets, but on other datasets, they are among the worst algorithms. While it is
hard to explain why S3-FIFO is more robust, we conjecture that simplicity contributes to
its robustness. In conclusion, we find that quick demotion is a key factor for an efficient
eviction algorithm. By leveraging this observation, S3-FIFO, a simple algorithm with
only FIFO queues, can outperform state-of-the-art.
Byte miss ratio. While (request) miss ratio is important for most cache deployments,
CDNs also widely use byte miss ratio to measure bandwidth reduction. We evaluated
the same set of eviction algorithms on byte miss ratio. We used the object sizes from each
trace and set the cache size to 10% and 0.1% of trace footprint in bytes. The results (not
shown due to space limit) are not significantly different from the miss ratio in Figure 8.6.
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Figure 8.8: Throughput scaling with CPU cores on synthetic Zipf (α = 1.0) trace.

Compared to other algorithms, S3-FIFO presents larger byte miss ratio reductions at
almost all percentiles. We have also compared S3-FIFO with LRB [312], a machine-learn-
based eviction algorithm designed for CDN cache workloads. We used ten random traces
(LRB took too long to run on the full dataset), including the Wikimedia traces used in
LRB’s evaluation. We observe that S3-FIFO and LRB have similar efficiency, although
S3-FIFO is much simpler than LRB.

8.4.3 Throughput Performance

S3-FIFO consists of only FIFO queues without locking on either read or write. As a
comparison, LRU-based eviction algorithms, such as LRU, 2Q, and TinyLFU, require
locking on both cache hits and cache misses. We implemented S3-FIFO in Cachelib to
compare the throughput of different algorithms. Because prototype experiments run
much longer and cannot be run in parallel, we only evaluated using a synthetic Zipf trace
similar to previous work [118]. Moreover, we verified that the miss ratio results from
the prototype are consistent with the simulator using a few randomly selected traces.
The Zipf workload contains 100 · nthread million requests for nthread million 4 KB objects.
Figure 8.8 shows that compared to (strict) LRU, the optimized LRU has both higher
throughput and better scalability. However, it cannot scale beyond two cores. Compared
to LRU, TinyLFU needs to check and update the count-min sketch on cache hits and move
objects between the window LRU and the main SLRU on cache misses. Therefore, we
observe a lower throughput than LRU due to the extra operations. The optimized 2Q in
Cachelib has a similar result (not shown).
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Figure 8.9: The write bytes and miss ratio of no admission control and using different
admission algorithms. Both metrics are better when they are lower. Write bytes are
normalized to the number of bytes in the trace. Left: Wikimedia CDN trace, right:
Tencent Photo CDN trace.

Compared to LRU-based eviction algorithms, S3-FIFO performs fewer operations
during cache hits, with a higher throughput on a single thread. Moreover, the lock-free
implementation enables the throughput to scale with the number of CPU cores. Under
both small and large cache sizes, S3-FIFO runs more than 6× faster than the optimized
LRU in Cachelib with 16 threads.

Segcache [372] is the state-of-the-art key-value cache using log-structured storage
with the FIFO-Merge eviction algorithm. It uses macro management and FIFO-based
eviction to achieve close-to-linear scalability. The macro management enables Segcache
to perform much less synchronization — Segcache needs atomic updates only when a
segment-chain is changed, which is 100-1000× less frequent than cache misses. However,
Segcache is slower than S3-FIFO on a single thread because the merge-based eviction
needs to copy data. Moreover, Segcache does not have a comparable efficiency as S3-FIFO
as we have shown in Figure 8.6.

8.4.4 Flash-friendliness

In many flash cache deployments, the flash stores all the cached objects, and DRAM is
used for hot objects (and index) [14, 43]. However, writing all data to the flash reduces
its lifetime.
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The surprising finding that using a small FIFO queue to perform quick demotion can
achieve the state-of-the-art miss ratio has an implication for flash cache design. Because
most objects evicted from the S are not worthwhile to be kept inM, we can place S in
DRAM andM on flash. Objects evicted from DRAM are not written to the flash. Only
objects requested in S and G are written to the flash. This setup reduces both flash writes
and miss ratio.

Because CDN caches are often deployed using flash, we compare the miss ratio and
write bytes using open-source CDN traces from Wikimedia [349] and Tencent Photo
CDN [395]. We compare with three schemes. FIFO does not use an admission control
and writes everything to the flash. Probabilistic admission uses an LRU DRAM cache
and a 20% probability to admit DRAM-evicted objects into the flash cache randomly.
Flashield uses a machine learning model (SVM) to predict which objects are worthwhile
writing to the flash. S3-FIFO uses a small FIFO and ghost queue in DRAM (0.1%, 1%,
10%) to filter objects, and objects requested at least twice in the DRAM are admitted
onto flash. Because the flash cache eviction algorithm is orthogonal to the admission
policy, we used FIFO [14, 41, 228] in all experiments (including in S3-FIFO). We have also
evaluated other flash-friendly algorithms, such as FIFO-Reinsertion [378], and observed
similar results. We set the cache size to 10% of the trace footprint in bytes. We further
normalize the write bytes to the number of unique bytes in the trace.

Figure 8.9 shows that compared to no admission control (FIFO), an admission policy
can significantly reduce the number of write bytes. However, both probabilistic admission
and Flashield trade-off the miss ratio for the reduced write bytes. In contrast, using a
small FIFO queue for admission is surprisingly effective at reducing both write bytes
and miss ratios. Unlike probabilistic admission, which has almost no dependency on the
DRAM size, S3-FIFO and Flashield make admission decisions based on access in DRAM.
With a large DRAM (10% of flash cache size), Flashield achieves close to S3-FIFO miss
ratio with slightly more writes. However, when the DRAM size is small, objects do not
accumulate enough access for the machine-learning model to predict accurately. Meta
engineers have also made a similar observation [41].
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Figure 8.10: The normalized mean quick demotion speed and precision of different algo-
rithms. TinyLFU and S3-FIFO use different S sizes (1%, 2%, 5%, 10%, 20%, 30%, and 40%
of cache size) and have multiple points with lighter colors representing larger S. The
marker of 10% small queue size is highlighted with a larger size.

8.5 Discussion

8.5.1 Why is S3-FIFO effective?

The key to S3-FIFO’s efficiency is the small probationary FIFO queue S that filters out
one-hit wonders. Removing low-value items is not new. Admission algorithms, e.g.,
Bloom Filter, Adaptsize [43], are designed for a similar purpose. However, they reject
objects too early and show low efficiency for most cache workloads. Besides admission
algorithms, many cache eviction algorithms designed to be scan-resistant, e.g., ARC and
2Q, share a similar idea. They separate new and frequent objects into two queues (denote
using S andM) so that popular objects are not affected by scan requests. This work
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Table 8.2: Miss ratio when using different S sizes (as a fraction of cache size). Increasing S sizes
leads to slower but more accurate quick demotion. Thus miss ratio for S3-FIFO first decreases,
then increases with S size. But TinyLFU sometimes shows anomalies. The table should be read
together with Figure 8.10. The font color matches the color in Figure 8.10, and the italics show the
miss ratio anomaly of TinyLFU.

S size 0.40 0.30 0.20 0.10 0.05 0.02 0.01

Twitter trace, large cache, ARC miss ratio 0.0483, LRU miss ratio 0.0488 (Figure 8.10a)

TinyLFU 0.0451 0.0445 0.0441 0.0530 0.0586 0.0437 0.0437
S3-FIFO 0.0455 0.0442 0.0432 0.0424 0.0422 0.0422 0.0423

Twitter trace, small cache, ARC miss ratio 0.1941, LRU miss ratio 0.2005 (Figure 8.10b)

TinyLFU 0.1744 0.1718 0.1697 0.1766 0.1688 0.1775 0.1722
S3-FIFO 0.1846 0.1802 0.1765 0.1743 0.1740 0.1752 0.1768

MSR trace, large cache, ARC miss ratio 0.2891, LRU miss ratio 0.3188 (Figure 8.10c)

TinyLFU 0.2990 0.2949 0.2936 0.2900 0.2893 0.2904 0.2895
S3-FIFO 0.2989 0.2936 0.2896 0.2891 0.2884 0.2887 0.2889

MSR trace, small cache, ARC miss ratio 0.4899, LRU miss ratio 0.5263 (Figure 8.10d)

TinyLFU 0.4952 0.4923 0.4903 0.4907 0.4922 0.4993 0.5120
S3-FIFO 0.4940 0.4903 0.4890 0.4910 0.4926 0.4953 0.4970

shows that a small static FIFO queue, one of the simplest designs to filter out low-value
objects, works better than many more advanced alternatives. But why? We take a closer
look at demotion speed and precision using the same trace from section 8.2 to get a deeper
understanding. The normalized quick demotion speed measures how long objects stay in
S before they are evicted or moved toM. We use the LRU eviction age as a baseline and
calculate the speed as LRU eviction age

time in S . We use logical time measured in request count. The
quick demotion precision measures how many objects evicted from S are not reused soon.
Using an idea similar to previous work [312], if the number of requests till an object’s
next reuse is larger than cache size

miss ratio , then we say the quick demotion results in a correct early
eviction.

An algorithm with both faster and more precise quick demotion exhibits a lower miss
ratio. Figure 8.10 shows that ARC, TinyLFU, and S3-FIFO can quickly demote new objects
and have lower miss ratios compared to LRU (Table 8.2).
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Figure 8.11: Miss ratio reduction percentiles using different sizes for the small FIFO. Left:
large cache size, right: small cache size.

ARC uses an adaptive algorithm to decide the size of S. We find that the algorithm can
identify the correct direction to adjust the size, but the size it finds is often too large
or too small. For example, Figure 8.10a shows that ARC chooses a very small S on the
Twitter trace, causing most new objects to be evicted too quickly with low precision. This
happens because of two trace properties. First, objects in the Twitter trace often have
many requests; Second, new objects are constantly generated. Therefore, objects evicted
fromM are requested very soon, causing S to shrink to a very small size (around 0.01%
of cache size). Meanwhile, constantly generated new (and popular) objects in S face
more competition and often have to suffer a miss before being inserted inM, which
causes low precision and a high miss ratio (Table 8.2). On the MSR trace, ARC has a
reasonable speed with relatively high precision, which correlates with its low miss ratio.
TinyLFU and S3-FIFO have a predictable quick demotion speed — reducing the size of
S always increases the demotion speed. When using the same S size, TinyLFU demotes
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slightly faster than S3-FIFO because it uses LRU, which keeps some old but recently
accessed objects, squeezing the available space for newly inserted objects.

