The learning of algorithms and architectures

Mikhail Khodak

CMU-CS-24-145
August 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Maria-Florina Balcan, Co-Chair
Ameet Talwalkar, Co-Chair
Tom Mitchell
Peter Bartlett (University of California-Berkeley)
Piotr Indyk (Massachusetts Institute of Technology)
Alexander Smola (Boson Al)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Mikhail Khodak

This research was sponsored by a TCS Presidential Fellowship, a Facebook PhD Fellowship, a Smola Bloomberg
gift, JP Morgan, Two Sigma, Meta under award number PO70000298580, the Defense Advanced Research Projects
Agency under award number HR00112020003, the National Science Foundation with UCLA under award number
PO0145GVA403, and the National Science Foundation under award numbers CCF-1535967, 1IS-1901403, CCF-
1910321, and SES-1919453.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: machine learning, meta-learning, algorithms with predictions, architecture search

ceMbe

v

Abstract

How should we design the algorithms we run and the architectures we learn?
Several high-impact areas of computing have begun to automate these procedures
using machine learning (ML), reducing the need for human effort by using our ex-
panding amount of data and compute. This thesis uses ideas from ML, algorithm
design, and optimization to advance our understanding of these areas of data-driven
computing—meta-learning, algorithms with predictions, and architecture search—
and to translate the resulting methodologies into state-of-the-art implementations.

* In meta-learning, which uses ML itself to improve ML algorithms by learning
across many learning tasks, we introduce ARUBA, a framework for designing
and analyzing meta-learning methods. Our analysis yields the first guarantees
for gradient-based meta-learning, showing how such methods improve perfor-
mance based upon quantifiable measures of similarity between learning tasks.
We use ARUBA to extend the practical impact of meta-learning to new areas
of ML, including to learning with partial feedback and to federated learning;
in the latter case, we introduce FedEx, a new state-of-the-art method for tuning
federated optimizers, which train models on networks of distributed heteroge-
neous datasets such as mobile devices and hospital records.

* We build upon the success of ARUBA by taking its core approach—the op-
timization of surrogate loss functions approximating algorithmic objectives—
and extending it beyond learning algorithms to show learning guarantees for
algorithms with predictions, which are algorithms that take advantage of
ML predictions about their instances; in particular, we show the first learning-
theoretic guarantees for predictions that depend on the instance the algorithm
is run on, a crucial property for practical applications. Our framework again
serves as an algorithm design tool, which we use to build the first algorithms
with predictions for mechanisms that release (differentially) private statistics
about sensitive datasets and for linear system solvers; in the latter case, we de-
sign learning algorithms that, under natural structural assumptions, can learn
to make instance-optimal predictions.

* Lastly, this thesis addresses the problem of finding neural network architec-
tures to train on specific learning tasks, or architecture search, where we make
progress towards understanding the optimization and generalization properties
of weight-sharing, a dominant heuristic used throughout the field. We then
extend weight-sharing to design new search spaces based around neural oper-
ations that allow for the automated discovery of truly novel architectures from
data; the culmination of this effort is DASH, a method that efficiently finds ar-
chitectures that outperform human expert-designed neural architectures on the
majority of diverse tasks we test.

vi

Acknowledgments

The last six years have left me with no shortage of people to be grateful to. Thank
you to my wonderful advisers, to their lively labs, to my supportive committee, and
to CSD’s excellent administrative staff. Thank you to the kind mentors I have been
lucky to know through my internships, collaborations, and travels. Thank you to the
friends I made at CMU: you have forever biased my view of Pittsburgh with the rosy
color of nostalgia.

This document may have taken six years to write, but the privilege of spending
that time on this effort was made possible by three decades of support and kindness.
Thank you to my patient mentors in the Princeton math and CS departments, at
PPPL, and at LLNL. Thank you to my lifelong friends from Forbes, the OGC, and
beyond. Thank you above all to Shir and to my family: my mother, father, sister,
and grandparents.

viil

Contents

0 Introduction
0.1 Learning to parameterize algorithms
0.1.1 Meta-learning L
0.1.2 Algorithms with predictions
0.2 Discovering effective neural architectures
0.3 Organization and contributions

I Meta-learning

1 Overview
1.1 Literature e
1.2 Contributions L
1.2.1 ARUBA
1.22 FedEx
1.2.3 Contributions of independent interest
1.3 DISCUSSION o v vt e e e
1.3.1 Recentdevelopments
1.3.2 Looking forward
1.LA Background
I.LA.1 Onlinelearning e
1.LA.2 Multi-task learning

2 ARUBA: Provable guarantees for meta-learning
2.1 Framework
2.1.1 Advantages of learning algorithmic upperbounds
2.1.2 Challenges of applying ARUBA
2.2 Gradient-based meta-learningo
2.2.1 Adapting to similar tasks and dynamic environments
2.2.2 Adapting to the inter-task geometry L.
2.2.3 Fast rates and high probability bounds for statistical meta-learning
2.2.4 Empirical results for few-shot and federated learning
225 Conclusion
2.3 Learning-to-learn piecewise-Lipschitz functions

1X

11
12
12
12
14
14
15
15
16
17
17
18

3

2.3.1 Relatedwork 35

2.3.2 Initialization-dependent learning of dispersed functions 35
2.3.3 An algorithm for meta-learning the initialization and step-size 38
2.3.4 Meta-learning for data-driven algorithm design 43
235 Conclusion 46
2.4 Meta-learning adversarial bandit algorithms 46
2.4.1 Learning the regularizers of bandit algorithms 49
24.2 Multi-armed banditso Lo 52
2.4.3 Bandit linear optimizationo 57
244 Futurework 59
25 Conclusion 60
2.A Proofs 61
2.A.1 Strongly convex coupling, 61
2.A.2 Adaptive and dynamic guarantees 65
2.A.3 Guarantees for adapting to the inter-task geometry 68
2.A.4 Online-to-batch conversion for task-averaged regret 75
2.A.5 Non-convex meta-learning 78
2.A.6 Structural results forbandits 85
2.A.7 Implicitexploration. 88
2.A.8 Guaranteed exploration Lo 94
2.A.9 Robustnesstooutliers oL 101
2.A.10 Online learning with self-concordant barrier regularizers 102
2.B Experimental details 106
2.B.1 Adaptive gradient-based meta-learning 106
2.B.2 Non-convex meta-learning 108
FedEx: Federated hyperparameter tuning 113
3.1 Motivationo e e e 113
32 Relatedwork 115
3.3 Federated hyperparameter optimization 115
3.3.1 Global and personalized FL. 115
3.3.2 Tuning FL methods: Challenges and baselines 116
3.4 Weight-sharing for federated learning 119
3.4.1 Weight-sharing for architecture search 119
342 TheFedExmethod 120
343 WrappingFedEx 121
34.4 Local perturbation Lo 122
34.5 Limitationsof FedEx 123
3.5 Theoretical analysis for tuning the step-size 123
3.6 Empirical results 124
37 Conclusion e 127
3.A° Proof of Theorem 3.5.1 128
3.B Decomposing federated optimization methods 128
3.C FedExdetails 130

I1

3.C.1 Stochastic gradientusedby FedEx
3.C.2 Hyperparametersof FedEx

3.D Experimental details
3.D.1 Settings of the baseline/wrapper algorithm
3.D.2 Hyperparameters of FedAvg/FedProx/Reptile

3.E Ablationstudies

Algorithms with predictions

Overview

4.1 Literature e

4.2 Contributions e
4.2.1 Learning predictions, provably
4.2.2 Extending algorithms with predictions
4.2.3 Contributions of independent interest

43 DISCUSSIONo e e e

4.A Background

Learning predictions

5.1
5.2

5.3

54
5.5

5.6

5.A

5B

5.C

5.D
S.E

Related work L
Framework overview and bipartite matching application
5.2.1 Stepl:Upperbound,
5.22 Step2:Onlinelearning
Predicting requests for page migration
5.3.1 Derivinganupperbound Lo
5.3.2 Learning guarantees e e e e e e
Learning linear predictors with instance-feature inputs
Tuning parameterized robustness-consistency tradeoffs
5.5.1 Robustness-consistency tradeoffs
5.5.2 Ski-rental
Conclusion L
Proofsof mainresults oL
5.A.1 Proofof Lemma5.3.1
5.A.2 Proof of Corollary 5.5.1,
5.A.3 Proof of Corollary 5.5.2o
5.A4 Proof of Corollary 5.5.3
b-matching
Learning linear predictors with instance-feature inputs
5.C.1 b-matching
5.C.2 Online page migration e
Faster graph algorithms with predictions
Permutation predictions for non-clairvoyant scheduling

X1

135

137
138
139
139
139
140
141
142

6 Private algorithms with private predictions

6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.A

6.B

6.C
6.D

6.E

Problem formulation oL
Overview of theoretical results
6.2.1 Relatedwork
6.2.2 Multiple quantilerelease
6.2.3 Covariance estimation e e
6.2.4 Datarelease
6.2.5 Discussion
Prediction-dependent utility bounds
6.3.1 Quantile estimation via prediction-dependent priors
6.3.2 Covariance estimation by estimating the prediction error
6.3.3 Initializing synthetic dataset construction with a predicted dataset
Robustness-consistency tradeoffs o oL
6.4.1 Quantile estimation e
6.4.2 Covariance estimationo
6.43 Datarelease
Learning predictions, privately oL
6.5.1 Non-Euclidean DP-FTRL
6.5.2 Learning priors for one or more quantiles
6.5.3 Learning to estimate covariance matrices
6.5.4 Learning the initialization and number of iterations for data release
Applications L e e e e
6.6.1 Convexity vs. robustness of location-scale models
6.6.2 Augmenting quantile release using publicdata
6.6.3 Sequentially setting priors using past sensitivedata
Conclusion
Quantilerelease e
6.A.1 Section6.3.1details oL
6.A.2 Additional proofs
Covariance estimationt e
6.B.1 Section6.3.2details L.
6.B.2 zCDP guarantees for SeparateCov with predictions
6.B.3 IterativeEigenvectorSampling with predictions
Datarelease L
Onlinelearning
6.D.1 Negative log-inner-productlosses
6.D.2 Datarelease
6.D.3 Proof of Theorem 6.5.4
Section6.6details
6.E.1 Location-scale families
6.E.2 Public-privaterelease oL
6.E.3 Sequentialrelease. o oL

Xii

7 Learning-augmented scientific computing

7.1
7.2
7.3

7.4

7.5
7.6
7.A
7.B

7.C
1.D

1.E

1.F

Contributions e
Related work L
Asymptotic analysis of learning the relaxation parameter
731 Setup . . . e e e
7.3.2 Establishing a surrogate upperbound
7.3.3 Performing as well as the bestfixedw
7.3.4 The diagonally shifted setting
7.3.5 Tuning preconditioned conjugate gradient
A stochastic analysis of symmetric SOR
7.4.1 Regularity of the expected cost function
7.4.2 Chebyshev regression for diagonal shifts
7.4.3 Additional theoretical implications and comparisons
Accelerating a 2D heat equationsolver
Conclusion
Semi-Lipschitzbandits
Chebyshev regression for contextual bandits
7.B.1 Preliminaries L
7.B.2 Regretof ChebCB,
SOR preliminaries L
Near-asymptotic proofs L L
7.D.1 Proofof Lemma7.3.1
7.D.2 Proof of Theorem 7.3.1
7.D.3 Approximating the optimal policy
7.D.4 Extension to preconditioned CG
Semi-stochastic proofs L
7.E.1 Regularity of the criterion L.
7.E.2 Anti-concentrationo
7.E.3 Lipschitzexpectation
7.E.4 Sample complexity
Experimental details L
7.E1 Algorithmic modifications
7.F.2 Initial conditions and forcing for the 2D heat simulation

IIT Architecture search

8

Overview

8.1
8.2

8.3
8.A

Literature e e e
Contributions e e e
8.2.1 Understanding weight-sharing
8.2.2 Architecture search fordiversetasks
Discussion e
Backgroundo

229
230
231
233
233
235
237
239
240
240
241
242
243
245
247
248
250
250
252
253
254
254
255
255
257
259
259
261
263
264
265
265
265

8.A.1 Cell-based architecture search 275

8.A.2 Network morphisms 275
8.A.3 Weight-sharing 275

9 Understanding weight-sharing 277
9.1 Weight-sharing objectives 277
9.2 Optimization in NAS: A single-levelstudy 278
9.2.1 Geometry-aware gradient algorithms 279

9.2.2 Empirical resultsusing GAEA oL 284

9.23 Conclusion 287

9.3 The benefits of bilevel optimization: Selecting feature maps using weight-sharing 288
9.3.1 Random search with weight-sharing 288

9.3.2 Feature map selection: A simple setting for understanding NAS 288

9.3.3 Generalization guarantees for the bilevel problem 291

9.4 Conclusion L 293
9.A Proofs 294
9.A.1 Optimization it 294
9.A.2 Generalization e 297

9.B Experimental details 301
9.B.1 GAEA e 301
9.B.2 Feature mapselection 309

10 Finding neural operations for diverse tasks 311
10.1 Related work 312
10.2 XD-operations v i e e e e e e e 313
10.2.1 The expressive diagonalization relaxation 313
10.2.2 XD-operations and their expressivity 316
10.2.3 Finding and evaluating XD-operations 318
10.2.4 Diverse applications 320
10.2.5 Conclusion L 324

10.3 DASH: Efficient architecture search for diverse tasks 325
10.3.1 Decoupling topology and operations 326
10.3.2 Efficiently searching for multi-scale convolutions 327
10.3.3 Full pipeline: Search, hyperparameter tuning, and retraining 330
10.3.4 Evaluation 330
10.3.5 Limitations and future work oo 334

10.4 Conclusion 334
10.A Analyses e e e 335
10.A.1 XD-operations: Expressivity, 335
10.A.2 DASH: Asymptotic analysis 338

10.B Computational cost 339
10.B.1 XD-operations 339
10.B.2 DASH o 339

10.C Evaluations 340

X1V

10.C.1 CIFAR-10 and Permuted CIFAR-10
10.C.2 Solving PDEs
10.C.3 Proteinfolding
10.C.4 Music modeling and sequence modeling
10.C.5 NAS-Bench-360
10.C.6 TmageNet e

10.D Searched architecture visualization

Notation

A.l

SEtS . e e e,

A.2 Vectors and matriCe€s e e e e e e e

A3

Probability e

Online convex optimization

B.1
B.2
B.3
B.4

B.5

Basic functionclasses L L
The Bregman divergence
Algorithms
Online-to-batch conversion
B.4.1 Strongly convexlosses o
B.4.2 Self-bounding losses oL
Dynamicregret L

Bibliography

XV

XVi

List of Algorithms

10
11
12

13
14
15

16

Generic online algorithm for gradient-based parameter-transfer meta-learning. To
run OGD within-task set R(-) = 1| -[3. To run FTRL within-task substitute ; ;(6)
for (V. ;,0). . o 24
Methods for modifying a generic GBML method to learn a per-coordinate step-
size, with two variants: (1) the “ARUBA++" variant starts with nr; = mr and
gr1 = gr, adaptively resets the learning rate by setting 7,41 < &r; + cV? for
some ¢ > 0, and then updates 171 < +/br/gri1; (2) the “Isotropic” variant
sets b; and g; to be scalars multiples of 1, that track the sum of squared distances

and sum of squared gradient norms, respectively. 29
Exponential Forecaster L L 37
Follow-the-Regularized-Leader (prescient form) 40

Meta-learning the parameters of the exponential forecaster (Algorithm 3). Recall
that p(t) refers to the time-¢ discretization of the measure p : C' — R.q (c.f.
Section 2.3.3). . . . e 43
Meta-procedure for tuning OMD,, ¢ with regularizer 1)y : K£° — R and step-size
n > 0. Assume OMD takes as 1nput an initialization in /C, is run over loss estimators
ft,h b .m» and returns estimated task optima X, = arg min,, > - 1<£t HX). .. 52

Successive halving algorithm (SHA) applied to personalized FL. For the non-
personalized objective (3.1), replace Ly, (w;) by Ly, (w,). For random search (RS)

with N samples,setn=Nand R=1. 117
FedEx o e 121
FedEx wrapped with SHA. 131
SeparateCov with predictions 178
MWEM with predictions 179
Non-Euclidean DP-FTRL. Forthe InitializeTree, AddToTree, and Get Sum

subroutines see Kairouz et al. [2021a, SectionB.1]. 183
ApproximateQuantiles with predictionso 226
SeparateCov with predictions (zCDP), 227
IterativeEigenvectorSampling with predictions 227
Successive over-relaxation (SOR) with relative convergence condition. 233

XVil

17

18
19

20

21
22
23

24
25
26

27

Online tuning of a linear system solver using Tsallis—INF. The probabilities
can be computed using Newton’s method (e.g. Zimmert and Seldin [2021, Algo-
rithm 2]). e 237
ChebCB: SquareCB with a follow-the-leader oracle and polynomial regressor class.242
General form of Tsallis-INF. The probabilities can be computed using New-

ton’s method (e.g. Zimmert and Seldin [2021, Algorithm 2]). 248
Contextual bandit algorithm using multiple runs of Tsallis-INF across a grid of

COMEEXTS. . . . v o ittt e e e 249
SquareCB for contextual bandits using an online regression oracle. 251
SquareCB for Lipschitz contextual bandits using Follow-the-Leader. 252
Symmetric SOR with absolute convergence condition. 261
Block-stochastic mirror descent optimizationof f : R x © —R. 281
Feature map selection using successive halving with weight-sharing. 289
Block-stochastic mirror descent over the product domain X = X le X, given

DGFs ¢; associated witheach X;. 296
DASH e 326

XViil

List of Figures

2.1

2.2

2.3

2.4

25

2.6

2.7

2.8

2.9

[lustrations comparing different notions of task similarity. The left plot depicts
notions in the static setting, including the average deviation V' on which The-
orem 2.2.2 depends, the maximal deviation D* from the meta-learning lower
bound in Corollary 2.2.1, and the radius D of the entire action space on which
worst-case bounds depend. The right plot shows a setting where Theorem 2.2.3
yields a strong task similarity-based guarantee via a dynamic comparator ¥, de-
spite the average deviation V' being large due to tasks being in far-away clusters.

Learning rate variation across layers of a convolutional net trained on Mini-
ImageNet using Algorithm 2. Following intuition outlined in Section 2.2.4,
shared feature extractors are not updated much if at all compared to higher layers. 31

Next-character prediction performance for recurrent networks trained on the Shake-
speare dataset [Caldas et al., 2018] using FedAvg [McMahan et al., 2017] and

its modifications by Algorithm 2. Note that the two ARUBA methods require

no learning rate tuning when personalizing the model (refine), unlike both Fe-

dAvg methods; this is a critical improvement in federated settings. Furthermore,
isotropic ARUBA has negligible overhead by only communicating scalars. 33

Final learning rate 1y across the layers of a CNN trained on 1-shot 5-way Om-
niglot (top) and 5-shot 5-way Omniglot (bottom) using Algorithm 2 applied to
Reptile. o 107

Final learning rate 7 across the layers of a CNN trained on 1-shot 20-way Om-
niglot (top) and 5-shot 20-way Omniglot (bottom) using Algorithm 2 applied to
Reptile. 108
Final learning rate 7 across the layers of a CNN trained on 1-shot 5-way Mini-
ImageNet (top) and 5-shot 5-way Mini-ImageNet (bottom) using Algorithm 2
appliedtoReptile. 110
Final learning rate 7p across the layers of an LSTM trained for next-character
prediction on the Shakespeare dataset using Algorithm 2 applied to FedAvg. . . 111
Average regret vs. number of training tasks for meta-learning. The clustering
data on the left is from Omniglot and on the right it comes a mixture of Gaussians.111

Location of optimal parameter values for the training tasks. The left evaluation
is for Omniglot clustering, the right for Gaussian mixture clustering, and the
bottomis Knapsack.. L 112

X1X

2.10 Average performance (over algorithm randomization) for a few tasks as a func-
tion of the configuration parameter. The left evaluation is Gaussian mixture clus-
tering and the right is Knapsack. This explains why, despite high task similar-
ity in either case, few-shot meta-learning works better for the Gaussian mixture
clustering. e e e

3.1 FedEx can be applied to any local training-based FL. method, e.g. FedAvg, by
interleaving standard updates to model weights (computed by aggregating re-
sults of local training) with exponentiated gradient updates to hyperparameters
(computed by aggregating results of local validation).

3.2 Tuning FL with SHA but making elimination decisions based on validation es-
timates from different discount factors. On both FEMNIST (left) and CIFAR
(right) using more of the validation data does not improve upon just using the
most recent round’s validationerror. Lo

3.3 Comparison of the range of performance values attained using different pertur-
bation settings. Although the range is much smaller for ¢ = 0.1 than for ¢ = 1.0
(the latter is the entire space), it still covers a large (roughly 10-20%) range of
different performance levels on both FEMNIST (left) and CIFAR (right).

3.4 Online evaluation of FedEx on the Shakespeare next-character prediction dataset
(left), the FEMNIST image classification dataset (middle), and the CIFAR-10
image classification dataset (right) in the fully non-i.i.d. setting (except CIFAR-
10). We report global model performance on the top and personalized perfor-
mance on the bottom. All evaluations are run for three trials.

3.5 Comparison of different ¢ settings for the local perturbation component of FedEx
from Section 3.4.

3.6 Comparison of step-size schedules for 7, in FedEx. In practice we chose the
‘aggressive’ schedule, which exhibits faster convergence to favorable configura-
HONS. . . o o e e e e e e

5.1 Bounds f (c.f. Lemma 5.3.1) for different n and vD on the expected largest
number of mistakes in any yD-interval as a function of the maximum expected
number Ug(P). . . . o o o

6.1 Maximum gap as a function of m for different variants of AQ when using the
uniform prior, evaluated on 1000 samples from a standard Gaussian (left) and
the Adult “age" dataset (right). The dashed and solid lines correspond to ¢ = 1
and 0.1, respectively.

6.2 Public-private release of nine quantiles using 100 samples from the Adult age
(left) and hours (right) datasets. The public data is the Adult training set while
private dataistest. L. e e e

6.3 Public-private release of nine quantiles on one hundred samples from the Goodreads
rating (left) and page count (right) datasets, with ¢ = 1. The public data is the
“History" genre while private data is sampled from a mixture of it and “Poetry."

XX

118

. 122

. 194

6.4

6.5

6.6

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

Comparison of sequential release over time on Synthetic (left, log, e = —1/2)
and CitiBike (right, log;pe = —2)tasks. 195

Time-averaged performance of the sequential release of nine quantiles on the
Synthetic (left) and CitiBike (right) tasks. 196

Time-aggregated mean (left) and median (right) performance of sequential re-
lease of nine quantilesonthe BBCtask. 197

Comparison of different cost estimates for solving a linear system where the
matrix is a discrete Laplacian of a 100 x 100 square domain. 234

Asymptocity as measured by the difference between the spectral norm at iteration
k and the spectral radius, together with its upper bound 7(1 — p(C,)). 234

Mean performance of different parameters across forty instances of form A +
2¢-31,,, where on the left plot ¢ ~ Beta(2,6) and on the right ¢ ~ Beta(1/2, 3/2),
the latter being relatively higher-variance. In both cases the dashed line indicates
instance-optimal performance, the matrix A is a discrete Laplacian of a 100 x 100

square domain, and the targets b are truncated Gaussians. 235

Solver cost for b drawn from a truncated Gaussian v.s. b a small eigenvector
of Cl'4. 236

Values of 7 and 3 for A + cI,, for different ¢, where the matrix A is a discrete
Laplacian of a 100 x 100 square domain. 236

Average across forty trials of the time (in iterations) needed to solve 5K diago-
nally shifted systems with A, = A + =21, for ¢ ~ Beta(3, 2) (left) and ¢ ~
Beta(2, 6) (right); as in Figure 7.3, A is a 100 x 100 Laplacian and the targets
b are sampled from truncated Gaussians. The plots on the upper row compare
different learning schemes while those on the bottom compare Tsallis—INF

to different fixed choicesof w. 239

Cost of running the numerical simulation of the 2D heat equation in iterations
(left) and normalized total wallclock time (center & right); the normalization is
by the average number of seconds required when using vanilla CG to solve the
linear systems (the latter’s runtime is displayed as numbers in the middle). The
right plot shows 95% confidence intervals across the three trials for Tsallis-INF
and ChebCB at the three higher-dimensional evaluations. 245

Parameters chosen at each timestep of a 2D heat simulation, overlaid on a contour
plot of the cost of solving the system at step ¢ with parameter w (left); the periodic
behavior of the instance-optimal action is driven by the time-varying diffusion
coefficient k(t) (right). 246

Comparison of actual cost of running SSOR-preconditioned CG and the upper
bounds computed in Section 7.D.4 as functions of the tuning parameter w €
[24/2 — 2,1.9] on various domains. 257

XX1

9.1

9.2

9.3

94

9.5

9.6

9.7

10.1

10.2
10.3

10.4

10.5

Evolution over search epochs of the average entropy of the operation weights
when run on the DARTS search space (left), NAS-Bench-1Shot1 Search Space 1
(middle), and NASBench-201 on CIFAR-10 (right). GAEA reduces entropy
much more quickly, allowing it to quickly obtain sparse architecture weights.
This leads to both faster convergence to a single architecture and a lower loss
when pruning at theend of search. L0 283
Online comparison of PC-DARTS and GAEA PC-DARTS in terms of the test
regret at each epoch of shared-weights training on NAS-Bench-1Shotl, i.e. the
difference between the ground truth test error of the proposed architecture and
that of the best architecture in the search space. The dark lines indicate the mean
of four random trials and the light colored bands + one standard deviation. The
dashed line is the final regret of the best weight-sharing method according to
Zela et al. [2020b]; note that in our reproduction PC-DARTS performed better

than their evaluation on spaces land 3. 286
Validation accuracy of individual feature maps using shared weights compared
to individual training. 290

Oracle test-error on CIFAR-10 (left) and IMDD (right) as a function of number
of solver calls. Here, oracle test-error refers to evaluation of a separately trained,
non-weight-shared, classifier on the best config at any given round according to
weight-sharing. All curves are averaged over 10 independent trials. 290
The best normal and reduction cells found by GAEA PC-DARTS on CIFAR-
10 (top) and ImageNet (bottom). From top to bottom we show: CIFAR-10:
Normal Cell, CIFAR-10: Reduction Cell, ImageNet: Normal Cell, ImageNet:
Reduction Cell. o 306
Evolution over search phase epochs of the best architecture according to the NAS
method on NAS-Bench-201. DARTS (first-order) converges to nearly all skip
connections while GAEA is able to suppress overfitting to the mixture relaxation

by encouraging sparsity in operation weights. L. 307
Observed test-error on CIFAR-10 (left) and IMDb (right) as a function of number
of time. All curves are averaged over 10 independent trials. 309

On permuted images, where convolutions are not the “right” operation, we find
XD-operations that are farther away from the operations of the initial CNN back-
bone. 320
Relative error on Burgers’ equation (left) and Darcy Flow (right). 321
ResNet XD outperforms both baseline and dilated ResNets on PSICOV. At the
highest depth we also obtain a better MAEg than the one reported for the much
deeper Dilated ResNet-258 CNN [Adhikari, 2019]. 323
Comparing the aggregate performance of the best AutoML methods (task-wise),
hand-designed models, and DASH on ten diverse tasks via performance profiles
(defined in Section 10.3.4); larger values (larger fractions of tasks on which a
method is within 7-factor of the best) are better. 325
Runtime for Wide ResNet, DARTS, XD, and DASH on CIFAR-100; XD is too
expensive to be applied to other tasks considered in this section [Tu et al., 2022]. 325

XXil

10.6 log,, time for one search epoch vs. numbers of operations in SaggConv, ,- We
use K = {2p+ 1|1 < p < ¢} and D = {29 — 1|1 < ¢ < ¢} while increasing ¢
from1to7.

10.7 log;, time for one search epoch vs. input length of single-channel 1D data. We
fix K = {3,5,7,9,11}, D = {1,3,7,15,31} and test n € {2°,...,212},

10.8 Performance profiles of general NAS methods and DASH on NAS-Bench-360.
DASH being far in the top left corner indicates it is rarely suboptimal and is often
thebest. L

10.9 Comparing — log 7-suboptimality of speed vs. accuracy on all tasks. DASH’s
concentration in the top right corner indicates its strong efficacy-efficiency trade-
offs relative to the other methods. o L.

10.10Training curves (dotted) and test curves (solid) on Darcy Flow at resolution 141,
showing better generalization of XD-operations.

10.11 Visualization of the architecture DASH discovers on Darcy Flow, for which it
generates a WRN-16-4 [Zagoruyko and Komodakis, 2016] for retraining. The
network architecture consists of several residual blocks. For instance, the resid-
ual block with the structure in the top image can be denoted by Blockey (7,1),(9,3)
(64 1is the number of output channels and “BN” denotes the BatchNorm layer).
Note that size of a convolutional layer in the figure is proportional to the kernel
size but not the number of channels. The bottom image is an example network
found by DASH on Darcy Flow; n.b. since Darcy Flow is a dense prediction task,
the last layer is a channel-matching (permutation+linear+permutation) layer in-
stead of a pooling+linear layer for classification.

10.12Visualization of the architecture DASH discovers on DeepSEA, for which it gen-
erates a 1D WRN [Ismail Fawaz et al., 2020] for retraining. The network archi-
tecture consists of several residual blocks. For instance, the residual block with
the structure in the top image can be denoted by BlocKey (3,1),(5,3),(7,5) (64 is the
number of output channels and “BN” denotes the BatchNorm layer). The bottom
image is an example network found by DASH on DeepSEA, from which we can
see that large kernels are selected for during search.

XX111

332

XX1V

List of Tables

2.1

2.2

23

24

25

3.1

3.2

5.1

Meta-test-time performance of GBML algorithms on few-shot classification bench-
marks. 1st-order and 2nd-order results obtained from Nichol et al. [2018] and Li
etal. [2017], respectively. L 32

Effect of meta-initialization on few-shot learning of algorithmic parameters. Per-
formance is computed as a fraction of the average value (Hamming accuracy, or

knapsack value) of the offline optimum parameter. 46
Meta-learning evaluations on the 5-way Omniglot classification task. 106
Meta-learning evaluations on the 20-way Omniglot classification task. 106
Meta-learning evaluations on the 5-way Mini-ImageNet classification task. 109

Final test error obtained when tuning using a standard hyperparameter tuning
algorithm (SHA or RS) alone, or when using it for server (aggregation) hyper-
parameters while FedEx tunes client (on-device training) hyperparameters. The
target model is the one used to compute on-device validation error by the wrap-
per method, as well as the one used to compute test error after tuning. Note that
this table reports the final error results corresponding to the online evaluations re-
ported in Figure 3.4, which measure performance as more of the computational
budgetisexpended. 125

Final test error obtained when tuning using a standard hyperparameter tuning
algorithm (SHA or RS) alone, or when using it for server (aggregation) hyper-
parameters while FedEx tunes client (on-device training) hyperparameters. The
target model is the one used to compute on-device validation error by the wrapper
method, as well as the one used to compute test error after tuning. The confidence
intervals displayed are 90% Student-t confidence intervals for the mean estimates
from Table 3.1, with 5 independent trials for Shakespeare, 10 for FEMNIST, 10
for RS on CIFAR, and 6 for SHA on CIFAR. 132

Settings we apply our framework to, our new learning algorithms, and their regret. 145

XXV

9.1

9.2

9.3
94

9.5

10.1

10.2

Comparison with SOTA NAS methods on the DARTS search space, plus three
results on different search spaces with a similar number of parameters reported
at the top for comparison. All evaluations and reported performances of mod-
els found on the DARTS search space use similar training routines; this in-
cludes auxiliary towers and cutout but no other modifications, e.g. label smooth-
ing [Miiller et al., 2019], AutoAugment [Cubuk et al., 2019], Swish [Ramachan-
dran et al., 2017], Squeeze & Excite [Hu et al., 2018], etc. The specific training
procedure we use is that of PC-DARTS, which differs slightly from the DARTS
routine by a small change to the drop-path probability; PDARTS tunes both this
and batch-size. Our results are averaged over 10 random seeds. Search cost is
hardware-dependent; we used Tesla V100 GPUs. For more details see Tables 9.4

& 0.5, e

NAS-Bench-201 separated into traditional hyperparameter optimization algo-
rithms with search run on CIFAR-10 (top block), weight-sharing methods with
search run on CIFAR-10 (middle block), and weight-sharing methods run di-
rectly on the dataset used for training (bottom block). The use of transfer NAS
follows the evaluations conducted by Dong and Yang [2020]; unless otherwise
stated all non-GAEA results are from their paper. The best results in the transfer

and direct settings on each dataset are bolded.
GAEA PC-DARTS Stage 3 Evaluation for 3 sets of random seeds.

CIFAR-10 performance comparisons with manually designed networks and those
found by SOTA NAS methods, mainly on the DARTS search space [Liu et al.,
2019b]. Results grouped by the type of search method: manually designed, full-
evaluation NAS, and weight-sharing NAS. All test errors are for models trained
with auxiliary towers and cutout (parameter counts exclude auxiliary weights).
Test errors we report are averaged over 10 seeds. “-" indicates that the field does
not apply while “N/A" indicates unknown. Note that search cost is hardware-

dependent; our results used Tesla VIOO GPUs.

ImageNet performance comparisons of manually designed networks and those
found by SOTA NAS methods, mainly on the DARTS search space [Liu et al.,
2019b]. Results are grouped by the type of search method: manually designed,
full-evaluation NAS, and weight-sharing NAS. All test errors are for models
trained with auxiliary towers and cutout but no other modifications, e.g. label
smoothing [Miiller et al., 2019], AutoAugment [Cubuk et al., 2019], Swish [Ra-
machandran et al., 2017], squeeze and excite modules [Hu et al., 2018], etc. “-"
indicates that the field does not apply while “N/A" indicates unknown. Note that

search cost is hardware-dependent; our results used Tesla V100 GPUs.

Search space comparison on CIFAR-10. Validation accuracies are averages of
three trials. While we use small CNNs for exploration, XD-operations can also
be used with high-performance backbones to obtain > 95% accuracy (c.f. Ap-

pendix 10.C.1).

Relative test error on the 2D Navier-Stokes equations at different settings of the

viscosity v and time steps 7. Best results in each setting are bolded.