Besides, S3-FIFO often shows higher precision than TinyLFU at a similar quick de-
motion speed, which explains why S3-FIFO has a lower miss ratio. TinyLFU compares
the eviction candidates from S andM, then evicts the less-frequently-used candidate.
When the eviction candidate fromM has a high frequency, it causes many worth-to-keep
objects from S to be evicted. This causes not only a low precision but also unpredictable
precision and miss ratio cliffs. For example, the precision shows a large dip at 5% and
10% in Figure 8.10a, corresponding to a sudden increase in the miss ratio (Table 8.2).

Although S3-FIFO does not use advanced techniques, it achieves a robust and pre-
dictable quick demotion speed and precision. As S size increases, the speed decreases
monotonically (moving towards the left in the figure), and the precision also increases
until it reaches a peak. When S is very small, popular objects do not have enough time to
accumulate a hit before being evicted, so the precision is low. Increasing S size leads to
higher precision. When S is very large, many unpopular objects are requested in S and
moved toM, leading to reduced precision as well. Table 8.2 shows that at similar quick
demotion speed, higher precision always leads to lower miss ratios.

In summary, S3-FIFO guarantees that newly inserted unpopular objects are evicted in
a predictably short time. The quick demotion is often more precise and robust compared
to existing approaches. This combination allows S3-FIFO to obtain better than state-of-
the-art miss ratios.

8.5.2 How about adaptive eviction algorithms?

Is queue size sensitive? We chose S to use 10% of the cache size based on results from
ten traces and found that it generalizes well across the 6594 traces. Figure 8.11 shows how
the miss ratios change with S size. We observe that a smaller S leads to larger miss ratio
reductions, confirming the importance of quick demotion. For example, when the cache
size is large, the best-performing traces (P90) have the largest reduction when S uses 1%
of the cache size. However, a smaller S also causes more traces to have miss ratios higher
than FIFO. This aligns with the observation in subsection 8.5.1 where we see smaller S
leads to faster quick demotion, but the precision decreases after the peak. Overall, the
predictability between efficiency and S size makes it easy to choose the S size. And the
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efficiency does not change much for most traces if S size is between 5% and 20% of the
cache size.
Making queue size adaptive! We designed and implemented an algorithm that adap-
tively changes the FIFO queue sizes, which we call S3-FIFO-d, S3-FIFO with dynamic
queue sizes. S3-FIFO-d maintains a balance between marginal hits on the evicted objects
from S andM. It uses two small ghost queues to track objects evicted from S andM.
Each ghost queue is sized to store 5% of the cached objects (without data). Each time
the two ghost queues have more than 100 hits, and one has 2×more hits than the other,
S3-FIFO-dmoves 0.1% of cache space to the queue whose evicted objects receive more hits.
By balancing the marginal hits on the evicted objects, S3-FIFO minimizes the gradient
of hits on the evicted objects. If S is too small, its evicted objects will receive many hits
causing an expansion of S. Vice versa. Besides the algorithm described above, we also
experimented with another adaptive algorithm similar to ARC, which increases queue
size by one upon a hit on the ghost. However, we find this algorithm less robust than
S3-FIFO-d.

We compare S3-FIFO-d and S3-FIFO (not shown) and find that S3-FIFO is better than
S3-FIFO-d on most traces except the 2% traces at the tail, on which using 10% cache size
for S is far from optimal. In other words, the adaptive algorithm is only useful when the
workload is adversarial (which is rare). We tried to tune the parameters in the adaptive
algorithm. However, tuning for a few traces is easy, but obtaining good results across
traces is very challenging 3.
Where do adaptive algorithms fail? The parameter tuning problem is not unique to
S3-FIFO-d. Most, if not all, adaptive algorithms have many parameters. For example,
queue resizing requires several parameters, e.g., the frequency of resizing, the amount of
space moved each time, the lower bound of queue sizes, and the threshold for trigger
resizing. This is not unique for S3-FIFO-d, but also for algorithms such as ARC, whose
parameters are less obvious. For example, ARC moves one slot upon a hit on the ghost.
But the question remains why one slot instead of half or two? And is it better to handle
the hit at the head and tail of the ghost queue differently?

Besides the many hard-to-tune parameters, adaptive algorithms adapt based on ob-
servation of the past. However, the past may not predict the future. We find that small

3We believe algorithm design should not be tuned on the traces used for evaluation (test dataset), but
rather on a validation dataset.
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perturbations in the workload often cause the adaptive algorithm to overreact. It is
unclear how to balance between under-reaction and overreaction without introducing
more parameters. Moreover, some adaptive algorithms, including S3-FIFO-d, implicitly
assume that the miss ratio curve is convex because following the gradient direction leads
to the global optimum. However, the miss ratio curves of scan-heavy workloads are often
not convex [40, 332].

Although we have shown that S3-FIFO is not sensitive to S size, and the queue size
is easier to choose than tuning an adaptive algorithm. We believe adaptations are still
important, but how to adapt remains to be explored. For systems that need to find the
best parameter, downsized simulations using spatial sampling can be used [332, 333].

8.5.3 LRU or FIFO?

S3-FIFO only uses FIFO queues, but do LRU queues provide better efficiency? We
experimented with different queue-type combinations by replacing both the small FIFO
queue and the main FIFO queue with LRU queues. And we have also experimented with
moving objects from S toM upon cache hits and during evictions. Due to space limits,
the results are not shown, but we observe that LRU queues do not improve efficiency. In
particular, using two LRU queues, such as in ARC, is worse than S3-FIFO most of the
time. In conclusion, with quick demotion, the queue type does not matter.

8.6 Related Work

We have discussed many related works throughout the section 8.1 and subsection 8.4.2.
We discuss the rest in this section.
Efficiency-oriented cache design. Besides the eviction algorithms we compared with,
many other algorithms are designed to improve the cache efficiency [33, 48, 84, 159, 180,
192, 224, 326, 393]. S3-FIFO differs from existing algorithms in the following way. First,
S3-FIFO uses only FIFO queues and does not require promotion on cache hits. Second,
S3-FIFO explicitly guarantees the time one-hit wonders stay in the cache before testing
popularity. Third, this work shows why a very small probationary cache is needed and
uses a smaller probationary queue than most previous works.
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Quickly removing one-hit wonders is similar to removing scan/streaming/sequen-
tial/looping requests that motivated many previous works [38, 172, 227, 291]. Moreover,
similar ideas have also been applied to removing low-priority blocks from lower cache lay-
ers in a cache hierarchy [256, 351, 362]. Our previous work also discussed two techniques
to improve cache efficiency and scalability — lazy promotion and quick demotion [375].
S3-FIFO is an example of applying the two techniques on FIFO queues to design simple,
efficient, and scalable cache eviction algorithms. SIEVE is another eviction algorithm
focusing on simplicity, efficiency, and scalability. However, SIEVE is not scan-resistant
and only works on web workloads.

Besides eviction algorithms, several other works improved cache efficiency via remov-
ing cliffs in miss ratio curves [36], space partitioning [85, 86, 87, 151], prefetching [102,
131, 201, 314, 331, 369], exploiting spatial locality [167], compression [162, 357], leverag-
ing application hints [160, 200, 209, 271, 297, 362], cooperative caching [91, 168, 169, 363],
read-write separation [35], reducing metadata, and removing expired objects [372].
These works complement the eviction algorithm designs. However, we remark that
integrating multiple designs, e.g., eviction and prefetching are non-trivial and requires
additional exploration [28, 56, 65, 131, 314].
Scalability-oriented cache design. Segmented FIFO was designed to achieve low over-
head; however, the tradeoff is lower efficiency than LRU [323]. Segcache [372] improves
a cache’s throughput and scalability by eliminating promotions and locking. Segcache
uses log-structured storage to improve scalability. However, Segcache is more efficient for
workloads using TTLs. MemC3 [118] and Tricache [121] use CLOCK for scalable data
access. However, CLOCK has lower efficiency than S3-FIFO because it cannot quickly
remove one-hit wonders. FrozenHot [276] freezes part of the cached data to provide
scalable data access and does not improve the eviction algorithm’s efficiency.

Besides improving an eviction algorithm, sharding is commonly used to improve
scalability. Sharding partitions the key space, and each CPU core serves a slice of the keys.
However, cache workloads often follow Zipfian popularity, so sharding leads to load
imbalance [117, 150, 155, 211, 281] and limits the whole system’s throughput. Besides
improving the cache eviction algorithm’s scalability, several other works have improved
other parts in a key-value cache/store [203]. Compared to these works, S3-FIFO focuses
on the eviction algorithm.
Flash endurance. Endurance is a well-known problem for caching on flash. Many
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works have designed flash-friendly cache eviction algorithms, such as RIPQ [320], Spa-
tialClock [179], and offline algorithms [81]. FlashTier [299], DIDACache [305], Pan-
nier [190] studied the flash cache design beyond eviction algorithms to improve flash
cache performance and endurance. Flash cache admission control (also called selective
caching in some works) has been explored in LARC [156], WEC [69], S-RAC [257] and
SieveStore [274], which use window-based or ghost-based frequency threshold to selec-
tively cache objects on flash. Such designs are similar to using counting Bloom Filter LRU.
However, they do not explicitly consider the role of DRAM to cache new (and unpopular)
objects. This is particularly important as we have shown that B-LRU cannot achieve the
optimal efficiency (section 8.4). Flashield [113] and ML-QP [388] track object access
in the DRAM cache and use a machine-learning model to decide admission. However,
Flashield requires too much DRAM to work. Besides, several works used social features
to predict object access patterns [335, 336], which are only applicable in social network
cache workloads. While early eviction, selective caching, and selective placement can
help with flash endurance, they are also widely used in hierarchical caches to achieve
exclusive caching and address the lack of locality. Different algorithms [78, 164, 360, 397],
interfaces and systems [130, 351, 361, 362] have been designed to improve the efficiency
of hierarchical caches.

8.7 Chapter Summary

This chapter explores the opportunity of building a simple, scalable, yet efficient eviction
algorithmwith only FIFO queues. The insight is that for any skewed request sequence, the
fraction of objects appearing once is much higher in a sub-sequence than in the full trace.
Because a cache of size C only observes a short sequence of C objects before evictions,
most objects will be one-hit wonders when evicted, even though they may have more
requests throughout the full trace. We confirm this observation on 6594 production traces.
The median one-hit-wonder ratio of all traces, when considering the entire trace, is 26%.
However, when focusing on sequences that comprise 10% of the unique objects in each
trace, the median one-hit-wonder ratio skyrockets to 72%.

We leverage this workload property and design S3-FIFO, a simple, scalable eviction
algorithm with three static (fixed-size) FIFO queues. S3-FIFO uses a small probationary
FIFO queue to filter out one-hit wonders from entering the main FIFO queue so that cache
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space can be used for more valuable objects (called early eviction or quick demotion [375]).
S3-FIFO is not only simple but also efficient. We compare S3-FIFO with 12 eviction

algorithms on a large data collection of 6594 production traces from 14 sources. The
traces overall contain 856 billion requests collected between 2007 and 2023, and cover
block, key-value, and object caches. While advanced algorithms may excel at a few
particular workloads, our evaluation shows that S3-FIFO achieves better efficiency (lower
miss ratios) across traces at all percentiles than state-of-the-art algorithms. Moreover,
S3-FIFO’s efficiency is robust. Using a cache size of 10% of objects in the trace, S3-FIFO is
the most efficient algorithm on 10 out of the 14 datasets and among the top three most
efficient algorithms on 13 datasets. As a comparison, the next best algorithm (LIRS [165])
obtains the highest efficiency on only 2 datasets.

S3-FIFO is also more scalable because FIFO queues enable lock-free implementations.
We implemented a prototype in Cachelib and showed that S3-FIFO achieves more than
6× higher throughput than the highly-optimized LRU implementation on 16 cores.

The fact that filtering objects with a small FIFO queue enables better than state-of-the-
art efficiency has an implication for flash cache deployments. If the small FIFO queue is
in DRAM and the main FIFO queue is on flash, then most objects evicted from DRAM
do not need to be written to the flash. This reduces both flash writes and miss ratio. We
compare this FIFO filter with a probabilistic filter and a machine-learning-model-based
filter from Flashield [113]. The FIFO filter has the lowest miss ratio and the least flash
writes evaluated on two open-source CDN traces. Moreover, in contrast to the ML model
that requires a large DRAM cache to track object access information for making good
decisions, the small FIFO filter excels even when the DRAM cache is only 0.1% of the
total cache size.

This chapter makes the following contributions.
• It shows that for cache workloads with skewed popularity, most objects are one-hit
wonders at eviction. Therefore, quick demotion is critical for cache efficiency.

• Leveraging this new observation, it presents the design and implementation of
S3-FIFO, the first FIFO-queue-only eviction algorithm.

• It presents an evaluation comparing S3-FIFO with 12 state-of-the-art eviction algo-
rithms on 6594 traces and shows that S3-FIFO is more efficient and robust.

• It illustrates that S3-FIFO is scalable with 6× higher throughput than an optimized
LRU implementation in Cachelib.
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Chapter 9

SIEVE: a Simple and yet Efficient
Eviction Algorithm

The previous chapter demonstrates how lazy promotion and quick demotion help S3-
FIFO achieve high efficiency and close-to-linear scalability. Although S3-FIFO is much
simpler than state-of-the-art eviction algorithms, it is still more complex than commonly
used simple heuristics, such as LRU. This chapter will illustrate a new eviction algorithm,
SIEVE, that further simplifies the design of eviction algorithms. SIEVE uses a single queue
to achieve both lazy promotion and quick demotion. It is simpler than LRU and achieves
state-of-the-art efficiency on web workloads.

9.1 Background and Related Work

9.1.1 Web caches

Web caches are essential components of modern Internet infrastructure, playing a crucial
role in reducing data access latency and network bandwidth. Key-value caches, e.g.,
Memcached [228], Pelikan [97] and Cachelib [95], are widely used in modern web
services such as Twitter [370] and Meta [41] to reduce service latency. CDN caches
are deployed close to users to reduce data access latency and high WAN bandwidth
cost [26, 365, 373, 386].
Cachemetrics. Caches are measured along two primary axes: efficiency and throughput
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performance. Cache efficiency measures how well the cache can store and serve the
required data. A cache miss occurs when the requested data is not found in the cache,
requiring access to the backend storage to retrieve the data. Common cache efficiency
metrics include (1) object miss ratio: the fraction of requests that are cache misses; (2)
byte miss ratio: the fraction of bytes that are cache misses. A lower miss ratio indicates
higher cache efficiency, as more requests are served directly from the cache, reducing
backend load, access latency, and bandwidth costs.

Throughput performance, on the other hand, is as important as efficiency because the
goal of a cache is to serve data quickly and help scale the application. Beyond throughput,
scalability is also increasingly important [276, 372] as modern CPUs often surpass 100
cores. Scalability measures throughput growth with the number of threads accessing the
cache. A more scalable cache can better harness the many cores in a modern CPU.
Access patterns. Web cache workloads typically follow Power-law (generalized Zipfian)
distributions [41, 51, 52, 89, 132, 145, 154, 315, 317, 370], where a small subset of objects
account for a large proportion of requests. In detail, the ith popular object has a relative
frequency of 1/iα, where α is a parameter that decides the skewness of the workload.
Previousworks find differentα values from 0.6 to 0.8 [51], 0.56 [132], 0.71–0.76 [140], 0.55–
0.9 [41], and 0.6–1.5 [370]. The reasons for the large range of α include (1) the different
types of workloads, such as web proxy and in-memory key-value cache workloads; (2)
the layer of the cache, noting that many proxy/CDN caches are secondary or tertiary
cache layers [154]; and (3) the popularity of the service, such as the most popular objects
receiving greater volume of requests in more popular (widely-used) web applications.
Moreover, web caches often serve constantly growing datasets — new content and objects
are created every second.

In contrast, the backend of enterprise storage caches or single-node caches, such as
the page cache, often has a fixed size, not regularly observing new objects. Further, many
storage cache workloads often have scan and loop patterns [291], in which a range of
block addresses are sequentially requested in a short time. Such patterns are rare in web
cache workloads according to our observation on 1559 traces from 7 datasets.
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9.1.2 Cache eviction policies

The cache eviction algorithm, which decides which objects to store in the limited cache
space, governs the performance and efficiency of a cache. The field of cache eviction
algorithms has a rich literature [18, 36, 37, 39, 46, 64, 86, 90, 92, 105, 110, 113, 114, 115,
152, 166, 191, 193, 269, 287, 310, 320, 335, 356, 364, 393].
Increasing complexity. Most works on cache eviction algorithms focused on improv-
ing efficiency, such as LRU-k [263], TwoQ [172], SLRU [177], GDSF [64], EELRU [309],
LRFU [105], LIRS [165], ARC [227],MQ[396], CAR [33], CLOCK-pro [166], TinyLFU [109,
111], LHD[38], LeCaR [329], LRB [312], CACHEUS [291], GLCache [374], andHALP [313].
Over the years, new cache eviction algorithms have gradually convoluted. Algorithms
from the 1990s use two or more static LRU queues or use different recency metrics; al-
gorithms from the 2000s employ size-adaptive LRU queues or use more complicated
recency/frequency metrics, and algorithms from the 2010s and 2020s start to use machine
learning to select eviction candidates. Each decade brought greater complexity to cache
eviction algorithms. Nevertheless, as we show in section 9.3, while the new algorithms
excel on a few specific traces, they do not show a significant improvement (and some
are even worse) compared to the traditional ones on a large number of workloads. The
combination of limited improvement and high complexity explains why these algorithms
have not been used in production systems.
The trouble with complexity. Multiple problems come with increasing complexity.
First, complex cache eviction algorithms are difficult to debug due to their intricate logic.
For example, we find two open-source cache simulators used in previous works have two
different bugs in the LIRS [165] implementation. Second, complexity may affect efficiency
in surprising ways. For example, previous work reports that both LIRS and ARC exhibit
Belady’s anomaly [137, 332]: miss ratio increases with the cache size for some workloads.
It’s worth noting that FIFO, although simple, also suffers from this anomaly. Third,
complexity often negatively correlates with throughput performance. A more intricate
algorithm performs more computation with potentially longer critical sections, reducing
both throughput and scalability. Furthermore, many of these algorithms need to store
more per-object metadata, which reduces the effective cache size that can be used for
caching data. For example, the per-object metadata required by CACHEUS is 3.3× larger
than that of LRU. Fourth, complex algorithms often have parameters that can be difficult to
tune. For example, all the machine-learning-based algorithms include many parameters
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about learning. Although some algorithms do not have explicit parameters, e.g., LIRS,
previous work shows that the implicit ghost queue size can impact the efficiency [332].
Trade-offs in using simple eviction algorithms. Besides works focusing on improving
cache efficiency, several other works have improved cache throughput and scalability.
For example, MemC3 [118] uses Cuckoo hashing and CLOCK eviction to improve Mem-
cached’s throughput and scalability; MICA [203] uses log-structured storage, data parti-
tioning, and a lossy hash table to improve key-value cache throughput and scalability.
Segcache [372] uses segment-structured storage with a FIFO-based eviction algorithm
and leverages macro management to improve scalability. Frozenhot [276] improves cache
scalability by freezing hot objects in the cache to avoid locking. However, it’s crucial to
note that while these approaches excel in throughput and scalability, they often compro-
mise on cache efficiency due to the use of simpler, weaker eviction algorithms such as
CLOCK and FIFO.