XX V1

285

304

322

10.3 XD-operations compared to recent results in music modeling. We report average
loss across three trials. The best result on each task is bolded.
10.4 Complexity of different methods for computing AggConv, denoting K = |D| -
Y rex kand D = maxy 4(k — 1)d + 1. For details see Appendix 10.A.2.
10.5 Error rates (lower is better) on NAS-Bench-360 tasks across diverse application
domains and problem dimensions (the last three problems are 1D and the rest are
2D). DASH beats all the other NAS methods on 7/10 tasks and exceeds hand-
designed expert models on 7/10 tasks. Scores of DASH are averaged over three
trials. Baseline errors are from Tu et al. [2022]. See Table 10.19 for standard
deviations. oL e
10.6 Full-pipeline runtime in GPU hours for NAS-Bench-360 (PSICOV results are
omitted due to a discrepancy in the implementation of data loading). DASH is
consistently faster than DARTS, and it is less than a factor of two slower than
simply training a WRN on six of the ten tasks. DenseNAS is fast but its accuracy
is far less impressive. XD is too expensive to be applied to tasks other than
CIFAR-100.
10.7 Comparison of the computational and memory costs of XD-operations when sub-
stituted for convolutions. For simplicity, we consider cases with 2D inputs and
where the channel and bias parameters are fixed.
10.8 Architecture optimizer settings on CIFAR-10 tasks. Note that the step-size is
updated using the same schedule as the backbone.
10.9 Search space comparison on CIFAR-10. Validation accuracies are averages of
three trials.
10.10Architecture optimizer settings on PDE tasks. Note that the step-size is updated
using the same schedule as the backbone.
10.11Test relative errors on the 1D Burgers’ equation. We were not able to match the
FNO-1D results reported by the authors [Li et al., 2021c] using their published
codebase, however, our proposed XD operations outperform our reproduction of
their results at every resolution. Furthermore, we outperform their reported test
relative errors on every resolution except s = 4096, where we roughly match
their performance.
10.12Test relative errors on 2D Darcy Flow. Our reproduction of the FNO-2D results
outperform those reported by the authors [Li et al., 2021c]. Nonetheless, our pro-
posed XD operations outperform both our reproduction and the reported results
atevery resolution. L Lo e
10.13 Architecture optimizer settings on for our protein folding experiments, across
different ResNet depths. Note that the same step-size is used throughout since
the backbone has no step-size schedule. 0L
10.14Test MAEg of the Dilated ResNet of Adhikari [2020], compared to a standard
ResNet backbone and XD-operations applied to ResNet. Results are averaged
over3trials.
10.15 Architecture optimizer settings on sequence modeling tasks. Note that the step-
size is updated using the same schedule as the backbone.

XX Vil

329

10.16 XD-operations applied to TCNs compared to recent empirical results in sequence
modeling. Our results are averages of three trials. Methods achieving within one

deviation of the best performance are bolded. 345
10.17Information about evaluation tasks in NAS-Bench-360 [Tu et al., 2022]. 346
10.18 Task-specific DASH hyperparameters. 347

10.19Errors of DASH and the baselines on NAS-Bench-360. Methods are grouped
into three classes: non-automated, automated, and DASH. Results of DASH are
averaged over three trials using the models obtained after the last retraining epoch.348

10.20Runtime of DASH on NAS-Bench-360 tasks, in NVIDIA V100 GPU-hours. . . . 348
10.21Time for one search epoch,inseconds. 349
10.22Total runtime on ImageNet-1K,inhours. 349
10.23Prediction error on ImageNet-1K. Backbone results from Liu et al. [2022]. 349

XXViii

Chapter 0

Introduction

Classically, algorithm design and machine learning (ML) are studied on individual, well-defined
tasks, such as a problem (e.g. a linear system) to be solved or a model class (e.g. a specific
neural architecture) to be learned. In the real world, computations and datasets do not exist in a
vacuum, with practitioners specifying algorithms and architectures via inductive biases, prior ex-
perience, and increasingly through learning from related tasks. This last approach automatically
improves the algorithms we run and the architectures we use by using experience on previous
instances to obtain better performance on future instances. It encompasses many of the most im-
portant paradigms in modern data-driven computing, including the meta-learning or large-scale
pretraining of gradient descent initializations on heterogeneous tasks or corpora, algorithms that
take advantage of learned predictions about their instances, and the automated discovery of neu-
ral architectures to train on specific tasks. The goal of this thesis is to establish learning from
multiple tasks, datasets, and computations on firm theoretical and practical foundations, allowing
scientists and engineers to confidently use the resulting algorithms to power new innovations.

At the technical level, we focus on the learning of rwo types of objects: algorithms—both

regular algorithms and learning algorithms—and neural network architectures. This is done
by “meta-learning” parameters encoding algorithmic or architectural settings while minimizing
appropriate cost measures across multiple learning tasks or problem instances. However, the-
matically the contributions in the thesis are split into the following three parts:

1. Meta-learning: In many applications, we want to learn a good learning algorithm—
e.g. find a good gradient descent initialization—from a large collection of heterogeneous
datasets or tasks; for example, large language models (LL.Ms) are pretrained on big, multi-
distribution corpora before fine-tuning on target data. Understanding such settings requires
going beyond the single-distribution paradigm of classical ML. We show some of the first
guarantees for gradient-based meta-learning, a major approach in this area numerous ap-
plications. Our theory describes task similarity conditions under which learning from mul-
tiple tasks is useful and prescribes algorithms that can exploit this similarity. Since the
publication of the initial results of the thesis, our framework has been directly built upon
theoretically by scientists in diverse areas such as algorithmic game theory and reinforce-
ment learning. Within the thesis itself, we use our framework to design a new state-of-the-
art method for tuning hyperparameters in federated learning (FL) that has been found to
consistently improve regular tuners in both our own and in recent independent evaluations.

2. Algorithms with predictions: Also known as learning-augmented algorithms, this rapidly
growing subfield of theoretical CS designs algorithms whose performance can be improved
by learned predictions of their outputs. It is a leading way of analyzing algorithms beyond
worst-case instances and has had a significant practical impact in areas such as databases
and energy systems. Our work provides the first systematic understanding of the critical
learning aspect of learning-augmented algorithms, introducing a unified way to determine
learnability and in doing so dramatically improving several existing theoretical results
while proving many new ones. This thesis also expands the scope of learning-augmented
algorithms beyond online and graph algorithms, including to privacy-preserving statistics
and to scientific computing.

3. Architecture search: The third focus area of this thesis is on the automated discovery of
good neural architectures, with an emphasis on neural architecture search (NAS) methods
that employ the weight-sharing heuristic. We develop the first theoretical understanding
of the optimization and generalization properties of this technique by conducting a math-
ematical analysis of different NAS objectives. Then we deploy weight-sharing to design
novel search spaces, and associated search algorithms, for finding truly novel neural archi-
tectures that work for diverse data modalities beyond vision, text, and audio. This effort
culminates in a new NAS method whose discovered architectures tend to outperform hu-
man expert-designed architectures on the latest benchmark in the field.

In summary, this thesis advances our theoretical understanding of training on multi-distribution
data, which underlies everything from foundation models powering the latest breakthrough ar-
tificial intelligence (AI) systems to the go-to methods in distributed learning. It also provides
new frameworks that guide the design and analysis of state-of-the-art paradigms in algorithm
design (algorithms with predictions) and neural architecture search (weight-sharing). In applica-
tions, the thesis combines these insights with domain-specific knowledge to develop algorithms
for distributed (federated) learning on heterogeneous data, incorporating ML into statistics and
scientific computing, and automating the application of ML to understudied modalities.

In the rest of this chapter, we first detail the contributions we make towards the learning of
algorithms (Section 0.1) and architectures (Section (.2), and how the individual results are con-
nected. We then conclude with an organizational overview of the rest of the thesis (Section 0.3).

0.1 Learning to parameterize algorithms

Learning to set algorithmic parameters is an important use-case of ML that encompasses many
overlapping areas such as multi-task and meta-learning, personalized federated learning, algo-
rithms with predictions, amortized optimization, and data-driven algorithm design. Here the
data is a collection of learning tasks or computational instances, and the goal is to reduce the
cost of running some parameterized algorithm on them by learning a good parameter to use.
Designing and analyzing algorithms that learn to set the parameters for other algorithms, or
meta-algorithms, is challenging because of the complicated way in which the performance being
optimized—e.g. an algorithm’s runtime or regret—depends on the parameter used.

A key insight that drives the first two parts of this thesis is that we often do not need to work
with the exact performance metric and can instead use a good approximation to achieve mean-

2

ingful results. The closest analogy is that in (single-task) supervised classification we rarely
optimize the (nonconvex) classification loss and instead use surrogate loss functions. Similarly,
an algorithm’s performance can also often be approximated by a simple function of (a) the pa-
rameters to be set by the meta-algorithm and (b) the dataset or instance the algorithm will be
run on. For example, the popular stochastic gradient descent (SGD) algorithm provably per-
forms well on an optimization problem if the distance from the initialization (a parameter) to the
(instance-specific) optimum is small.

We now detail the consequences of this insight for two important areas at the intersection
of ML and algorithms: meta-learning and algorithms with predictions. The resulting methods,
which comprise the first two parts of the thesis, enjoy provable guarantees that show improved
performance as a function of similarity between problem instances. At the same time, they are
practical to apply in large-scale settings beyond the regimes in which we study them, such as
when the tasks involve tuning diverse hyperparameters or solving linear systems.

0.1.1 Meta-learning

In the first part of this thesis we develop the idea of optimizing such simple functions—i.e. using
them as surrogate algorithmic losses—into a framework called ARUBA for designing and ana-
lyzing meta-learning algorithms, i.e. meta-algorithms specifically for learning algorithms. Cru-
cially, the performance of learning algorithms run using the parameters set by our meta-learners
is provably better than comparable single-task learning methods if the tasks are similar in a nat-
ural, algorithm-specific way. For example, gradient descent with a meta-learned initialization
performs well if the tasks’ optima are close in terms of average Euclidean distance.

ARUBA is applicable in numerous settings where the goal is to alleviate the lack of data in
individual learning tasks using data from many related tasks. This collection or “meta-dataset”
of tasks is used by the meta-learner to set the parameters of a “within-task™ or “base learner” al-
gorithm to be run on individual tasks; for example, a dataset of mobile device data can be used to
meta-learn an initialization for SGD that yields a personalized language model when fine-tuned
on the data of a new user. Such approaches have found important applications in areas such as
distributed (federated) learning, computer vision, reinforcement learning, and the pretraining and
fine-tuning of LLMs. In this thesis we show the utility of ARUBA in the following settings:

1. Gradient-based meta-learning: Many modern ML algorithms, including in deep learn-
ing, are adaptations of methods for online convex optimization (OCO), where the learner is
faced with sequentially choosing good parameters for a sequence of convex loss functions.
As a result, a popular paradigm for multi-task training of neural network initializations
known as gradient-based meta-learning is implicitly meta-learning variants of OCO algo-
rithms. Thus, by using ARUBA to study the meta-learning of online mirror descent family,
a large family of OCO algorithms, we show the first upper and lower bounds on the perfor-
mance of gradient-based meta-learning algorithms. As before, these guarantees improve
with a natural notion of task similarity between learning tasks; specifically, task-averaged
performance is good if the optimal parameters of different tasks are close together.

2. Meta-learning of online learners: Following the study of gradient-based meta-learning,
we proceed to show that ARUBA is applicable even when the assumptions of online convex

optimization are relaxed. In particular, we use it to design meta-learning algorithms and
show guarantees in the non-adversarial (statistical) setting, the partial information (bandit)
setting, and the (nonconvex) piecewise-Lipschitz setting. As before, these results show im-
proved performance with setting-specific notions of task similarity, e.g. in the multi-armed
bandit setting we show that the average regret across tasks will have a logarithmic depen-
dence on the number of arms—unlike the square-root dependence that is minimax-optimal
in the single-task setting—so long as a constant number of unknown arms is ever optimal
on any task.

3. Federated learning: Lastly, we exploit the equivalence between popular methods for
gradient-based meta-learning and federated learning—training models across a heteroge-
neous network of devices—to design FedEx, an algorithm for tuning the hyperparameters
of a large class of federated learning methods. FedEx can tune all local hyperparameters,
enjoys ARUBA-based provable guarantees for the case of learning the local step-size, and
leads to significant improvement across three standard tasks in federated learning.

0.1.2 Algorithms with predictions

In the second part of the thesis, we extend the core idea of ARUBA—the optimizing of surro-
gate losses for algorithmic performance measures—beyond learning algorithms, demonstrating
its potential use in any setting where we might hope to use learning to speed up or otherwise im-
prove a computation. We work mainly in the paradigm of algorithms with predictions, a growing
area of algorithm design where the goal is to use possibly imperfect predictors of the outcomes
or optimal settings of an algorithm to reduce its cost. While standard analysis of algorithms char-
acterizes performance in the worst or average case, in domains ranging from database systems
to energy management we can realize substantial gains by augmenting methods with learned
predictions about their instances. This has inspired a large body of theoretical work focused
on quantifying improvement via prediction-dependent performance guarantees and designing
methods that are robust to poor predictions. Such results can have a direct impact on important
applications such as caching protocols, energy systems, and job scheduling.

This thesis makes two fundamental contributions to algorithms with predictions: (1) address-
ing the crucial question of learning and (2) extending the field’s scope beyond its origins in
online and graph problems. The first direction is important because, while the field had produced
many useful algorithms with predictions, the question of where the predictions themselves come
has not been systematically addressed. In practice, predictions often come from meta-algorithms
trained by applying ML to algorithmic data, and so the question becomes whether and how these
meta-algorithms can be efficiently learned. We observe that, just like for initialization-dependent
learning algorithms in ARUBA, existing performance guarantees for learning-augmented algo-
rithms can be also converted into surrogate losses. Distilling this approach into two steps—(1)
proving an optimizable prediction-dependent performance bound and (2) applying online learn-
ing to minimize it across instances—yields a powerful tool for showing end-to-end guarantees for
algorithms with predictions, i.e. results that address both how to use predictions and how to learn
them. Because it focuses on surrogate loss functions amenable to optimization, the framework
also leads to efficient and practical prediction-learning methods.

4

As summarized below, we use the idea of proving learnable performance bounds both to
show learning-theoretic guarantees for existing algorithms with predictions and to expand the
scope of learning-augmented algorithms to two new areas:

1. Learning predictions: We start by using ARUBA to systematically integrate learning into
algorithms with predictions by taking advantage of existing bounds on the cost of param-
eterizable algorithms. Via a series of results on maximum-weight independent matching,
online page migration, job scheduling, and ski rental, we show the first online learning
results for this paradigm along with several new or improved sample complexity bounds.
Importantly, our guarantees are the first learning guarantees for instance-adaptive param-
eterizations of algorithms, i.e. where instead of learning one fixed parameter to use on all
instances we learn a policy mapping instances to customized parameters for them. This is
a practically critical but theoretically understudied aspect of data-driven algorithms.

2. Multi-dataset private statistics: The algorithms with predictions paradigm can be viewed
as a toolkit for deriving and analyzing data-driven methods, with our learning-theoretic
framework being an important new addition to existing capabilities such as robustness-
consistency analysis. We demonstrate how the utility of this view via the design and anal-
ysis of algorithms with predictions in an entirely new area: differentially private (DP)
statistics. In this field, the goal is to release information about sensitive datasets while
protecting the privacy of individuals appearing in it, generally by injecting noisy. Here we
study learning-augmented procedures for multiple quantile release, covariance estimation,
and data release, all of them endowed with both robustness guarantees and efficient learn-
ing procedures derived by optimizing well-chosen surrogate losses on external datasets.
Along the way, we introduce the first algorithm for DP quantile release that does not de-
pend on boundedness assumption and show the usefulness of both our robustness and
learning analysis in several multi-dataset settings. Our results yielded substantial reduc-
tions in the error of privately released statistics, especially at high privacy levels.

3. Learning to solve linear systems: Lastly, we study the data-driven solving of linear sys-
tems, which has important applications in scientific computing problems such as partial
differential equations (PDEs). We examine the problem from both the algorithms with
predictions perspective and from that of data-driven algorithm design, designing bandit
algorithms for setting good relaxation parameters and preconditioners. We also show un-
der natural structural and smoothness assumptions that we can learn an instance-optimal
policy for setting algorithmic parameters. When used to speed up a two-dimensional heat
simulation over a fine-grained mesh our algorithms lead to significant—up to almost three-
fold—wallclock improvements over strong baselines.

0.2 Discovering effective neural architectures

While large-scale neural networks have achieved incredible success in recent years, progress has
been distributed very unevenly among different domains. Methodological development has fo-
cused on a set of well-studied domains—vision, text, and audio—and data and compute demands
have made it difficult for academic and some industry researchers to apply state-of-the-art ML.

5

This has led to important research directions aimed at making such models more efficient and
widely applicable, such as neural architecture search (NAS) and more broadly automated ma-
chine learning (AutoML). However, prior to the work in this thesis the design and evaluation of
NAS methods has itself focused on well-studied data modalities, especially natural images, and
the resulting algorithms depend on poorly understood heuristics such as weight-sharing.

This thesis introduces novel search spaces and parameterizations that (1) enable more ef-
fective gradient-based NAS algorithms, (2) expand our empirical understanding of the weight-
sharing and bilevel optimization approaches to NAS, and (3) yield effective architectures on di-
verse tasks in the natural sciences, healthcare, and beyond. Specifically, we study the following
search spaces and associated algorithms:

1. Operation simplices: Most differentiable NAS algorithms work by determining which of

a finite set of operations—e.g. identity, convolution, or pooling—to assign to an edge in
a computational graph. Usually this is done by continuously parameterizing each choice
using a real number and using a softmax selection, leading to poor optimization and non-
sparse discretization. We propose GAEA, a method that uses a simplex re-parameterization
of this search space and exponentiated gradient to traverse it, yielding provable conver-
gence guarantees, empirically faster recovery of sparse architecture parameters, and im-
proved performance on standard NAS benchmarks.

2. Feature map selection: Because they are entangled with optimization of deep neural
networks, aspects of NAS such as weight-sharing and bilevel optimization are poorly un-
derstood. We propose feature map selection as a simple setting for studying NAS and show
that empirically it also benefits from weight-sharing. We also provide theoretical evidence
that bilevel optimization helps in this setting.

3. Expressive diagonalization: NAS operation spaces, including the ones studied above, are
generally small sets of a few named operations, preventing the discovery of truly novel ar-
chitectures. We propose XD-operations, which dramatically expand the operation space
by parameterizing the discrete Fourier transforms (DFTs) of the convolution operations
diagonalization to take on continuous matrix values. The resulting search space provably
contains many important operations, including all kinds of convolutions, transposed con-
volutions, pooling operations, Fourier neural operators (FNOs), graph convolutions, and
many more. Empirically XD-operations outperform standard NAS operation spaces on
permuted image classification, PDE solving, protein folding, and music modeling tasks.

4. Efficient diagonalization: While XD-operations are both expressive and theoretically ef-
ficient, they face significant memory and computation challenges when applied to practical
tasks. We find that on tasks involving high-dimensional unstructured data such as images,
it is often sufficient to take a simple convolutional neural network (CNN) such as a Wide
ResNet (WRN) and search for better kernel sizes and dilation rates for its convolutional fil-
ters. The resulting method—DASH—outperforms expert-designed architectures on seven
out of ten evaluated tasks, spanning diverse applications and dimensionalities from cos-
mology to genomics.

These algorithms and search spaces point the way towards automated ML methods that can
truly be applied out-of-the-box on a wide array of applications, especially understudied ones
beyond vision and text.

0.3 Organization and contributions

The thesis is organized into three parts: Part I introduces ARUBA and its applications in meta-
learning such as personalized federated learning, Part II deals with its extension to algorithms
with predictions and new directions of data-driven algorithms, and Part III covers architecture
search. Each part has an introductory chapter giving an overview of the topic, the contributions
to it in this thesis, and a discussion of recent related work and future directions. This is followed
by a chapter on the core theoretical contributions (often including empirical demonstrations) and
one or more chapters on (often theory-driven) applications. The appendix in the introductory
chapter of each part provides background information for it.

The work presented in this thesis is largely contained in existing publications, cited here as
well as in the first footnotes of the relevant chapters [Khodak et al., 2019b,a, Balcan et al., 2021b,
Khodak et al., 2023b, 2021, 2022, 2023a, Amin et al., 2023, Khodak et al., 2024, Li et al., 2021a,
Khodak et al., 2020, Roberts et al., 2021, Shen et al., 2022]. Significant content will be reused
from these publications, especially in chapters devoted to the main results. This thesis does
provide a unified overview of many of the theoretical results, corrects some minor errors in the
original works, and situates the contributions in the context of more recent developments.

Part 1

Meta-learning

Chapter 1

Overview

Meta-learning, or learning-to-learn (LTL) [Thrun and Pratt, 1998], has re-emerged as an im-
portant direction for developing algorithms for multi-task learning, dynamic environments, and
federated settings. By using the data of numerous training tasks, meta-learning methods seek to
perform well on new, potentially related test tasks without using many samples. Successful mod-
ern approaches have also focused on exploiting the capabilities of deep neural networks, whether
by learning multi-task embeddings passed to simple classifiers [Snell et al., 2017] or by neural
control of optimization algorithms [Ravi and Larochelle, 2017]. Because of its simplicity and
flexibility, a common approach is parameter-transfer, where all tasks use the same class of O-
parameterized functions fg : X +—); often a shared model ¢ € O is learned that is used to train
within-task models. In gradient-based meta-learning (GBML) algorithms such as MAML [Finn
et al., 2017], ¢ is a meta-initialization for a gradient descent method over samples from a new
task. GBML is used in a variety of LTL domains such as vision [Li et al., 2017, Nichol et al.,
2018, Kim et al., 2018], federated learning [Chen et al., 2018a], and robotics [Duan et al., 2017,
Al-Shedivat et al., 2018]. Its simplicity also raises many practical and theoretical questions about
the task similarity it can exploit and the settings in which it can succeed.

The first part of this thesis deals with theoretically understanding algorithms used in modern
meta-learning, especially GBML, and applying the resulting insights to improve these methods.
In this chapter we review existing theoretical analyses of meta-learning, describe the contribu-
tions of this thesis at a high level, and discuss recent developments and future work in the field In
Chapter 2 we introduce the core contribution: a theoretical framework called ARUBA that both
(a) provides insight into how meta-learning allows learning algorithms to take advantage of task
similarity and (b) guides the design of meta-learning algorithm via the idea of applying off-the-
shelf optimization techniques to surrogate bounds on performance. After introducing this frame-
work, we demonstrate it in a variety of learning-theoretic settings, showcasing its widespread
applicability. Chapter 3 is then dedicated to FedEx, a method for federated hyperparameter tun-
ing that can be understood in-part as an instantiation of ARUBA as well.

11

1.1 Literature

The statistical analysis of LTL was formalized by Baxter [2000]. Several works have built upon
this theory for modern LTL, such as via a PAC-Bayesian perspective [Amit and Meir, 2018] or by
learning the kernel for ridge regression [Denevi et al., 2018]. However, much effort has also been
devoted to the online setting, often through the framework of lifelong learning [Pentina and Lam-
pert, 2014, Balcan et al., 2015, Alquier et al., 2017]. Alquier et al. [2017] consider a many-task
notion of regret similar to the one we study in order to learn a shared data representation, although
our algorithms are much more practical. Recently, Bullins et al. [2019] developed an efficient on-
line approach to learning a linear data embedding, but such a setting is distinct from GBML and
more closely related to popular shared-representation methods such as ProtoNets [Snell et al.,
2017]. Nevertheless, our approach does strongly rely on online learning through the study of
data-dependent regret-upper-bounds, which has a long history of use in deriving adaptive single-
task methods [McMahan and Streeter, 2010, Duchi et al., 2011]; however, in meta-learning there
is typically not enough data to adapt to without considering multi-task data.

The theoretical study of GBML was initiated with an expressivity result shown for MAML
by Finn and Levine [2018], proving that the meta-learner can approximate any permutation-
invariant learner given enough data and a specific neural architecture. Under strong-convexity
and (high-order) smoothness assumptions and using a fixed learning rate, Finn et al. [2019] show
that the MAML meta-initialization is learnable. In contrast to these efforts, Denevi et al. [2019]
focus on providing finite-sample meta-test-time performance guarantees in the convex setting.
Our work improves upon these analyses by considering the case when the learning rate, a proxy
for the task similarity, is not known beforehand as in Finn et al. [2019] and Denevi et al. [2019]
but must be learned online. Furthermore, ARUBA results in guarantees that can handle more
sophisticated and dynamic notions of task similarity and in certain settings can provide better
statistical guarantees.

1.2 Contributions

The meta-learning portion of the thesis consists of a theoretical chapter (2) on the ARUBA frame-
work and its applications to different settings learning-to-learn followed by an empirical chap-
ter (3) dedicated to the FedEx method for federated hyperparameter tuning. Chapter 2 is mainly
dedicated to learning-theoretic applications, with a few empirical demonstrations in simple set-
tings in support of them. In contrast, the contribution in Chapter 3 is a practical method that is
theoretically supported by an analysis enabled by the ARUBA framework. We now give some
additional details on the contributions in each chapter.

1.2.1 ARUBA

Chapter 2 begins with a theoretical framework for designing and understanding practical meta-
learning methods that integrates a mathematical understanding of task similarity with the exten-
sive literature on online convex optimization and sequential prediction algorithms. We call this
framework ARUBA, for Average Regret Upper Bound Analysis, and it is based around deriving

12

nice but meaningful bounds on the performance of learning algorithms that can then be optimized
via off-the-shelf learning techniques; by analogy to supervised classification, these upper bounds
can be viewed as surrogate loss functions for algorithms, in the sense that they are nice functions
(e.g. the square or log loss) that we optimize instead of our actual objective (0-1 error).

Our first application of ARUBA is to the study of gradient-based meta-learning (GBML),
where we use ARUBA to meta-learn the initialization and other parameters of online convex
optimization algorithms such as online gradient descent, which form the basis of many modern
deep learning optimizers. We show that modern GBML approaches can be viewed as optimizing
a surrogate objective that automatically adapts to a natural notion of task similarity; specifically,
we call tasks similar if their optimal parameters are close in Euclidean distance. Using ARUBA,
we can generalize this simple setup to meta-learning other algorithms in the online mirror descent
family—which includes important methods such as exponentiated weights—while adapting to
algorithm-dependent notions of task similarity that generalize the Euclidean distance using Breg-
man divergences. Our approach also enables the task similarity to be learned adaptively, provides
sharper transfer risk bounds in the setting of statistical learning-to-learn, and leads to straight-
forward derivations of average-case regret bounds for efficient algorithms in settings where the
task environment changes dynamically or the tasks share a certain geometric structure. We also
use ARUBA as a guide for algorithm design, as we demonstrate by modifying several popular
meta-learning algorithms and improve their meta-test-time performance on standard problems in
few-shot learning and federated learning.

However, the original setup of ARUBA does suggest some limitations, specifically that per-
haps the nice but meaningful upper bounds it requires only arise in settings where (a) the loss
functions themselves are reasonably nice (e.g. convex and Lipschitz) and (b) where we have
full-information access to these losses. In the remainder of Chapter 2 we study two settings
that show that our framework can in-principle get around these limitations. Firstly, we study the
meta-learning of the initialization and step-size of learning algorithms for piecewise-Lipschitz
functions, a nonconvex setting with applications to both machine learning and algorithms. Start-
ing from recent regret bounds for the exponential forecaster on losses with dispersed disconti-
nuities, we generalize them to be initialization-dependent and then use this result to propose a
practical meta-learning procedure that learns both the initialization and the step-size of the algo-
rithm from multiple online learning tasks. Asymptotically, we guarantee that the average regret
across tasks scales with a natural notion of task similarity that measures the amount of overlap
between near-optimal regions of different tasks. Our approach relies on a careful analysis of ex-
ponentiated weights run on an evolving discretization of the action domain. We also instantiate
the method and its guarantee for several problems in multi-task data-driven algorithm design.

Lastly, we study meta-learning of online learning algorithms that use bandit feedback, with
the goal of improving performance across multiple tasks if they are similar according to some
natural similarity measure. As the first to target the adversarial online-within-online partial-
information setting, we use ARUBA to design meta-algorithms that combine outer learners to
simultaneously tune the initialization and other hyperparameters of an inner learner for two im-
portant cases: multi-armed bandits (MAB) and bandit linear optimization (BLO). For MAB, the
meta-learners initialize and set hyperparameters of the Tsallis-entropy generalization of Exp3,
with the task-averaged regret improving if the entropy of the optima-in-hindsight is small. For
BLO, we learn to initialize and tune online mirror descent (OMD) with self-concordant barrier

13

regularizers, showing that task-averaged regret varies directly with an action space-dependent
measure they induce. To apply ARUBA, we show that the regret of OMD in both settings can
be bounded by affine functions of non-Lipschitz (and sometimes nonconvex) Bregman diver-
gences, which we then show can be learned via unregularized follow-the-leader combined with
two levels of low-dimensional hyperparameter tuning.

1.2.2 FedEx

Meta-learning can be viewed as hyperparameter tuning across multiple tasks, with the initializa-
tions, step-sizes, and other settings being the meta-learnable parameters. In Chapter 3 we show
how in the setting of federated learning—where we use data from multiple devices to learn an
model parameter (that can then be fine-tuned on data from individual clients)—this perspective
allows us to design effective algorithms for hyperparameter tuning, which is a crucial but arduous
part of any machine learning pipeline. Hyperparameter optimization is even more challenging
in federated learning, where models are learned over a distributed network of heterogeneous
devices; here, the need to keep data on device and perform local training makes it difficult to
efficiently train and evaluate configurations.

In particular, we introduce FedEx, a new method for accelerating federated hyperparameter
tuning, specifically in the setting where there are many on-device hyperparameters to tune. FedEx
can be used with any federated optimization scheme involving a local fine-tuning step followed
by server-side aggregation, which describes a very large number of the most popular methods
including the most important, FedAvg. Our contribution makes connections to several different
parts of the thesis, starting with the ARUBA framework we develop in Chapter 2, which we
use to prove that a variant of FedEx correctly tunes the on-device learning rate in the setting
of online convex optimization across devices. The FedEx idea of tuning hyperparameters by
evaluating different optimizer settings using the same initialization is also closely connected
to the technique of weight-sharing from neural architecture search (NAS), which we analyze
more closely in Chapter 9. Notably, FedEx is the only method we are aware of that uses this
technique to tune non-architectural hyperparameters, which is usually not possible to do outside
of a multi-task setting. Empirically, we show that FedEx can outperform natural baselines for
federated hyperparameter tuning by several percentage points on the Shakespeare, FEMNIST,
and CIFAR-10 benchmarks—obtaining higher accuracy using the same training budget.

1.2.3 Contributions of independent interest

In addition to new results in the theory of meta-learning and its applications in federated learning,
our investigation also make contributions to the field of online learning via the introduction of the
strongly-convex coupling technique (c.f. Section 2.A.1). This is a proof approach for showing
regret guarantees for Follow-the-Leader (FTL), a simple online learning algorithm that on each
round takes the action that minimizes the sum of the losses seen so far. FTL is too unstable to
obtain good (sublinear) regret for general convex losses and is mainly applied when the losses
are strongly-convex [Kakade and Shalev-Shwartz, 2008]. However, in Theorem 2.A.1 we extend
old stability results for online convex optimization to show that if FTL run on a sequence of loss

14

functions takes the same actions as FTL run on a different sequence of losses that is strongly-
convex, then FTL will have sublinear (indeed, logarithmic) regret on the original sequence.

While it can be challenging to apply, the technique is powerful because it does not even
require the original sequence of loss functions to be convex. Indeed, perhaps the most interesting
application of strongly-convex coupling is shown in Corollary 2.A.1, where we use it to show
that FTL obtains logarithmic regret when run on sequences of Bregman divergences of form
B(x1]]-), ..., B(xrl||-). This is notable because Bregman divergences can be nonconvex in their
second argument, e.g. when its regularizer is the Tsallis entropy with 5 < 1, which arises in our
analysis of meta-learning in multi-armed bandits (c.f. Section 2.4.2).

1.3 Discussion

1.3.1 Recent developments

Interest in meta-learning theory has grown concurrently with the work in this thesis as the de-
sire to make use of multiple tasks in different learning settings has expanded. As part of this,
our ARUBA framework has been applied many times to derive new meta-learning algorithms
with provable guarantees, including for differentially private meta-learning [Li et al., 2020a],
distributed multi-agent meta-learning [Lin et al., 2021], constrained multi-task reinforcement
learning (RL) [Khattar et al., 2023], and meta-learning in games [Harris et al., 2023]. There
has also been significant related work looking at optimization in nonconvex meta-learning [Fal-
lah et al., 2020], learning good representation for few-shot learning [Du et al., 2021b, Tripu-
raneni et al., 2021], and specific aspects of meta-learning such as the train-validation split in
MAML [Saunshi et al., 2021]. The theory presented in this thesis stands out among these results
by studying the entire meta-learning pipeline—both optimization and learning—in sufficiently
tractable settings. At the same time, recent work has demonstrated that a complete understand-
ing of gradient-based meta-learning is unlikely without nonconvex analysis, i.e. that multi-layer
representation learning is necessary to learn initializations that can take advantage of even sim-
ple types of task similarity [Saunshi et al., 2020]. Nevertheless, ARUBA has helped develop an
understanding of meta-learning that accounts for task similarity, adapts classical learning via its
lifting of surrogate loss functions via performance upper bounds, unifies multi-task approaches
in disparate subfields, and continues to influence the design of meta-algorithms, especially in
learning-theoretic settings beyond standard supervised learning.

In a similar vein, the field of federated hyperparameter tuning has also grown significantly
since the release of FedEx, with the development of numerous methods such as FLoRA [Zhou
et al., 2023], pFedEx [Wang et al., 2023], HPN [Cheng et al., 2023], FEATHERS [Seng et al.,
2023], and FedPop [Chen et al., 2024]; many of these approaches adopt FedEx’s use of weight-
sharing for tuning non-architectural hyperparameters. Fedex has also been independently evalu-
ated on the recently released FedHPOBench benchmark for federated hyperparameter optimiza-
tion, where its use was found to improve the performance of standard hyperparameter tuners in
eleven of twelve cases [Wang et al., 2023, Table 2]. It was also the subject of a study by Nakka
et al. [2024], who observe that FedEx can sometimes perform insufficient exploration and note
that the configurations it determines to be good are often suboptimal, a concern similar to obser-

15

vations of rank disorder in neural architecture search with weight-sharing [Yu et al., 2020a]; as
we argue in Chapter 9, methods can still perform well even in the face of rank disorder. Beyond
benchmarking and methods, recent work has also significantly expanded our understanding of
the evaluation issues that we identify in Chapter 3, showing the surprising result that simple ran-
dom search can outperform more sophisticated tuning schemes (e.g. successive halving) in the
presence of the types of noise (e.g. due to differential privacy, client sampling, etc.) present in
federated optimization [Kuo et al., 2023].