9.1.3 lazy promotion and quick demotion

As discussed in Chapter 7, promotion and demotion are two cache internal operations
used to maintain the logical ordering between objects. lazy promotion and quick demo-
tion are two important properties of efficient cache eviction algorithms.

lazy promotion refers to the strategy of promoting cached objects only at eviction time.
It aims to retain popular objects with minimal effort. An example of lazy promotion is
adding reinsertion to FIFO. In contrast, FIFO has no promotion, and LRU performs eager
promotion – moving objects to the head of the queue on every cache hit. lazy promotion
can improve (1) throughput due to less computation and (2) efficiency due to more
information about an object at eviction.

quick demotion removes most objects quickly after they are inserted. Many previous
works have discussed this idea in the context of evicting pages from a scan [38, 172, 227,
263, 291, 309]. Recent work also shows that not only storage workloads but web cache
workloads also benefit from quick demotion [375] because object popularity follows a
power-law distribution, and many objects are unpopular.

To the best of our knowledge, our proposed cache eviction algorithm, which we
call Sieve, is the simplest one that effectively achieves both lazy promotion and quick
demotion.
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Figure 9.1: An illustration of Sieve. Note that FIFO-Reinsertion and CLOCK are different
implementations of the same algorithm. We use FIFO-Reinsertion in the illustration but
will use CLOCK in the rest of the text because it is more commonly used and is shorter.

9.2 Design and Implementation

9.2.1 Sieve Design

In this section, we introduce Sieve, a cache eviction algorithm that achieves both simplicity
and efficiency.
Data structure. Sieve requires only one FIFO queue and one pointer called “hand”. The
queue maintains the insertion order between objects. Each object in the queue uses one
bit to track the visited/non-visited status. The hand points to the next eviction candidate
in the cache and moves from the tail to the head. Note that, unlike existing algorithms,
e.g., LRU, FIFO, and CLOCK, in which the eviction candidate is always the tail object, the
eviction candidate in Sieve is an object somewhere in the queue.
Sieve operations. A cache hit in Sieve changes the visited bit of the accessed object to
1. For a popular object whose visited bit is already 1, Sieve does not need to perform
any operation. During a cache miss, Sieve examines the object pointed by the hand. If
it has been visited, the visited bit is reset, and the hand moves to the next position (the
retained object stays in the original position of the queue). It continues this process until
it encounters an object with the visited bit being 0, and it evicts the object. After the
eviction, the hand points to the next position (the previous object in the queue). While
an evicted object is in the middle of the queue most of the time, a new object is always
inserted into the head of the queue. In other words, the new objects and the retained
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objects are not mixed together.
At first glance, Sieve is similar to CLOCK/Second Chance/FIFO-Reinsertion 1. Each

algorithm maintains a single queue in which each object is associated with a visited bit
to track its access status. Visited objects are retained (also called “survived”) during an
eviction. Notably, new objects are inserted at the head of the queue in both Sieve and
FIFO-Reinsertion. However, the hand in Sieve moves from the tail to the head over time,
whereas the hand in FIFO-Reinsertion stays at the tail. The key difference is where a
retained object is kept. Sieve keeps it in the old position, while FIFO-Reinsertion inserts it
at the head, together with newly inserted objects, as depicted in Figure 9.1.

We detail the algorithm in Alg. 6. Line 1 checks whether there is a hit, and if so, then
line 2 sets the visited bit to one. In the case of a cache miss (Line 3), Lines 5-12 identify
the object to be evicted.
lazy promotion and quick demotion. Despite a simple design, Sieve effectively in-
corporates both lazy promotion and quick demotion. As described in section 9.1, an
object is only promoted at the eviction time in lazy promotion. Sieve operates in a similar
manner. However, rather than promoting the object to the head of the queue, Sieve keeps
the object at its original location. The “survived” objects are generally more popular than
the evicted ones, thus, they are likely to be accessed again in the future. By gathering the
“survived” objects, the hand in Sieve can quickly move from the tail to the area near the
head, where most objects are newly inserted. These newly inserted objects are quickly
examined by the hand of Sieve after they are admitted into the cache, thus achieving
quick demotion. This eviction mechanism makes Sieve achieve both lazy promotion and
quick demotion without adding too much overhead.

The key ingredient of Sieve is the moving hand, which functions like an adaptive filter
that removes unpopular objects from the cache. This mechanism enables Sieve to strike
a balance between finding new popular objects and keeping old popular objects. We
discuss more in section 9.4.

1Note that Second Chance, CLOCK, and FIFO-Reinsertion are different implementations of the same
eviction algorithm.
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Algorithm 6 Sieve
Require: The request x, doubly-linked queue T , cache size C, hand p

1: if x is in T then ▷ Cache Hit
2: x.visited← 1
3: else ▷ Cache Miss
4: if |T | = C then ▷ Cache Full
5: o← p
6: if o is NULL then
7: o← tail of T
8: end if
9: while o.visited = 1 do
10: o.visited← 0
11: o← o.prev
12: if o is NULL then
13: o← tail of T
14: end if
15: end while
16: p← o.prev
17: Discard o in T ▷ Eviction
18: end if
19: Insert x in the head of T .
20: x.visited← 0 ▷ Insertion
21: end if

9.2.2 Implementation

Simulation. We implemented Sieve in libCacheSim [368]. LibCacheSim is a high-
performance cache simulator designed to run cache simulations and analyze cache
traces. It supports many state-of-the-art eviction algorithms, including ARC [227],
LIRS [165], CACHEUS [291], LeCaR [329], TwoQ [172], LHD [38], Hyperbolic [48],
FIFO-Reinsertion/CLOCK [90], B-LRU (Bloom Filter LRU), LRU, LFU, and FIFO. For all
state-of-the-art algorithms, we used the configurations from the original papers.
Prototype. Because of Sieve’s simplicity, it can be implemented by changing a few lines
from a FIFO, LRU, or CLOCK cache to add, initialize, and track the “hand” pointer. The
object pointed to by the hand is either evicted or retained, depending on whether it has
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been accessed.
We implemented Sieve caching in five different open-source cache libraries: Cache-

lib [41], groupcache [50], mnemonist [247], lru-dict [213], and lru-rs [214]. These
represent the most popular cache libraries of five different programming languages:
C++, Golang, JavaScript, Python, and Rust. All five of these production cache libraries
implement LRU as the eviction algorithm of choice. Aside from mnemonist, which uses
arrays, they all use doubly-linked-list-based implementations of LRU. Adapting these
LRU implementations to use Sieve was a low effort, as mentioned earlier.

9.3 Evaluation

In this section, we evaluate Sieve to answer the following questions.
• Does Sieve have higher efficiency than state-of-the-art cache eviction algorithms?
• Can Sieve improve a cache’s throughput and scalability?
• Is Sieve simpler than other algorithms?

9.3.1 Experimental setup

Workloads. Our experiments use open-source traces from Twitter [370], Meta [3],
Wikimedia [349], TencentPhoto [394, 395], and two proprietary CDN datasets. We list
the dataset information in Table 9.1. It consists of 1559 traces that together contain 247,017
million requests to 14,852 million objects. Notably, our research is centered around web
traces. We replayed the traces in the simulator and the prototypes as a closed system
with instant on-demand fill.
Metrics. Miss ratio serves as a key performance indicator when evaluating the efficiency
of a cache system. However, when analyzing different traces (even within the same
dataset), the miss ratios can vary significantly, making direct comparisons and visualiza-
tions infeasible, as shown in Figure 9.2. Therefore, we calculate the miss ratio reduction
relative to a baseline method (FIFO in this work): mrFIFO−mralgo

mrFIFO
wheremr stands for miss

ratio. If an algorithm’s miss ratio is higher than FIFO, we use mrFIFO−mralgo
mralgo

. This metric
has a range between -1 and 1.

We measure throughput in millions of operations per second (Mops) to quantify a
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Table 9.1: Datasets used in this work. CDN 1 and 2 are proprietary, and all others are
publicly available.

trace
collections

approx
time # traces cache

type
# request
(million)

# object
(million)

CDN 1 2021 1273 object 37,460 2,652
CDN 2 2018 219 object 3,728 298
Tencent Photo [394] 2018 2 object 5,650 1,038
Wiki CDN [349] 2019 3 object 2,863 56
Twitter KV [370] 2020 54 KV 195,441 10,650
Meta KV [3] 2022 5 KV 1,644 82
Meta CDN [3] 2023 3 object 231 76

cache’s performance. To evaluate scalability, we vary the number of trace replay threads
from 1 to 16 and measure the throughput.
Testbed. Our evaluations were conducted on Cloudlab [107] and focused on two key
aspects: simulation-based efficiency and prototype-based throughput and simplicity.

We used libCacheSim [368], a high-performance cache simulator, to evaluate the
efficiency of different cache algorithms. These simulations ran on various node types at
either the Clemson or Utah sites, subject to availability.

We evaluate the throughput and simplicity using prototypes, as described in sub-
section 9.2.2. The prototype evaluations were conducted on the c6420 node from the
Clemson site. This node type has a dual-socket Intel Gold 6142 running at 2.6 GHz and
is equipped with 384 GB DDR4 DRAM. We turned off turbo boost and pinned threads to
CPU cores in one NUMA node in our evaluations. We validated the efficiency results
from the simulator and prototype using 60 randomly selected traces and found the same
conclusion.

9.3.2 Efficiency results

In this section, we compare the efficiency of different eviction algorithms. Because many
caches today use slab-based space management, in which evictions happen on objects of
similar sizes, we do not consider object size in this section. The cache sizes are determined
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Figure 9.2: The miss ratio reduction from FIFO over all traces in the dataset. This shows
the large cache using 10% of the trace footprint.

as a percentage of the number of objects in a trace. We evaluate eight cache sizes using
1559 traces from the 7 datasets and present two representative cache sizes at 0.1% and
10% of the trace footprint (the number of unique objects in the trace).
Three large datasets CDN1, CDN2 and Twitter. Figure 9.2 and Figure 9.3 show the
miss ratio reduction (from FIFO) of different algorithms across traces. The whiskers
on the boxplots are defined using p10 and p90, allowing us to disregard extreme data
and concentrate on the typical cases. At the large cache size, Sieve demonstrates the
most significant reductions across nearly all percentiles. For example, Sieve reduces
FIFO’s miss ratio by more than 42% on 10% of the traces (top whisker) with a mean of
21% on the CDN1 dataset using the large cache size (Figure 9.2a). As a comparison, all
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Figure 9.3: The miss ratio reduction from FIFO over all traces in the dataset. This shows
the small cache using 0.1% of the trace footprint.

other algorithms have smaller reductions on this dataset. For example, CLOCK/FIFO-
Reinsertion, which is conceptually similar to Sieve, can only reduce FIFO’s miss ratio
by 15% on average. Compared to advanced algorithms, e.g., ARC, Sieve reduces ARC
miss ratio by up to 63.2% with a mean of 1.5%. We remark that a 1.5% mean miss ratio
reduction on the huge number of traces is significant. For example, ARC only reduces
LRU’s miss ratio by 6.3% on average (not shown). A similar observation can be made
on the CDN2 dataset. Although LHD is the best algorithm on the Twitter dataset, Sieve
scores second and outperforms most other state-of-the-art algorithms.

When the cache is very small, TwoQ and LHD sometimes outperform Sieve. This is
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(b) Small cache

Figure 9.4: Miss ratio reduction on Meta (KV + CDN), Wiki CDN, and Tencent Photo
CDN datasets. The different opacity of the same color indicates multiple traces from the
dataset. Some negative results are not shown.

because TwoQ and LHD can quickly remove newly-inserted low-value objects similar
to Sieve. The primary reason for Sieve’s relatively poor performance is that new objects
cannot demonstrate their popularity before being evicted when the cache size is very
small. A similar problem also happens with ARC and LIRS. ARC’s adaptive algorithm
sometimes shrinks the recency queue to very small and yields a high miss ratio. LIRS,
which uses a 1% queue for new objects, suffers the most when the cache size is small, as
we see its miss ratio on some traces higher than FIFO. In contrast, TwoQ does not suffer
from the small cache sizes because it reserves a fixed 25% of the cache space for new
objects, preventing overly aggressive demotion. However, we remark that the production
miss ratios reported in previous works [25, 154, 370, 372] are close to the miss ratios we
observe at the large cache size.

The secret behind Sieve’s efficiency is the ability to quickly remove newly-inserted
unpopular objects (quick demotion), the ability to sift out old unpopular objects, and the
balance between new and old objects. We discuss more in section 9.4.
Four small datasets: Meta KV, Meta CDN, Wiki, and TencentPhoto. Because each
dataset contains fewer than ten traces, we use scatter plots to compare the algorithms.
Figure 9.4 demonstrates that Sieve outperforms all other algorithms on all four datasets
at the large cache size. When the cache size is small, the observation is similar to that
made in Figure 9.2. Sieve is the best algorithm on the Wiki dataset. TwoQ and LHD are
the best on Meta and TencentPhoto datasets. Although not the best, Sieve remains highly
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Figure 9.5: Best-performing algorithms on each dataset. Table 9.1 shows the number of
traces per dataset.

competitive.
Best-performing algorithm per dataset. We have demonstrated that Sieve provides
larger miss ratio reductions across traces than state-of-the-art algorithms. For a more
quantitative comparison, Figure 9.5 shows the fraction of traces each algorithm performs
the best.

With a large cache size, Sieve outperforms all other algorithms on the Tencent Photo,
Wiki, andMeta KV datasets. On the CDN1 and CDN2 datasets, Sieve is the best algorithm
on 48% and 38% of the 1273 and 219 traces. On the Twitter dataset, although Sieve is the
best on only 30% of the traces, it is important to note that no other algorithms are the best
on more than 18% of the traces. When using the small cache size, Sieve, TwoQ is the best
algorithm winning on the two Meta datasets. On the other datasets, Sieve and LHD have
similar shares being the best-performing algorithms. The reason for the observation is
similar to that previously explained.

9.3.3 Throughput performance

Besides efficiency, throughput is the other important metric for caching systems. Al-
though we have implemented Sieve in five different libraries, we focus on Cachelib’s
results. Because all other libraries implement strict LRU and do not consider object sizes,
evaluations yield the same miss ratio as our simulation. Moreover, strict LRU is not
scalable, as we show next.
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Figure 9.6: Throughput scaling with CPU cores on two KV-cache workloads.

Figure 9.6 shows how throughput growswith the number of trace replay threads using
two production traces from Meta and Twitter. To better emulate real-world deployments
in which the working set size (dataset size) grows with the hardware specs (#cores and
DRAM sizes), we scale the cache size and working set size together with the number of
threads. To scale the working set size, each thread plays the same trace with the object id
transformed into a new space. For example, the benchmark sends 4×more requests to
4× larger cache size at 4 threads compared to the single-thread experiment. We set the
cache size to be 4× nthread GB for both traces, which gives miss ratios of 7% (Meta) and
2% (Twitter). We remark that the miss ratio is close to previous reports [25, 372].

The LRU and TwoQ in Cachelib use extensive optimizations to improve the scalability.
For example, objects that were promoted to the head of the queue in the last 60 seconds
are not promoted again, which reduces lock contention without compromising the miss
ratio. Cachelib further adds a lock combining technique to elide expensive coherence and
synchronization operations to boost throughput [96]. As a result of the optimizations,
both LRU and TwoQ show impressive scalability results compared to the unoptimized
LRU: the throughput is 6× higher at 16 threads than using a single thread on the Twitter
trace. As a comparison, unoptimized LRU’s throughput plateaus at 4 threads.

Compared to these LRU-based algorithms, Sieve does not require “promotion” at
each cache hit. Therefore, it is faster and more scalable. At a single thread, Sieve is 16%
(17%) faster than the optimized LRU (TwoQ) and on both traces. At 16 threads, Sieve
shows more than 2× higher throughput than the optimized LRU and TwoQ on the Meta
trace.
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Table 9.2: Lines of code modification required to add Sieve to a production cache library.

Cache library Language Lines
groupcache [50] Golang 21
mnemonist [247] Javascript 12

lru-rs [214] Rust 16
lru-dict [213] Python + C 21

Table 9.3: Lines of code (excluding comments and empty lines) and per-object metadata
size required to implement each algorithm in our simulator. We assume that frequency
counter and timestamps use 4 bytes and pointers use 8 bytes.

Algorithm cache hit eviction insertion metadata size
FIFO 1 4 3 16B
LRU 5 4 3 16B
ARC 64 108 20 17B
LIRS 96 120 64 17B
LHD 192 81 64 13B

LeCaR 72 76 20 40B
CACHEUS 168 140 150 54B

TwoQ 28 16 8 17B
Hyberbolic 4 20 4 16B

CLOCK 4 9 3 17B
Sieve 4 9 3 17B

9.3.4 Simplicity

Prototype implementations. Sieve not only achieves better efficiency, higher through-
put, and better scalability, but it is also very simple. We chose the most popular cache
libraries/systems from five different languages: C++, Go, JavaScript, Python, and Rust,
and replaced the LRU with Sieve.

Although different libraries/systems have different implementations of LRU, e.g.,
most use doubly-linked-list, and some use arrays, we find that implementing Sieve is
very easy. Table 9.2 shows the number of lines (not including the tests) needed to replace
LRU— all implementations require no more than 21 lines of code changes 2.

2While most LRU implementations are straightforward to adapt for Sieve, CacheLib is an exception.
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Figure 9.8: Left: illustration of the sifting process. Right: Miss ratio over time for two
traces. The gaps between Sieve’s miss ratio and others enlarge over time.

Advanced algorithms in simulator. Most of the complex algorithms we evaluated in
subsection 9.3.2 are not implemented in production systems. Therefore, we compare the
lines of code needed to implement cache hit, insert, and evict in our simulator. Although
we implemented our own linked list and hash table data structures in C for our simulator,
we do not include the code lines related to list and hash table operations, i.e., appending
to the list head or inserting to the hash table requires one line.

Cachelib is highly optimized for LRU-based algorithms. Many optimizations are not needed for Sieve,
making it impractical to quantify code modifications for integration with Sieve. Therefore, it is not included
in Table 9.2.
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Table 9.3 shows that FIFO requires the fewest number of lines to implement. On top of
FIFO, implementing LRU adds a few lines to promote an object upon cache hits. CLOCK
and Sieve require close to 10 lines to implement the eviction function because both need
to find the first object that has not been visited. However, we remark that Sieve is simpler
than LRU and CLOCK because Sieve does not require moving objects to the head of the
queue in either hit or miss (evict). Besides these, all other algorithms require one to two
orders more lines of code to implement the three functions.
Per-object metadata. In addition to the implementation complexity, we also quantified
the per-object metadata needed to implement each algorithm. FIFO does not require
any metadata when implemented using a ring buffer. However, such an implementation
does not support overwrite or delete. So common FIFO implementation also uses a
doubly-linked list with 16 bytes of per-object metadata similar to LRU. CLOCK and Sieve
are similar, both requiring 1-bit to track object access status. When implemented using a
doubly linked list, they use 17 bytes per-object metadata. Compared to Sieve, advanced
algorithms often require more per-object metadata. Many key-value cache workloads
have objects as small as 10s of bytes [226, 370], and large metadata wastes the precious
cache space.
ZERO parameter. Besides being easy to implement and having less metadata, Sieve also has
no parameters. Except for FIFO, LRU, CLOCK, and Hyperbolic, all other algorithms have
explicit or implicit parameters, e.g., the sizes of queues in LIRS, the learning rate in LeCaR
and CACHEUS, and the decay rate and age granularity in LHD. Note that although ARC
has no explicit parameters, its adaptive algorithm uses implicit parameters in deciding
when and how much space to move between the queues. As a comparison, Sieve has no
parameter and requires no tuning.