1.3.2 Looking forward

Approaches such as fine-tuning large-scale pretrained models [Devlin et al., 2019] and using
them to in-context learn [Brown et al., 2020] have become extremely popular approaches for
few-shot learning, the original motivation for GBML [Finn et al., 2017]. It is tempting to frame
these approaches as themselves variants of meta-learning: after all, language large-scale models
are often trained on vast, heterogeneous corpora to learn an initialization for gradient descent, and
individual collections can be viewed as their own task. However, meta-learning tools have found
more use in settings (e.g. federated learning) that are more similar to those analyzed in this thesis,
where we learn across numerous small tasks (e.g. clients) that are themselves similar to those
that on which we eventually fine-tune. Bridging this gap between large-scale pretraining and
what we classically understand as meta-learning is an interesting challenge for both theory and
practice. In particular, there is significant future work in understanding the properties (e.g. task
size and data heterogeneity) of pretraining corpora that delineate when if ever we can improve
our initializations using knowledge that they will be fine-tuned using SGD.

Beyond improved pretraining, the rise of large-scale pretraining and large language mod-
els (LLMs) yield many other interesting opportunities for multi-task techniques. For example,
inference costs with such models is incredibly high but done repeatedly: can meta-learning across
inferences be used to reduce such costs or to reduce the number of queries needed? In the other
direction, can the representation power of LLMs be exploited to induce useful embeddings of
tasks from their natural language descriptions? Such representations have been found to be prac-
tically useful ways of accessing task relatedness information [Achille et al., 2019], but the fact
that language models can now meaningfully encode natural language information raises exciting
new possibilities for generating them. Lastly, in the direction of theory and basic science, under-
standing the interplay between the heterogeneity in pretraining corpora and the “skills” learned
by the resulting models [Arora and Goyal, 2023, Chen et al., 2023] is another valuable direction
for future research.

16

1.A Background

1.A.1 Online learning

Aspects of online learning appear throughout this thesis so we give a quick overview in this
section. There exist several excellent resources on this topic that we will draw from and that the
reader may find helpful [Shalev-Shwartz, 2011, Hazan, 2015, Orabona, 2022].

In the basic setup of online learning we are faced with an adversary over 1" rounds ¢ =
1,...,T, on each of which we first take an action x; € X" in some domain X" and then suffer loss
¢;(x;) according to some loss function ¢; : X — R chosen by the adversary. The usual goal of
online learning is to minimize regret, defined as the difference between the loss we incur over 7'
rounds and the loss incurred by the best fixed action in hindsight:

Regret = th(xt) — IEEIYlZEt(X) (1.1)
t—1

Specifically, the minimal goal of online learning is to obtain sublinear regret, i.e. Regret = o(T),
in which case the average loss (relative to the optimum) Regret/T approaches zero as T — 0.
Starting from this basic setup, the field of online learning explores what happens under different
conditions of interest, such as via restrictions on the losses (e.g. convex or Lipschitz), restrictions
on the adversary (e.g. oblivious or stochastic), or different notions of regret (e.g. using dynamic
comparators).

To start off we will consider the well-studied setting where the domain X < R? is con-
vex and the losses are convex and Lipschitz, a field commonly known as online convex opti-
mization (OCO). In this setting, sublinear regret is obtained via the (projected) online gradient
descent (OGD) algorithm [Zinkevich, 2003], which given a step-size 7 > 0 plays

Xp41 = Projy(x; — nVei(x¢)) (1.2)

Here the first point x; can be an arbitrary point in X and the projection is in terms of the Eu-
clidean norm. This algorithm has the following regret guarantee [Shalev-Shwartz, 2011, Theo-
rem 2.11]:

Theorem 1.A.1. If ¥ < R? is convex and the losses /; : X — R are convex and G,-Lipschitz
then OGD with step-size 7 > 0 and initialization x; € X" has regret bounded as

[x* = x5

Regret < +nG*T (1.3)

for G2 = 13 G? and x* € argmin, y >, £;(x). Assuming X' has Euclidean radius at
most D and setting = # yields regret O(GDVT) .

Online gradient descent is just one of many algorithms for online learning and online convex
optimization; indeed the field has developed a deep understanding of the connections between
various algorithms culminating in the online mirror descent (OMD) meta-algorithm, which is
in some sense universal [Srebro et al., 2011]. OMD guarantees take a from similar to given in

17

Theorem 1.A.1 for OGD, except the squared Euclidean distance is replaced by a generalized
measure called a Bregman divergence. In Chapter 2 will take advantage of this to induce many
interest notions of task similarity that meta-learners can adapt to.

Lastly, a crucial aspect of online learning is that regret guarantees proved for sequences of
adversarial losses can be converted into sample complexity or statistical risk bounds via results
known as online-to-batch conversions [Cesa-Bianchi et al., 2004]. These conversions run the
online algorithm on losses that are actually 1.i.d., aggregate the resulting iterates (e.g. by aver-
aging), and then bound the excess risk by a quantity scaling in U(7")/T', where U(T) > Regret
upper-bounds the regret. Since a typical rate for U(T) is O(v/T), it is easy to see that these
conversions can attain excess risk rates that are competitive with standard uniform convergence
guarantees; indeed it can require significant effort to show a learning-theoretic separation be-
tween adversarial and online analysis [Hazan and Kale, 2014]. As a result, we will be able to
use online-to-batch conversion to obtain compelling statistical guarantees, both for meta-learning
and later for algorithms with predictions.

1.A.2 Multi-task learning

The term meta-learning has been used to describe a variety of settings, including others addressed
in this thesis such as hyperparameter tuning. We will mainly use it to refer to a kind of multi-task
learning where the goal is to learn to parameterize a learning algorithm; this distinguishes it from
hyperparameter tuning, where usually the objective is to parameterize an algorithm on a single
task, although as shown in Chapter 3 even this distinction can be blurred. It also distinguishes it
from what we usually think of as multi-task learning [Caruana, 1997], in which a shared model
or representation is trained to solve multiple tasks [Evgeniou and Pontil, 2004], e.g. via different
output heads of a neural network [Caruana et al., 1995, Weinberger et al., 2009]. Note that we will
often consider an online setting of meta-learning, where the tasks are to be solved sequentially;
this and similar setups are sometimes referred to as lifelong learning and continual learning, but
here again terms can be defined in different ways by different authors [Alquier et al., 2017, Jerfel
et al., 2019]. Our online setting for meta-learning is distinct, however, from online multi-task
learning [Cavallanti et al., 2010], in which there is a fixed number of tasks and the examples
arrive sequentially (and with an associated task index).

A core empirical motivation of this thesis is gradient-based meta-learning, in which the goal
is to learn an initialization for methods in the gradient descent family. Prominent methods that
we will refer to here are Model-Agnostic Meta-Learning (MAML) [Finn et al., 2017], in which
gradient descent is used to optimize an objective averaging the loss one gradient step away from
the learned initialization, and a first-order variant called Reptile [Nichol et al., 2018] that simply
minimizes the average distance between the initialization and the last iterate. As we make exten-
sive use of in both chapters, the update rule of Reptile is a generalization of the popular federated
learning algorithm FedAvg [McMahan et al., 2017]: whereas the FedAvg update moves all the
way to the average of last iterates of local SGD applied to a batch of tasks (client devices), Reptile
moves to a convex combination of that average and the initialization used for local SGD.

18

Chapter 2

ARUBA: Provable guarantees for
meta-learning

The first two parts of this thesis are concerned with the learning of algorithms, specifically with
optimizing their parameters over a sequence or distribution of tasks in order to improve some
relevant notion of cost. Target methods whose parameters we will consider learning include reg-
ular algorithms such as the linear system solvers and learning algorithms such as online gradient
descent. In the former case the tasks will be individual computational instances and the cost
measure will often be runtime, while in the latter case we will meta-learn using learning tasks to
minimize quantities such as regret or risk.

In this chapter we introduce the main theoretical tool we develop for this purpose—Average
Regret Upper Bound Analysis (ARUBA)—and discuss its advantages and disadvantages as a tool
for developing new methods for meta-learning, understanding existing ones, and learning predic-
tions. We will then demonstrate its application in a variety of learning-theoretic settings, while
in the next chapter we highlight an empirical application to federated hyperparameter tuning.

2.1 Framework

We introduce our main theoretical tool in the context in which it was originally developed: meta-
learning to initialize gradient descent. The empirical motivation to study this problem comes
from the empirical literature on meta-learning, also known as learning-to-learn, in which the
learner is in an environment with numerous learning tasks each having little data; the goal is to
use data from previously seen meta-training tasks in order to learn how to do well when faced
with a new meta-test task and given only a few examples from it. While this type of multi-task
learning has been studied both empirically and theoretically for many years [Thrun and Pratt,
1998, Baxter, 2000, Maurer, 2005], its widespread integration with modern applications (e.g.
both few-shot supervised learning and reinforcement learning) and modern models (deep neural
networks) came through the gradient-based meta-learning (GBML) approach [Finn et al., 2017].

OYARUBA was first introduced in Khodak et al. [2019a], building upon ideas in an earlier work [Khodak et al.,
2019b]; the original focus was to show guarantees for gradient-based meta-learning. Its subsequent applications to
nonconvex and bandit meta-learning first appeared in Balcan et al. [2021b] and Khodak et al. [2023b], respectively.

19

There the authors introduced Model-Agnostic Meta-Learning (MAML), an approach in which
the meta-training tasks are used to meta-learn an initialization for a deep network; this initializa-
tion is then used to initialize gradient descent on samples from a meta-test task.

MAML and its variants became popular because they can be used with any system relying
on gradient-based methods for learning, covering much of modern deep learning. A particularly
simple and illustrative variant is Reptile [Nichol et al., 2018], which meta-learns an initialization
(13 by running stochastic gradient descent (SGD) starting from some initialization ¢; on each of
a sequence of tasks ¢ = 1,...,7" and setting the next initialization to

Bri1 = (1 —) + ab, 2.1)

where 0, is the last iterate of SGD on task ¢ and & > 0 is a meta-step-size. At meta-test time
Reptile runs SGD from the meta-learned initialization d3 = @1 on samples from unseen tasks.

We cover subsequent methods, other work on theoretical guarantees for GBML, and the
motivation for the online setting in subsequent chapters. For now, to introduce ARUBA, we
consider a multi-task extension of the online learning framework introduced in Section 1.A.1.
We consider a meta-learner faced with m7" losses ¢;, fort = 1,...,T and ¢ = 1,...,m; thus
each ¢ corresponds to a task with m rounds each. The learner’s goal is to play actions x;; € X
that minimize their task-averaged regret:

T m T m
Regret = %;Regrett Z Zﬁm Xt.i) r)gl)rg;ﬁ”(x) = %; ; ri(Xeq) — Cri(x))

t 1i=1
(2.2)
Here we define Regret, to be the realized regret on task ¢ and x; to be the its minimum-
Euclidean-norm optimum-in-hindsight.

To minimize task-averaged regret we take the GBML approach of using the same algo-
rithm, e.g. OGD, on each task ¢ in the sequence. This reduces the question to setting the pa-
rameters of this algorithm—e.g. the initialization x and step-size 7 in the case of OGD—for
each task. Focusing mainly on the initialization, we now introduce our key technique: ana-
lyzing the meta-learner’s performance by studying the online learning of a sequence of regret-
upper-bounds Uy(x:1) > Regret,, specifically by bounding the average regret-upper-bound
U= % 23;1 Ui(x¢1). The following two observations highlight why we care about this quantity:

1. Generality: Many learning algorithms of interest have regret-upper-bounds U;(x) with

nice, e.g. convex, functional forms that depend strongly on both their parameterizations
x € X and the task data. This data-dependence lets us adaptively set x;; € X

2. Consequences: By definition of U, we have that U bounds the task-averaged regret Regret.
Thus if the average regret-upper-bound is small then the meta-learner will perform well
on-average across tasks.

ARUBA’s applicability depends only on finding a low-regret algorithm for the functions Uy;

then by observation 2 we get a task-averaged regret bound where the first term vanishes as 7' —
oo while by observation 1 the second term is small due to the data-dependent task similarity:

Regret < U <)+ I){él)t(l T Z Us(x 2.3)

20

As the first simple instantiation of ARUBA, suppose the meta-learner is indeed using OGD as
the within-task algorithm and the losses on all tasks are convex and G-Lipschitz. Then by The-
orem 1.A.1 we have an upper bound of Uy(x) = 5.]x; — x|3 + nG*m on the regret of OGD
with initialization x € X’ and step-size 7 > 0. Note that U; is convex in the initialization x and
depends strongly on the data via the optimal action x; in hindsight. In-particular, this means
that OGD is also a low-regret algorithm on the sequence Uy, . . ., Ur,! and thus using it to set the

initializations x; ; will result in a task-averaged regret bounded as

- 1l xF —x|?
Regret < U < op(1) + min — Z; % +nG*m = op(1) + O(GV/m) (2.4)

Here we have introduced a fask similarity notion V? = mingey S |Ix# — x|3 measuring the
v)2
Gym)*
here is that in the case where tasks are similar according to this notion—i.e. when V' « D for
D the Euclidean radius of X—then as 7" — o0 meta-learning improves dramatically upon the
O(GD+/m) regret obtained by simply running OGD independently on each task.
As a final observation, note that if the meta-OGD procedure has step-size an > 0 then the

meta-update to set x; ; has the form

empirical variance between the optima in hindsight and then set = O (The key result

X111 = Projy(xe1 —anVUi(x¢1)) = Projy(xe1 —a(xi1 —x37)) = (1 —a)xe 1 + ax) (2.5)

which, apart from the use of the optimum-in-hindsight x; rather than the last-iterate is identical
to the Reptile update (2.1). Since Reptile uses a very similar method to OGD (SGD) on each
task, our result shows that it can be interpreted as meta-learning an initialization that performs
well on subsequent tasks so long as the optimal parameters of most tasks are close to each other.
This interpretation is the first formal justification for Reptile, which was originally introduced
without any formal optimization objective.

2.1.1 Advantages of learning algorithmic upper bounds

Having introduced ARUBA in the context of minimizing average regret across a a sequence of

online learning tasks, we now state it more generally and discuss several advantages of this ap-

proach. Broadly speaking, the idea of ARUBA is summarized in the following two-step process:

1. For a given algorithm, find or derive a convenient-to-optimize upper bound U;(x) on the
cost of running it on task or instance ¢ using parameterization Xx.

2. Apply online learning tools to obtain both regret guarantees against adversarial sequences
and sample complexity bounds for instances drawn from a distribution.
We now discuss some factors behind the success of this approach.

Existence of meaningful upper bounds. To apply ARUBA we require algorithms to have up-
per bounds that (a) can be optimized and (b) provide some meaningful bound on the performance.

'In subsequent sections we use a better algorithm that uses the strong-convexity of U,.
2In subsequent sections we also learn 7 rather than assume knowledge of V.

21

For example, in the OGD example the quadratic upper bound was optimizable due to its (strong)
convexity and provided a meaningful performance bound via the task similarity notion of av-
erage squared distance from the best initialization. In fact guarantees that satisfy such notions
appear frequently throughout machine learning, especially online learning, in which the mirror
descent family of algorithms all have regret guarantees that depend on a Bregman divergence
between the optimal in hindsight and the initialization [Shalev-Shwartz, 2011]. This family in-
cludes well-known examples such as OGD and exponentiated gradient (EG). Beyond learning
algorithms, computational methods also exhibit such bounds; as a basic example, the error of
batch gradient descent can also be shown to depend on the initialization and step-size [Karimi
et al., 2016]. Moreover, the field of algorithms with predictions [Mitzenmacher and Vassilvitskii,
2021] is effectively dedicated devising algorithms whose runtime or other cost measure depends
directly on the error of a predictor or other measure of suboptimality of some tuneable parameter.

Depth of results and applications of online learning. The choice of online learning as a
source of both within-task and meta-learning algorithms is important to ARUBA, as it allows us
to obtain guarantees under general assumptions and draw upon a very large literature in sequen-
tial prediction. This is especially useful for showing learnability of the wide variety of upper
bounds we encounter and for converting the adversarial results to statistical learning guarantees.
Online learning is also notable as a major source of learning algorithms for modern neural net-
work optimization; in-particular, the most popular adaptive methods such as Adam [Kingma and
Ba, 2015] and AdaGrad [Duchi et al., 2011] were derived using online convex optimization. Thus
by using online algorithms we obtain methods that can often be applied with minimal changes to
deep neural networks, even if their guarantees are only for convex settings.

Ease of learning multiple parameters simultaneously. In both meta-learning and algorithms
with predictions we are often concerned with learning multiple types of parameters simultane-
ously; for example, in the former we are often interested in both the initialization and step-
size while in the latter we want to both find a good predictor and fix a good parameter for the
robustness-consistency tradeoff. By optimizing regret-upper-bounds using online learning we are
frequently able to obtain algorithms that can learn multiple parameters simultaneously so long
as we have separate no-regret algorithms for each. In the case of the OGD step-size, if we have
an algorithm that sets 7); that obtains sublinear regret on the sequence %th —xi1|3 + nG*m
for arbitrary x;; then using it in-combination with OGD to set x;; as described above yields
task-averaged regret

T
Regret < Z th X1 + mG2m) + mng Ix; — x;, 1||2
_ n>

'ﬂ I

which tends to O(GV/m) without needing to know 7 in advance. We discuss this in detail in
subsequent chapters.

22

2.1.2 Challenges of applying ARUBA

Applying ARUBA on specific does lead to some challenges that we need to resolve on a case-
by-case basis.

Enforcing meaningful upper bounds. It can be sometimes difficult to obtain useful upper
bounds that meaningfully characterize the performance of a method. In-particular, we can of
course always construct trivially learnable upper bounds just from worst-case guarantees, or even
due to weakness in a data or hyperparameter-dependent upper bound. Arguing that a specific
bound is useful requires knowledge of the application domain and understanding useful notions
of task similarity.

Importance of within-algorithm dynamics. While upper bounds can be a useful starting
guide, for some applications meta-learning can only be understood fully by studying the per-
iteration behavior of the base learner. For example, showing that a linear model must be over-
parameterized as a two-layer linear network in order to meta-learn an initialization of SGD when
the optimal models of all tasks lie in a one-dimensional subspace required analyzing both within-
task and meta-training dynamics [Saunshi et al., 2020]. Upper bounds are not fully be able to
characterize the effect of the initialization on the trajectory of iterative algorithms.

Obtaining statistical results. In areas like statistical and bandit learning we generally have
access only to empirical measures of the relevant cost function (risk) and so cannot optimize it
directly. Thus, while in areas such as algorithms with predictions it is often possible to compare
directly with past statistical guarantees, in meta-learning this is sometimes not the case and the
online-to-batch conversion may be viewed as lossy.

2.2 Gradient-based meta-learning

In this section we discuss our application of ARUBA to minimizing task-averaged regret when
meta-learning to initialize and set the step-size of gradient-based methods across a sequence of
online learning tasks. We consider a meta-learner facing a sequence of online learning tasks
t = 1,...,T, each with m, loss functions ¢;; : © +— R over action-space © < R¢. The
learner has access to a set of learning algorithms parameterized by x € X’ that can be used
to determine the action 6;; € © on each round i € [m;] of task ¢. Thus on each task ¢ the
meta-learner chooses x; € X, runs the corresponding algorithm, and suffers regret Regret, =
Dt b i(0:;) — ming > ¢4 ;(0). For example, we often use online gradient descent as the
within-task learning algorithm, as is done by Reptile [Nichol et al., 2018]. OGD can be parame-
terized by an initialization ¢ € © and a learning rate > 0, sothat X = {(¢,n) : ¢ € O, > 0}.
Using the notation v, = Zi’:a v; and V,; = V/{, ;(0;;), at each round ¢ of task ¢ OGD plays
0 = arg mingeg 36 — @[3 + 1(Vi1i-1,6).

Our first result is a multi-task extension of Abernethy et al. [2008a, Theorem 4.2] that gives
a lower-bound on the task-averaged regret:

23

Algorithm 1: Generic online algorithm for gradient-based parameter-transfer meta-
learning. To run OGD within-task set R(-) = %H -|3. To run FTRL within-task substitute
gt,j (0) for <Vt7j, 0>

Set meta-initialization ¢; € © and learning rate n; > 0.

for task ¢ € [T'] do

// run m steps of online mirror descent (OMD)

for round i € [m;] do

| 0,; — argmingeg Br(0||¢:) + n{Vyi1.i-1,) Suffer loss ¢, ;(0; ;)

// meta-update OMD initialization and learning rate

| Update @1, M1

Corollary 2.2.1. Assume d > 3 and that for each ¢ € [7T'] an adversary must play a se-
quence of m convex G-Lipschitz functions /;; : © — R whose optimal actions in hindsight
arg mingeg >, ¢+.i(6) are contained in some fixed ¢»-ball ©* < © with center ¢* and diameter
D*. Then the adversary can force the agent to have task-averaged regret at least GTD*\/H.

Since by definition D* > V for V' as defined in Section 2.1, this result shows that the ex-
ample guarantee for OGD discussed before—a simple case of the guarantees shown later in this
section—is asymptotically (as 1" — o) optimal up to a constant multiplicative factor.

2.2.1 Adapting to similar tasks and dynamic environments

We now demonstrate the effectiveness of ARUBA for analyzing GBML by using it to prove a
general bound for a class of algorithms that can adapt to both fask similarity, i.e. when the opti-
mal actions 6; for each task are close to some good initialization, and to changing environments,
i.e. when this initialization changes over time. The task similarity will be measured using the
Bregman divergence Br(0||¢) = R(0) — R(¢) —(VR(¢), 0 — ¢) of a 1-strongly-convex func-
tion R : © — R [Bregman, 1967], a generalized notion of distance.’ Note that for R(-) = 1 - |3
we have Br(0||¢) = 1|6 — ¢|3. A changing environment will be studied by analyzing dynamic
regret, which for a sequence of actions {¢;}; < © taken by some online algorithm over a se-
quence of loss functions {f; : © — R}, is defined w.r.t. a reference sequence ¥ = {1,};, < ©
as Regrety = ZtT=1 fi(¢¢) — fi(¢p). Dynamic regret measures the performance of an online
algorithm taking actions ¢, relative to a potentially time-varying comparator taking actions ;.
Note that when we fix 1, = ¥* € arg min, ¢ Zthl f:(¢0) we recover the standard static regret,
in which the comparator always uses the same action.

Putting these together, we seek to define variants of Algorithm 1 for which as 7" — oo the
average regret scales with Vg, where V@ = %ZL Br(0;||1:), without knowing this quantity
in advance. Note for fixed ¥, = 0* = %OT;T this measures the empirical standard deviation of
the optimal task actions ;. Thus achieving our goal implies that average performance improves
with task similarity.

3See Appendix B.2 for more properties of Bregman divergences.

24

Figure 2.1: Illustrations comparing different notions of task similarity. The left plot depicts
notions in the static setting, including the average deviation V' on which Theorem 2.2.2 depends,
the maximal deviation D* from the meta-learning lower bound in Corollary 2.2.1, and the radius
D of the entire action space on which worst-case bounds depend. The right plot shows a setting
where Theorem 2.2.3 yields a strong task similarity-based guarantee via a dynamic comparator
W, despite the average deviation V' being large due to tasks being in far-away clusters.

On each task ¢ Algorithm 1 runs online mirror descent with regularizer R, initialization ¢; €
O, and learning rate 7; > 0. It is well-known that OMD and the related Follow-the-Regularized-
Leader (FTRL), for which our results also hold, generalize many important online methods,
e.g. OGD and multiplicative weights [Hazan, 2015]. For m; convex losses with mean squared
Lipschitz constant G? they also share a convenient, data-dependent regret-upper-bound for any
0; € © [Shalev-Shwartz, 2011, Theorem 2.15]:

1
Regret, < U(¢ps, n:) = W_BR(0:||¢t) + Uthmt (2.7)
¢

All that remains is to come up with update rules for the meta-initialization ¢, € © and the
learning rate 73; > 0 in Algorithm 1 so that the average over T" of these upper-bounds U (¢, 1;)
is small. While this can be viewed as a single online learning problem to determine actions
xy = (¢, m) € O x (0,00), it is easier to decouple ¢ and 7 by first defining two function
sequences { fMt}, and {fsim},:

tinit(qb) = Br(0}||¢)Ger/my ;im(v) — (w + U) Giy/me (2.8)

We show in Theorem 2.2.1 that to get an adaptive algorithm it suffices to specify two algorithms,
INIT and SIM, such that the actions ¢p; = INIT(¢) achieve low (dynamic) regret over fg“it and
the actions v; = STM(t) achieve low (static) regret over f$™; these actions then determine the
update rules of ¢, and 1, = v,/(G/m;). We will specialize Theorem 2.2.1 to derive algorithms
that adapt to task similarity (Theorem 2.2.2) and to dynamic environments (Theorem 2.2.3).

To understand the formulation of f™* and f;'™, first note that f{™(v) = Uy(¢y, v/(Giy/mu)),
so the online algorithm SIM over f;'™ corresponds to an online algorithm over the regret-upper-
bounds U; when the sequence of initializations ¢, is chosen adversarially. Once we have shown

25

that STM is low-regret we can compare its losses ff™(v;) to those of an arbitrary fixed v >
0; this is the first line in the proof of Theorem 2.2.1 (below). For fixed v, each fi'(¢;) is
an affine transformation of ff™(v), so the algorithm INTIT with low dynamic regret over fmt
corresponds to an algorithm with low dynamic regret over the regret-upper-bounds U; when
ne = v/(Gyy/my) ¥V t. Thus once we have shown a dynamic regret guarantee for INIT we can
compare its losses fi"'(¢;) to those of an arbitrary comparator sequence {1;}; < ©); this is the
second line in the proof of Theorem 2.2.1.

Theorem 2.2.1. Assume © < R is convex, each task ¢ € [T] is a sequence of m; convex losses
l;; : © — R with mean squared Lipschitz constant G, and R : © — R is 1-strongly-convex.
* Let INIT be an algorithm whose dynamic regret over functions { "'}, w.r.t. any reference
sequence ¥ = {1;}1_ | < O is upper-bounded by UM(D).
* Let STM be an algorithm whose static regret over functions {f5™}; w.r.t. any v > 0 is
upper-bounded by a non-increasing function U™ (v) of v.

If Algorithm 1 sets ¢, = INIT(¢) and 7, = 228 then for V2 = it BrOTIUOGNTE 3¢ o cieves

G/ ST Gyvmi
o . Usim Va 1) Uinit] o T 2V
Regret < U < # + 7 min %, 2, | Unt(I) tzl Gin/my v Z Gi/my

(2.9

Proof. For o, = (G;,/m; we have by the regret bound on OMD/FTRL (1.1) that

T * T #
UT = Z (M + Ut) o, < mln Us1m) + Z (BR(9;||¢25) + U> o
t=1

Ut
init T *
< min Ujs—!m('U) + U (‘Ij) Z (BR 9 ||":bt))Ut

v>0
Ulmt \I/ —
< US™(Vy) + min{ TV(),2« / U%Ellt(\I’)O'LT} + 2Vyorr
v
(2.10)
where the last line follows by substituting v = max {V\p, Uhit(0)/ alzT}.]

Similar tasks in static environments

By Theorem 2.2.1, if we can specify algorithms INIT and SIM with sublinear regret over ft
and f5™ (2.8), respectively, then the average regret will converge to O(Vy+/m) as desired. We
first show an approach in the case when the optimal actions 8; are close to a fixed point in O,
i.e. for fixed ¥, = 6* = 1.0}.,.. Henceforth we assume the Lipschitz constant G and number of
rounds m are the same across tasks; detailed statements are in the supplement.

Note that if R(-) = %] - |3 then {f{"}, are quadratic functions, so playing ¢ 41 = 167,
has logarithmic regret [Shalev-Shwartz, 2011, Corollary 2.2]. We use a novel strongly convex

coupling argument to show that this holds for any such sequence of Bregman divergences, even

26

for nonconvex Br(0;}||-). The second sequence { 5™}, is harder because it is not smooth near 0
and not strongly convex if 8 = ¢,. We study a regularized sequence fy™(v) = f3™(v) + £2/v
for ¢ > 0. Assuming a bound of D? on the Bregman divergence and setting ¢ = 1/v/T, we
achieve @(\/T) regret on the original sequence by running the exponentially-weighted online-

optimization (EWOO) algorithm of Hazan et al. [2007] on the regularized sequence:

24¢2 fsim
o = fy 7 vexp(—y X, M (v))du for 4= —2 min {5_2 1} 2.11)
2 E2 . 2’ '
B2 exp(—y Xoey fim(0))do DGym =D

Note that while EWOO is inefficient in high dimensions, we require only single-dimensional
integrals. In the supplement we also show that simply setting v7,; = €*t + >, _, Br(6%||¢;) has
only a slightly worse regret of @(T?’/ ®). These guarantees suffice to show the following:

Theorem 2.2.2. Under the assumptions of Theorem 2.2.1 and boundedness of By over O, if
INIT plays ¢y1 = 167, and SIM uses e-EWOO (2.11) with ¢ = 1/v/T then Algorithm 1
achieves average regret

1+¢+ 1

Regret <U = O (min{ﬁ, {V_T

1w \
} —i—V) vm for V%= %STZBR(@H@
t—1
(2.12)

Observe that if V/, the average deviation of 6, is {27 (1) then the bound becomes O(V y/m)
at rate O(1/v/T), while if V = op(1) the bound tends to zero.

Related tasks in changing environments

In many settings we have a changing environment and so it is natural to study dynamic regret.
This has been widely analyzed by the online learning community [Cesa-Bianchi et al., 2012,
Jadbabaie et al., 2015], often by showing a dynamic regret bound consisting of a sublinear term
plus a bound on the variation in the action or function space. Using Theorem 2.2.1 we can show
dynamic guarantees for GBML via reduction to such bounds. We provide an example in the
Euclidean geometry using the popular path-length-bound Py = Zthz s — by 1|2 for reference
actions ¥ = {1p,}I | [Zinkevich, 2003]. We use a result showing that OGD with learning rate
n < 1/ over a-strongly-convex, 3-strongly-smooth, and L-Lipschitz functions has a bound of
O(L(1 + Py)) on its dynamic regret [Mokhtari et al., 2016, Corollary 1]. Observe that in the
case of R(-) = |- |3 the sequence f;"" in Theorem 2.2.1 consists of DG+/m-Lipschitz quadratic
functions. Thus using Theorem 2.2.1 we achieve the following:

Theorem 2.2.3. Under the assumptions of Theorem 2.2.1, bounded ©, and R(-) = 1| - |3, if

INIT is OGD with learning rate ﬁ, SIM uses e-EWOO (2.11) with ¢ = 1/v/T, and ¥ =

{1b1}1er) < © is a comparator sequence, then by using OGD within-task Algorithm 1 achieves

L 1+ L
Regret<U:(’)<min{ \/TV‘P,\%}+min{1‘;;]TDW,q/1+TPW}+v@>\/E (2.13)

for V2 = 5300 167 — b} and Py = Y, , [abe — i o

27

This bound controls task-averaged regret using the deviation Vg of the optimal parameters 6;
from some reference sequence ¢, which is assumed to vary slowly or sparsely so that the path
length Py is small. Figures 2.1 illustrates when such a guarantee improves over Theorem 2.2.2.
Note that Theorem 2.2.3 specifies OGD as the meta-update algorithm INIT, so under the ap-
proximation that each task ¢’s last iterate is close to 8; it suggests that simple GBML methods
such as Reptile [Nichol et al., 2018] or FedAvg [McMabhan et al., 2017] are adaptive. The gen-
erality of ARUBA also allows for incorporating other dynamic regret bounds [Hall and Willet,
2016, Zhang et al., 2017] and other non-static notions of regret [Hazan and Seshadri, 2009].