9.4 Distilling Sieve’s Effectiveness

Our empirical evaluation shows that Sieve is simultaneously simple, fast, scalable, and
efficient. In a well-trodden field like cache eviction, Sieve’s competitive performance was
a genuine surprise to us as well. We next report our analysis that seeks to understand the
secrets behind its efficiency.
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9.4.1 Visualizing the sifting process

The workhorse of Sieve is the “hand” that functions as a sieve: it sifts through the cache
to filter out unpopular objects and retain the popular ones. We illustrate this process in
Figure 9.7, where each column (queue) represents a snapshot of the cached objects over
time from left to right. As the hand moves from the tail (the oldest object) to the head
(the newest object), objects that have not been visited are evicted – the same sweeping
mechanism that underlies CLOCK [67, 90]. For example, after the first round of sifting,
objects at least as popular as A remain in the cache while others are evicted. The newly
admitted objects are placed at the head of the queue — much like the CLOCK policy, but
a departure from CLOCK, which does in-place replacements to emulate LRU. During the
subsequent rounds of sifting, if objects that survived previous rounds remain popular,
they will stay in the cache. In such a case, since most old objects are not evicted, the
eviction hand quickly moves past the old popular objects to the queue positions close to
the head. This allows newly inserted objects to be quickly assessed and evicted, putting
greater eviction pressure on unpopular items (such as “one-hit wonders”) than LRU
and its variations [227]. As previous work has shown [38, 154, 375], quick demotion is
crucial for achieving high cache efficiency.

Figure 9.8a and Figure 9.8b show the cumulative miss ratio over time of different
algorithms on two representative production traces. After the cache is warmed up, the
miss ratio gaps between Sieve and other algorithms widen over time, supporting the
interpretation that Sieve indeed sifts out unpopular objects and retains popular ones. A
similar observation can be seen in Figure 9.11a.

9.4.2 Analyzing the sifting process

We now analyze the popularity retention mechanism in Sieve. To clarify the exposition,
suppose the Sieve cache can fit C equally sized objects. Since Sieve always inserts new
objects at the head, and objects that are retained remain in their original positions within
the queue, the algorithm implicitly partitions the cache between new and old objects.
This partition is dynamic, allowing Sieve to strike a balance between exploration (finding
new popular objects) and exploitation (enjoying hits on old popular objects).

Sieve performs sifting bymoving the hand from the tail to the head, evicting unpopular
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objects along the way, which we call one round of sifting. We use r to denote the number
of rounds. We first enumerate the queue positions p from the tail (p = 0) to the head
(p = C − 1). We then further denote that an object at position p in round r is examined
(during eviction) or inserted at time T r

p . Note that T effectively defines a logical timer
for the examined objects: whenever an object is examined, T increases by 1, regardless
of whether the examined object is evicted or retained. In addition, T changes once each
round for an old object (retained from previous rounds).

For an old object x at position p, we define the “inter-examination time” Ie(p
r) =

T r
p − T r−1

p′ where p′ was the position of x in round r − 1. Clearly, p′ ≥ p. For a new object
inserted in the current round, the inter-examination time is defined as the time between
its examination and insertion. We further define an old object x’s “inter-arrival time”
Ia(x

r) as the time, measured again in the number of objects examined, between the first
request to the x in round r and the last request to x in round r − 1. For a new object,
the inter-arrival time is the time between its insertion and the second request. If an old
object is not requested in the last round or a new object does not have a second request,
its inter-arrival time is infinite.

In round r, consider two consecutive retained objects x1 and x2 at position p1 and
p2 = p1 + 1. The inter-examination times are Ie(pr1) = T r

p1
− T r−1

p′1
and Ie(p

r
2) = T r

p2
− T r−1

p′2
,

respectively. The transition yields two invariants:
T r
p2
− T r

p1
= 1

T r−1
p′2
− T r−1

p′1
≥ 1

The first equation follows from x1 and x2 being consecutively retained objects; the second
inequality expresses that other evictions may have taken place between x1 and x2 in the
previous round. Together, these imply that Ie(pr1) ≥ Ie(p

r
2). The result generalizes further:

for any two retained old objects in the queue, the object closer to the head has a smaller
inter-examination time.

Moreover, if an object is retained, its inter-arrival time must be no greater than its
inter-examination time. Therefore, for any retained object x at position px, its inter-arrival
time Ia(xr)must be smaller than the tail object’s inter-examination time:

Ia(x
r) ≤ Ie(p

r
x) ≤ Ie(p

r
0) (9.1)

Using the commonly assumed independent reference model [74, 122, 157, 158] with a
Poisson arrival, we can expect any retained object to be more popular than some dynamic
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Figure 9.9: Miss ratio and popular object ratio on a Zipfian dataset (α = 1.0).

threshold set by the tail object’s inter-examination time Ie(pr0). Since evicting an object
keeps the hand pointer at its original position (relative to the tail), the more objects
are evicted during a round, the longer the inter-examination time. As a result, Sieve
effectively adapts the popularity threshold so that more objects are retained in the next
round.

Following our sifting process metaphor, the mesh size in Sieve is determined by the
tail object’s inter-examination time Ie(pr0), which is dynamically adjusted based on object
popularity change. If too few objects are retained in one round (mesh size too small),
then we will have an increased tail inter-examination time Ie(pr0) (a larger mesh size) in
the next round.

9.4.3 Deeper study with synthetic workloads

Production trace workloads are often too complex and dynamic to analyze. One consis-
tent finding from past workload characterization work, however, is that object popularity
in web cache workloads invariably follows a heavy-tailed power-law (generalized Zip-
fian) distribution [52, 370]. Therefore, we opted for synthetic power-law workloads for
our study. It allows us to easily modify workload features to better understand their
impact on performance. Using these synthetic workloads, we further scrutinize SIEVE’s
effectiveness.
Miss ratio over size. Figure 9.9a displays the miss ratio of LRU, LFU, ARC, and Sieve at
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Figure 9.10: Left two: miss ratio and popular object ratio on Zipfian workloads with
different α. Right: hand position in the cache over time in Zipfian workloads.

different cache sizes. Notably, LFU, ARC, and Sieve all exhibit lower miss ratios than LRU,
demonstrating their efficiency. Despite being considered optimal for synthetic power-law
workloads, LFU performs similarly to ARC and is visibly worse than Sieve. This is because
objects with medium popularity, such as objects with ranks around the cache size C, are
only requested once before their eviction. LFU cannot distinguish the true popularity of
these objects and misses out on an opportunity for better performance. As a comparison,
both ARC and Sieve can quickly remove new and potentially unpopular objects, which
allows cached objects to enjoy more time in the cache to demonstrate their popularity.
Between the two algorithms, Sieve further extends the tenure of these objects in the cache
because when the hand sweeps through the newly inserted objects, the objects closer to
the head must have strictly shorter inter-arrival times (expected to be more popular) to
survive.
Popular object ratio over size. To capture how different algorithms manage popular
objects, we define a metric called “popular object ratio”. Under the assumption of a static
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and known popularity distribution, the optimal caching policy retains the most popular
content within the cache at all times. Given a cache size C and a workload following
a power-law distribution, the popular objects are the C most frequent objects in the
workload, denoted by H . The popular ratio of objects in the cache at time t is calculated
by It =

|H∩At|
C

where At denotes the cache contents at time t.
Figure 9.9b shows the popular object ratio at different cache sizes. LRU evicts objects

based on recency, which only weakly correlates with popularity. In this scenario, LRU
stores the least number of popular objects. LFU stores slightly more “popular objects”
than ARC. Sieve, however, successfully filters out unpopular objects from the cache.
Varying the popularity skew. Figure 9.9 shows a distribution with Zipfian skewness
α = 1. We further studied how different concentration of popularity affects Sieve’s
effectiveness. Due to space restrictions, we focus on results with large cache sizes for the
remainder of this subsection. Results using the small cache size are either similar or do
not reveal interesting patterns.

Figure 9.10a and Figure 9.10b demonstrate the impact of varying skew on miss and
popular object ratios. As skew increases, making popular objects more prominent, it
becomes easier to identify and cache the popular objects, increasing the popular object
ratio and reducing the miss ratio for all tested algorithms. Among ARC, LFU, and Sieve,
we observe that Sieve always shows a higher popular ratio with a lower miss ratio across
skewness, indicating the efficiency of Sieve is not limited to very skewed workloads.

Figure 9.10c illustrates the hand position in the Sieve cache over time, advancing
towards the head with each retained object and pausing during evictions. Therefore, the
more objects are retained, the faster the movement. We observe that the handmoves more
slowly in the first round than in the later rounds because that is when many unpopular
objects are evicted. In subsequent rounds, the hand lingers at positions close to the head
for most of the time because Sieve keeps a new object at position p only if it is more
popular (shorter inter-arrival time) than the object at position p− 1. In other words, Sieve
performs quick demotion [351].

In more skewed workloads, the hand moves quickly due to early arrival and higher
request volumes for popular objects, allowing Sieve to cache most popular objects by the
end of the first round. Consequently, the hand rapidly transitions from tail to head with
fewer evictions and spends less time near the head, as new objects are more likely to be
retained, hastening its progress. Nevertheless, the time of each round varies depend-

216



0.0 0.5 1.0
Logical Time

0.15

0.20

0.25

0.30

M
iss

 R
at

io

ARC
SIEVE

LRU
LFU

(a) Interval miss ratio

0 0.5 1
Logical Time

0.0

0.2

0.4

0.6

0.8

Po
pu

la
r O

bj
ec

ts
 R

at
io

 

SIEVE
LFU
ARC
LRU

(b) Popular object ratio over time

Figure 9.11: Interval miss ratio and popular object ratio over time on a workload con-
structed by connecting two different Zipfian workloads (α = 1).

ing on the frequency of encountering potentially popular objects, highlighting Sieve’s
adaptability to workload shifts. When new popular objects appear, the hand accelerates,
replacing existing cached objects with the newcomers by giving less time to set their
visited bit.
Sieve is adaptive. To visualize Sieve’s adaptivity via the sifting process, we created a new
workload by joining two Zipfian (α = 1.0) workloads that request different populations
of objects. Figure 9.11 shows the interval miss ratio (per 100,000 requests) over time on
this conjoined workload. The changeover happens at the 50% midway time mark. We
observe that the interval miss ratio of LFU skyrockets to nearly 100% (beyond figure
bounds) since new objects cannot replace the old objects. Relative to LRU and ARC,
Sieve’s miss ratio spike is larger because it takes time for the hand to move back to the tail
before it can evict old objects. However, Sieve’s spike is invisible when the cache size is
small (not shown). With respect to the interval miss ratio spike, we observe the popular
object ratio of all algorithms (the curves overlap) dropping to 0 when the workload
changes at the midway point. Whereas LFU never recovers from the drop, the popular
object ratios in all other algorithms quickly recover to large proportions. Finally, the
figures corroborate our interpretation of the sifting process: Sieve’s miss ratio drops over
time, while the fraction of popular objects increases over time.
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Figure 9.12: Average number of instructions per request when running LRU, FIFO, and
Sieve caches. The top number denotes the miss ratio.

9.5 Sieve as a Turn-key Cache Primitive

9.5.1 Cache primitives

Beyond being a cache eviction algorithm, Sieve can serve as a cache primitive for designing
more advanced eviction policies. To study the range of such policies, we categorize
existing cache eviction algorithm designs into four main approaches. (1) We can design
simple and easy-to-understand eviction algorithms, such as FIFO queues, LRU queues,
LFU queues, and Random eviction. We call these simple algorithms cache primitives.
Sieve falls under this category. (2)We can improve the cache primitives. For example,
FIFO-Reinsertion is designed by adding reinsertion to FIFO; LRU-K [263] is designed
by changing the recency metric in LRU. (3)We can compose multiple cache primitives
with objects moved between them. For example, ARC, SLRU, and MQ use multiple
LRU queues. (4) We can run multiple cache primitives and craft a decision-maker to
select eviction candidates suggested by the primitives. For example, LeCaR [329] uses
reinforcement learning to choose between the eviction candidates from LRU and LFU;
HALP [313] uses machine learning (MLP) to choose one object from the eight objects at
the LRU tail.

Having an efficient cache primitive not only provides an effective and simple eviction
algorithm but also enables other approaches to design more efficient algorithms. The
ideal cache primitive is simultaneously (1) simple, (2) efficient, and (3) fast — in terms
of high throughput. For example, FIFO and LRU meet these requirements and are
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Figure 9.13: Impact of replacing LRU with Sieve in advanced algorithms (a,b). The
potential of FIFO, LRU, and Sieve when endowed with foresight (c).

frequently used to construct more advanced algorithms. However, they are less efficient
than complex algorithms.

While we have shown that Sieve is simple, efficient, and fast in section 9.3, to further
understand Sieve as a cache primitive, we compare the number of instructions needed
to run FIFO, LRU, and Sieve caches. We remark that the number of instructions may
not necessarily correlate with latency or throughput but rather a rough metric of CPU
resource usage. We used perf stat to measure the number of instructions for serving
power-law workloads (100 million requests, 1 million objects) in our simulator. We then
deduct the simulator overhead by measuring a no-op cache, which performs nothing on
cache hits and misses.

Figure 9.12 shows that Sieve generally executes fewer instructions per request than
FIFO and LRU, a difference accentuated in skewed workloads and larger cache sizes.
Compared to LRU, Sieve requires fewer instructions since Sieve needs only to check and
possibly update a Boolean field on cache hits, which is much simpler than moving an
object to the head of the queue. Besides LRU, Sieve also requires fewer instructions than
FIFO because of the difference in miss ratios. Because Sieve has a lower miss ratio than
FIFO, fewer objects need to be inserted due to cache misses, leading to fewer instructions
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per request on average. The only exception is when Sieve and FIFO have similar miss
ratios, in which case, FIFO executes fewer instructions than Sieve. Overall, Sieve requires
up to 40% and 24% fewer instructions than LRU and FIFO, respectively.

9.5.2 Turn-key cache eviction with Sieve

As a cache primitive, Sieve can facilitate the design of more advanced eviction algorithms.
To understand the benefits of using a better cache primitive, we replaced the LRU in
LeCaR, TwoQ, and ARC with Sieve. Note that for ARC, we only replace the LRU for
frequent objects.

We evaluate these algorithms on all traces and show the miss ratio reduction(from
FIFO) in Figure 9.13a and Figure 9.13b. Compared to Sieve, LeCaR has much lower
efficiency; however, when replacing the LRU in LeCaR with Sieve, it significantly reduces
LeCaR’s miss ratio by 4.5% on average. TwoQ and ARC achieve efficiency close to
Sieve; however, when replacing the LRU with Sieve, the efficiency of both algorithms
gets boosted. For example, ARC-Sieve achieves the best efficiency among all compared
algorithms at both small and large cache sizes. It reduces ARC’s miss ratio by 3.7% on
average and up to 62.5% on the large cache size (recall that ARC reduces LRU’s miss ratio
by 6.3% on average). ARC-Sieve also reduces Sieve’s miss ratio by an average of 2.4% and
up to 40.6%.

To understand the potential in suggesting eviction candidates, we evaluated the
efficiency of FIFO, LRU, and Sieve, granting them access to future request data. Each
eviction candidate is either evicted or reinserted, depending on whether the object will
be requested soon. We assume that an object will be requested soon if the logical time
(number of requests) till the object’s next access is no more than C

mr
, where C is the

cache size and mr is the miss ratio. This mimics the case that we have a perfect decision-
maker choosing between the eviction candidates suggested by multiple simple eviction
algorithms. Figure 9.13c shows that when supplied with this additional information,
Sieve achieves the lowest miss ratio on 97% and 94% of the 1559 traces at the large and
small cache size, respectively.

These results highlight the potential of Sieve as a powerful cache primitive for design-
ing advanced cache eviction algorithms. Leveraging lazy promotion and quick demotion,
Sieve not only performswell on its own but also bolsters the performance of more complex
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Figure 9.14: Byte miss ratio across all CDN traces.
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Figure 9.15: Byte miss ratios at different cache sizes on two Wiki CDN traces used in LRB
evaluation.

algorithms.

9.6 Discussion

9.6.1 Byte miss ratio

To gauge SIEVE’s efficiency in reducing network bandwidth usage in CDNs, we analyzed
its byte miss ratio by considering object sizes. We chose the cache size at 10% and 0.1%
of the trace footprint in bytes. Figure 9.14a and Figure 9.14b show that Sieve presents
larger byte miss ratio reductions at ALL percentiles than state-of-the-art algorithms at
both cache sizes, showcasing its high efficiency in CDN caches.
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We further compared Sieve with LRB [312], the state-of-the-art machine-learning-
based cache eviction algorithm optimized for byte miss ratio. Due to LRB’s long run
time, we only evaluated LRB on the two open-source Wiki traces provided by the authors.
Figure 9.15a and Figure 9.15b show that LRB performs better at small cache sizes (1%
and 2%), while Sieve excels at larger cache sizes. We conjecture that at a small cache
size, the ideal objects to cache are popular objects with many requests, which LRB can
more easily identify because they have more features (most of LRB’s features are about
the time between accesses to an object). When the cache size is large, most objects in
the cache have few requests. Without enough features, a learned model can provide
little benefits [375, 376]. In summary, compared to complex machine-learning-based
algorithms, Sieve still has competitive efficiency.

9.6.2 Sieve is not scan-resistant

Besides web cache workloads, we evaluated Sieve on some block cache workloads. How-
ever, we find that Sieve sometimes shows a miss ratio higher than LRU. The primary
reason for this discrepancy is that SIEVE is not scan-resistant. In block cache workloads,
which frequently feature scans, popular objects often intermingle with objects from scans.
Consequently, both types of objects are rapidly evicted after insertion. Since Sieve does
not use a ghost cache— a shadow cache that keeps track of recently evicted items to make
smarter future eviction decisions — it cannot recognize the popular objects when they
are requested again. This problem is less severe on large caches, but when the cache size
is small, we observe that having a ghost is critical to being scan-resistant. We conjecture
that not being scan-resistant is probably the reason why Sieve remained undiscovered
over the decades of caching research, which has been mostly focused on page and block
accesses.

9.6.3 TTL-friendliness

Time-to-live (TTL) is a common feature inweb caching [370, 372]. It specifies the duration
during which an object can be used. After the TTL has elapsed, the object expires and
can no longer be served to the user, even if it may still be cached. Most existing eviction
algorithms today do not consider object expiration and require a separate procedure, e.g.,
scanning the cache, to remove expired objects. Similar to FIFO, Sieve maintains objects
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in insertion order, which allows objects in TTL-partitioned caches, e.g., Segcache [372],
to be sorted by expiration time. This provides a convenient method for discovering and
removing expired objects.
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Figure 9.16: Byte miss ratio across all CDN traces.

9.6.4 Comparing S3-FIFO and SIEVE

Both S3-FIFO and SIEVE use simple techniques to achieve lazy promotion and quick
demotion. In this section, we compare the efficiency of the ARC, S3-FIFO, SIEVE and
S3-SIEVE (using SIEVE as the main cache eviction algorithm in S3-FIFO). Figure 9.16
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shows the miss ratio distribution on different datasets.
We observe that SIEVE is visibly worse than both ARC and S3-FIFO on block cache

workloads, i.e., CloudPhysics, MSR, AlibabaBlock, and TencentBlock. As explained in
Section 9.6.2, SIEVE is not scan-resistant, while block cache workloads often have many
scan access patterns, which is why SIEVE shows higher miss ratios on these datasets.
When replacing the FIFO-Reinsertion queue in S3-FIFO with SIEVE, the new algorithm
S3-SIEVE significantly outperforms SIEVE on these four datasets; however, its miss ratio
is still slightly higher than S3-FIFO. This is because the small FIFO queue has filtered
out most of the scan requests, which avoids SIEVE’s weakness. However, both the small
queue and SIEVE perform quick demotion. The combination does not bring extra benefits.