2.2.2 Adapting to the inter-task geometry

Previously we gave guarantees for learning OMD under a simple notion of task similarity: close-
ness of the optimal actions 6;. We now turn to new algorithms that can adapt to a more sophisti-
cated task similarity structure. Specifically, we study a class of learning algorithms parameterized
by an initialization ¢ € © and a symmetric positive-definite matrix H e S‘i which plays

1
0,; = arg min §H9 — @|f + (Vi1io1,0) (2.14)
6cO

This corresponds 0,,.1 = 6,; — HV,;, so if the optimal actions 6 vary strongly in certain
directions, a matrix emphasizing those directions improves within-task performance. By strong-
convexity of 1]|6 — |7 w.r.t. |- [g-1, the regret-upper-bound is Uy (¢, H) = 1|10} — @[3, +
>0 I Vi4ll3 [Shalev-Shwartz, 2011, Theorem 2.15]. We first study the diagonal case, i.e. learn-
ing a per-coordinate learning rate 17 € R? to get iteration 0, ;1 = 0;; — 1, ® V. We propose to
set 1); at each task ¢ as follows:

24 Ligx _ $)2 2 2
nt _ 28<t 88 - 2(fns qbg) fOI‘ 8? _ € ’ CtZ _ C
Zs<t gs + Zi:l vs,i (t + 1)1) (t + 1);7

Vt>=0, where ¢,(,p >0

(2.15)
Observe the similarity between this update AdaGrad [Duchi et al., 2011], which is also inversely
related to the sum of the element-wise squares of all gradients seen so far. Our method adds
multi-task information by setting the numerator to depend on the sum of squared distances be-
tween the initializations ¢, set by the algorithm and that task’s optimal action ;. This algorithm
has the following guarantee:

Theorem 2.2.4. Let O be a bounded convex subset of R?, let DY < R%*? be the set of positive
definite diagonal matrices, and let each task ¢ € [T'] consist of a sequence of m convex Lipschitz
losses ¢;; : © — R. Suppose for each task ¢ we run the iteration in Equation 2.14 with ¢ =
~-07.,_, and setting H = diag(n,) via Equation 2.15 for e = 1,(= y/m, and p = 2. Then

Regret < U
d 1 + H . T % 2 m
— min O in J Hil b 1 10 67— Ol 112
= r¢r)1€1£ O (Z}lmm{ T% , \S/T m—i— T; 5 +§Vt,z||H
HeD? 7= - =

(2.16)

28

Algorithm 2: Methods for modifying a generic GBML method to learn a per-
coordinate step-size, with two variants: (1) the “ARUBA++" variant starts with 17 ; =
nr and gr1 = gr, adaptively resets the learning rate by setting 7,41 < &7, + CVZ2 for
some ¢ > 0, and then updates 97,;+1 < +/br / gr.i+1; (2) the “Isotropic” variant sets by
and g, to be scalars multiples of 1, that track the sum of squared distances and sum of
squared gradient norms, respectively.
Input: 7" tasks, update method for meta-initialization, within-task descent method,
settings £, (,p > 0
Initialize by < 21,4, g, « (*14
for taskt =1,2,...,7T do
Set ¢, according to update method, 1, < +/b;/g;
Run descent method from ¢; with learning rate 7;:
observe gradients V;1,..., Vi,
obtain within-task parameter 0,

by < b + (:;lld +3 (¢t 6,)*
| 81 gt fﬁd + 200 Vi

Result: initialization ¢, learning rate nr = 4/br/gr

As T" — oo the bound converges to the minimum over ¢, H of the last two terms, corre-
sponding to using the optimal initialization and per-coordinate learning rate on every task. The
O(T~2/) convergence is slightly slower than the usual O(1/+/T) rate achieved in the previous
section; this is due to the algorithm’s adaptivity to within-task gradients, whereas previously we
simply assumed a known Lipschitz bound G to set 7;,. This adaptivity makes the algorithm
much more practical, leading to a method for adaptively learning a within-task learning rate
using multi-task information; this is outlined in Algorithm 2 and shown to improve GBML per-
formance in Section 2.2.4. Note also the per-coordinate separation of the left term, which shows
that the algorithm converges more quickly on non-degenerate coordinates. The per-coordinate
specification of n; (2.15) can be further generalized to learning a full-matrix adaptive regularizer,
for which we show guarantees in Theorem 2.2.5. However, the rate is much slower, and without
further assumptions such methods will have Q(d?) computation and memory requirements.

Theorem 2.2.5. Let © < R? be bounded and convex, and let each task ¢ € [T'] be a sequence of
m convex Lipschitz losses ¢;; : © — R. Suppose for each ¢ we run the iteration in Equation 2.14
with ¢ = 15607, , and H the unique positive definite solution of B} = HG}H for

1 m
2 2 * * T 2 2 T
B? = t%1, + 52(95 — ¢,)(0* — ¢,) and G} =tCI;+) D V., Vi (217)

s<t s<ti=1

for e = 1/v/T and ¢ = v/m/~/T. Then for \;(H) the jth largest eigenvalue of H we have

(1 CONH) 1+ logT o« |0F — P &)

< = .

Regret <U = O (\S/T) vm + %rllel(% N (H) T + til 5 + iil IVl
>

(2.18)

29

2.2.3 Fast rates and high probability bounds for statistical meta-learning

Transfer risk bounds in the distributional setting have been an important motivation for studying
LTL via online learning [Alquier et al., 2017, Denevi et al., 2019]. If the regret-upper-bounds are
convex, which is true for most practical variants of OMD/FTRL, ARUBA yields several new re-
sults in the classical distribution over task distributions setup of Baxter [2000]. In Theorem 2.2.6
we present bounds on the risk ¢5(8) of the parameter § obtained by running OMD/FTRL on
i.i.d. samples from a new task distribution P and averaging the iterates.

Theorem 2.2.6. Assume O, X are convex subsets of a Euclidean vector space. Let convex losses
li;i:© — [0,1] bedrawniid. Py ~ Q,{l;;}; ~ P for distribution Q over tasks. Suppose they
are passed to an algorithm with average regret upper-bound U after 7 tasks that at each ¢ picks
x; € X to initialize a within-task method with convex regret upper-bound U; : X — [0, By/m],
for B > 0. If the within-task algorithm is initialized by X = %XLT and it takes actions 04,,0,,
on m i.i.d. losses from new task P ~ Q then 6 = #01:,71 satisfies the following transfer risk

bounds for any 8* € O (all w.p. 1 —9):

1. general case: Ep oEpnlp(0) < Ep olp(0*)+ Ly for L= % + By/ - log 5.

2. p-self-bounded losses /: if 3 p > 0s.t. pEpAL(O) = Epop(AL(O)—E,pAL(6))? for
all distributions P ~ Q, where Al(0) = ¢(0)—¢(0*) for any 8* € arg mingo (p(0), then

for L as above we have Ep.olp(0) < Ep.glp(0*) + L1+ 4/ 25T log 2 + 2282 10g 2,

3. a-strongly-convex, G-Lipschitz regret-upper-bounds U;: in parts 1 and 2 above we

1 U i xIE ~ U 1 2, B
can substitute L = oo — QUCd %1/% log 81°5gT + max{ 6§m§°‘ vm} log Sl%gT.

In the general case, Theorem 2.2.6 provides bounds on the excess transfer risk decreasing
with U/m and 1/+/mT. Thus if U improves with task similarity so will the transfer risk as 7" —
oo. Note that the second term is 1/ +/mT rather than 1 / /T as in some past most-analyses [Denevi
et al., 2019]; this is because regret is m-bounded but the OMD regret-upper-bound is O(/m)-
bounded. The results also demonstrate ARUBA’s ability to utilize specialized results from the
online-to-batch conversion literature. This is witnessed by the guarantee for self-bounded losses,
a class which Zhang [2005] shows includes linear regression; we use a result by the same author
to obtain high-probability bounds, whereas previous GBML bounds are in-expectation [Denevi
et al., 2019]. We also apply a result due to Kakade and Tewari [2008] for the case of strongly-
convex regret-upper-bounds, enabling fast rates in the number of tasks 7". The strongly-convex
case is especially relevant for GBML since it holds for OGD with fixed learning rate.

We present two consequences of these results for the algorithms from Section 2.2.1 when run
oni.i.d. data. To measure task similarity we use the variance V3 = mingeg Ep.gEpm[0* — |3
of the empirical risk minimizer 8* of an m-sample task drawn from Q. If V, is known we can use
strong-convexity of the regret-upper-bounds to obtain a fast rate for learning the initialization, as
shown in the first part of Corollary 2.2.2. The result can be loosely compared to Denevi et al.
[2019], who provide a similar asymptotic improvement but with a slower rate of O(1//T) in
the second term. However, their task similarity measures the deviation of the true, not empirical,
risk minimizers, so the results are not directly comparable. Corollary 2.2.2 also gives a guarantee
for when we do not know Vy and must learn the learning rate 7 in addition to the initialization;

30

learning rate

(log scale) classification
convolutional B layer =
layer (1) le-4 1le-3 =
A . FC o o o g g e] =
FF [———— =
::: -.: lrr"?.?;_: W IR R, —
= i At =
e
convolutional convolutional convolutional
layer (2) layer (3) layer (4) =

Figure 2.2: Learning rate variation across layers of a convolutional net trained on Mini-ImageNet
using Algorithm 2. Following intuition outlined in Section 2.2.4, shared feature extractors are
not updated much if at all compared to higher layers.

here we match the rate of Denevi et al. [2019], who do not learn 7, up to some additional fast
o(1/4/m) terms.

Corollary 2.2.2. In the setting of Theorems 2.2.2 and 2.2.6, if § < 1/e and Algorithm 1 uses

within-task OGD with initialization ¢, = %91’} and step-size 7, = %ﬁ for Vg as above,

then w.p. 1 —

_ s 11\, 1
Ep oEpmlp(0) < Ep. olp(0* — | log = 2.1
proEpmlp(0) polp()+O(W+(W+T>Og5) (2.19)

If 7, is set adaptively using e-EWOO as in Theorem 2.2.2 for ¢ = 1/v/mT + 1/4/m then w.p.
1-9¢

EpoEpnlp(8) < Epolp(0)+ O [22 4 mi it 1 ! L og
P~oEpnlp(0) < Ep.olp(0”) + \/—EJFITHH Vomn aerE + T 085
(2.20)

2.2.4 Empirical results for few-shot and federated learning

A generic GBML method does the following at iteration ¢: (1) initialize a descent method at ¢;
(2) take gradient steps with learning rate 7 to get task parameter 0,; (3) update meta-initialization
to ¢, 1. Motivated by Section 2.2.2, in Algorithm 2 we outline a generic way of replacing 7 by a
per-coordinate rate learned on-the-fly. This entails keeping track of two quantities: (1) b, € R,
a per-coordinate sum over s < t of the squared distances from the initialization ¢, to within-task
parameter 6,; (2) g, € R?, a per-coordinate sum of the squared gradients seen so far. At task ¢
we set 7 to be the element-wise square root of b,/g;, allowing multi-task information to inform
the trajectory. For example, if along coordinate j the ét[j] is usually not far from initialization

31

Table 2.1: Meta-test-time performance of GBML algorithms on few-shot classification
benchmarks. 1st-order and 2nd-order results obtained from Nichol et al. [2018] and Li
et al. [2017], respectively.

20-way Omniglot 5-way Mini-ImageNet

1-shot 5-shot 1-shot 5-shot
1st-Order MAML 89.4+0.5 97.9 £ 0.1 48.07 £ 1.75 63.15 £ 0.91
Ist Reptile w. Adam 89.43 £0.14 97.12+£0.32 49.97+0.32 65.99 +0.58
Order Reptile w. ARUBA 86.67 £0.17 96.61 £0.13 50.73 +£0.32 65.69 + 0.61
Reptile w. ARUBA++ 89.66 £0.3 97.49+0.28 50.35+0.74 65.89+0.34
2nd 2nd-Order MAML 95.8 £ 0.3 98.91+0.2 48.7+1.84 63.11 £0.92

Order Meta-SGD [Lietal, 2017] 95.93 £0.38 98.97+0.19 5047 +£1.87 64.03 £0.94

then by will be small and thus so will 7p;;; then if on a new task we get a high noisy gradient
along coordinate j the performance will be less adversely affected because it will be down-
weighted by the learning rate. Single-task algorithms such as AdaGrad [Duchi et al., 2011] and
Adam [Kingma and Ba, 2015] also work by reducing the learning rate along frequent directions.
However, in meta-learning some coordinates may be frequently updated during meta-training
because good task weights vary strongly from the best initialization along them, and thus their
gradients should not be downweighted; ARUBA encodes this intuition in the numerator using
the distance-traveled per-task along each direction, which increases the learning rate along high-
variance directions. We show in Figure 2.2 that this is realized in practice, as ARUBA assigns a
faster rate to deeper layers than to lower-level feature extractors, following standard intuition in
parameter-transfer meta-learning. As described in Algorithm 2, we also consider two variants:
ARUBA-++, which updates the meta-learned learning-rate at meta-test-time in a manner similar
to AdaGrad, and Isotropic ARUBA, which only tracks scalar quantities and is thus useful for
communication-constrained settings.

Few-shot classification

We first examine if Algorithm 2 can improve performance on Omniglot [Lake et al., 2017] and
Mini-ImageNet [Ravi and Larochelle, 2017], two standard few-shot learning benchmarks, when
used to modify Reptile, a simple meta-learning method [Nichol et al., 2018]. In its serial form
Reptile is roughly the algorithm we study in Section 2.2.1 when OGD is used within-task and 7 is
fixed. Thus we can set Reptile+ ARUBA to be Algorithm 2 with 6, the last iterate of OGD and the
meta-update a weighted sum of 6, and ¢@;. In practice, however, Reptile uses Adam [Kingma and
Ba, 2015] to exploit multi-task gradient information. As shown in Table 2.1, ARUBA matches or
exceeds this baseline on Mini-ImageNet, although on Omniglot it requires the additional within-
task updating of ARUBA++ to show improvement.

It is less clear how ARUBA can be applied to MAML [Finn et al., 2017], as by only taking
one step the distance traveled will be proportional to the gradient, so 7 will stay fixed. We also
do not find that ARUBA improves multi-step MAML, which is perhaps not surprising as it is
further removed from our theory due to its use of held-out data. In Table 2.1 we compare to
Meta-SGD [Li et al., 2017], which does learn a per-coordinate learning rate for MAML by auto-

32

B refine
global

[
0.56 4

accuracy

o o
> u
o o
L L

o

'S

o
L

FedAvg ARUBA FedAvg ARUBA
(default) (isotropic) (tuned) (full)

Figure 2.3: Next-character prediction performance for recurrent networks trained on the
Shakespeare dataset [Caldas et al., 2018] using FedAvg [McMahan et al., 2017] and its
modifications by Algorithm 2. Note that the two ARUBA methods require no learning rate
tuning when personalizing the model (refine), unlike both FedAvg methods; this is a critical
improvement in federated settings. Furthermore, isotropic ARUBA has negligible overhead by
only communicating scalars.

matic differentiation. This requires more computation but does lead to consistent improvement.
As with the original Reptile, our modification performs better on Mini-ImageNet but worse on
Omniglot compared to MAML and its modification Meta-SGD.

Federated learning

A main goal in this setting is to use data on heterogeneous nodes to learn a global model without
much communication; leveraging this to get a personalized model is an auxiliary goal [Smith
et al., 2017], with a common application being next-character prediction on mobile devices. A
popular method is FedAvg [McMahan et al., 2017], where at each communication round r the
server sends a global model ¢, to a batch of nodes, which then run local OGD; the server then
sets ¢,.1 to the average of the returned models. This can be seen as a GBML method with
each node a task, making it easy to apply ARUBA: each node simply sends its accumulated
squared gradients to the server together with its model. The server can use this information and
the squared difference between ¢, and ¢,.; to compute a learning rate 7, ,; via Algorithm 2
and send it to each node in the next round. We use FedAvg with ARUBA to train a character
LSTM [Hochreiter and Schmidhuber, 1997] on the Shakespeare dataset, a standard benchmark
of a thousand users with varying amounts of non-i.i.d. data [McMahan et al., 2017, Caldas
et al., 2018]. Figure 2.3 shows that ARUBA significantly improves over non-tuned FedAvg and
matches the performance of FedAvg with a tuned learning rate schedule. Unlike both baselines
we also do not require step-size tuning when refining the global model for personalization. This
reduced need for hyperparameter optimization is crucial in federated settings, where the number
of user-data accesses are extremely limited.

33

2.2.5 Conclusion

In this section we have demonstrated the application of ARUBA for analyzing gradient-based
meta-learning, yielding new guarantees and algorithms for adaptive, dynamic, and statistical
LTL via online learning. ARUBA has significant potential to yield many other new LTL methods
in a similar manner, but so far our results were for convex, Lipschitz, and full-information loss
functions, assumptions that do not hold in many potential applications where we might want to
learn-to-learn across tasks. We thus devote the next two sections to exploring how these assump-
tions might be avoided, first by showing guarantees for the meta-learning of online algorithms
over nonconvex piecewise-Lipschitz functions and second by studying adversarial bandit algo-
rithms. In doing so we go beyond gradient-based learning algorithms as well, demonstrating
that the idea of targeting surrogate performance bounds can be useful even when moving to more
probabilistic algorithms.

2.3 Learning-to-learn piecewise-Lipschitz functions

Our first direction is the meta-learning of online learners of piecewise-Lipschitz functions, which
can be nonconvex and highly discontinuous. As no-regret learning over such functions is impos-
sible in-general, we study the case of piecewise-Lipschitz functions whose discontinuities are
dispersed, i.e. which do not concentrate in any small compact subset of the domain [Balcan
et al., 2018b]. Such functions arise frequently in data-driven algorithm design, in which the goal
is to learn the optimal parameter settings of algorithms for difficult (often NP-hard) problems
over a distribution or sequence of instances [Balcan, 2021]; for example, a small change to the
metric used in cluster linkage can lead to a discontinuous change in classification error [Balcan
et al., 2019]. Such problems are often solved across many time periods or problem domains,
resulting in natural multi-task structure that we might hope to use to improve performance.

In the single-task setting the problem of learning dispersed functions can be solved using
simple methods such as the exponentially-weighted forecaster. To design an algorithm for learn-
ing to initialize online learners in this setting, we apply ARUBA to optimize a sequence of
data-dependent upper-bounds on the within-task regret. The result is an averaged bound that im-
proves upon the regret of the single-task exponential forecaster so long as there exists an initial
distribution that can compactly contain many of the within-task optima of the different tasks.
Designing the meta-procedure is especially challenging in our setting because it involves online
learning over a set of distributions on the domain. To handle this we study a “prescient” form of
the classic follow-the-regularized leader (FTRL) scheme that is run over an unknown discretiza-
tion; we then show the existence of another algorithm that plays the same actions but uses only
known information, thus attaining the same regret while being practical to implement.

As an application, we consider data-driven tuning of the parameters of combinatorial opti-
mization algorithms for hard problems such as knapsack and clustering. The likely intractabil-
ity of these problems on worst case instances have led to several approaches to study them in
more realistic settings, such as smoothed analysis [Spielman and Teng, 2004] and data-driven
algorithm configuration [Balcan, 2021]. Our setting is more realistic than those considered in
prior work. It is more challenging than learning from i.i.d. instances [Gupta and Roughgar-

34

den, 2017], but at the same time less pessimistic than online learning over adversarial problem
instances [Balcan et al., 2018b], as it allows us to leverage similarity of problem instances com-
ing from different but related distributions. We instantiate our bounds theoretically on several
problems where the cost functions are piecewise-constant in the tuned parameters, allowing our
meta-procedure to learn the right initial distribution for exponential forecasters. This includes
well-known combinatorial optimization problems like finding the maximum weighted indepen-
dent set (MWIS) of vertices on a graph, solving quadratic programs with integer constraints
using algorithms based on the celebrated Goemans-Williamson algorithm, and mechanism de-
sign for combinatorial auctions. Then we consider experimentally the problem of tuning the
right « for the a-Lloyd’s family of clustering algorithms [Balcan et al., 2018c]. In experimental
evaluations on two datasets—a synthetic Gaussian mixture model and the well-known Omniglot
dataset from meta-learning [Lake et al., 2017]—our meta-procedure leads to improved cluster-
ing accuracy compared to single-task learning to cluster. The results holds for both one-shot and
five-shot clustering tasks. We also study our results for a family of greedy algorithms for the
knapsack problem introduced by Gupta and Roughgarden [2017] and obtain similar results.

2.3.1 Related work

Most learning-theoretic results for initialization-based meta-learning have been in the convex
Lipschitz setting, with work on inherently nonconvex modeling approaches usually focuseing
on multi-task representation learning [Balcan et al., 2015, Maurer et al., 2016, Du et al., 2021b,
Tripuraneni et al., 2021] or targeting optimization, e.g. stationary point convergence [Fallah
et al., 2020]. An exception is a study of linear models over Gaussian data showing that noncon-
vexity is critical to meta-learning an initialization that exploits low-rank task structure [Saunshi
et al., 2020]. There is also work extending results from the neural tangent kernel literature to
meta-learning [Zhou et al., 2021], but in this case the objective becomes convex. On the other
hand, we study initializations for learning a class of functions that can be highly nonconvex and
have numerous discontinuities.

2.3.2 Initialization-dependent learning of dispersed functions

In this section we introduce our setup for online learning of piecewise-Lipschitz functions in a
multi-task setting. We then generalize existing results for the single-task setting in order to obtain
within-task regret bounds that depend on both the initialization and the task data. This is critical
for both defining a notion of task similarity and devising a meta-learning procedure.

Meta-learning setup

As before, for some 7,m > 0 and all t € [T] and ¢ € [m] we consider a meta-learner faced
with a sequence of T'm loss functions ¢;; : C' > |0, 1] over a compact subset C' = R? that lies
within a ball B(p, R) of radius R around some point p € R?. Before each loss function ¢; ; the
meta-learner must pick an element p;; € C before then suffering a loss or cost ¢; ;(p;;). As in
the previous section, the subsequence ¢, 1, . . ., {;,, defines a task, but a key point now is that the
tasks we consider can have numerous global optima. We will assume, after going through the

35

m rounds of task ¢, that we have oracle access to a single fixed optimum for ¢, which we will
refer to using p; and use in both our algorithm and to define the task similarity. Note that in
the types of applications we are interested in—piecewise-Lipschitz functions—the complexity
of computing optima scales with the number of discontinuities. In the important special case of
piecewise-constant functions, this dependency becomes logarithmic [Cohen-Addad and Kanade,
2017]. Thus this assumption does not affect the usefulness of the result.

Our goal will be to improve the guarantees for regret in the single-task case by using in-
formation obtained from solving multiple tasks. As before, we will do this by proving task
similarity-dependent bounds on the task-averaged regret &> S 4,:(p,;) — lii(p}) and
claim improvement over single-task learning if in the limit of 7" — oo it is better than the best
available bounds on the single-task regret. Note that for simplicity we assume all tasks have
the same number of rounds within-task, but as with past work our results are straightforward to
extend to the more general setting.

Learning piecewise-Lipschitz functions

We now turn to our target functions and within-task algorithms for learning them: piecewise-
Lipschitz losses, i.e. functions that are L-Lipschitz w.r.t. the Euclidean norm everywhere except
on measure zero subsets of the space; here they may have arbitrary jump discontinuities so
long they still bounded between [0, 1]. Apart from being a natural setting of interest due to its
generality compared to past work on meta-learning, this class of functions has also been shown to
have important applications in data-driven algorithm configuration [Balcan et al., 2018b]; there
these functions represent the cost, e.g. an objective value or time-complexity, of algorithms for
difficult problems such as integer programming, auction design, and clustering.

This literature has also shown lower bounds demonstrating that no-regret learning piecewise-
Lipschitz function is impossible in general, necessitating assumptions about the sequence. One
such condition is dispersion, which requires that the discontinuities are not too concentrated.

Definition 2.3.1 (Balcan et al. [2018b]). The sequence of random loss functions ¢4, ..., ¢, is
said to be [S-dispersed with Lipschitz constant L if, for all m and for all ¢ > m—?, we have
that, in expectation over the randomness of the functions, at most O(em) functions (the soft-O
notation suppresses dependence on quantities beside ¢, m and 3, as well as logarithmic terms)
are not L-Lipschitz for any pair of points at distance ¢ in the domain C. That is, for all m and for
alle > m 7P,

E| max |[{ielm]]b(p) =) > Lip = p'lo}| | < O(em) (2.21)
lp—p/lo<e

Assuming a sequence of m [-dispersed loss functions and initial distribution w, set to the
uniform distribution over C' and optimize the step-size parameter, the exponential forecaster
presented in Algorithm 3 achieves sublinear regret O(~/dmlog(Rm) + (L + 1)m'~?). While
this result achieves a no-regret procedure, its lack of dependence on both the task data and on
the chosen initialization makes it difficult to meta-learn. In the following theorem, we generalize
the regret bound for the exponential forecaster to make it data-dependent and hyperparameter-

dependent:

36

Algorithm 3: Exponential Forecaster

Input: step-size parameter A € (0, 1], initialization w : C' — R,.
Initialize w; < wfori:=1,2,....,mdo
Sample p; with probability proportional to w;(p;), i.e. with probability
(n) — wilpi)
pi(pi) W,
Suffer ¢;(p;) and observe /;(-)
| Foreach p € C, setw;,1(p) = e MiPw,(p)

Theorem 2.3.1. Let{q,... ¢, : C'+— [0, 1] be any sequence of piecewise L-Lipschitz functions
that are 3-dispersed. Suppose C' = R? is contained in a ball of radius R. The exponentially
weighted forecaster (Algorithm 3) has expected regret R, < m\ + % + O((L + 1)m!9),
S]B(p*ﬁnfﬁ) w(p)dp

where 2 = =5 wop

for p* the optimal action in hindsight.

The proof of this result adapts past analyses of Algorithm 3; setting step-size A\ appropriately
recovers the previously mentioned bound. The new bound is useful due to its explicit dependence
on both the initialization w and the optimum in hindsight via the log(1/Z7) term. Assuming w is a
(normalized) distribution, this effectively measures the overlap between the chosen initialization
and a small ball around the optimum; we thus call

SIB(p* m—8) W (p)dp

—log Z = -1
% % Scw(P)dP

(2.22)

the negative log-overlap of initialization w(-) with the optimum p*.

We also obtain an asymptotic lower bound of Q(mkﬁ) on the expected regret of any algo-
rithm by extending the argument of Balcan et al. [2020b] to the multi-task setting; this shows a
limit on any improvement we can hope to achieve from task similarity.

Theorem 2.3.2. There is a sequence of piecewise L-Lipschitz $-dispersed losses ¢; ; : [0, 1] —
[0, 1] whose optimal actions in hindsight arg min, >3, /; ;(p) are contained in some fixed ball

of diameter D*, for which any algorithm has expected regret R,,, > Q(ml_ﬁ).

Task similarity

Before proceeding to our discussion of meta-learning, we first discuss what we might hope to
achieve with it; specifically, we consider what a reasonable notion of task similarity is in this
setting. Note that the Theorem 2.3.1 regret bound has three terms, of which two depend on the
hyperparameters and the last is due to dispersion and cannot be improved via better settings.
Our focus will thus be on improving the first two terms, which are the dominant ones due to the
dependence on the dimensionality and the distance from the initialization encoded in the negative
log overlap. In particular, when the initialization is the uniform distribution then this quantity
depends inversely on the size of a small ball around the optimum, which may be quite small.
Via meta-learning we hope to assign more of the probability mass of the initializer to areas close

37

to the optimum, which will decrease these terms. On average, rather than a dependence on the
volume of a small ball we aim to achieve a dependence on the average negative log-overlap

T

_ 1
V=~ min —
w:C-Rx0,{ - w(p)dp=1 T im1

logj w(p)dp (2.23)
B(pf,m‘ﬁ)

which can be much smaller if the task optima p; are close together; for example, if they are
the same then V' = 0, corresponding to assigning all the initial weight within the common ball
B(p*, m~") around the shared optima. This is also true if vol(nerB(p¥, m=?)) > 0, as one
can potentially initialize with all the weight in the intersection of the balls. On the other hand
if vol(nerB(pf, m~#)) = 0, V > 0. For example, if a p-fraction of tasks have optima p, and
the remaining at p; with ||py — p1|| > 2m " the task similarity is given by the binary entropy
function V' = Hy(p) = —plogp — (1 — p) log(1 — p).

The settings of Algorithm 3 that achieve the minimum in the definition of V' are directly re-
lated to V' itself: the optimal initializer is the distribution achieving V' and the optimal step-size is
V' /y/m. Note that while the explicit definition requires computing a minimum over a set of func-
tions, the task similarity can be computed using the discretization constructed in Section 2.3.3.

2.3.3 An algorithm for meta-learning the initialization and step-size

Having established a single-task algorithm whose regret depends on the initialization and step-
size, we move on to meta-learning these hyperparameters. Recall that the goal is to make the
task-averaged regret (2.2) small and improve upon the single-task baseline of repeatedly running
Algorithm 3 from the uniform distribution, up to or(1) terms that vanish as we see more tasks. In
this section, we use the ARUBA strategy of online learning our data-dependent regret guarantees;
if we can do so with regret sublinear in 7" then we will improve upon the single-task guarantees
up to or(1) terms, as desired. Specifically, we are faced with a sequence of regret-upper-bounds
U(w,v) = (v+ fi(w)/v)y/m + g(m) on nonnegative functions w over C' and positive scalars
v > 0. As g(m) cannot be improved via meta-learning, we will focus on learning w and v.
To do so, we run two online algorithms, one over the functions f; and the other over h;(v) =
v+ fi(w;)/v, where wy is set by the first procedure. The following shows that if both procedures
have sublinear regret then our task-averaged regret will have the desired properties:

Theorem 2.3.3. Assume each task ¢ € [T'] consists of a sequence of m [-dispersed piecewise L-
Lipschitz functions ¢; ; : C'— |0, 1]. Let f; and ¢ be functions such that the regret of Algorithm 3
run with step-size A = v4/m for v > 0 and initialization w : C'— R~ is bounded by U;(w, v) =
(v + fi(w)/v)y/m + g(m). Suppose we have a procedure that achieves Frr(w) regret w.r.t. any
w : C' — Ry by playing actions w; : C' — R, on f; and another procedure that achieves
Hrp(v) regret w.r.t. any v > 0 by playing actions v; > 0 on h(v) = v + fi(w;)/v, where Hp
is non-increasing on the positive reals. Then by setting p;; using Algorithm 3 with step-size
v;/4/m and initialization w, at each task ¢ we get task-averaged regret bounded by

(HTT(V) + min { Fz;/(tTU*) 2 FT(w*)/T} + 2V) Vm + g(m) (2.24)

for w* = argmin,,.c, g, Zle fi(w) the optimal initialization and V' the task similarity (2.23).

38

This result is an analog of Theorem 2.2.2 and follows by manipulating the definition of regret.
It reduces the problem of obtaining a small task-averaged regret to solving two online learning
problems, one to set the initialization and one to set the step-size. So long as both have sublinear
regret then we will improve over single-task learning. In the next two sections we derive suitable
procedures.

Meta-learning the initialization

We now come to the most technically challenging component of our meta-learning procedure:
learning the initialization. As discussed above, we can accomplish this by obtaining a no-regret
procedure for the function sequence

SIB%(p;“ ,m—"8) w(p)dp
Sc w(p)dp

This is nontrivial as the optimization domain is a set of nonnegative functions, effectively mea-
sures on the domain C'. To handle this, we first introduce some convenient notation and abstrac-
tions. At each task ¢t we are faced with some function f; associated with an unknown closed
subset C; = C—in particular C;, = B(p;, m~?)—with positive volume vol(C;) > 0 that is
revealed after choosing w; : C' — R-. For each time ¢ define the discretization

fi(w) = —log (2.25)

Dy = {D =¥ : ce {0, 1}, vol(D) > 0} (2.26)

s<t

of C, where C't(o) = (} and C’t(l) = C\C;. We will use elements of these discretizations to
index nonnegative vectors in]RLDO”; specifically, for any measure w : C' — Ry let w(t) € R'fg'
denote the vector with entries w(t);p] = §, w(p)dp for D € D,. Note that we will exclusively
use p, ¢, v, w for measures, with v specifically referring to the uniform measure, i.e. v(t)p] =
vol(D). For convenience, for all real vectors x we will use X to denote p/|p| ;. Finally, we abuse
notation and remove the parentheses to refer those vectors associated with the final discretization,
ie.v=v(T)and w = w(T).

Now that we have this notation we can turn back to the functions we are interested in:

fi(w) = —log %, where C; = B(pf,m#). Observe that we can equivalently write
C
this as f;(w) = —log{w}, W), where W ,, = 1pcc,; this translates our online learning problem

from the domain of measures on C to the simplex on |Dr| elements. However, we cannot play
in this domain explicitly as we do not have access to the final discretization D, nor do we get
access to w; after task ¢, except implicitly via C}. In this section we design a method that implic-
itly run an online convex optimization procedure over RLDOT‘ while explicitly playing probability
measures w : C' — Ry.

As the functions f; are exp-concave, one might first consider applying a method attaining
logarithmic regret on such losses [Hazan et al., 2007, Orabona et al., 2012]; however, such al-
gorithms have regret that depends linearly on the dimension, which in our case is poly(7"). We
thus turn to the the follow-the-regularized-leader (FTRL) family of algorithms, which in the case
of entropic regularization are well-known to have regret logarithmic in the dimension [Shalev-

Shwartz, 2011]. In Algorithm 4 we display the pseudo-code of a modification with regularizer

39

Algorithm 4: Follow-the-Regularized-Leader (prescient form)

Input: discretization Dy of C', mixture parameter v € [0, 1], step-size > 0

Initialize w; = Vfort =1,2,...,7T do
Play w;
Suffer fi(w;) = — log{w}, w;)
Observe f;

Update w1 = arg mingy,, _; wero Dxe(W[[V) + 125, fo(W)

Dxu(+||¥), where recall v is the vector of volumes of the discretization Dy of C, and we constrain
the played distribution to have measure at least yvp; over every set D € Dr.

While Algorithm 4 explicitly requires knowing the discretization Dy of C' in advance, the
following key lemma shows that we can run the procedure knowing only the discretization D,
after task ¢ by simply minimizing the same objective over probability distributions discretized
on D;. This crucially depends on the re-scaling of the entropic regularizer by v (which notably
corresponds to the uniform distribution over C) and the fact that w¥ € {0, 1}/P71,

Lemma 2.3.1. Let w : C' — R be the probability measure corresponding to the minimizer

w = argmin Dy (q|[¥) —n) log(w?, @) (2.27)

lali=1,a=v¥ s<t

and let w : C' — R~ be the probability measure corresponding to the minimizer

W(t) = argmin Dy (ql|¥(t)) —n) log(w(t) (2.28)

lali=1,a=7%(t) s<t
Then w = w.

We can thus move on to proving a regret guarantee for Algorithm 4. This follows from
Jensen’s inequality together with standard results for FTRL once we show that the loss func-
tions are m—Lipschitz over the constrained domain, yielding the following guarantee for
Algorithm 4:

Theorem 2.3.4. Algorithm 4 has regret bounded by

1 T
n”DKL wi[9) + 5> (2.29)

|
~2 t:l (vol C’t 2t WZ; 8 vol(C})

w.r.t. the optimum in hindsight w* € arg min, _1 w=o ST, fi(w) of the functions f;. Setting
2 = GB/NT afld 0 = ?QGQ, where B2 = Dy (w*||¥) and G? = LT m yields
sublinear regret O(v BGT'1).

Proof. Algorithm 4 is standard FTRL with regularizer %DKL(-H\?), which has the same Hes-
sian as the standard entropic regularizer over the simplex and is thus %—strongly—convex W.I.L.
| - |1 [Shalev-Shwartz, 2011, Example 2.5]. Applying Jensen’s inequality, the standard regret

40

bound for FTRL [Shalev-Shwartz, 2011, Theorem 2.11] together with the Lipschitz guarantee of
Claim 2.A.9, and Jensen’s inequality again yields the result:

T T
D fiw) = fi(w*) =D filwy) = (L=) fuw*) = 7fi(3) + 7 (fu(¥) = fuw?))
t=1 t=1
< S 5 1 #] (wi,w*)
< tzlft(wt) — (v + (A =y)w") + v ng
< Do+ (-)w*||v)+ii + ilo !
Ty KLY 7 v < (vol(CY))? 7t=1 & vol(C})
) (w||v)+iT L i !
S KL 72 & (vol(Cr))? = B ol(Cy)
(2.30)

Since the regret is sublinear in 7, this result satisfies our requirement for attaining asymptotic
improvement over single-task learning via Theorem 2.3.3. However, there are several aspects of
this bound that warrant some discussion. The first is the rate of O(Tf), which is less sublinear
than the standard O(+/T') and certainly the O(log T') regret of exp-concave functions. However,
the functions we face are (a) non-Lipschitz and (b) over a domain that has dimensionality Q(7);
both violate conditions for good rates in online convex optimization [Hazan et al., 2007, Shalev-
Shwartz, 2011], making our problem much more difficult.