On the web cache workloads, we find that SIEVE achieves similar performance as
ARC but still slightly underperforms S3-FIFO, especially at the small cache size. This is
because at the small cache size, the quick demotion in SIEVEmight be too aggressive, and
there is no way to control this since SIEVE has no parameter. When equipping S3-FIFO
with SIEVE, we find that S3-SIEVE slightly outperforms S3-FIFO on web cache workloads.
This could come from the fact that the working set changes quickly in web caches, and
the 10% small FIFO queue in S3-FIFO is too large and cannot evict unpopular objects
quickly enough.

Overall, SIEVE can achieve state-of-the-art efficiency with a miss ratio close to ARC.
However, it is less robust than S3-FIFO and shows a higher miss ratio, especially on block
cache workloads. However, the main advantage of SIEVE is the simplicity and scalability
that allows it to serve as a primitive.

9.7 Chapter Summary

This chapter describes an easy improvement (??) to a decades-old algorithm (FIFO-
Reinsertion) that materially improves its efficiency across a wide range of web cache
workloads. Instead of moving the to-be-evicted object that has been accessed to the head
of the queue, Sieve keeps it in its original position. It should be noted that both Sieve and
FIFO-Reinsertion insert new objects at the head of the queue. We implemented Sieve in
five production cache libraries, which required fewer than 20 lines of change on average,
underscoring the ease of real-world deployment.
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Despite a simple design, Sieve can quickly remove unpopular objects from the cache,
achieving comparatively high efficiency compared to state-of-the-art algorithms. By
experimentally evaluating Sieve on 1559 traces from five public and two proprietary
datasets, we show that Sieve achieves similar or higher efficiency than 9 state-of-the-art
algorithms across traces. Compared to ARC [227], Sieve reduces miss ratio by up to 63.2%
with a mean of 1.5%. As a comparison, ARC reduces LRU’s miss ratio by up to 33.7%
with a mean of 6.7%. Moreover, compared to the best of all algorithms, Sieve has lower
miss ratio on over 45% of the 1559 traces. In comparison, the runner-up algorithm, TwoQ,
only outperforms other algorithms on 15% of the traces.

Sieve’s design eliminates the need for locking during cache hits, resulting in a boost
in multi-threaded throughput. Our prototype implementation in Cachelib [95] demon-
strates that Sieve achieves twice the throughput of an optimized LRU implementation
when operating with 16 threads.

Through empirical evidence and analysis, we illustrate that Sieve’s efficiency stems
from sifting out unpopular objects over time. Sieve transcends a single standalone algo-
rithm— it can also be embedded within other cache policies to design more advanced
algorithms.

This chapter makes the following contributions.
• It presents a simple, fast, and surprisingly efficient cache eviction algorithm, SIEVE,

for web caches.
• It demonstrates Sieve’s simplicity by implementing it in five production cache

libraries by changing less than 20 lines of code on average.
• It shows that Sieve outperforms all state-of-the-art eviction algorithms on more

than 45% of a large dataset of 1559 traces.
• It illustrates Sieve’s scalability usingCachelib-based implementation, which achieves
17% and 125% higher throughput than optimized LRU at 1 and 16 threads.

• It shows how Sieve, as a turn-key cache primitive, opens new opportunities for
designing advanced eviction algorithms, e.g., replacing the LRU in ARC, TwoQ,
and LeCaR with Sieve.
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Part IV

Wrapping Up
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Chapter 10

Lessons learned and looking forward

10.1 Lessons learned about industry adoption

Several of the works discussed in this thesis, i.e., Segcache and S3-FIFO, have been
deployed in real systems. However, some other works have not, e.g., GL-Cache and C2DN.
When looking back onwhat helps the community adopt the projects, an important factor is
the intensity and criticality of the pain point being solved. The large-scale measurements
that I have performed have been instrumental to the designs. For example, Segcache
(Chapter 4) leverages the insights from the workload analysis (Chapter 3) and prioritizes
TTL expiration and small object metadata overhead. Moreover, S3-FIFO (Chapter 8)
leverages the insights from the eviction algorithm measurement (Chapter 7), which
shows that quickly evicting new objects is important. While measurement is critical, in
essence, it is crucial to choose the right problem to work on.

Another interesting observation on adoption is that a new system design is often
very hard for the community to adopt. This is mainly because new system design often
requires significant re-implementation or sometimes starting from scratch. The risk of
running less mature software often outweighs the efficiency gain. As a comparison, new
algorithms are often easier to adopt because they often require smaller changes to existing
systems.

229



10.2 Future work: Next-gen cache management systems

The works presented in this thesis demonstrated that we can improve both space man-
agement and cache replacement of a cache management system to achieve high efficiency.
With these new designs, we can achieve high efficiency and scalability with simple design,
but is this the end?

10.2.1 Better cache replacement with machine learning

Chapter 7, Chapter 8, and Chapter 9 demonstrate that simple primitives are sufficient
to design efficient and scalable cache eviction algorithms that outperform state-of-the-
art designs. However, they use static queues with magic parameters, which I found
suboptimal for some workloads, can we use machine learning to help with choosing the
parameters?

Chapter 6 shows a co-design of storage and eviction — using group-level learning
on segment-structured caches. Although the amortization allows GL-Cache to have a
lower storage and computation overhead compared to traditional object-level learning,
performing inference at runtime, i.e., at eviction time, is not ideal for production because
of two reasons. First, the amount of computation needed by inference scales with the
request rate and miss ratio, which may lead to a death spiral. Request rate and miss
ratio increase often correlate with the increase of system load; spending more CPU cycles
on training and inference can potentially lead to cascading failure. Second, caching is
a lightweight process, even the computation of simple model inference, e.g., gradient-
boosting tree, is a significant overhead. In most production systems, such overhead is not
acceptable.

Besides the overhead problem in existing learned caches, there are two other issues —
interpretability and robustness. Having the ability to explain the decision of a learned
cache is important for critical infrastructure components such as caching systems because
the failure of caching systems often leads to cascading failure [129, 216]. However,
existing learned caches, including LRB [312] and GL-Cache, cannot be explained or
reasoned about. First, these learned caches all use the machine learning model as a black
box, the decisions of which cannot be interpreted. Second, existing learned caches learn
the reuse distances of individual objects, which are inherently hard to predict. Moreover,
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the metric we care about, miss ratio, is the aggregated results of many evictions and has
no relationship with the prediction of an individual object. For example, a learned cache
predicting when an object will be requested in the future may use mean squared error as
the loss function, which minimizes the predicted reuse distance and true reuse distance.
However, two models achieving the same miss squared error often do not provide the
same miss ratio. Therefore, future work can design more interpretable learned caches
that optimize for the end-to-end miss ratio.

Besides interpretability, it is also important for the learned cache to be robust. Existing
learned caches all require frequent retraining because they learn short-term (local) access
patterns. For example, the reuse distance of an object during day and night can be
significantly different, which dictates the need for frequent retraining. However, learning
short access patterns not only poses a huge overhead but also renders the learned cache
less robust — a small fluctuation in access pattern can cause unnecessary adaptations that
hurt the miss ratio. Therefore, future work can look into the design of learned caches with
robustness. One possible direction would be learning high-level patterns and predicting
high-level parameters, such as the queue size in S3-FIFO. In addition, although multiple
works claimed that adapting to workload changes is important [291, 312], it is unclear
whether real-time adaptations are necessary or even helpful in caching. I conjecture that
for most large production systems, the workloads are often stable enough that they do
not require quick adaptations in real time. Therefore, we only need to periodically learn
the parameters.

10.2.2 Caching on flash

DRAM is both more expensive and also emits significantly more embodied and opera-
tional carbon per GB compared with SSDs [337]. For the sustainability of our society, it is
increasingly important to move some of the DRAM usage to SSD, especially considering
that SSDs today can often provide high bandwidth in the same order as a single DRAM
DIMM.

Several cache system and algorithm designs discussed in this thesis pave the way
towards better flash-based caches. For example, Chapter 4 describes Segcache, a segment-
structured key-value cache. Its design of segments avoids overwrites (in-place updates)
and transforms small object writes to large segment writes. This benefits most of the
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external storage devices, such as persistent memory, flash and spinning disk. In addition,
S3-FIFO uses a FIFO-only solution for caching, which is also suitable for flash caches
because all FIFO writes are sequential.

Existing works focus on a specific workload type, e.g., small objects [225], photo
distribution [320]. Future works can look into both more general multi-tenanted caching
workloads as well as more specific application workloads and design better flash caches
with high performance and endurance.

10.3 The missing components of caching

10.3.1 Cache consistency

“There are two hard problems in computer science: naming things, cache invalidation,
and off-by-one error.”

–Phil Karlton
This thesis focuses on the efficiency and scalability of software caches. However, another
hard problem in caching is consistency. Because caches are increasingly deployed as a
distributed cluster, inconsistency between the cache and the backend is not rare. Moreover,
invalidating derived data is often non-trivial. For example, some computed results may
need to be invalidated when the underlying data used for computation has changed.

In key-value caches, Time-to-live (TTL) is often used to guarantee that stale data
does not stay forever. While effective, TTL brings a new challenge — how to set the
value so that we can minimize the stale data without significantly increasing the miss
ratio. Moreover, it would also be interesting to explore whether we can design better
approaches to find all the data that need invalidation and achieve consistency without
sacrificing miss ratio.

10.3.2 Cache security

While consistency, efficiency, and scalability are critical for a sustainable society, several
other aspects of caching are also crucial for our infrastructure in the digital age. For ex-
ample, the security of a software cache. There have been many reports of cache deception
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attacks [72, 73] and cache poisoning attacks [134], causing sensitive information to be
leaked or serving wrong content to the victim. There have been many research works on
hardware cache security, e.g., side-channel attacks; however, the study of software cache
security is scarce and should be one of the future focuses.

10.4 Concluding Remarks

As the world continues to depend on software caches for fast and efficient data access,
the deployment of software caches will keep expanding. However, the manufacturing
and operation of cache servers result in significant carbon emissions. To create a more
sustainable society, it is crucial to enhance cache efficiency and scalability to reduce
DRAM and CPU consumption.
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