A more salient aspect is the dependence on B% = Dy (w*||[V), effectively the negative
entropy of the optimal initialization. This quantity is in-principle unbounded but is analogous
to standard online convex optimization bounds that depend on the norm of the optimum, which
in e.g. the Euclidean case are also unbounded. In our case, if the optimal distribution is highly
concentrated on a very small subset of the space it will be difficult to compete with. Note that
our setting of 7 depends on knowing or guessing B; this is also standard but is certainly a target
for future work to address. For example, past work on parameter-free algorithms has solutions
for optimization over the simplex [Orabona and Pal, 2016]; however, it is unclear whether this
is straightforward to do while preserving the property given by Lemma 2.3.1 allowing us to
implicitly work with an unknown discretization. A more reasonable approach may be to compete
only with smooth measures that only assign probability at most s vol(D) to any subset D < C
for some constant x = 1; in this case we will simply have B bounded by log «.

A final issue is the dependence on v/G, which is bounded by the reciprocal of the smallest vol-
ume vol(C;), which in the dispersed case is roughly O(m”?); this means that the task-averaged
regret will have a term that, while decreasing as we see additional tasks, is increasing in the
number of within-task iterations and the dispersion parameter, which is counter-intuitive. It is
also does so exponentially in the dimension. Note that in the common algorithm configuration
setting of 5 = 1/2 and d = 1 this will simply mean that for each task we suffer an extra op(1)
loss at each within-task round, a quantity which vanishes asymptotically.

41

Meta-learning the step-size

In addition to learning the initialization, Theorem 2.3.3 requires learning the task similarity to set
the within-task step-size A > 0. This involves optimizing functions of form h;(v) = v+ f;(w)/v.
Since we know that the measures w, are lower-bounded in terms of -y, we can use our previous
approach that solves this by running the EWOO algorithm [Hazan et al., 2007] on the modified

2
sequence v + %:

Corollary 2.3.1. For any € > 0, running the EWOO algorithm on the modified sequence v +

filw)te t(w3+52 over the domain [¢,~/D? — logy + £2], where D? = L 32 log m, attains regret

2 D? 1 D? -1
min{g—*,a}T—l——mmaX{—om,l}(1+log(T—|—1)) (2.31)
v

2 g2
on the original sequence h;(v) = v + f;(w)/v for all v* > 0.

Setting ¢ = 1/v/T gives a guarantee of form O((min{1/v*, +/T})v/T). Note this rate might
be improvable by using the fact that v is lower-bounded due to the y-constraint; however, we do
not focus on this since this component is not the dominant term in the regret. In fact, because of
this we can adapt our approach from Section 2.2.1 that simply runs follow-the-leader (FTL) on
the same modified sequence without affecting the dominant terms in the regret:

Corollary 2.3.2. For any ¢ > 0, running the FTL algorithm on the modified sequence v+ fiw)+et

over the domain [¢, 4/D? — logy + £2], where D? > £ 3\ log

1 .
m , attains regret

2 2 1 3
min {%,5} T + 24/ D? — log v max {m, 1} (1 +log(T + 1)) (2.32)

23
on the original sequence h;(v) = v + f;(w)/v for all v* > 0.

Setting ¢ = 1//T gives a guarantee of form O((min{1/v*, /T})T’s). The alternatives are
described in pseudocode at the bottom of Algorithm 5; while the guarantee of the FTL-based
approach is worse, it is almost as simple to compute as the task similarity and does not require
integration, making it easier to implement.

Putting the two together

Now that we have an algorithm for both the initialization and the step-size, we can combine the
two in Algorithm 5 to meta-learn the parameter of the exponential forecaster. Then we can obtain
a bound on the task-averaged regret from Theorem 2.3.3 to attain our final result.

T T
Theorem 2.3.5. Define B> = Dy (w*[|¥), G? = %;1 waeye D = %;1 108 woiey =

O(pBdlogm), and the task similarity V" as in (2.23). Then Algorithm 5 with 7, v set as in Theo-
rem 2.3.4 and £ = 1/v/T (if using EWOO) or 1/+/T (otherwise) yields task-averaged regret

42

} + 2v) Vvm + g(m) (2.33)

Algorithm 5: Meta-learning the parameters of the exponential forecaster (Algorithm 3).
Recall that p(t) refers to the time-¢ discretization of the measure p : C' — Ry (c.f.
Section 2.3.3).
Input: domain C' = R, dispersion 3 > 0, step-size 7 > 0, constraint parameter
v € [0, 1], offset parameter ¢ > 0, domain parameter D > (

_ et+q/D?+e?—logy

Initialize w; to the uniform measure on C' and set \; = N

for taskt =1,2,...,T do
Run Algorithm 3 with initialization w, and step-size \;; get task ¢ optimum pj; € C

Set wy’ = lp(p# -5y to be 1 in an m~P-ball at p} and 0 elsewhere
Set w1 t0 W1 (t) = arg miny, _1 woro Dxu(WIV (1) —n 2o, logdwi(t), w)
if using EWOO then
e2— og{w*(s),ws(s
Define ji;(7) = exp <—a (tm 4! Lose! gi HORLA)>>> for

2 2
a = Dmln{DQ,l}

\/mx x)dx
Set)\t+]_ — Se \/DQ Qg: H/t()d
B i (Y P TIORT (e
else
Set s = \/st R CHORNON

So as in the previous section, this achieves the meta- learning goal of adapting to the task
similarity by attaining asymptotic regret of 2V \/m + O(m~?) on-average, where here we sub-
stitute the dispersion term for g and V2 is the task similarity encoding the average probability
mass assigned to the different task balls by the optimal initialization distribution. We include
the minimum of two rates in the bound, with the rate being O(1/v/T) is the task similarity is a
constant ©(1) and O(1/+/T) if it is extremely small. As discussed in above, this rate reflects
the difficulty of our meta-problem, in which we are optimizing nonsmooth functions over a space
of distributions; in contrast, our meta-update procedures in the previous section took advantage
of nice properties of Bregman divergences to obtain faster rates.

2.3.4 Meta-learning for data-driven algorithm design

We demonstrate the utility of our bounds in a series of applications in data-driven algorithm de-
sign, demonstrating how our results imply guarantees for meta-learning the tuning of solvers for
several difficult combinatorial problems arising from the theory of computing. We also demon-
strate the practical utility of our approach for tuning clustering algorithms on real and synthetic
datasets.

Instantiations for tuning combinatorial optimization algorithms

Algorithm configuration for combinatorial optimization algorithms involves learning algorithm
parameters from multiple instances of combinatorial problems [Gupta and Roughgarden, 2017,

43

Balcan et al., 2018c]. For problems like maximum weighted independent set (MWIS), integer
quadratic programming (IQP), and auction design, the an algorithm’s performance on a fixed
instance is typically a piecewise-Lipschitz function of its parameters. Prior work has looked
at learning these parameters in the distributional setting (i.e. assuming i.i.d. draws of problem
instances) [Gupta and Roughgarden, 2017, Balcan et al., 2018b] or the online setting where
the problem instances may be adversarially drawn [Balcan et al., 2018b, 2020b]. On the other
hand, instantiating our results for these problems provide upper bounds for much more realistic
settings where different tasks may be related and our bounds improve with this relatedness. We
demonstrate how to apply our results to several combinatorial problems under mild smoothness
assumptions. The key idea is to show that if the inputs come from a smooth distribution, the
algorithmic performance is dispersed (as a sequence of functions in the algorithm parameters).

We start with the MWIS problem, where there is a graph G = (V, E') and a weight w, € R-
for each vertex v € V. The goal is to find a set of non-adjacent vertices with maximum total
weight. The problem is NP-hard and in fact does not have any constant factor polynomial time
approximation algorithm. Gupta and Roughgarden [2017] propose a greedy heuristic family,
which selects vertices greedily based on largest value of w, /(1 + deg(v))”, where deg(v) is the
degree of vertex v, and removes neighbors of the selected vertex before selecting the next vertex.

For this algorithm family, we can learn the best parameter p provided pairs of vertex weights
have a joint x-bounded distribution, and Theorem 2.3.5 implies regret bounds that improve with
task similarity. We use the recipe from Balcan et al. [2020a] to establish dispersion:

Theorem 2.3.6. Consider instances of MWIS with all vertex weights in (0, 1] and for each in-
stance, every pair of vertex weights has a x-bounded joint distribution. Then the asymptotic
task-averaged regret for learning the algorithm parameter p is or(1) + 2V y/m + O(y/m).

Proof sketch. The loss function is piecewise constant with discontinuities corresponding to p
such that w, /(1 + deg(v))? = w, /(1 + deg(u))” for a pair of vertices u, v. Balcan et al. [2018b]
show that the discontinuities have (x Inn)-bounded distributions where n is the number of ver-
tices. This implies that in any interval of length €, we have in expectation at most ex In n discon-
tinuities. Using this in dispersion recipe from Balcan et al. [2020a] implies %-dispersion, which
in turn implies the desired regret bound by applying Theorem 2.3.5.]

Similar results may be obtained for other combinatorial problems including knapsack, k-
center clustering, IQP and auction design (c.f. Appendix 2.A.5 for full details). We further show
instantiations of our results for knapsack and k-center clustering, for which we will empirically
validate our proposed methods in the next sections. The first of these, knapsack, is a well-
known NP-complete problem. We are given a knapsack with capacity cap and items i € [m]
with sizes w; and values v;. The goal is to select a subset S of items to add to the knapsack
such that) ._, w; < cap while maximizing the total value) . _¢ v; of selected items. The classic
greedy heuristic to add items in decreasing order of v;/w; gives a 2-approximation. We consider
a generalization to use v;/w! proposed by Gupta and Roughgarden [2017] for p € [0, 10]. For
example, for the value-weight pairs {(0.99, 1), (0.99, 1), (1.01,1.01)} and capacity cap = 2 the
classic heuristic p = 1 gives value 1.01 but using p = 3 gives the optimal value 1.98. We
can learn this optimal value of p from similar tasks, and obtain formal guarantees similar to
Theorem 2.3.6 (proof in Appendix 2.A.5).

44

Theorem 2.3.7. Consider instances of the knapsack problem given by bounded weights w; ; €
[1,C] and k-bounded independent values v; ; € [0,1] for i € [m],j € [T]. Then the asymp-
totic task-averaged regret for learning the algorithm parameter p for the greedy heuristic family
described above is or(1) + 2V/m + O(y/m).

Lastly, for k-center clustering we consider the parameterized a-Llyod’s algorithm family
introduced in Balcan et al. [2018c¢]. In the seeding phase, each point x is sampled with probabil-
ity proportional to min.cc d(v, c), where d(-, -) is the distance metric and C' is the set of centers
chosen so far. The family contains an algorithm for each a € [0, o0) U oo, and includes popular
clustering heuristics like vanilla k-means (random initial centers, for o = (), k-means++ (cor-
responding to o = 2) and farthest-first traversal (o« = o0). The performance of the algorithm is
measured using the Hamming distance to the optimal clustering, and is a piecewise constant func-
tion of o. Our meta-learning result can be instantiated for this problem even without smoothness
assumptions by leveraging the smoothness induced by the internal randomness of the clustering
algorithm (proof in Appendix 2.A.5).

Theorem 2.3.8. Consider instances of the k-center clustering problem on n points, with Ham-
ming loss [; ; for i € [m],j € [T'] against some (unknown) ground truth clustering. Then the
asymptotic task-averaged regret for learning the algorithm parameter « for the a-Lloyd’s clus-
tering algorithm family of Balcan et al. [2018c] is o7 (1) + 2V/m + O(y/m).

In the following section we look at applications of our results through experiments for the
knapsack and k-center clustering problems.

Experiments for greedy knapsack and k-center clustering

We design experiments to evaluate our new meta-initialization algorithm for data-driven design
for knapsack and clustering problems on real and simulated data. Our experiments show the
usefulness of our techniques in learning a sequence of piecewise-Lipschitz functions.

For our experiments, we generate a synthetic dataset of knapsack instances described as
follows. For each problem instance of each task, we have cap = 100 and m = 50. We
have 10 ‘heavy’ items with w; ~ N(27,0.5) and v; ~ N(27,0.5), and 40 items with w; ~
N (19 + wy, 0.5) and v; ~ N (18,0.5), where w; € [0, 2] is task-dependent.

We also consider the parameterized a-Lloyd’s algorithm family from Balcan et al. [2018c].
The performance of the algorithm is measured using the Hamming loss relative to the optimal
clustering, and is a piecewise constant function of a. We can compute the pieces of this function
for a € |0, 10] by iteratively computing the subset of parameter values where a candidate point
can be the next center. We use the small split of the Omniglot dataset [Lake et al., 2017], and
create clustering tasks by drawing random samples consisting of five characters each, where
four characters are constant throughout. We also create a Gaussian mixture binary classification
dataset, with each class a 2D Gaussian distribution consisting of 100 points each, with variance
diag ((0® 40?)) and centers 0, and doe;. We pick d € [2, 3] to create different tasks.

For each dataset we learn using 30 instances each of 10 training tasks and evaluate aver-
age loss over 5 test tasks. We perform 100 iterations to average over the randomization of the
clustering algorithm and the exponential forecaster algorithm. We perform meta-initialization

45

Table 2.2: Effect of meta-initialization on few-shot learning of algorithmic parameters. Per-
formance is computed as a fraction of the average value (Hamming accuracy, or knapsack
value) of the offline optimum parameter.

Dataset Omniglot Gaussian Mixture Knapsack

‘ One-shot Five-shot ‘ One-shot Five-shot ‘ One-shot Five-shot

Single task 88.67 £ 0.47% 95.02+0.19% | 90.10 + 1.10% 91.43+0.44% | 84.74 +0.29% 98.89 + 0.17%
Meta-initialized | 89.65 + 0.49% 96.05 + 0.15% | 95.76 £ 0.60% 96.39 £0.27% | 85.66 £ 0.57% 99.12 + 0.15%

with parameters v = 1 = 0.01 (no hyperparameter search performed). The step-size is set to
minimize the regret term in Theorem 2.3.1, and not meta-learned.

The relative improvement in task-averaged regret due to meta-learning in our formal guar-
antees depend on the task similarity V' and how it compares to the dispersion-related O(m'=#)
term, and can be significant when the latter is small. Our results in Table 2.2 show that meta-
learning an initialization, i.e. a distribution over the algorithm parameter, for the exponential
forecaster in this setting yields improved performance on each dataset. We observe this for both
the one-shot and five-shot settings, i.e. the number of within-task iterations of the test task are
one and five respectively. The benefit of meta-learning is most pronounced for the Gaussian
mixture case (well-dispersed and similar tasks), and gains for Omniglot may increase with more
tasks (dispersed but less similar tasks). For our knapsack dataset, the relative gains are smaller
(similar tasks, but less dispersed). See Appendix 2.B.2 for further details.

2.3.5 Conclusion

In this section we extended our approach for analyzing initialization-based meta-learning to the
online learning of piecewise-Lipschitz functions, demonstrating how online convex optimization
over an adaptive discretization can find an initialization that improves the performance of the
exponential forecaster across tasks, assuming the tasks have related optima. We then applied this
result to data-driven algorithm design, such as the online configuration of clustering algorithms.
Our results demonstrate that ARUBA can be applied even in the face of nonconvex losses; in the
next section, we will further show its extension to problems with partial information.

2.4 Meta-learning adversarial bandit algorithms

Thus far we have used ARUBA to understood meta-learning of online learning algorithms in the
full-information setting, where the loss for every arm is revealed after each round. This assump-
tion is not realistic in many applications, e.g. recommender systems and experimental design,
where often partial or bandit feedback—only the loss of the action taken—is revealed. Such
feedback can be stochastic, e.g. the losses are i.i.d. from some distribution, or adversarial, i.e.
chosen by an adversary. In this section we establish formal guarantees for online-within-online
meta-learning with adversarial bandit feedback. As with past full-information meta-learning re-
sults, our goal when faced with a sequence of bandit tasks will be to achieve low regret on average
across them. Specifically, our task-averaged regret should (a) be no worse than that of algorithms

46

for the single-task setting, e.g. if the tasks are not very similar, and should (b) be much better
on tasks that are closely related, e.g. if the same small set of arms do well on all of them. We
show that a natural way to achieve both is to initialize and tune online mirror descent (OMD), an
algorithm associted with a strictly convex regularizer whose hyperparameters have a significant
impact on performance. Our approach works because it can learn the best hyperparameters in
hindsight across tasks, which will recover OMD’s worst-case optimal performance if the tasks
are dissimilar but will take advantage of more optimistic settings if they are related. As general-
ized distances, the regularizers also induce interpretable measures of similarity between tasks.

To show these results, we extend our ARUBA-based analysis of meta-learning online mirror
descent from Section 2.2, which involved online learning of sequences of Bregman divergences.
Our core structural result shows that the regularizers 1y of these divergences can be tuned with-
out interfering with meta-learning the initialization and step-size; tuning @ is critical for adapting
to settings such as that of a small set of optimal arms in MAB. Doing so depends on several re-
finements of the original approach, including bounding the task-averaged-regret via the spectral
norm of V2 and expressing the loss of the meta-comparator using only vy, rather than via its
Bregman divergence as in prior work. Applying the structural result also requires setting-specific
analysis, e.g. to show regularity w.r.t. # or to obtain MAB guarantees in terms of the entropy of
the true optimal arms. The latter is especially difficult, previous we defined task similarity via
full information upper bounds, and involves applying tools from the best-arm-identification liter-
ature [Abbasi-Yadkori et al., 2018] to show that a constrained variant of Exp3 finds the optimal
arm w.h.p.

Overview of bandit results

We design a meta-algorithm (Algorithm 6) for learning variants of OMD—specifically those
with entropic or self-concordant regularizers—that are used for adversarial bandits. This meta-
algorithm combines three full-information algorithms—follow-the-leader (FTL), exponentially
weighted online optimization (EWOQ), and multiplicative weights (MW)—to set the initializa-
tion, step-size, and regularizer-specific parameters, respectively. It works by optimizing a se-
quence of functions that each upper-bound the regret of OMD on a single task (Theorem 2.4.1),
resulting in (a) interesting notions of task similarity because these functions depend on general-
ized notions of distances (Bregman divergences) and (b) adaptivity, i.e not needing to know how
similar the tasks are beforehand.

Our first application is to OMD with the Tsallis regularizer [Abernethy et al., 2015], a rela-
tive of Exp3 [Auer et al., 2002] that is optimal for adversarial MAB. We bound the task-averaged
regret by the Tsallis entropy of the estimated optima-in-hindsight (Corollary 2.4.1), which we
further extend to that of the frue optima by assuming a gap between the best and second-best
arms (Corollary 2.4.2). Both results are consequences of Corollary 2.A.1, where we showed the
online-learnability of sequences of Bregman divergences, even ones that are nonconvex in their
second (learned) arguments, which is the case here due to the Tsallis regularizer. As an example,
our bound on the m-round regret across I’ tasks under the gap assumption is

or(poly(m)) + 2 min] A/ HzdPm/B + o(/m) (2.34)

Be(0,1

47

where d is the number of actions and Hj is the Tsallis entropy [Tsallis, 1988, Abernethy et al.,
2015] of the distribution of the optimal actions (5 = 1 recovers the Shannon entropy). This
entropy is low if all tasks are usually solved by the same few arms, making it a natural task sim-
ilarity notion. For example, if only s « d of the arms are ever optimal then Hg = O(s), so using
B = 1/logd in (2.34) yields an asymptotic task-averaged regret of O(1/smlogd), dropping fast
terms. For s = O,4(1) this beats the minimax optimal rate of ©(v/dm) [Audibert et al., 2011].
On the other hand, since Hy/; = O(y/d), the same bound recovers this rate in the worst-case of
dissimilar tasks.

Lastly, we adapt our meta-algorithm to the adversarial BLO problem by setting the regular-
izer to be a self-concordant barrier function, as in Abernethy et al. [2008b]. Our bounds yield
notions of task similarity that depend on the constraints of the action space, e.g. over the sphere
the measure is the closeness of the average of the estimated optima to the sphere’s surface (Corol-
lary 2.4.4). We also instantiate BLO on the bandit shortest-path problem (Corollary 2.4.5) [Taki-
moto and Warmuth, 2003, Kalai and Vempala, 2005].

Related work

While we study the adversarial setting, meta-learning has been analyzed in various stochastic
bandit settings [Azar et al., 2013, Kveton et al., 2020, Sharaf and Daumé III, 2021, Simchowitz
et al., 2021, Kveton et al., 2021, Basu et al., 2021, Cella et al., 2020, Moradipari et al., 2022,
Azizi et al., 2022]. The latter three study stochastic bandits under various task generation as-
sumptions, e.g. Azizi et al. [2022] is in a batch-within-online setting where the optimal arms are
adversarial. In contrast, we make no distributional assumptions either within or without. Apart
from this difference, the results of Azizi et al. [2022] are the ones our MAB results are most
easily compared to, which we do in detail in Section 2.4.2. Notably, they assume that only s « d
of the d arms are ever optimal across 7" tasks and show (roughly speaking) (7)(\/%) asymptotic
regret; we instead focus on an entropic notion of task similarity that achieves the same asymp-
totic regret when specialized to their s « d. However, avoiding their explicit assumption has
certain advantages, e.g. robustness in the presence of o(7") outlier tasks (c.f. Section 2.4.2).

A setting that bears some similarity to online-within-online bandits is that of switching ban-
dits [Auer et al., 2002], and more generally online learning with dynamic comparators [Anava
and Karnin, 2016, Jadbabaie et al., 2015, Luo et al., 2018, Auer et al., 2019, Zhao et al., 2021].
In such problems, instead of using a static best arm as the comparator we use a piecewise con-
stant sequence of arms, with a limited number of arm switches. The key difference between such
work and ours is our assumption that task boundaries are known; this makes the other setting
more general. However, while e.g. Exp3.S [Auer et al., 2002] can indeed be applied to on-
line meta-learning, guarantees derived from switching costs cannot improve upon just running
Tsallis-INF on each task [Marinov and Zimmert, 2021, Table 1]. Furthermore, these approaches
usually quantify difficulty by the number of switches, whereas we focus on task similarity. While
there exists stochastic-setting work that measures difficulty using a notion of average change in
distribution across rounds [Wei and Luo, 2021], it does not lead to improved performance if this
average change is (2(7T'), as is the case in e.g. the s-sparse setting discussed above.

48

2.4.1 Learning the regularizers of bandit algorithms

We consider the problem of meta-learning over bandit tasks ¢ = 1,...,7" over some fixed
set K < RY, a (possibly improper) subset of which is the action space .A. On each round
i =1,...,m of task t we play action x;; € A and receive feedback ¢; ;(x; ;) for some function
(i A — [—1,1]. Note that all functions we consider will be linear and so we will also write
i (x) = (B3, %), 1.e. £y j[a] = {4i(a). Additionally, we assume the adversary is oblivious within-
task, i.e. it chooses losses ¢, 1, ..., ¢, at time ¢. Finally, note that all proofs can be found in
Appendices 2.A.6 through 2.A.10.

Recall that in online learning the goal on a single task ¢ is to play actions X; 1, ... X, that
minimize regret Y| {;(x;;) — {;(%;), where X; € argmin, - >, {;;(x) denotes the opti-
mum on task ¢.* Lifting this to the meta-learning setting, our goal as in the previous sections
will be to design an algorithm that uses multi-task data to improve the task-averaged regret
% Zthl Dt li(xie) — £ei(%e). For example, we wish to attain a task-averaged regret bound of
the form o7 (poly(m)) + O(V /m) + o(y/m), where V € R is a measure of task similarity that
is small if the tasks are similar but still yields the worst-case single-task performance—O(+v/dm)
for MAB and O(d+/m) for BLO—if they are not.

Regret upper bounds for bandit OMD

Previously in Section 2.2.1 we showed guarantees for meta-learning the initialization and step-
size of online mirror descent (OMD), which given a strictly convex regularizer ¢ : £° — R,
step-size n > 0, and initialization x, ; € K° takes a actions

X1 = argmin B(x||x. 1) + 772<V€t] (x¢5),%X) (2.35)

x€eK° j<i

where B(-||-) is the Bregman divergence of . Our investigation focused on the case of 1)(x) =
£]x[3, in which case B(x|[y) = |x — y||3 and OMD is just online gradient descent (OGD). In
this setting we derived a GBML method that—if the tasks are similar according to a task similar-
ity measure induced by this Euclidean Bregman divergence—finds an initialization that performs
well after only a few steps on a new task.

However, the OMD family includes many methods beyond OGD, e.g. exponentiated gradient
when 1 (p) = (p,logp) is the negative Shannon entropy on probability vectors p € A and B
is the KL-divergence [Shalev-Shwartz, 2011]. Most importantly for bandit tasks, OMD variants
run on loss estimators lft,i constructed via partial feedback are an important class of bandit
methods that achieve state-of-the-art guarantees in various theoretical settings [Auer et al., 2002,
Abernethy et al., 2008b, 2015]. As a result, we can adapt our ARUBA framework by again
constructing and optimizing sequences U;(x, 7, 8) of affine functions of Bregman divergences
that bound the regret of OMD run with initialization x, step-size 7, and a new offset parameter
we introduce to handle the non-Lipschitzness of bandit regularizers near the boundaries.

To define these upper bounds, first note that the regret of OMD w.r.t. a comparator y is
bounded by B(y||x)/n+ O(nm) [Shalev-Shwartz, 2011, Hazan, 2015]. In our case the compara-
tor is based on the estimated optimum %, € arg min, (€, x), where £, = > £, ;, resulting

“In this section we use %; instead of x} to avoid double superscripts in the corresponding proofs.

49

from running OMD on task ¢ using initialization x € K and hyperparameters 7 and #, which we

denote OMD,, »(x). Unlike full-information meta-learning, we use a parameter ¢ > 0 to constrain

this optimum to lie in a subset K. < K°. Formally, we fix a point x; € K° to be the “center’—e.g.
X—X1

x; = 14/d when K is the d-simplex A—and define the projection c.(x) = x; + %7 mapping

from K to ... For example, ¢_<_(x) = (1 —¢)x + €1,/d on the simplex. This projection allows
us to handle regularizers 1) that diverge near the boundary, but also introduces e-dependent error
terms. In the BLO case it also forces us to tune ¢ itself, as initializing too close to the boundary
leads to unbounded regret while initializing too far away does not take advantage of task similar-
ity. Thus the general upper bounds of interest are the following functions of the initialization x,
the step-size 7 > 0, and a third parameter 6 that is either J or ¢, depending on the setting (MAB

or BLO):

01, 0) = BocoEIE0)

+ ng(@)m + f(O)m (2.36)
Here By is the Bregman divergence of ¢y while g(¢) > 1 and f(#) > 0 are tunable constants. We
overload 6 to be either (3 or € for notational simplicity, as we will not tune them simultaneously;
if 0 = (3 (for MAB) then cp(x) = x; + 72 for fixed ¢, while if § = ¢ (for BLO) then By
is the Bregman divergence of a fixed . The reason to optimize this sequence of upper bounds
U, is because they directly bound the task-averaged regret while being no worse than the worst-
case single-task regret. Furthermore, an average over Bregman divergences is minimized at the
average X = %Zthl %;, where it attains the value V2 = %Zthl y(co(Xy)) — Yalco(X)) (c.f.
Claim B.2.2). We will show that this quantity leads to intuitive and interpretable notions of task
similarity in all the applications we study.

A meta-algorithm for tuning bandit algorithms

To learn these functions U, (x, 1), #)—and thus to meta-learn OMD,, y(x)—our meta-algorithm sets
x to be the projection cy of the mean of the estimated optima—i.e. follow-the-leader (FTL)
over the Bregman divergences in (2.36)—while simultaneously setting n via EWOO and 6 via
discrete multiplicative weights (MW). We choose FTL, EWOO, and MW because each is well-
suited to the way U; depends on x, 7, and 6, respectively. First, the only effect of x on U,
is via the Bregman divergence By(cy(X;)||x), over which FTL attains logarithmic regret (c.f.
Corollary 2.A.1). For 7, U, is exp-concave on 1 > 0 so long as the first term is nonzero, but it is
also non-Lipschitz; the EWOO algorithm is one of the few methods with logarithmic regret on
exp-concave losses without a dependence on the Lipschitz constant [Hazan et al., 2007], and we
ensure the first term is nonzero by regularizing the upper bounds as follows for some p > 0 and
Djf = maxyyer, Bo(x||y):

By(co(®)[x) + p*Dj

Ut(p) (X> 777 9) = 77

+ng(@)m + f(0)m (2.37)

This function depends only on X;, obtained by running OMD on task ¢, and so we can use full-
information MW to tune 6 across the grid ©,. Showing low regret w.r.t. any § € © O O then
just requires sufficiently large k£ and Lipschitzness of U; w.r.t. . Combining all three algorithms
together thus yields the guarantee in Theorem 2.4.1, which is our main structural result. It implies

50

a generic approach for obtaining meta-learning algorithms by (1) bounding the task-averaged

regret by an average of functions of the form Uy, (2) applying the theorem to obtain a new bound
(72 A

or(1) + ming,, ‘%" +ng(0)m + f(6)m, and (3) bounding the estimated task similarity V,? by an

interpretable quantity. Crucially, since we can choose any 1 > 0, the asymptotic regret is always

as good as the worst-case guarantee for running the base learner separately on each task.

Theorem 2.4.1 (c.f. Thm. 2.A.13). Suppose x; = arg min, . ¥y(x) ¥ @ and let D, M, F, and S
be maxima over 0 of Dy, Dg+/g(0)m, f(6), and || V?1g||«, respectively. For each p € (0,1) we
can set 7, 77, a, and) s.t. the expected average of the losses Uy (cq, (x;), 7:(6;), ;) of Algorithm 6
is at most

. EV? . % +Fm L M (D2 g
Ge%l,lnn>0 1 + ng(@)m + f(@)m +0 (T + ? + ,02_T + min " ,pM + 77_T
(2.38)

Here V? = %Zthl Va(co(X;)) — he(ce(X)) and L, bounds the Lipschitz constant w.r.t. 6 at
V2/n +ng(@)m + f(8)m. The same bound plus (M /p + F'm)4/ +log 1 holds w.p. > 1 — 4.

Proof sketch. First consider online learning Uy (-, -, #) for fixed § € ©y. To tune 7, we online learn
the one-dimensional losses By (cy(X;)||co(x:))/n+ng(0), where cy(X;) is the (1,(6)-independent)
action of FTL at time ¢. As discussed, the corresponding regularized losses Ut(p) are exp-concave,
and so running EWOO yields O (M/p? + min {p*D?/n, pM} T) regret w.r.t. the original se-
quence. At the same time, we show that FTL has logarithmic regret on the sequence By(cy(X:)||-)
that scales with the spectral norm S of V2t (c.f. Corollary 2.A.1), and that the average loss of
the optimal comparator is ‘792 (c.f. Claim B.2.2). Thus, since we only care about a fixed compara-
tor 1, dividing by nT" yields the first and last terms (2.38). We run a copy of these algorithms for
each f € ©; since their losses are bounded by O(M /p 4+ F'm), textbook results for MW yield
O(V/T log k) regret w.r.t. 6 € Oy, which we then extend to © > O, using L,-Lipschitzness. [

We keep details of the dependence on S and other constants as they are important in apply-
ing this result, but in most cases setting p = é/LT yields @(Tg) regret. While a slow rate, the
losses U, are non-Lipschitz and nonconvex in-general, and learning them allows us to tune ¢ over
user-specified intervals and 7 over all positive numbers, which will be crucial later. At the same
time, this tuning is what leads to the slow rate, as without tuning (k = 1, L, = 0) the same p
yields @(\/T) regret. Lastly, while we focus on learning guarantees, we note that Algorithm 6
is reasonably efficient, requiring a 2% single-dimensional integrals per task; this is discussed in
more detail in Section 2.4.1.

Computational and space complexity

Algorithm 6 implicitly maintains a separate copy of FTL for each hyperparameter in the continu-
ous space of EWOO and the grid O, over the domain of 6, but explicitly just needs to average the
estimated task optima X;; this is due to the mean-as-minimizer property of Bregman divergences
and the linearity of c.. Thus the memory it uses is O(d + k), where k is size of the discretization
of © and should be viewed as sublinear in 7, e.g. for MAB with implicit exploration and BLO

51

Algorithm 6: Meta-procedure for tuning OMD,, ¢ with regularizer ¢y : K£° + R and
step-size 7 > 0. Assume OMD takes as input an initialization in /C, is run over loss esti-
mators Et,l, .. Et m» and returns estimated task optima %X, = arg min_ ., > " 1<£t iy X).

Input: compact set K < R, initialization x; € K, ordered subset ©;, — R also used to
index interval bounds 7,7 € R% ; and hyperparameters a € R, scalar
hyperparameters p > 0 and A = 0, learners OMD, 4 : K — R, projections
Co . K — ’Cg

for 0 € ©; do

wi(0) < 1and n(0) < ﬂ(e);n(e) // initialize MW and EWOO
for taskt =1,...,T do

sample 6, from O, w.p. o exp(w;) // sample from MW distribution

X; < OMDy, (0,0, (Co, (X)) // run bandit OMD within-task
Xt+1<_%22=1$(8 // FTL update of initialization
for 0 € ©, do

(9) SZEZ; veXp(a(0) Sy UL (x50, 9))dv
(ay SZEZ% exp(a®) ¥, ng)(xs,vﬂ))
Wii1(0) «— wi(0) — AUi(x¢, n:(0), 0) // MW update to tune 6

// EWOO step-size update

= O(v/dv/T). Computationally, at each timestep ¢ and for each grid point we must compute
two single-dimensional integrals; the integrands are sums of upper bounds that just need to be
incremented once per round, leading to a total per-iteration complexity of O(k) (ignoring the
running of OMD). Although outside the scope of this thesis, it may be possible to avoid inte-
gration by tuning 7 with MW as well, rather than EWOQO, but likely at the cost of worse regret
because it would not take advantage of the exp-concavity of Ut(p),

2.4.2 Multi-armed bandits

We now turn to our first application: the multi-armed bandit problem, where at each round ¢ of
task ¢ we take action a;; € [d] and observe loss ¢;;(a:;) € [0,1]. As we are sampling actions
from distributions x € K = A on the k-simplex, the inner product (£, ;, X, is the expected loss
and the optimal arm @, on task ¢ can be encoded as a vector X; S.t. Xy[q] = lq—g,-

We use as a base learner a generalization of Exp3 that uses the negative Tsallis entropy

yd P
Ys(p) = 121“_;21)[“] for some 8 € (0,1] as the regularizer; this improves regret from Exp3’s

O(+/dmlog d) to the optimal O(v/dm) [Abernethy et al., 2015]. Note that —/5 is the Shannon
entropy in the limit 5 — 1 and its Bregman divergence Bs(x/|-) is nonconvex in the second
argument. As the Tsallis entropy is non-Lipschitz at the simplex boundary, which is where the
estimated and true optima X; and X; lie, = (x) = (I—¢g)x+ely/dto
theset K = = {x € A :min, X, = ¢/ d}. We denote the resulting vectors using the superscript

(), e.g. XE 9 _ c_= (%), and also use AE) = K_<_ to denote the constrained simplex. For MAB
we also study two base learners: (1) implicit exploration and (2) guaranteed exploration. The

52

former uses low-variance loss under-estimators ém-(a) = % for v > 0, where x; ;4] is
the probability of sampling a on task ¢ round ¢, to enable higﬁ probability bounds [Neu, 2015].
On the other hand, guaranteed exploration uses unbiased loss estimators (i.e. ¥ = 0) but con-
strains the action space to A®), which we will use to adapt to a task similarity determined by the

true optima-in-hindsight.

Adapting to low estimated entropy with high probability using implicit exploration

In our first setting, the base learner runs OMD,), 3, (X;1) on 7-regularized estimators with Tsallis
regularizer vg,, step-size 1, and initialization x;; € A©) . Standard OMD analysis combined
with implicit exploration analysis [Neu, 2015] shows (2.165) that the task-averaged regret is
bounded w.h.p. by

T t=1 yr Bt

The summands have the desired form of U;(x; 1,7, 5;), so by Theorem 2.4.1 we can bound their
average by

V2 o opdPm - (L, (972 1
min —’8+u+(9<—n+L+(p+—+—)d\F (2.40)

1 & Bg, (%)) d*
Z Bt (Xt ||Xt71) + nt m (239)

Vd
~T

(e + yd)ym + O (—

Be[8,B8ln>0 1] s k nT
where ‘752 =7 LS gk (E)) wg(fi(g)) is the average difference in Tsallis entropies between
the (e-constrained) esumated optima X; and their empirical distribution X = % ZtT 1 X¢, while L,

is the Lipschitz constant of & ; 5o+ "dgm w.rt. B € [f3, B]. The specific instantiation of Algorithm 6
that (2.40) holds for is to do the following at each time ¢:

1. sample 3, via the MW distribution oc exp(w;) over the discretization O}, of [, 8] < [0, 1]
2. run OMD,, g, using the initialization x;; = ﬁ Z ., :?(EE) =1, + E Z » X; (FTL)

. Ba(x$%)||x,1)+p2 D2
3. update EWOO at each 3 € O, with loss stk | n’1)+p = ”dgm where DB = &= ﬁﬁ 1
4. update py; using multiplicative weights with expert losses 22 (xtnnxt’l) + "dgm
(2.41)

The final guarantee for this procedure, given in full in Theorem 2.A.14, follows by two properties
of the Tsallis entropy —15: (1) its Lipschitzness wrt. 8 € [0,1] (c.f. Lem 2.A.5) and (2) the
fact that V2 is bounded by the entropy H 5 = —15(X) of the empirical distribution of estimated
optima (c. f Lem 2.A.6), which yields our first notion of task similarity: multi-armed bandit
tasks are similar if the empirical distribution of their (estimated) optimal arms has low entropy.

We exemplify the implications of Theorem 2.A.14 in Corollary 2.4.1, where we consider
three regimes of the lower bound /3 on the entropy parameter: 8 = 1, i.e. always using Exp3;
B = 1/2, which corresponds to the optimal worst-case setting [Abernethy et al., 2015]; and
5 =1 /log d, below which the OMD regret-upper-bound always worsens (and so it does not
make sense to try 3 < 1/log d).

33

Corollary 2.4.1 (c.f. Cors. 2.A.10,2.A.11, and 2.A.12). Suppose 3 = 1 and we set the initializa-
tion, step-size, and entropy parameter of Tsallis OMD with implicit exploration via Algorithm 6
as in Theorem 2.A.14.

LLIfg=1andT > @ we can ensure that w.h.p.

m

1 & . N - [dims
= hi(xea) — Li(%e) < 24/ Hidm + - (2.42)
T t=11=1 \/T

2.1t B = % and T > d:ni we can set k = [\4/8\/?] and ensure w.h.p. that task-averaged regret
~ 5 d5/7m5/7 d\/%

min 24/ Hgd?m/B + O + 2.43

pelty v & (T3 VT) 249

3.Iff = gand T > © we can set k = [v/dv/T| and ensure w.h.p. that task-averaged

regret is
N ~ (¥ mPt - dym
min 24/ Hgd?m/3 + O () 2.44

In all three settings, as T — oo the regret scales directly with the entropy of the estimated
optima-in-hindsight, which is small if most tasks are estimated to be solved by one of a few
arms and large if all arms are used roughly equally. Corollary 2.4.1 demonstrates the impor-
tance of tuning (3: even if tasks are dissimilar, we asymptotically recover the worst-case optimal
guarantee O(+/dm) in cases two and three because the entropy is at most %. On the other

hand, if a constant s « d actions are always minimizers, i.e. the empirical distribution X is
s-sparse, then the last bound (2.44) implies that Algorithm 6 can achieve task-averaged regret
or(md) + O(v/smlogd). At the same time, this tuning is costly, with the last two results having

an extra O (dﬁ) term because of it. Furthermore, the bound of § = % has a slightly better de-
pendence on d, m, and T' compared to that of 3 = @ due to the () =% term in the bound (2.40)

returned for MAB by our structural result.

We can compare the s-sparse result to Azizi et al. [2022], who achieve task-averaged regret
@(m/ VT ++/smlogT) for stochastic MAB. Despite our adversarial setting and no stipulations
on how tasks are related, our bounds are asymptotically comparable if the estimated and true op-
tima are roughly equivalent (ignoring their O (+/Iog T')-factor), as we also have O(,/sm) average
regret as 1" — oo. Their rate in the number of tasks is better, but at a cost of runtime exponential
in s. Apart from generality, we believe a great strength of our results is their adaptiveness; unlike
Azizi et al. [2022], we do not need to know how many optimal arms there are to adapt to there
being few of them.

Adapting to the entropy of the true optima-in-hindsight using guaranteed exploration

While the entropy of estimated optima-in-hindsight may be useful in some cases where we wish
to actually compute the task similarity, it is otherwise generally more desirable to adapt to an
intrinsic and algorithm-independent measure, e.g. the entropy of the frue optima-in-hindsight.
However, doing so is difficult without further assumptions, as the optima are both hard to identify

54

and the measure itself may not be well-defined in case of ties. Thus in this section we study the
setting where we have a nonzero performance gap A > 0 between the best and second-best arms:

Assumption 2.4.1. For some A > Oandall tasks ¢ € [T], £ 37" 0, ;(a)—€;:(G) = AV a # .

m

This assumption is common in the best-arm identification literature [Jamieson and Talwalkar,
2015, Abbasi-Yadkori et al., 2018], which we adapt to show that the estimated optimal arms
match the true optima, and thus so do their entropies. To do so, we switch to unbiased loss
estimators, i.e. v = 0, and control their variance by lower-bounding the probability of selecting
an arm to be at least ; this can alternatively be expressed as running OMD using the regularizer
Vs + In), where for any C < R the function I¢(x) = 0 if x € C and oo otherwise. Guaran-
teed exploration allows us extend the analysis of Abbasi-Yadkori et al. [2018] to show that the
estimated arm is optimal w.h.p.:

Lemma 2.4.1 (c.f. Lem 2.A.8). Suppose for 5 > 0 and any 5 € (0,1] we run OMD on task
t € [T] with regularizer 15+ 1n). If m = Q(-%5) thenk, = %, w.p. > 1—dexp(—Q(cA%m/d)).

However, the constraint that the probabilities are at least 5 does lead to emn additional error
on each task, with the upper bound on the task-averaged expected regret becoming

RS EBs, (% |Ix01) | md®m
E— (ar:) — Cila em + - + (2.45)
T;; tiat rilay) < T;l m 3,

Moreover, we will no longer set ¢ = or(1), as this would require m to be increasing in T for
the best-arm identification result of Lemma 2.A.8 to hold. Thus, unlike in the previous section,
our results will contain “fast” terms—terms in the task-averaged regret that are o(,/m) but not
decreasing in 7" nor affected by the task similarity. They will still improve upon the Q(v/dm)
MAB lower bound if tasks are similar, but the task-averaged regret will not converge to zero as
T — oo if the tasks are identical.

Nevertheless, the tuning-dependent component of the upper bounds in (2.45) has the appro-
priate form for our structural result—in fact we can use the same meta-algorithm (2.41) as for im-
plicit exploration—and so we can again apply Theorem 2.4.1 to get a bound on the task-averaged

regret in terms of the average difference VBQ = %Zle (0r (xt) wg() of the entropies of

the e-constrained estimated task optima X(©) and their mean X' The easiest way to apply
Lemma 2.A.8 to bound V2 in terms of Hg = 7 LS 45(%,) — 13(X) is via union bound on all
T tasks to show that X, =)"(t Vitwp. =1 —dT exp(—Q(eA*m/d)); however, setting a constant
failure probability leads to m growing, albeit only logarithmically, in 7'. Instead, by analyzing
the worst-case best-arm identification probabilities, we show in Lemma 2.A.9 that the expecta-

tion of VBQ is bounded by Hs + 35M exp (—%) without resorting tom = wp(l).

Assuming m > 75d d Jog 4 —Az 1s enough (2.190) to bound the second term by . Then the final
result (c.f. Theorem 2.A.15) bounds the expected task-averaged regret as follows (ignoring terms
that become or(1) after setting p and k):

Hg+ 55 if m > D4 log 4

for hg(A) = {d1 Sy Toea
5 otherwise

hg(A dP
em—+ min B()+77 m

1i =A% (2.46)
BelB.Bln>0 1] 5

55

If the gap A is known and sufficiently large, then we can set ¢ = O(% <5—) to obtain an asymptotic
task-averaged regret that scales only with the entropy H 3 and a fast term that is logarithmic in m:

Corollary 2.4.2 (c.f. Cor. 2.A.15). Suppose we set the initialization, step-size, and entropy
parameter of Tsallis OMD with guaranteed exploratlon via Algorithm 6 as specified in Theo—
rem 2.A.15. If [, 5] =[5, 1] and m > R log 4, then setting e = © (55..), p = Al

and k = [v/d®>mT)| ensures that the expected task-averaged regret is at most

d dimi dims dA*m?
B8
Bn%(l)lh 24/ HgdPm/ + O <A2 T + o~ + T (2.47)

Knowing the gap A is a strong assumption, as ideally we could set ¢ without it. Note that if
e = Q%) for some p € (0,1) then the condition m > 3% log —%; only fails if m < poly (%),
i.e. for gap decreasing in m. We can use this together Wlth the fact that minimizing over 1 and
[in our bound allows us to replace them with any value, even a gap-dependent one, to derive
a gap-independent setting of ¢ that ensures a task similarity-adaptive bound when A is not too
small and falls back to the worst-case optimal guarantee otherwise. Speciﬁcally, for indicator

ta = 1,510 15, a_, settingn = O (:;,5(/ﬁ) in (2.46) and using 8 = 3 if the condition ¢ fails
eA eA
yields asymptotic regret at most

em + min O (LA Hydm (1— LA)\/dm)

Be(0,1] p
~ / B
< O . . H/gd m
em + (mln {,BE%E] A\f Vd })

Setting e = O(V/d/ m%) yields the desired dependence on the entropy H g and a fast term in m:

Corollary 2.4.3 (c.f. Cor. 2.A.16). In the setting of Corollary 2.4.2 but with m = Q(d%) and
unknown A, using ¢ = O(v/d/m3) ensures expected task-averaged regret at most

(2.48)

7

. 1.m dimi dsms d®ms
24/ Hgd? +0 ,8vdm + —+
mm{;gzé%] v Hadim/s (Tt T

(2.49)

While not logarithmic, the gap-dependent term is still o(y/m), and moreover the asymptotic
regret is no worse than the worst-case optimal O(v/dm). Note that the latter is only needed if
A = o(1/y/m).

The main improvement in this section is in using the entropy of the true optima, which can be
much smaller than that of the estimated optima if there are a few good arms but large noise. Our
use of the gap assumption for this seems difficult to avoid for this notion of task similarity. We
can also compare to Corollary 2.4.1 (2.44), which did not require A > 0 and had no fast terms
but had a worse rate in 7; in contrast, the (9(\3/#?) rates above match that of the closest stochastic
bandit result [Azizi et al., 2022]. As before, for s « d “good” arms we obtain O(+/smlogd)
asymptotic regret, assuming the gap is not too small. Finally, we can also compare to the classic

56

shifting regret bound for Exp3.S [Auer et al., 2002], which translated to task-averaged regret is
O(4/dmlog(dmT)). This is worse than even running OMD separately on each task, albeit under
weaker assumptions (not knowing task boundaries). It also cannot take advantage of repeated
optimal arms, e.g. the case of s « d good arms.

Adapting to entropic task similarity implies robustness to outliers

While we considered mainly the s-sparse setting as a way of exemplifying our results and com-
paring to other work such as Azizi et al. [2022], the fact that our approach can adapt to the
Tsallis entropy ming H g of the optimal arms implies meaningful guarantees for any low-entropy
distribution over the optimal arms, not just sparsely-supported ones. One way to illustrate the
importance of this is through an analysis of robustness to outlier tasks. Specifically, suppose that
the s-sparsity assumption—that optima a, lie in a subset of [T'] of size s « d—only holds for all
but O(T?) of the tasks ¢ € [T'], where p € [0, 1). Then the best we can do using an asymptotic
bound of @(\/%)—e.g. that of Azizi et al. [2022] in the stochastic case or from naively ap-
plying minge(o 1) Hgd’m/B < esmlogd to any of our previous results—is to substitute s + 77
instead of s, which will only improve over the single-task bound if d = w(7?), i.e. in the regime
where the number of arms increases with the number of tasks.

However, our notion of task similarity allows us to do much better, as we can show (c.f.
Proposition 2.A.6) that in the same setting Hz = O(s+ Tg%,)) forany 3 € [@, %] Substituting
this result into e.g. Corollary 2.4.3 yields the same asymptotic result of O(+/sm log d), although
the rate in T is a very slow O(v/dm/T 21157;(1) This demonstrates how our entropic notion of task
similarity simultaneously yields strong results in the s-sparse setting and is meaningful in more
general settings.

2.4.3 Bandit linear optimization

Our last application is bandit linear optimization, in which at task ¢ round ¢ we play x;; € K in
some convex K < R and observe loss (¢;;, x;;» € [—1, 1]. We will again use a variant of mirror
descent, using a self-concordant barrier for ¢ and the specialized loss estimators of Abernethy
et al. [2008b, Algorithm 1]. More information on such regularizers can be found in the literature
on interior point methods [Nesterov and Nemirovskii, 1994]. We pick this class of algorithms
because of their optimal dependence on the number of rounds and their applicability to any con-
vex domain K via specific barriers 1), which will yield interesting notions of task similarity. Our
ability to handle nonsmooth regularizers via the structural result (Theorem 2.4.1) is even more
important here, as barriers are infinite at the boundaries. Indeed, we will not learn a 5 parameter-
izing the regularizer and instead focus on tuning a boundary offset € > 0. Here we make use of
notation from Section 2.4.1, where c. maps points in X to a subset K. defined by the Minkowski
function (c.f. Definition 2.A.2) centered at x; = arg min, ., ¥ (x).

From Abernethy et al. [2008b] we have an upper bound on the expected task-averaged regret
of their algorithm run from initializations x; ; € K° with step-sizes 7, > 0 and offsets £, > 0:

1 1 & EB(c., (R
B DD i % — %) < 7 > (c t(:t)”Xt’l) + (320, d% + £)m (2.50)
t=11=1 t=1 t

57

3
We can show (2.209) that D? = maxy yex. B(x|[y) < w, where v is the self-concordance
constant of 1) and S; = |V2i(x1)], is the spectral norm of its Hessian at the center x; of
KC. Restricting to tuning ¢ € [%, 1]—which is enough to obtain constant task-averaged regret
above if the estimated optima X, are identical—we can now apply Algorithm 6 via the following
instantiation:

1. sample &, via the MW distribution oc exp(w;) over the discretization O, of [, 1]

2. run OMD,,, ., using the initialization x,; = 15 Zs<t c., (X)) =x1 + (Zﬁ;t;(&—_:% (FTL)

5 3
3. update EWOO at each € € O, with loss B(CE(Xt)H’;’”HpQD‘? + 32nd? for D? = 225

B(ce (%t)

4. update p;+1 using multiplicative weights with expert losses p [xen) 4 o

(2.51)

Note the similarity to the MAB case (2.41), with the difference being the upper bound passed to
EWOO and MW. Our structural result bounds the expected task-averaged regret as follows (c.f.
Theorem 2.A.16):

~

V2 2
E min —= 4 (32nd*+¢)m
ce[L,1],7>0 7]

(il 2 dm [logk dm (252)
-I—O(T77 k+—+mmin{%,dp}+— S +—>

k p T p*T
For p = or(1) and k = wr(1) this becomes or(poly(m)) + Emin g1 1, ‘%52 +32nd*m +em,

where V2 = 37 4(c.(%;) — ¥(c.(X;). Then by tuning 7 we get an asymptotic (T’ — o)
regret of 4dV.A/2m + em for any € € [%, 1]. Our analysis removes the explicit dependence on
/v that appears in the single-task regret [Abernethy et al., 2008b]; as an example, v equals the
number of inequalities defining a polytope K, as in the bandit shortest-path application below.
The remaining challenge is to interpret Vf, which as we did for MAB we do via specific ex-
amples, in this case concrete action domains K. Our first example is for BLO over the unit sphere
K = {x e R%: x|, < 1} using the appropriate log-barrier regularizer ¢)(x) = — log(1 — ||x|3):

Corollary 2.4.4 (c.f. Cor. 2.A.17). For BLO on the sphere, Algorithm 6 has expected task-
averaged regret

- (dm2 dm 1 — E|X|2
O — +—= in 4dy[2mlog {1+ ———12 2.53
< T3 * {*/T) " seIPiH,lu \/ mios (T + g2 Fem (2.53)

The bound above is decreasing in E|X|2, the expected squared norm of the average of the
estimated optima X;. We thus say that bandit linear optimization tasks over the sphere are sim-
ilar if the norm of the empirical mean of their (estimated) optima is large. This makes intuitive
sense: if the tasks’ optima are uniformly distributed, we should expect E|%|3 to be small, even
decreasing in d. On the other hand, in the degenerate case where the estimated optima X; are the
same across all tasks ¢ € [T], we have E|X|2 = 1, so the asymptotic task-averaged regret is 1

58

because we can use € = % Perhaps slightly more realistically, if it is %—away from 1 for some
power p = % then setting ¢ = \/Lm can remove the logarithmic dependence on m. These two
regimes illustrate the importance of tuning ¢.

As a last application, we apply our meta-BLO result to the shortest-path problem in online
optimization [Takimoto and Warmuth, 2003, Kalai and Vempala, 2005]. In its bandit variant
[Awerbuch and Kleinberg, 2004, Dani et al., 2008], at each step ¢« = 1, ..., m the player must
choose a path p; from a fixed source u € V to a fixed sink v € V in a directed graph G(V, E).
At the same time the adversary chooses edge-weights ¢; € RIZl and the player suffers the sum
2.eep, Lile) of the weights in their chosen path p;. This can be relaxed as BLO over vectors x in a

set K = [0, 1]'! defined by a set C of O(| E|) linear constraints (a, b) {a,x) < b enforcing flows
from u to v; u to v paths can be sampled from any x € K in an unbiased manner [Abernethy
et al., 2008b, Proposition 1]. On a single-instance, applying the BLO method of Abernethy et al.
[2008b] ensures O(|E|2+/m) regret on this problem.

In the multi-instance setting, comprising a sequence ¢ = 1,..., 7" of shortest path instances
with m adversarial edge-weight vectors ¢, ; each, we can attempt to achieve better performance
by tuning the same method across instances. Notably, we can view this as the problem of learning
predictions in the algorithms with predictions paradigm (c.f. Part II), with the OMD initialization
on each instance being effectively a prediction of its optimal path. Our meta-learner then has the
following average performance across bandit shortest-path instances:

Corollary 2.4.5 (c.f. Cor. 2.A.18). For multi-task bandit online shortest path, Algorithm 6 with
regularizer ¢(x) = — 3, ;.. log(b —(a, x)) attains the following expected average regret across
instances

_(|E*m? |E|3m?¢ 7 Yo b— (ae(X

& <| | ;n . | |4 me N mljn 4|E|E 9m Z log TZt_l <a C (Xt)> +em
Tz \/T g€ ;1] a,beC {/H?zl b— <a> Ce (&t)>

(2.54)

Here the asymptotic regret scales with the sum across all constraints a, b € C of the log of the
ratio between the arithmetic and geometric means across tasks of the distances b — {a, c.(X;))
from the estimated optimum flow c.(X;) to the constraint boundary. As it is difficult to separate
the effect of the offset €, we do not state an explicit task similarity measure like in our previ-
ous settings. Nevertheless, since the arithmetic and geometric means are equal exactly when all
entries are equal—and otherwise the former is larger—the bound does show that regret is small
when the estimated optimal flows X; for each task are at similar distances from the constraints,
i.e. the boundaries of the polytope. Indeed, just as on the sphere, if the estimated optima are all
the same then setting ¢ = % again yields constant averaged regret.

2.4.4 Future work

In this section we applied ARUBA to design a meta-algorithm for learning to initialize and tune
bandit algorithms, obtaining task-averaged regret guarantees for both multi-armed and linear
bandits that depend on natural, setting-specific notions of task similarity. For MAB, we meta-
learn the initialization, step-size, and entropy parameter of Tsallis-entropic OMD and show good

59

performance if the entropy of the optimal arms is small. For BLO, we use OMD with self-
concordant regularizers and meta-learn the initialization, step-size, and boundary-offset, yielding
interesting domain-specific task similarity measures. Some natural directions for future work in-
volve overcoming some limitations of our results: can we adapt to a notion of task similarity that
depends on the true optima without assuming a gap for MAB, or at all for BLO? Alternatively,
can we design meta-learning algorithms that adapt to both stochastic and adversarial bandits,
1.e. a “best-of-both-worlds” guarantee? Beyond this, one could explore other partial information
settings, such as contextual bandits or bandit convex optimization.

2.5 Conclusion

This chapter introduces ARUBA, a learning-theoretic framework for deriving and analyzing al-
gorithms for learning-to-learn. Our approach works by applying off-the-shelf learning guaran-
tees to nice but meaningful bounds on the performance of learning algorithms; we show that
this approach yields meta-learning methods that are similar to practical gradient-based meta-
learning methods such as Reptile, scale to large scale models, and provably adapt to natural,
setting-specific notions of task similarity. While motivated by gradient-based meta-learning, we
also demonstrate that our approach extends to a variety of learning-theoretic settings, includ-
ing nonconvex meta-learning and bandits. In the next chapter we will highlight its usefulness in
showing provable guarantees for a new method for federated hyperparameter optimization, while
in the next part of the thesis we extend ARUBA beyond learning algorithms to algorithms with
predictions.

60

2.A Proofs

2.A.1 Strongly convex coupling

Our first result is a simple trick that we believe may be of independent interest. It allows us to
bound the regret of FTL on any (possibly nonconvex) sequence of Lipschitz functions so long
as the actions played are identical to those played on a different strongly-convex sequence of
Lipschitz functions. The result is formalized in Theorem 2.A.1.

Derivation

We start with some standard facts about convex functions.

Claim 2.A.1. Let f : X — R be an everywhere sub-differentiable convex function. Then for
any norm | - | we have

f&) = fy) < VI x -yl VxyeX (2.55)

Claim 2.A.2. Let f : X — R be a-strongly-convex w.r.t. | -| with minimum x* € arg min f(x).
XEX
Then x* is unique and for all x € X we have

)= fx) + 5 x = x| (2.56)

Next we state to some technical results, starting with the well-known be-the-leader lemma:

Lemma 2.A.1 (Shalev-Shwartz [2011]). Let x;,...,x7r.1; € X be the sequence of actions of
FTL on the function sequence {{; : X — R}[r] Then

(x¢) = le(x t(X¢) — e (X¢41) (2.57)

\\Mq
\\Mq

for all x* € X.
The final result depends on a stability argument for FTL on strongly-convex functions adapted
from Saha et al. [2012]:

Lemma 2.A.2. Let {Et X — R}te be a sequence of functions that are o;-strongly-convex
w.rt. | - | and let xy,...,x7,1 € X be the corresponding sequence of actions of FTL. Then

2[Vi

_ 2.58
oy + 20041 ()

HXt - Xt+1H <

forallt € [T1.

Proof. The proof slightly generalizes an argument in Saha et al. [2012, Theorem 6]. For each
t € [T'] we have by Claim 2.A.2 and the «;.,-strong-convexity of 22:1 l4(+) that

t t
¢

D bs0a) = D (xein) + = % = xia (2.59)

61

We similarly have

- e
D bolxin) = Z C(xe) + = o1 — (2.60)
s=1

Adding these two inequalities and applying Claim 2.A.1 yields

«
(5 + i) Ixe = X < faloxe) = o) < Vil =xen] - 26D)

Dividing by ||x; — x4, 1| yields the result. O

Theorem 2.A.1. Let {{, : X — R},c7] be a sequence of functions that are G,-Lipschitz in || - || A
and let x1,...,x7,1 be the sequence of actions produced by FTL. Let {/; : X — R}y

a sequence of functions on which FTL also plays xy, ..., X7y, but which are G}-Lipschitz and
a-strongly-convex in | - || 5. Then

T T '
Dll(xe) = l(x*) <20)] _ GG (2.62)
t=1

=+ 200

for all x* € X and some constant C' s.t. |x|4 < C|x|p V x € X. If the functions ¢; are also
convex then we have

|VillaxVilz
—4(x") <2C : : 2.63
(1) tZ1 ap + 20,1 (269

\\Mq

orallx*e X

Proof. By Lemma 2.A.2,

20¢
Ix¢ — xps1fa < Cllx¢ — xpplp < ———— (2.64)
oy + 2004 1

forall £ € [T']. Then by Lemma 2.A.1 and the G-Lipschitzness of ¢, we have for all x* € X that

T T GG
Xt - g Xt+1 Z Gt”Xt - Xt+1||A Z ! (2.65)

1(Xe) — li(x
P P ozt—|—2a1t 1

IIMH
IIMH

In the convex case we instead apply Claim 2.A.1 and Lemma 2.A.2 to get

S S S IV 4,4 Vil 5,
Z Xt _gt Z Xt —g Xt+l Z ‘VtHA*|Xt_Xt+1HA QCZ a + 20
=1 =1 =1 =1 t 1:it—1
(2.66)
O]

62

Applications

We now show two applications of strongly convex coupling. The first shows logarithmic regret
for FTL run on a sequence of Bregman divergences generated by a fixed regularizer ¢ : X — R.
Note that such functions are nonconvex in general.

Proposition 2.A.1. Letvy : X — R be 1-strongly-convex w.r.t. |-| and consider any x, ..., X7 €
X. Then when run on the loss sequence a1 By (x1]]-), . .., arBy(x7||-) for any positive scalars
a1, ...,ap € Rog, FTL obtains regret
r 2
(% Gt
Regret < 2C'D : 2.67
s Z ay + 200141 ()

for C's.t. |x| < C|x|2Vx € X, D = maxyyex |[x — y|2 the {>-diameter of X', and G, the
Lipschitz constant of By (x;||-) over X w.r.t. | - |. Note that for | - | = | - || we have C' = 1 and

Proof. Note that a;8,(x,||-) is a,Gy-Lipschitz w.r.t. || - |. Let ¢/(-) = 3| - |3, s0 By (x¢|ly) =
slxe —yl|3Vy € Xt € [T]. The function oyBy (x||-) is thus a,-strongly-convex and D-
Lipschitz w.r.t. || - |o. Now by Claim B.2.1 FTL run on this new sequence plays the same actions
as FTL run on the original sequence. Applying Theorem 2.A.1 yields the result. O]

We can state a more elegant result using a bound on the Hessian of the regularizer:

Corollary 2.A.1. Let ¢ : X — R be a strictly convex function with maxex ||V (x)|| < S
over a convex set X < R? of size max,cy |x|2 < K. Then for any points x;, ..., xy € X the
actions y; = argmin, .y 1(x) and y; = 5 >, _, X, have regret

SK*?

1S 8SK?(1 +1logT) (2.68)

Nl
N[00

T
Z By (x¢|[ye) — By (X¢|[yrs1) <
t=1

t=1

Proof. Note that

VyBy(x|ly) = =Vi(y) — Vy(Vi(y), x) + V(Vi(y), y) = diag(VZ¢(y))(y — x) (2.69)

50 By (x,]|-) is 25 K-Lipschitz w.r.t. | - |lo. Now if ¢/(-) = 1] - |3 then the functions By (x,||-) are

1-strongly-convex and 2K -Lipschitz w.r.t. || - |2. Therefore, since FTL run on this new sequence
plays the same actions as FTL run on the original sequence, we can apply Theorem 2.A.1 to
obtain the result. [

In the next application we use coupling to give a O(T g)—regret algorithm for a sequence of
non-Lipschitz convex functions.

Proposition 2.A.2. Let {/; : R., — R}~ be a sequence of functions ¢;(z) = (%2 + m) oy for
any positive scalars a,...,ar € R.g and adversarially chosen B; € [0, D]. Then the e-FTL

63

algorithm, which for £ > 0 uses the actions of FTL run on the functions /;(x)

over the domain [,/ D? + 2] to determine z;, achieves regret

B2+¢?
(T +x) oy

g2 D3 d a?
Regret < min {E,a} or.7 + 2D max {?, 1} ; PO P (2.70)
for all z* > 0.
Proof. Define B> = B? + £ and note that FTL run on the functions /() = (%2 — B?log x) a
plays the exact same actions z7 = Zojt— as FTL run on /,. We have that
B? D?
10,0 = a1 = 21| < 22 2.71)
x €
5 2 D2 5 B2
0.0} = |z — —t| < @y max {D, —} Ovaly = vy <l + —;) = oy (2.72)
x € x

. Py 2
so the functions ¢, are ath

ay-strongly-convex. Therefore by Theorem 2.A.1 we have that

T N D? c af
/ — V(" 2D 1 PG P
; t(xt) t('r) maX{ 53 ’ }; o + 2a1:t—1

>—-Lipschitz while the functions ég are oy D max {%, 1}—Lipschitz and

(2.73)

for any z* € [¢,v/D? + €2]. Since Y|, ¢, is minimized on [, v/D? + 2], the above also holds

for all * > 0. Therefore we have that

2

T T
< min 2D max x* 2.74
r*>0 { }; O!t—f‘QO[lt 1 ; t() ()
D3 T 2 T /B2 2
+ e
= min 2D max Z Z ¢ +az*) oy
T*>0 — Oét + 20[1 t—1 —y x*
£2 a?
= min —ay7 + 2D max + > l(x
z*¥>0 r* LT { } Oét—|—2061t 1 tZ; !
Note that substituting x* = 4/ % into the second-to-last line yields
T T T
. B? + &2 . '
min (! +2*)y <2, | arp Z o Bf < 2eaq.r + min Z l(x (2.75)
>0 x ¥*>0
=1 t=1 t=1
completing the proof.]

64

2.A.2 Adaptive and dynamic guarantees

Throughout Appendices 2.A.2, 2.A.3, and 2.A.4 we assume that arg ming.g Y., s ¢(6) returns
a unique minimizer of the sum of the loss functions in the sequence S. Formally, this can be
defined to be the one minimizing an appropriate Bregman divergence Br(-|¢r) from some fixed
¢r € O, e.g. the origin in Euclidean space or the uniform distribution over the simplex, which
is unique by strong-convexity of Bg(-|¢r) and convexity of the set of optimizers of a convex
function.

Theorem 2.A.2. Let each task ¢ € [T'] consist of a sequence of m; convex loss functions ¢ ; :
© — R that are Gy ;-Lipschitz w.rt. | - ||. For G = G},,,,/m; and R : © — R a 1-strongly-
convex function w.r.t. || - | define the following online algorithms:
1. INTT: a method that has dynamic regret bound U (W) > 37 | firit(¢p,) — fiit(g),) w.r.t.
reference actions U = {1,};_; < © over the sequence f"'(-) = Br(0}||-)G\/my -
2. SIM: amethod that has (static) regret bound U™ () decreasing in z > 0 over the sequence
of functions f{m(z) = (w + m) Gy/my.

Then if Algorithm 1 sets ¢, = INIT(¢) and 7, = %&% it will achieve
o . Usim Vi 1 Uinit N o T AV T
Regret < U < M + — min g, 2, | UP(I) Z Gi/my ¢ + ad] Z Grn/my
T T V\Il t=1 T t=1

(2.76)
for Vi = m ZtT=1 Br(0)||1) Gi/my.

Proof. Letting x; = SIM(t) be the output of SIM at time ¢, defining 0, = G;/m; and 0.0 =
Zthl o0y, and substituting into the regret-upper-bound of OMD/FTRL (1.1), we have that

T *
o= 3 (Bl Y
t=1

Ty

T *
< min U™ () + Z (M + x) o
t—1

x>0 x

- . 2.77)
< mmU%lm(x) + [PL(\I]) + Z (w + 1‘) oy

>0 €T o T
. Uinit] —
< U}‘m(V\p) + min {%, 21/ U&Plt(\p)Ul;T} + 2V\IJUl:T
4

where the last line follows by substituting = max {V\p, A/ M} [

01T

Corollary 2.A.2. Under the assumptions of Theorem 2.A.2 and boundedness of By over O, if
INIT uses FTL, or AOGD in the case of R(-) = 1| -3, and SIM uses e-FTL as defined in

65

Proposition 2.A.2, then Algorithm 1 achieves

2

— G D3 L o2
UT<mm{v,s}01:T+2Dmax{?,1}za+ 8CD01TZE+2V01T (2.78)

for V2 = mingeo >, , 0:Br(0#||¢) and constant C' the product of the constant C' from Proposi-
tion 2.A.1 and the bound on the gradient of the Bregman divergence. Assuming o, = G\/m ¥ ¢
and substituting € = \5/#? yields

- 1 1 1
Regret < U = O { min + , +V Ivm 2.79
° ({ vTi VT IT }) v @7
Proof. Substitute Propositions 2.A.1 and 2.A.2 into Theorem 2.A.2.]

Proposition 2.A.3. Let {/, : R.q — R}, be a sequence of losses of form ¢,(z) = (%g + :c) oy
for any positive scalars v, . .., ar € R. and adversarially chosen B; € [0, D]. Then the losses

0(z) = (B ety 3:) o, on the domain [g,v/D? + 2] are M-Llpschltz and —2 min { = 1}_
exp-concave.

Proof. Lipschitzness follows by taking derivatives as in Proposition 2.A.2. Define B? = B2 +&2.

We then have
3 B2 - 20,B2
T

The ~y-exp-concavity of the functions /; can be determined by finding the largest 7 satisfying

/ 2 B2
Y < luli sk (2.81)
(azgt)Q Oét(Bt - x2)2

for all z € [e,4/D? +¢%] and all t € [T]. We first minimize jointly over choice of z, 5; €
[e, v/ D? + €2]. The derivatives of the objective w.r.t. and B;, respectively, are
2B2(B? + 32?) 4Bz (B? + 2?)

- — - 2.82
(B (5~ o

Note that the objective approaches o as the coordinates approach the line © = B,. For z < B,
the derivative w.r.t. z is always positive while the derivative w.r.t. B, is always negative. Since
we have the constraints x > ¢ and 32 < D? + £2, the optimum over x < B, is thus attained at
x = ¢ and 32 D? + £2. Substituting into the original objective yields

2(D? + &%)e L 2%
OétD4 - OétD2

(2.83)

66

For ¢ > B, the derivative w.r.t. z is always negative while the derivative w.r.t. B, is always
positive. Since we have the constraints z < \/D2 + e2and B? > €2, the optimum over = > B,
is thus attained at x = v/ D? + £2 and 32 = £2. Substituting into the original objective yields

2e2y/D? + £2 - 2¢?
CYtD4 - O[th

(2.84)

Thus we have that the functions €t are D min { 57 1}—exp—concave. O]

Corollary 2.A.3. Let {/, : R.; — R}~ be a sequence of functions of form ¢;(x) = (B?? + 93) o

for any positive scalars a,...,ar € R. and adversarially chosen B; € [0, D]. Then the ¢-
EWOO algorithm, which for ¢ > 0 uses the actions of EWOO run on the functions ¢;(z) =

2
(B ey ZE) o over the domain [e, v/ D? + 2] to determine x, achieves regret

Damax

2 D2
Regret, < min {8—, 5} ayr + max {—2, 1} (1 +log(T + 1)) (2.85)
xr* €

for all z* > 0.

Proof. Since Zthl {; is minimized on [e,v/D? + 2], we apply Theorem B.3.3 and follow a
similar argument to that concluding Proposition 2.A.2 to get

T
Do, D?
< max 1 1 1 T
;ft(:vt) 5 maoc{8 }(+log(T + 1 +Z£t

. (&2 Da,,, D?
:mm{;,s}alq—i— 5 max{;,l}(l—i—logT—i— +Z£t

(2.86)

]

Corollary 2.A.4. Under the assumptions of Theorem 2.A.2 and boundedness of By over O, if
INIT uses FTL, or AOGD in the case of R(-) = 3| - |3, and SIM uses e-EWOO as defined in
Proposition 2.A.3, then Algorithm 1 achieves

2

77 e Do D?
UT<m1n{V,€}01:T+ 5 max{g—Q,l}(l—{—log(T—i—l))

(2.87)
+ 80D01T2—+2V0'1T

1 0Lt

for V2 = mingeo 3;_, 0:Br(07||¢) and constant C' the product of the constant C' from Proposi-
tion 2.A.1 and the bound on the gradient of the Bregman divergence. Assuming o, = G\/m V ¢
and substituting € = %/LT yields

. 1+3+ 1
Regret<U=(’)(min{ Vo — }—i—V)\/ﬁ (2.88)

Proof. Substitute Proposition 2.A.1 and Corollary 2.A.3 into Theorem 2.A.2. [l

Corollary 2.A.5. Under the assumptions of Theorem 2.2.1 and boundedness of O, if INIT
is OGD with learning rate le—ax and SIM uses e-EWOO as defined in Proposition 2.A.3 then
Algorithm 1 achieves

_ 2 D D2
UT < min 8—,5 o7 + Tmr pax —, 1 (14 1log(T + 1))
V\p 2 62

(2.89)

D
+2D min{ ‘(/"“ (1 4+ Py),\/20m010(1 + P@)} + 2Vyorr
v

for Pr(W) = 37 |4 — by 1]l2. Assuming o, = G'/m V t and substituting & = %/LT yields

— . 1+— 1 1+ P 1+ P
Regret<U=(’)<min{ \F \/7}+min{ ‘—/;T‘I},\/ +TW}+V\1;>\/E (2.90)

Proof. Substitute Theorem 2.2.3 and Corollary 2.A.3 into Theorem 2.A.2. [

2.A.3 Guarantees for adapting to the inter-task geometry

For any nonnegative a € R¢ we will use the notation |-||a = {y/a, -); note that if all elements of
a are positive then |||, is a norm on R¢ with dual norm ||| 4-1.

Claim 2.A.3. Fort > 1 and p € (0,1) we have

t—1 1 t 1 t 1
Z > 2 > thP and Z — (2.91)
His+1)p T H(s+p P “sp
_(2\P
forc, = - (lil and ¢, = l%p.
Proof.
t—1 t 41 1- 1-
1 1 d t+2)17P 2P
Z Z Z ; J S — (+) 2 Qp(t + 2)1—]) Z thl—p
H(s+1)p - H(s+1)p 1 (s+1)p l—p
(2.92)
1 “d tr—1
o<1t | D=1y <ot (2.93)
s=1 P 1 sP 11— p g
O

Claim 2.A.4. For any x € R? we have [x?|2 < |x/3.

Proof.

d 2
%22 = ij < (Z ?) = x5 (2.94)

68

We now review some facts from matrix analysis. Throughout this section we will use matrices
in R%*?; we denote the subset of symmetric matrices by S¢, the subset of symmetric PSD matrices
by S, and the subset of symmetric positive-definite matrices by S¢ , . Note that every symmetric
matrix A € S? has diagonalization A = VAV ™! for diagonal matrix A € S? containing the
eigenvalues of A along the diagonal and a matrix V € R%*? of orthogonal eigenvectors. For
such matrices we will use A;(A) to denote the jth largest eigenvalue of A and for any function
[[Aa(A), A1 (A)] — R we will use the notation

f(Apny)
f(A)=V V! (2.95)

f(Aaa)

Claim 2.A.5. [Boyd and Vandenberghe, 2004, Section A.4.1] f(X) = logdet X has gradient
Vxf=X"'overS?,

Claim 2.A.6. [Moridomi et al., 2018, Theorem 3.1] The function f(X) = —logdet X is (%—
strongly-convex w.r.t. || - || over the set of symmetric positive-definite matrices with spectral
norm bounded by o.

Definition 2.A.1. A function f : (0,) — R is operator convex if V X, Y € S%_ and any
t €10, 1] we have
FEX + (1 =0)Y) < tf(X) + (1 — 1) f(Y) (2.96)

Cdlaim 2.A7. If A € S% and f : (0,90) — R is operator convex then Tr(A f(X)) is convex on
Se ..

Proof. Consider any X,Y € S?_ and any ¢ € [0,1]. By the operator convexity of f, positive
semi-definiteness of A, and linearity of the trace functional we have that

0 < Tr(A(tf(X) + (1 =) f(Y) = f(EX + (1 =1)Y)))

— t Tr(A(f(X))) + (1 —) TH(A£(Y)) = Te(A(f(tX + (1 — £)Y))) (2.97)

]

Corollary 2.A.6. If A € S? then Tr(AX™") and Tr(AX) are convex over S% ..

Proof. By the Lowner-Heinz theorem [Davis, 1963], x—!, z, and 2? are operator convex. The
result follows by applying Claim 2.A.7.]

Corollary 2.A.7. [Lieb, 1973, Corollary 1.1]If A, B € SZ then Tr(AXBX) is convex over S%.

Proposition 2.A.4. Let {{;, : R.y — R};>1 be of form /;(x) =

sarially chosen by, g; satisfying [byfs < D,|lgl2 < G. Then the (¢,(,p)-FTL algorithm,
which for £, > 0 and p € (0,3) uses the actions of FTL run on the functions £,(x) =

Bl 4 (g2 4 (P1,) Ox o owhere & = &2t + 1) ¢ = (3t +1)7" for ¢ > 0 and

2
‘ b;t + g? @le for adver-

69

by = gy = 04, to determine x;, has regret

d 2 L,
Regret, < C), Z min { (% + Q2X;-‘) TP, \/C2b?,1:T + 52%?71;TT1T + 2£CT1p}
=1 J (2.98)

D G ,
e <%G4 + €—§<D4> T3 1 C\(DC + Ge + 0)d

for any x > 0 and some constant), depending only on p.

Proof. Define b? = b? + 21,4, 8> = g2 + (21, and note that FTL run on the modified functions
2

O(x) = H# — b2 ®log(x ‘1 plays the exact same actions x? = gg: * as FTL run {,. Since

both sequences of loss functions are separable across coordinates, we consider d per-coordinate

problems, with loss functions of form /() = % +§?zand £ (z) = % —b?log . We have that

_ b? |9tIt _b2|

J 2 U 2
8 gl =g + -y / g
T zzty = G¢ 12 9t

Tt
(2.99)

we have per-coordinate regret

o . b2
so by Theorem 2.A.1 and substituting the action 77 = gg =l
0:t—1

igt(xt)_gt 22|Vt |V' _22| (L’t—b2|2
t=1

P 91t xtglt

J; xt
<2
Z; i xt i

) 22 NCE B (2.100)

N 3
P 191t\/90t 1 §2 (55t 1)2

1:t

9611

$ NI NE T
= 3 3
t=1 Q%t\/gcg):Tl (b(z).tfl)g 91:t(b3:t71)2

VA
)

70

Taking the summation over the coordinates yields

th(xt) — 0 (x")

(D +e)(|gtl3 + ¢'d) |, (G+O)(bf|3+e/d) . (b3 + eé‘d)C3>
+ 3 + —= 3 \/ﬂ
Z < Cl itV 2<‘D't71 (83:1‘,71)5 Cg:tfl(é%:tfl)é
((D+e)(G +¢ld) (GHOD +eld) (D' + 5;“d)§> o

Pp

t=1

<13

A\ (G2 (cpe2t1-7)2 e3(c,t17)?
1+ T ‘
<42 SCPZ<D§8G4+G§CD4>t;p1+D<+?5p+2agd
2 =\ ¢ € A8
~p
D G
<Cp1< C—;gG4+ €§<D4> T%p+0p72(DC+G5+2€C)d

(2.101)

for C,1 = 461_%p\/§ () /cf,/2 and C, 5 = 4+/2 (1 +) v 1+p/cp/ Thus we have

D+E 4 G+C 4 3 4 >
<){g%cpl (& G* + = D*) TP 4+ C,2(DC¢ + Ge + 2£C)d+§€t(x)
D + G+ :
- (5 el = CD“) T3 + C,5(DC + Ge + 2:¢)d
b? + 71
+ min I (g7 + (71, Ox*
x"‘>0t=1 xX* 1

<Oy (D ey 97 CD‘*) T3 4 C,o(DC + Ge + 2:0)d

¢ &3
d 82 T
1- 2%
)Er*11>1%cT pZE—l_C X +Z€t(x
j=1"7 t=1
(2.102)
Separating again per-coordinate we have that
T B2
Z Uy g <o p— + (Pt + Zﬁt (2.103)

t=1

71

72
However, substituting z* = 4/ 21—5 also yields

T 79

. by
min > L + §7a* < 20/0038
x*¥>0) xr*

< 2\/@, (G202 + 2g3,)T 5y 20,eCT' P + mmZﬁt(a:
—1

z*>0

(2.104)

completing the proof.]

Theorem 2.A.3. Let © be a bounded convex subset of R?, let D? be the set of positive definite
diagonal matrices, and let each task ¢ € [T] consist of a sequence of m convex Lipschitz loss
functions /¢;; : © — R. Suppose for each task ¢ we run the iteration in Equation 2.14 setting
¢ = 7:67,_, and setting H = diag(n,) via Equation 2.15 fore = 1,{ = y/m, and p = 2. Then
we achieve

Regret < U
N +Hp 1 1 (67 — 9|2 S
o L.g] ’ 1 t H-! 12
-y 0 <Zm{) v g 2 i e
HeD¢ = i=
(2.105)
Proof. Define b? = %(0* — ¢;)? and g? = V2, . Then applying Proposition 2.A.4 yields
X ey —¢
Ul = 2 Z Hvtz”
t=1
T *
- t 1:m
t=1 21 1
T
0 —
< min M + n @ Vt Lm
neR<, 2n 1

2
+C, Z min { (;— + <277m> TP \/§2b2 +e2g2 T 7 + zgng—p}
j=1 (7]

J

e (D e Ghm? 4 %D“) T3 1 C(DC + Gy/me + £C)d

<'3
o 16 = ol ¢H2 S 2, Doy
< min ZHVHH 52 (1 +log T)
neR‘iot !

d 2
+Cp2m1n{(n€— +C2n[j]) TP \/CZbZ |+ e, T[]T 7 4 2eCT! p}
j=1 (7]

J

_|_Cp (D+€G4m2+ %D‘l

e =) T2 + Cp(D¢ + Gy/me +e¢)d

(2.106)

72

]

Substituting 1 + F

Proposition 2.A.5. Let {¢; : R.y — R};>; be of form (,(X) = Tr(X'B?) + Tr(XG?) for
adversarially chosen B,, G, satisfying ||B¢||cc < 05, ||Gil|c < ogy/m for m > 1. Then
the (e, ¢)-FTL algorithm, which for €, > 0 uses the actions of FTL on the alternate function
sequence (;(X) = Tr((B? + £2I,)X 1) + Tr((G? + ¢?1,;)X), achieves regret

C,m? N N

64—&(1 +1ogT) + ((1 + 08)evm + (1 + 03)()T (2.107)

for constant C', depending only on o, 0¢.

Regret, <

Proof. Define B? = B? + £2I;, G? = G? + (%1, and note that FTL run on modified functions
0X) =L1T(B 2XGQX) log det X has the same solution B? ., = XG?,,X

N _ _ ~ _ 2
IVxle(X) oo = [|GF = X" BiX oo < IG5, + [1IXHIE IIBel5 < 55 +mog + ¢
(2.108)

[VxE(X) [l = IGIXB;? = X7 oo < (I Gll 1K oo I BFH1% + X7

mUeM%/W Jmok + ¢ (2.109)
¢

Since by Claim 2.A.6 —log det |X| is OQC—JQFEQ—strongly—convex we have by Theorem 2.A.1 that
B

T
~ X+ C,m?
ZE X,) — £,(X*) < s 7 (1+1logT) (2.110)
for some C,, depending on 0%, 0. Therefore
T T
2,600 < 2, 6(%)
t=1 t=1
C.m? o
- :
S Zigs (1+1logT) + r)?i%;&(X
C,m? d
<=2 in g2 -1 2 2.111
G (1+1ogT) + min T Te(X™H) + T Te(X) + ;zt(x) (2.111)
C,m? a
a 2 : 2
< Zig (1+1logT) + (1 + 0g)eTV/m + min (*T Tr(X) + PRAC:¢

C T
< 4?; (1+1logT) + (1 +oZ)ev/m + (1 +02)O)T + r}g%;gt(x)

73

Theorem 2.A.4. Let © be a bounded convex subset of R? and let each task ¢ € [T'] consist of
a sequence of m convex Lipschitz loss functions /;; : © — R. Suppose for each task ¢ we run
the iteration in Equation 2.14 with ¢ = ,5_%01":7:71 and H the unique positive definite solution of
B? = HG?H for

B; = te’I,;+) (0F — ¢.)(0: —)T and G} =te’I;+ > >V, V], (2112)

s<t s<ti=1

fore = 1/¥/T and ¢ = \/m/~/T. Then we achieve

A | 2N (H)1+1logT & 07 — d* 3 & .
Regret <U = O () Vm + %161({); No(H) 7 T Z 5 T Z | Veille
. -

(2.113)

Proof. Let D and G be the diameter of © and Lipschitz bound on the losses, respectively. Then
applying Proposition 2.A.5 yields

L ler - ¢tH .
RegretT = Z i Z”Vtz”m

—) (0; — ¢t)T) + Tr (Hti Vt,ivzz)

i=1

L
g I

Z —)0 —p)") +Tr <Hi ViV,)
C

i=1

(1 +1logT) + (1 + G*ey'm + (1 + D*)()T

4C3
0* —1 Ui
>° - -1 (2.114)
C'JmQ] 2 2
W(l +1logT) + (1 + G?)ev/m + (1 + D*))T
C20(H) o 1 |6; — ¢*H S)
< 1;1)161(‘51 /\d(Z 7 Z Zl HVM”H
H>0 = =
Cot 1 oo T G2 DHOT
+W(1+ ogT) + ((1 + G%)ey/m + (1 + D*)C)
2MH) 1 60— 9" | ¢
= min -+ — t HVMH%{
ﬁef(), Aqa(H) ;t ; 2 ;
C 2 2 2
+ i3 ——1 +1logT) + (1 + G*)evym + (1 4+ D*)O)T
OJ

74

2.A.4 Online-to-batch conversion for task-averaged regret

Theorem 2.A.5. Let Q be a distribution over distributions PP over convex loss functions ¢ : © —
[0, 1]. A sequence of sequences of loss functions {{;;}c[r),ic[m] is generated by drawing m loss
functions i.i.d. from each in a sequence of distributions {Pt}te themselves drawn i.i.d. from
Q. If such a sequence is given to an meta-learning algorithm w1th task-averaged regret Regret
that has states {s;};c[7] at the beginning of each task ¢ then we have w.p. 1 — ¢ for any 8* € ©
that

Regret 8 | 1

mNT %5
where 0 = %01% is generated by randomly sampling ¢ € Unif[T], running the online algorithm
with state s;, and averaging the actions {Oi}ie[m]. If on each task the meta-learning algorithm runs
an online algorithm with regret upper bound U (s;) a convex, nonnegative, and B./m-bounded
function of the state s; € X', where X is a convex Euclidean subset, and the total regret-upper-

bound is U, then we also have the bound

_ U /8 1
EPNQEmeL;NpE(B) <]E’/)NQ]ngpg(e*) + — 4+ By — log = (2116)
m ml 70

where 0 = %Blzm is generated by running the online algorithm with state 5 = %SLT and averag-
ing the actions {0;} e[

Eiur Ep~oEpnErpl(0) < EpoEipl(0*) + (2.115)

Proof. For the second inequality, applying Proposition B.4.1, Jensen’s inequality, and Proposi-
tion B.4.2 yields

_ Ul(s
Ep oEpmE, pl(0) < Ep.g (]Eupf(e*) + 751)>

< EpoEpl(6 ZEP o) ())
(2.117)
5t) W
=Ep_oE/.pl(0 Ep.o -1
P~olly~p Z P <2 B \/—
U 8 1
< Ep oEppl(0*) + — + B/ —=log =
PrBenpl(8%) + — + By log
The first inequality follows similarly except using Regret, instead of U, linearity of expectation
instead of Jensen’s inequality, 1 instead of B, and Regret instead of U.]

Note that since regret-upper-bounds are nonnegative one can easily replace 8 by 2 in the
second inequality by simply multiplying and dividing by B4/m in the third line of the above
proof.

Claim 2.A.8. In the setup of Theorem 2.A.5, let ; € argming.g >, ¢;;(0) and define the
quantities V3 = arg min o Ep.oEpm||0* — ¢|3 and D the 5-radius of ©. Then w.p. 1 — 4 we
have

2 I 2 ,, D21
V ZgIGIéIfZHOt —¢|; <0 VQ+?log5 (2.118)
=1

75

Proof. Define ¢ = argming.g >,_, [6; — @3 and ¢* = argming.q EpoEpn|0* — /3.
Then by a multiplicative Chernoff’s inequality w.p. at least 1 — § we have

T . T
=2 167 =l < Z 167 — o713
t=1 t=1

3D? 1
(”m{ Tlog(s})TEMEPmH*—cb*% @119

1
< 2TV5 + 3D?log 5
O

Corollary 2.A.8. Under the assumptions of Theorems 2.2.2 and 2.2.6, if the loss functions are
Lipschitz and we use Algorithm 1 with 7, also learned, using €- EWOO as in Theorem 2.2.2 for
e = 1/v'mT +1/y/m, and set the initialization using ¢, = § >, 0%, then w.p. 1 — we have

_ A A e 1 11
EPNQEmep(e) < E’/DNQEP(O) +0 \/—m + min VQm R W + E + ? log g
(2.120)

where V3 = mingep Ep~oEpn[0* — ¢|3.

Proof. Substitute Corollary 2.A.4 into Theorem 2.A.5 using the fact the the regret-upper-bounds
are (9(")-bounded. Conclude by applying Claim 2.A.8. O

Theorem 2.A.6. Let Q be a distribution over distributions P over convex losses ¢ : © — [0, 1]
s.t. the functions ¢(0) — ¢(6*) are p-self-bounded for some p > 0 and 6* € arg ming.g Esp(0).
A sequence of sequences of loss functions {ém}te[T],ie[m] is generated by drawing m loss func-
tions i.i.d. from each in a sequence of distributions {P, }c[7] themselves drawn i.i.d. from Q. If
such a sequence is given to an meta-learning algorithm with task-averaged regret Regret that has
states {s;}[77 at the beginning of each task ¢ then we have w.p. 1 — ¢ for any 6* € © that

~ Regret 2p [Regret 8 2 2
E v Ep~ o, < EpoEi- * £ 2 logZ | loe 2
e~ oEe-pH(6) ProBept(67) + m * m(m * T ®5) %5

ENCWERE I
T%%s T T %%

(2.121)

where 8 = L0,,,, is generated by randomly sampling ¢ € U[T'], running the online algorithm
with state s;, and averaging the actions {6, };c[n]. If on each task the meta-learning algorithm runs
an online algorithm with regret upper bound U (s;) a convex, nonnegative, and B./m-bounded
function of the state s; € X', where X is a convex Euclidean subset, and the total regret-upper-

76

bound is U, then we also have the bound

_ U 2pU 8
Eb_oE,.pl(0) <E E¢pl(0 — —
p~oErpl(0) < Ep_oE;p m m+

m

/| 8 3p+2
+ B log + p+ log—

where 0 = %91% is generated by running the online algorithm with state 5 = %51@ and averag-
ing the actions {0, };c[m]

(2.122)

Proof. By Corollary B.4.2 and Jensen’s inequality we have w.p. 1 — g that

~ 5 U(s 3 + 2
Ep-oEpl(0) < Ep.g <E12~7>€(9 751 2pU (s P)
1 ¢ s
t
< Ep~oErpl(6”) + ZEP~Q (> (2.123)

2w Ulsy) 2 3p+2. 2
“ENEpe log = log =
* mT; PQ(m og5+ m 8%

As in the proof of Theorem 2.A.5, by Proposition B.4.2 we further have w.p. 1 — % that

1 < U(s
?ZEm("
t=1

Substituting the second inequality into the first yields the second bound. The first bound fol-
lows similarly except using Regret, instead of U, linearity of expectation instead of Jensen’s
inequality, 1 instead of B, and Regret instead of U. U

U 8 . 2
< — 4+ By —=log — 2.124
> m - mT %5 ()

Theorem 2.A.7. Let Q be a distribution over distributions P over convex loss functions ¢ : © —
[0, 1]. A sequence of sequences of loss functions {{;;}c[r7,ic[m] is generated by drawing m loss
functions i.i.d. from each in a sequence of distributions {P;}[r] themselves drawn i.i.d. from
Q. If such a sequence is given to an meta-learning algorithm that on each task runs an online
algorithm with regret upper bound U (s;) a nonnegative, By/m-bounded, G-Lipschitz w.r.t. | - |,
and a-strongly-convex w.r.t. | - | function of the state s, € A" at the beginning of each task ¢,
where X is a convex Euclidean subset, and the total regret upper bound is U, then we have w.p.
1 — 9 for any 8* € © that

EpoEpmE;pl(0) < Ep oEipl(0*) + Ly (2.125)

for

*+ U 4 U logT 16G2, 6aB logT
U +U+_G U log80g Jrrnax{ 6G*, 6 m}log80g

m T \ am) amT)

Lr = (2.126)

77

where U* = Ep.oU(s*) for any valid s* and 8 = %01% is generated by running the online
algorithm with state 5 = %slzT and averaging the actions {Oi}ie[m]. If we further assume that the
functions ¢(0) — ¢(6*) are p-self-bounded for some p > 0 and 6* € arg ming.g Es-p(6) for all
P in the support of Q then we also have the bound

2 pﬁT

_ 2
EprQEngpg(e) < IEPNQIEZpr(H*) + ET + log 5 + m log 5 (2127)

Proof. Applying Proposition B.4.1 and Theorem B.4.1 we have w.p. 1 — % that

7] U(s
EPNQEmegNPE(O) < EP~Q (Epré(e*) + ())

m

3l

1
< EPNQEngg(e*) + EEPNQU(S*) +

N 4G | U 8log T N max{16G?, 6aB+/m} log 8log T

1
T \ am 8) amT)

< Ep-oEepl(6*) + L7
(2.128)

This yields the first bound since. The second bound follows similarly except for the application
of Corollary B.4.2 in the second step w.p. 1 — %. [

Corollary 2.A.9. Under the assumptions of Theorem 2.2.6 and boundedness of O, if the loss
Vo+1/v/T
Gvm
2, and set the initialization using ¢;.; = %Oit, then

functions are G-Lipschitz and we use Algorithm 1 running OGD with fixed 1 = , Where
we have V3 = mingee Ep.gEpm|0* — ¢

w.p. 1 — 9 we have

_ 1% 1 1 1
EpNQEpmgp(e) < Epwggp(e) + O (\/g + (T F) max {10g S, log S >

(2.129)

Proof. Apply Theorem 2.A.2 with Vi = Vg + 1/3/T, U™ = 0 (because the learning rate is
fixed), and U™ = O (V\/ﬁ + l/ﬁ) (for V? = mingeo ~ >, [6; — ¢|3). Substitute the

result into Theorem 2.A.7 using the fact that U is O ((+) y/m)-bounded, O () -Lipschitz,

and (2 () -strongly-convex. Conclude by applying Claim 2.A.8 to bound V.]

2.A.5 Non-convex meta-learning
Proof of Theorem 2.3.1

Proof. The proof adapts the analysis of the exponential forecaster in Balcan et al. [2018b]. Let
Wy = §, wi(p)dp be the normalizing constant and P; = E,,, [u(p)] be the expected payoff
at round ¢. Also let Uy(p) = Y, u;(p). We seek to bound Regret = OPT — P(T), where

j= l

78

OPT = Up(p*) for optimal parameter p* and P(T) = S| P, is the expected utility of Al-
gorithm 3 in 7" rounds. We will do this by lower bounding P(7") and upper bounding O PT by
analyzing the normalizing constant W;.

Lower bound for P(T): This follows from standard arguments, included for completeness.
Using the definitions in Algorithm 3, it follows that

Wi e e @wy(p)dp J () Wi (P) J by
, i . w, =) pi(p)dp
Use inequalities e’ < 1+ (e* — 1)z forz € [0,1] and 1 + = < €® to conclude

Wi
Wy

< Jcpt(p) (1+ (= Du(p))dp =1+ (™ —1)P, <exp ((¢* = 1P) (2.131)

Finally, we can write Wy, /W) as a telescoping product to obtain

ij;jl — H M&Zl < exp ((6)‘ _ 1); Pt) = exp (P(T)(e)\ N 1)) ’

t=1

or, Wri1 < exp (P(T)(e* — 1)) §, wi(p)dp.
Upper bound for OPT': If there are at most k discontinuities in any ball of radius r, we
can conclude that for all p € B*(p,r), Ur(p) = OPT — k — LTr. Now, since Wr,; =

§owi(p) exp(AUr(p))dp, we have

Wrg = J wl(p)e)\UT(P)dp > f wl(p)eA(OPTfkaTr)dp
e e (2.132)
_ MOPT—k—LTT) f wi(p)dp
B*(p,r)

Putting together with the lower bound, and rearranging, gives

P(T)(e*~1-)) log(1/Z)

OPT — Pr < +k+ LTr
A A
log(1/2) (2.133)
<TX+ OgT +k+ LTr
where we use that P(T) < T and for all z € [0,1],¢* < 1 + x + (e — 2)z%. Take expectation
over the sequence of utility functions and apply dispersion to conclude the result. O]
Proof of Theorem 2.3.2

We extend the construction in Balcan et al. [2020b] to the multi-task setting. The main difference
is that we generalize the construction for any task similarity, and show that we get the same lower
bound asymptotically.

79

Proof. Define u®®)(p) = I[b = 0]+I[p > z]+1[b = 1]+I[p < x], where b € {0, 1}, z, p € [0,1]
and I[-] is the indicator function. For each iteration the adversary picks u(**) or u"*) with equal

probability for some = € [a, a + D*]|, the ball of diameter D* containing all the optima.

For each task ¢, m— %ml_ﬁ functions are presented with the discontinuity x € [a+D*/3, a+

2D* /3] while ensuring S-dispersion. The remaining %mlfﬁ are presented with discontinuities
located in successively halved intervals (the ‘halving adversary’) containing the optima in hind-
sight, any algorithm gets half of these wrong in expectation. It is readily verified that the func-

tions are 3-dispersed. The construction works provided m is sufficiently large (m > (2x) 18y,
The task averaged regret is therefore also Q(m!'=#). O

Proof of Theorem 2.3.3

Proof.

T m
21 2 bilpes) — min > 1 6i(p})

t=1m=1 P~ o1

< min Hy(v)y/m + i (U + ff(;“”t)) Vm + g(m) (2.134)

N

i i FEONT S (O

w:C—R>0,v>0

< (HT(V) + min { FT‘(;”*) 2 FT(w*)T} + 2TV) Vm + Tg(m)

where the last step is achieved by substituting w = w* and v = max {V, Fr(w*)/ T}. O

Proof of Lemma 2.3.1

Proof. Define a probability measure p : C' — Ry that is constant on all elements D e D, of the
discretization at time ¢, taking the value p(p) = VO+(D) Y.pepy.nep Wp) ¥ p € D. Note that for

any D € Dy that is a subset of D we have that

B A%
Pip) = f @(p)dp = - > Wi (2.135)
D

ZDIEDT7D/CD V[D/] D/GDT DICD

80

Then

Do (p|[¥) — Z log{w, p)

s<t
=Y Y Pl s g 3) WP
DeD; DeDyp,DcD s<t DeD; DeDy,DcD

_ Z Z VD] Z W log ZD'eDT,D’cD ‘iV[D']

/ N A Vip
DeD, DeDy.DD ZD 1eDp, DD VD] DieDp.D'ch ZD’GDT,D’CD [D']

NN WD VID) S w

/ ~
s<t DE'Dt DEDT,DCD ZD EDT D’CD [D] D’E'DT,D/CD (2'136)

Z Z Vio] Z W log w121 Wip

Vip! V D’
DeD; DeDy, DD 2 'eDr.0'eD YIP'N pep hich [D1]

—n)log >), e 2. W)

’ .
s<t PeDy,DcCs DeDyp, DD L 'eDp,D'cD VD] D'eDyp, D' D

= Z Z [D’] log w L] — 7]2 10g Z Z W[D/]

DeD; D'eDry,D'eD Vi) s<t DeDy,DcCs D'eDp,D'cD
= Dxr(W|[¥) — ZlOg<WsaW>

s<t

//\

where the inequality follows from applying the log-sum inequality to the first term and the fact
that W ;; = 1pcc, in the second term. Note that we also have

bhi=3 X - Y owm=Y Y wm=!

Do €Dy, D'cD V[D']

DeD; DeDy,DcD D'eDyp,D'cD DeD; D'eDyp,D'cD
(2.137)
and
VD YVI[D A A
Pip) = = - Z Wip = :]~ Z VD] = 7V[D]
ZD/EDT:D/CD VD] D'eDy,D'cD ZD'GDTvD'CD Mzl D'eDr,D'cD
(2.138)

so p satisfies the optimization constraints. Therefore, since w was defined to be the minimum of
the sum of the KL-divergence (a strongly-convex function [Shalev-Shwartz, 2011, Example 2.5])
and a convex function, it is unique and so coincides with p.

81

On the other hand

D (P19 (t)) = n) log(w2(t)., p(£)) < D (p|[¥) =7 Y log{w?, p)

s<t s<t

= Dx(W[[¥) =) log(w?, w)

s<t

< Dy (W]|¥) — n210g<w:,€v>

s<t

= D (W(O)|[9(2) =1) log{w (£), W(t))

s<t

(2.139)

where the first inequality follows from above and the second from the optimality of w. Note that
by nonnegativity the discretization of p does not affect its measure over C, so |p|; = 1 =
|p(t)|1 = 1. Finally, also from above we have

p(t)[p] = Z P[] =Y Z P Vo] = 7V (1)[n] (2.140)
D'eDyp,D'cD D'eDy,D'cD

Thus as before p(¢) satisfies the optimization constraints, which with the previous inequality and
the uniqueness of the optimum w(¢) implies that p(¢) = w(t). Finally, since & is constant on
all elements of the discretization D, of C' this last fact implies that p = w, which together with
p = w implies the result. O]

Lipschitzness for Algorithm 4

Claim 2.A.9. The loss f; is - OI(C) -Lipschitz w.rt. | - |; over the set {w € RIP7l : |w|, =
1,w =V}
Proof.
ol T I ! (2.141)
max W) = max < — = .
Iwli=1,w=v% T Dwh=Lwzye (WE W) (wWE Y)Y yvol(C))
[

Proof of Corollary 2.3.1

Proof. Using first-order conditions we have that the optimum in hindsight of the functions h;
satisfies

1 & 1 <& 1 <& 1
2 _ 2 _ -\ . <—=Y'log—— 2.142
v thlmwt) T; 0g(W}, W) thl 08 i@ (2.142)

Applying Corollary 2.A.3 with oy = 1, B? = f;(w;), and D* — log~y instead of D? yields the
result. N

82

Proof of Corollary 2.3.2

Proof. Using first-order conditions we have that the optimum in hindsight of the functions h;
satisfies

1« 1«
2 _ *
Ve = T;ft(wt) = —TtZ;longt , Wiy < ; 0g ———— fyvol @ (2.143)
Applying Proposition 2.A.2 with a; = 1, B? = f;(w;), and D? — log v instead of D? yields the
result. N
Proof of Theorem 2.3.5

Proof. We have Fr(w*) = O(VBGT) and Hy(V) = O(min{1/V, /T}T%) from Corollar-
ies 2.3.1 and 2.3.2. Substituting into Lemma 2.3.1 and simplifying yields

O —min{%7ﬁ}+min{m VBG
VT VT T

Simplifying further yields the result. [

} + 2v> Vvm + g(m) (2.144)

Learning algorithmic parameters for combinatorial problems

We discuss implications of our results for several combinatorial problems of widespread inter-
est including integer quadratic programming and auction mechanism design. We will need the
following theorem from Balcan [2021], which generalizes the recipe for establishing dispersion
given by Balcan et al. [2020a] for d = 1,2 dimensions to arbitrary constant d dimendions. It
is straightforward to apply the recipe to establish dispersion for these problems, which in turn
implies that our meta-learning results are applicable. We demonstrate this for a few important
problems below for completeness.

Theorem 2.A.8 (Balcan [2021]). Letly,...,l,, : R? — R be independent piecewise L-Lipschitz
functions, each having discontinuities specified by a collection of at most K algebraic hypersur-
faces of bounded degree. Let £ denote the set of axis-aligned paths between pairs of points in
R, and for each s € £ define D(m,s) = [{1 <t < m | I; has a discontinuity along s}|. Then
we have E[sup,., D(m, s)] < sup,, E[D(m, s)] + O(x/mlog(mK)).

Greedy knapsack We are given a knapsack with capacity C' and items i € [m] with sizes
w; and values v;. The goal is to select a subset S of items to add to the knapsack such that
> ics Wi < C while maximizing the total value) ,._ v; of selected items. We consider a general
greedy heuristic to insert items with largest v;/w? first (due to Gupta and Roughgarden [2017])
for p € [0, 10].

The classic greedy heuristic sets p = 1 and can be used to provide a 2-approximation for
the problem. However other values of p can improve the knapsack objective on certain problem
instances. For example, for the value-weight pairs {(0.99, 1), (0.99, 1), (1.01, 1.01)} and capacity
C = 2 the classic heuristic p = 1 gives value 1.01 as the greedy heuristic is maximized for the

83

third item. However, using p = 3 (or any p > 1 + log(1/0.99)/log(1.01) > 2.01) allows us to
pack the two smaller items giving the optimal value 1.98.

Our result (Theorem 2.3.5) when applied to this problem shows that it is possible to learn
the optimal parameter values for the greedy heuristic algorithm family for knapsack from similar
tasks.

Theorem 2.A.9. Consider instances of the knapsack problem given by bounded weights w; ; €
[1,C] and -bounded independent values v; ; € [0,1] for i € [m],j € [T]. Then the asymp-
totic task-averaged regret for learning the algorithm parameter p for the greedy heuristic family
described above is o7(1) + 2V /m + O(y/m).

Proof. Lemma 11 of Balcan et al. [2020a] shows that the loss functions form a %—dispersed
sequence. The result follows by applying Theorem 2.3.5 with g = % U

k-center clustering We consider the a-Lloyd’s clustering algorithm family from Balcan et al.
[2018c], where the initial k£ centers in the procedure are set by sampling points with proba-
bility proportional to d* where d is the distance from the centers selected so far for some
a € [0,D],D € Rsy. For example, & = 0 corresponds to the vanilla k-means with random
initial centers, and o = 2 setting is the k-means++ procedure. For this algorithm family, we
are able to show the following guarantee. Interestingly, for this family it is sufficient to rely on
the internal randomness of the algorithmic procedure and we do not need assumptions on data
smoothness.

Theorem 2.A.10. Consider instances of the k-center clustering problem on n points, with Ham-
ming loss [; ; for i € [m],j € [T'] against some (unknown) ground truth clustering. Then the
asymptotic task-averaged regret for learning the algorithm parameter « for the a-Lloyd’s clus-
tering algorithm family of Balcan et al. [2018c] is o7 (1) + 2V /m + O(y/m).

Proof. We start by applying Theorem 4 from Balcan et al. [2018c] to an arbitrary a-interval
[cvg, g + €] € [0, D] of length €. The expected number of discontinuities (expectation under the
internal randomness of the algorithm when sampling successive centers), is at most

O(nklog(n) log(max{ (o + €)/ap), (g + €) log R}) (2.145)

where R is an upper bound on the ratio between any pair of non-zero distances. Considering
cases g S @ and using the inequality log(1 + z) < « for x > 0 we get that there are, in ex-
pectation, at most O(enk lognlog R) discontinuities in any interval of length €. Theorem 2.A.8
now implies %—dispersion using the recipe from Balcan et al. [2020a]. The task-averaged regret
bound follows from Theorem 2.3.5. [

Integer quadratic programming (IQP) The objective is to maximize a quadratic function
x| Ax for a matrix A with non-negative diagonal entries, subject to x € {0, 1}". In the classic
Goemans-Williamson algorithm [Goemans and Williamson, 1995] one solves an SDP relaxation
UTAU where columns u; of U are unit vectors. The entries of u; are then rounded to {£1}
by projecting on a vector z ~ N(0,, 1) and using sign({u;,x)). A simple parametric family is
s-linear rounding where the rounding is as before if |{u;, x)| > s but uses probabilistic rounding

84

to round u; to 1 with probability M The dispersion analysis of the problem from Balcan

et al. [2018b] and the general recipe from Balcan et al. [2020a] imply that our results yield low
task-averaged regret for learning the parameter of the s-linear rounding algorithms.

Theorem 2.A.11. Consider instances of IQP given by appropriate matrices A;; and rounding
vectors x;; ~ N(0,,1) for t € [T],i € [m]. Then the asymptotic task-averaged regret for
learning the algorithm parameter s for s-linear rounding is o7 (1) + 2V/m + O(y/m).

Proof. As noted in Balcan et al. [2018b], since x; ; are normal, the local of discontinuities s =

[(u;, x)| are distributed with a 4/ 2-bounded density. Thus in any interval of length ¢, we have

in expectation at most e\/g discontinuities. Theorem 2.A.8 together with the general recipe

from Balcan et al. [2020a] implies %—dispersion. The task-averaged regret bound is now a simple
application of Theorem 2.3.5. [

Our results are an improvement over prior work which have only considered iid and (single-
task) online learning settings. Similar improvements can be obtained for auction design, as
described below.

Posted price mechanisms with additive valuations There are m items and n bidders with
valuations v;(b;),j € [n],i € [2™] for all 2™ bundles of items. We consider additive valua-
tions which satisty v;(b) = ..., v;({i}). The objective is to maximize the social welfare (sum
of buyer valuations). If the item values for each buyer have x-bounded distributions, then the
corresponding social welfare is dispersed and our results apply.

Theorem 2.A.12. Consider instances of posted price mechanism design problems with additive
buyers and x-bounded marginals of item valuations. Then the asymptotic task-averaged regret
for learning the price which maximizes the social welfare is o7(1) + 2Vy/m + O(y/m).

Proof. As noted in Balcan et al. [2018b], the locations of discontinuities are along axis-parallel
hyperplanes (buyer j will be willing to buy item ¢ at a price p; if and only if v;({i}) > p;, each
buyer-item pair in each instance corresponds to a hyperplane). Thus in any pair of points p, p’
(corresponding to pricing) at distance €, we have in expectation at most exmn discontinuities
along any axis-aligned path joining p, p/, since discontinuities for an item can only occur along
axis-aligned segment for the axis corresponding to the item. Theorem 2.A.8 now implies i-

2
dispersion. The task-averaged regret bound is now a simple application of Theorem 2.3.5. [l

2.A.6 Structural results for bandits
Tuning the step-size
Lemma 2.A.3. Let /1,..., 07 : R.y — R- be a sequence of functions of form ¢;(x) = BTE +

G?x for adversarially chosen B; € [0, D] and some G > 0. Then for any p > 0, the actions of

EWOO [Hazan et al., 2007, Figure 4] with parameter %Lé run on the modified losses w +

85

G?z over the domain [%, D1+ p2] achieves regret w.r.t. any x > 0 of

a
T 2)2
D DG(1+ log(T + 1

Z) — bz mln{p ,pDG}T+ (1+ log(T' + 1)) (2.146)

pot x 2p?
Proof. By Proposition 2.A.3 the modified functions are é—G—exp -concave, so applying Corol-
lary 2.A.3 with B, set to %, D to g, a; =G?% and e = ylelds the result.]
Lemma 2.A.4. For Xy, ...,Xy € 0K consider a sequence of functions of form

B(c(%:)|x)

Ui(x,n) = +nG*m (2.147)

where B is the Bregman divergence of a strictly convex d.g.f. ¢ : £° +— R and where x; =
arg min, 1)(x) defines the projection c.(x) = x; + 372 for some ¢ > 0 . Suppose we play

Xi41 < Cg (l Zt 1 5(8) and set 7; using the actions of EWOO [Hazan et al., 2007, Figure 4]

with parameter 22 for some p, D. > 0 s.t. B(c.(%;)||x) < D? V x € K. on the functions
(Cs(xm‘;t)ﬂmz + nG2m over the domain [535—, De %] , with 7); being at the midpoint of

the domain. Then U;(x¢,n:) < D.Gy/m (; +4/1+ p2) Vte[T]and

T T .
Z (x¢,m:) < min —B(CE(Xt)HX) —|—77G2m
) n>QxeKt:1
2D? D.G(1 + log(T + 1 8S.K?(1 +logT
—i—min{p 6,pD€G}T+ (+202g(*))+ (1+logT)
Y n

(2.148)

for K = maxyex [|x]2 and S. = maxyer. [V (X)]2.

Proof. The first claim follows by directly substituting the worst-case values of 7 into U;(x, 7).
For the second, apply Lemma 2.A.3 followed by Corollary 2.A.1:

_ Bl | o
t=1 M
*D? D.G(1 + log(T + 1 r 2
< min min p < pD.G}T + cG(L +log(T +))—i-ZB(CE(Xt)HX)—i-nGQm
e g 2p* t=1
‘D2 D.G(1 +log(T + 1 K2(1 + log T
< min min p < pD.GYT + G(1 + log(T +))+8S (1+1ogT)
n>0 2,02 n
T .
+ min Ble:&)lx) + 77G2m
X, n
(2.149)

86

Conclude by noting that the sum of Bregman divergence to c.(X;) is minimized on their convex
hull, a subset of K. [

Main structural result

Theorem 2.A.13. Consider a family of strictly convex functions vy : K° — R parameter-
ized by 0 lying in an interval © < R of radius Rg that are all minimized at the same x; €
K°, and for Xy,...,%Xy € 0K consider a sequence of functions of form U, (x,7,6) (2.36), as
well as the associated regularized upper bounds Ut(p) (2.37). Define the maximum divergence
D = maxgpeo Dy, radius K = maxxex |X[2, and L, the Lipschitz constant w.r.t. § € © of

% + ng(@)m + f(0)m. Then Algorithm 6 with ©, < O the uniform discretization of ©
s.L. maxgeo Mingeo, |0 — 0] < 52, p € (0,1), n(0) = —£2=, 7j(0) = Doy 25, () =
g g k\/g()
£ and \ = (M (% +4/1+ p2) + Fm) £ leads to a sequence (xy,7:(6;),0;)

Dg+/g(0)m 2T
s.t. EX . Ui(x;,m,(6,), 6;) is bounded by

8SK2(1 +logT V2 LR °D?
(1 +log)+<—9+779(9)m+f(9)m+ U e—l—min{p ,pM}>T
00 n>0 n n k "

M (1 + log(T + 1))
2p?

+ (% + Fm) Tlogk +
(2.150)

and Zle Ui(x¢,m:(0;), 0;) is bounded w.p. = 1 — §1;~1 by

min
0e©,n>0 n

4M /T 1 M1+ log(T + 1
+ (7 +Fm) (’\/TlOglﬂ—i- 1p~1 Elog g) + (;)pg;))

87

5 "o 212
BSK7(1+logT) | (‘%@ +ng(@)m + f(0)m + L”]fe —i—min{%,pM}> T

(2.151)

Proof. Formally, we have that

EZ Ut(Xt, Ut(et)a et)

t=1

=y Pl LR L @)g0m + SOm

((.\ f) . Fm) gk 4 Ein S PUGCBD o s oym

E@k 1 nt(e)

(4M + Fm)mm i wa@mw@m

p 0eO,n>0,xeC n
+ min {

where the first inequality is the regret of multiplicative weights with step-size A [Shalev-Shwartz,
2011, Corollary 2.14] and the second is by applying Lemma 2.A.4 for each §. We then simplify
and apply the definition of V2 via Claim B.2.2 and conclude by applying Lipschitzness w.r.t. 6:

D &)m(1 + log(T + 1 K*(1+logT

5 Do g @ }T+ 0 g()m(tog(+1)) 8SK*(1 +logT)
2p U

(2.152)

E Z Ui (xt,:(0r), 0:)

t=1

AM 2T
<(—+Fm) A/ Tloghk +E mln Y + ng()mT + f(O)mT

1% 0eOy,, n
’D? M1+ log(T + 1 K?*(1 +logT
i {22 oy (+og(+))+85 (1+1ogT)
2p° n
8SK?(1 +logT V, L,R ’D?
< E min (1 +log)+<9+ng(ym + f(0)m + —- 6—i—mim{p ,pM})T
9€0,7>0 n n k n
AM M1+ log(T + 1
+ (——i—Fm) \/Tlogk + (1+ ;)gQ(+1)
P P
(2.153)
The w.h.p. guarantee follows by Cesa-Bianchi and Lugosi [2006, Lemma 4.1].]

2.A.7 Implicit exploration
Properties of the Tsallis entropy
Lemma 2.A.5. For any € € (0,1] and x € A s.t. xq) = § V a € [d] the 3-Tsallis entropy

_yd B
Hy(x) = ——=2=1"EL i dlog 4-Lipschitz w.r.t. € [0, 1].

88

Proof. Letloggx = 351%?5_1 be the S-logarithm function and note that by Yamano [2002, Equa-
tion 6] we have loggx — logz = (1 — §)(0ylogs x + logg wlogx) = 0V 3 € [0,1]. Then we
have for /5 € [0, 1) that

d
—Hp(x) = X0my X[a]IOgX[a]

H =
|0 H(x)] ‘ =5
= 1— Zx (loggs X[q) — log Xa))
a=1
- _5 2 Xy (1085 X — log x1)) (2.154)
a=1
1 B/ a 1-8
1
< —1 — <Z X[G]) (Z (lOgﬁ X[a] — log X[a])l—/a)
a=1 a=1
d
1 d d d d
< 1-3 azzlllogg X[q] — logx[q] < = 5(logﬂ . log g) < _C“Ogg

where the fourth inequality follows by Holder’s inequality, the fifth by subadditivity of z“ for

a € (0,1], the sixth by the fact that 0,(loggz —logz) = 2 —1/x < 0V B,z € [0,1), and
. . . . logs x—logx r—B\—(1=B)(zB +x) log =

the last line by substituting 5 = 0 since 03 (gﬁlfﬁ &) = Azo) m(ﬂl(ﬁ)ﬁ()g tr)losr <y b e

[0,1),2 € (0,1/d]. For 5 = 1, applying L’Hépital’s rule yields

1
lim dgHg(x :——hm xF log? xp.1(1 — (1 — log X[q) = —2 xalo X[q] (2.155
lim 95 Hp(x) aZl g xpa(1 — (1 - F)log Z a1 108 X[q) (2.155)
which is bounded on [—2d/e?, 0]. O
Lemma 2.A.6. Consider x;,...,x7 € A s.t. x,(a;) = 1 for some a; € [d], and let X =

T ST x, be their average. For any ¢ € (0,1] and § € (0, 1] we have that for every t € [T]
Hs(X9)) — Hy(x\9) < Hy(X) (2.156)

where recall that x(¢) = ce(x)=14/d+ (1 —¢e)(x—14/d) = (1 —e)x + 1.
Proof. Assume w.Lo.g. that X[< X[2] < ... < X[g and a; = 1, so that xf) = eg’s). We take the

89

derivative

(2.157)

SH
9
L

1 1
1-5 2, (L=e) +e/d)=F ((1—e)%q + 6/d)l‘ﬁ)

.
e (((1 R T <s/dl>1—ﬁ)
(

o)
1= 3 27\ (1=)% + /)P (1 —)R + /d)' 7

By the assumption that X[} is non-decreasing in a, each of the summands above become non-
positive. So for € € (0, 1] the derivative is non-positive, and for ¢ — 0" it goes to —oo. Thus the
Lh.s. of the bound is monotonically non-increasing in ¢ for all € € [0, 1]. The result then follows

from the fact that for ¢ = 0 we have Hs ((1 —e)x + £14) — Hp (e ((6)) = Hz(x). O

Implicit exploration bounds

Lemma 2.A.7. Suppose we play OMDg, with regularizer)3 the negative Tsallis entropy and
initialization x; € A on the sequence of linear loss functions ¢4, ..., {7 € [0, 1]%. Then for any
x € /A we have

d
Z<£t,xt —xy < Bl Z (2.158)
= TR FE

Proof. Note that the following proof follows parts of the course notes by Luo [2017], which we
reproduce for completeness. The OMD update at each step ¢ involves the following two steps:
set yir1 € A s.t. Vig(yis1) = Viop(x:) — nl; and then set x;41 = argmin, . Bs(X, yii1)
[Hazan, 2015, Algorithm 14]. Note that by Hazan [2015, Equation 5.3] and nonnegativity of the
Bregman divergence we have

T

1 T
D% —x) < e > By (x| lyi+1) (2.159)

t=1 t=1

B (x|1x1)

To bound the second term, note that when 13 is the negative Tsallis entropy we have

Bﬂ(xtllym)

d
5

- -5 Z (yt+1 t[a] + W(Xt[a] — Yi+i[q]

a=1 t+1[a]

d

1 1-p (2.160)
= B
=13 g (yt+1[]~ Xy T I6] <—X;[;]B + Tn&(a)) xt[a]>
d

=2 (a) T Xta]ﬁt(a))

)
Il
—

90

Plugging the following result, which follows from (1+2)* < 1+az+a(a—1)z?Vz = 0,a < 0,
into the above yields the desired bound.

B—1 B—1 _B_
y 1-0 _ B-1
B B t+1[a] B 1-8
Yit1[a] = Xt[q] (1) = Xi[a] (1 + N Xq[q] ft(@))

t[a]
2
7 2.161)
< xtﬁ[| (1 Wth[a] li(a) + Exf[a]wﬁt(af)
2
= Xy — MXefile(a) + =% Ef&(aﬁ
[

Theorem 2.A.14. In Algorithm 6, let OMD,, 3 be online mirror descent with the Tsallis entropy

regularizer ¢ over -offset loss estimators, O is a subset of [f3, Bl [@, 1], and

By(x|x) nd®m
+
n B

Ui(x,n,8) = (2.162)

8
where &9 = (1 — €)%, + £14/d. Note that U (x, 1, 8) = U,(x, 1, 8) + % Then there

exists settings of 7,7, a, A s.t. forall €, p,y € (0,1) we have w.p. > 1 — ¢ that

T m

Zzgtzatz _gtz at)

t=1i=1
2+4/%E 5 8dym 5k 1+1log(T +1)
glog+7< Tiog ™ 4)

< T 1
(e +yd)ymT + 3 k>1 &5 16p
8 ()2 (1 +logT : 5 2
+ min (£) o8)—i— E—i—nd Uil LB~ m—kdmm{'o—,p\/ﬁ} T
BelB,8]:n>0 U] U] s 2k 2

(2.163)

d
for L, = (big + nm log? d) d.

Proof. In this setting we have g(3) = d°/f, f(8) = 0, D} = dliﬁ_l, D < 4/d/2, M = dy/m,

91

F=0,8=(d/¢)*£,and K = 1. We have that

3

t=114

gt i at i gt,i(&t)

Ms

1

2

T
t=11
T

< 3 Bal& o) Xt ”X“ Z<Etl,xt> bali) + 5 D1 o +’YZ€M) 2.164)

t=

ngJFZMJFZ@m N (0, %

t=1
T m d
+Z ZZ " ﬁtftz ’YZEM(@)

t=1 a=1

-
Il

Ms

d
<£tz,th> ‘gtz at Ze

Il
—_
ISH

[y

EE

where the equality follows similarly to Luo [2017] since (€;;, x> = yi(ar;) — 7 ZZ=1 lft,i(a),
the first inequality follows by Lemma 2.A.7 and the second by Hélder’s inequality and the defi-
nitions of ft ; and X(¢ We next apply the optimality of a, for >, | ¢, to get

B, (Xt ||Xt1) n nd®m
N By

<emT + —logg —i—vme—I—Z
(2.165)

where the the second inequality follows by Neu [2015, Lemma 1] applied to each of the last four

terms and the fifth by the definition of {; ; and using max g L] n(p) < Substituting

em Iog d’

into Theorem 2.A.13 and simplifying yields the result except with Vg = 7 thl V3 (xf)) —
Ys ()Qc(g)) in place of H 3, but the former is bounded by the latter by Lemma 2.A.6. O

92

Corollary 2.A.10. Let 5 = B = 1. Then w.h.p. we can ensure task-averaged regret at most

d dims
o/ Hydm + O (%) (2.166)

so long as mT" > d? or alternatively ensure

min {2\/ﬁ1dm +0 <%ﬁ> o\/dmlogd + O (%) } (2.167)

so long as m7T' = d.

Proof. Applying Theorem 2.A.14, simplifying, and dividing by 7' yields task-averaged regret at
most

2405 5 (14 log(T +1 2
—log5+< +log(T' +)+min{ P })d\/ﬁ

(e +yd)m + 5 P
7T) 2pT m (2.168)
d(1+logT H
n>0 enT’ n

Set v = W Then set ¢ = qg/n‘ilL—QT and p = %T, and use n = 1/6% + %iTT to get the first
result. Otherwise, set € = 4/ ﬁ and p =

10g d

and

H 1
\f, and use the better of n = 4/7% + Tt

n = to get the second.]

Corollary 2.A.11. Let 8 = % and 3 = 1 and assume m71 > d3. Then w.h.p. we can ensure
task-averaged regret at most

min 24/ Hsdm/B + O (TTZ” ﬁ) (2.169)

/86[5?1]

using k = [Wﬁ]

Proof. Applying Theorem 2.A.14, simplifying, and dividing by 7" yields task-averaged regret at
most

dlogd
244500 o B 4 BdVm 1og%+1+1og(:r+1)
~T 55 T 16pT

dz (1 +log T Hy nd° d (log?
+ min 8 (3+ o8)+(—B+u+—<ois+nmlog2d>+pd\/ﬁ>

(e + vd)m +

Be[B,5],n>0 exnT n B 4k
(2.170)

5 P
= 1 — _4da7 . _ _ . /BHs 1
Sety = =—=,¢e=) p= 7= =, and use) = 4/ 795 +)} to get the result. O

93

Corollary 2.A.12. Let § = @ and B = 1 and assume m7 > d°. Then w.h.p. we can ensure

task-averaged regret at most

- - [dimi +dym
in 24/ HgdP +0| ————— 2.171
Aminy 2y HodPm/ 5 (VT @17h

using k = [VdVT].
Proof. Applying Theorem 2.A.14, dividing by 7', and simplifying yields

244/%5 5 sdym [[log® 1 4log(T+1
m 4 —— g 2 4 SV gy , LtlosT+1)
~T) p T 16pT

8d2%(1 + log T H d° d {log¢
+ min (1 + log)+<75+u+ <Oia+nlog2d>+pd\/ﬁ>

(e +d)

selgBlo=o €T B 2k
(2.172)
Note that H 5 and % are both decreasing on § < @, so (3 in the chosen interval is optimal
3 .
overlall B e (0,1]. Sety = dinT, £ = &%, p = %T, and use) = % + \4/(;TT to get thS
result.

2.A.8 Guaranteed exploration
Best-arm identification

Lemma 2.A.8. Suppose for ¢ > 0 we run OMD on task ¢ € |[7'] with initialization x,; €
A©), regularizer 15, + I for some 3, € (0, 1], and unbiased loss estimators (y = 0). If

28dlogd _ 3¢A%m
3eA2 28d

Assumption 2.4.1 holds and m > then X; = X; w.p. = 1—dk, where k = exp (
Proof. We extend the proof by Abbasi-Yadkori et al. [2018, Appendices B and F] to arbitrary
lower bounds &/d on the probability. First, since 0 < {;;(a) < %4, ;(a) we have that

< 1< —lyi(a) < dysla) = luala) < (g - 1) ls(a) <

d (2.173)
9

(UNIESW

and so |0;;(a) — l;(a)| < ¢_ Therefore since the variance of the estimated losses is a scaled
Bernoulli we have that

et,i<a>)2 @ _d e
9

X¢,i[a]

Var(lyi(a) — li(a) = Var(lei(a) = Xii0a) (1 = X140a) <

Xt i[a]

We can thus apply a martingale concentration inequality of Fan et al. [2012, Corollary 2.1] to the

94

martingale difference sequence (MDS) g(gt,i(a) —ly;(a)) € [-5, 1] to obtain

" min {m(1 +¢/d)?, 4(em/d + 18e)}

O <_4<72n(/f)m—ﬂ>>
(
(

2 (2’)

B 3emA?
4d(6 + A,)
B 36mA2>

28d
(2.175)

where A, = L[> £, ;(a) — ming.q >0 {ei(a’)| is the per-arm loss gap in the last step we
apply A, < 1. For the symmetric MDS —£ < 4, ;(a) — ét,i(a) < 1 we have

Pr (Z yi(a) — lg(a) < -2) (Zem —li(a /mQA“>

mAg
BWIRTEES
4 (I 4 mBa) (2.176)
exp (3emA2/d)
< 4(6 + cA,/d)

35mA2
< exp 284

We can then conclude that

Pr ()A(t # f(t)

i—1 i—1 Py i—1 i-1
3emAZ 3emA?2
Lexp| — 534 —i—Zexp T osd
a;ﬁ&f,
<d < 35mA2>
<dexp | —
28d

2.177)

where the second-to-last line follows by substituting the bounds (2.175) and (2.176) into the left
and right terms, respectively.]

Lemma 2.A.9. Suppose on each task ¢t € [T'] we run OMD as in Lemma 2.A.8. Then for any
€ P 1-8
Be (0.1 wehave JESL, 05(%7) — 05X < —us(%) + 222 (9 - 1),

Proof. We consider the expected divergence of the best initialization under the worst-case distri-
bution of best arm estimation, which satisfies Lemma 2.A.8 and (2.177). We have by Claim B.2.2
and the mean-as-minimizer property of Bregman divergences that

1 < . 1
NG 2y _ : NG
TE L 9 = 6s&?) = min 73185 (71lx)
S (e
< min E= Y B ()
min z; s (%17 IIx

(2.178)
:xrenAlg)?ZZ]Pa—at Bﬁ ||X)

t=1a=1

N

— B
pterAn,gt)é[T] xeAlg) T 2 Z Pi[a 'B ||X)

Pt[a] é?fi,VtG[T],a#&t t=la=1
17df{§pt[a] Yte[T],a=a¢

To simplify the last expression, we define p = % Zthl p: and again apply the (weighted) mean-

96

as-minimizer property, followed by Claim B.2.2:

1 T d d d
L Ollx) = min S p ©1x) o
XIJZ%T; ;pﬁ[“]gﬁ (1<) xre%);p[a]lg (e %) ;Bﬁ (7)1 170)

= va(el”) — ¥s(p)
By substituting into the previous inequality, we can bound the expected divergence for the worst-
case p; as follows:

RS ©) 2 (c) ®)
K £ _ s (39 < () (@
T D s(X7) —vs(X7) < s (e) + e Vs(P)
t=1 Pt[a] S2k,Vt€[T],a#dy
l—dnépt[a],VtE[T],a=&t

< Y (ef)) + L nax —(p")
Yiim1 Da=1 pt[a1=T
Z?:l Pt[a] 2(17dﬁ))_([a] TNa
S Pefa) S2r(1—R (o)) T+X[o) T),Ya
= Vs (955)) - min Us(p*)
fb[a] Z(l—d}i))g([a] ,Va
Pla] §2K+(172I€)§([a] Va

We use the shorthand h(x) = 15 (1 — €)x + £14). We have

(2.180)

- ax[a] ((iﬁ) (i Xﬁ,] + Bdl_ﬂ(l - ZX[b]) — 1>) (2181)

and therefore

VA = max

< m agax ((1 — €)X[a] + €/d)6_1 — dl_ﬁ‘

8 d\'""° d
< —— - —1]| =71 -
1-p € flog €
Finally, by convexity of h we have

min h(P) = h(X) — [VA(X)]xw max
PEA

(2.182)

p— %
peEA ”
f)[a]Z(l—dK)))_([a],Va

f’[a] <2,‘€+(172I€)§[a] ,VCL

1
Pla] Z(l—dfi))i([a] Va
f)[a]<2/£+(172)€))£([a] Va

> h(%) — 3dr]| VA0 (2.183)
> h(X) — 3drkfBlog, (g)

=¥

97

so we can substitute into (2.180) to get

1-8
_]EZW () s(R9) <~ (D) 4 200 ((C—i) —1) (2.184)

Applying Lemma 2.A.6 completes the proof. [l

Guaranteed exploration bounds

Lemma 2.A.10. Suppose we play OMDg,, with initialization x; € A®), regularizer 15 +)
for some § € (0, 1], and unbiased loss estimators (y = 0) on the sequence of loss functions
(1,..., 07 € [0,1]¢. Then for any a € [d] we have expected regret

T N
EB d?
ES t(ar) - 6:(0) < &) 7 ﬁm +em (2.185)
- Ui
for % the estimated optimum of the loss estimators él, el éT.

Proof.
Ezgt at _gt EZ& at <£t,)°(>

<E) (a) — £, %) +em
t=1
= EZ ét(at) — <ét, }o((e)> +em
t=1 (2.186)

where the second inequality follows by optimality of X for the estimated losses {,, the third by
Lemma 2.A.7 constrained to A©), and the fourth similarly to Theorem 2.A.14 (note both are also
effectively shown in Luo [2017]). O]

Theorem 2.A.15. In Algorithm 6, let OMD,; 5 be online mirror descent with the regularizer g +
In() over unbiased (7 = 0) loss estimators, Oy is a subset of [3, 5] < [@, 1], and

By(x7|[x) nd°m
+
n B

98

Ui(x,n, B) = (2.187)

5
where 819 = (1 — €)%, + £14/d. Note that U” (x, n, 8) = Ui(x,n, B) + % Then under

Assumption 2.4.1 there exists settings of 1,7, a, A s.t. forall €, p € (0, 1) we have that

E— 225“ atz _gtz Clt)

tlzl

8dy/m logk 1+1log(T+1)
1k>1 +
p T 16pT

<em +

8(H* 2 (1+10gT) hs(A) ndPm Ly(B -)
+ min G) " (+logT) hs(a) , nd'm Lyl §)+dmin{’0—,pm}
Bel8.B).n>0 U U B8 2k 2n
(2.188)
a4 -
for L, = (loig + nmlog® d) d, hg(A) = (Hg—i—%)m—i—dlfﬁ_l(l—m),and ta =1,
Proof. By Lemma 2.A.10 we have
B d/Bt
EZZ&ZCLM — li(a) < ng+EZ 2 (& lxi) 4 e T (2.189)

t=1i=1 t=1 Mt B

Since we have the same environment-dependent quantities as in Theorem 2.A.14, we can substi-
tute the above bound into Theorem 2.A.13 and then apply the Lemma 2.A.9 bound

~ 3dl€/3 d 1-8 3d2 35A2m
E} 72 < H H
b =p 1-5 ((s) 1) ’ e 28d

ot 3cA? . 1lo d 3eA’m
= X —
p d? P & eA?2 28d (2.190)

3eA?/d>
< HB + 3eA2m 4/1 d
28d +108ZaA?
56
< Hg+ —

P dm

where the last line follows by assumlng m = 72% log . If this condition does not hold, then
1-6_

we apply the default bound of EV? <= £+ 317 v(%,) — wg(X) < St O

Corollary 2.A.13. Let 3 = # = 1. Then for known A and assuming m > B¢ log % we can
ensure expected task-averaged regret at most

75d _[(dimi dAZm?
Hydm + 56+ 3 W (%) +0 < =+ > (2.191)

where W is the Lambert W-function, while for unknown A we can ensure expected task-
averaged regret at most

wlot

d2m2 ~ d%m% d%m
150A6log d T T

3.
Hidm + 56 + Z</50dm logdlog ———— + O +) (2.192)

99

so long as m? > 150d log d.

Proof. Applying Theorem 2.A.15 and simplifying yields

8dy/m(1 + log(T + 1)) . 8d(1+1logT) hi(A) dp?
d —_— 2.1
em + 62T + 151;51 T + " + ndm + o (2.193)

hi(A)
am

and set p = §/ grm and € = BLW(2) (for known A) or

Then substitute n =

3 /150d log d
m2

€= (otherwise). [l

Corollary 2.A.14. Let 8 = % and 3 = 1. Then for known A and assuming m > 75d dlog & Az We
can ensure task-averaged regret at most

. 75d m _(dim: dim: dA3m3
min 24/ (Hgm + 56/d)d /5 + <5 W () +0 (+ + (2.194)

Bel}.1] 75 JT T3 T
using k = [v/d?mT|, while for unknown A we can ensure expected task-averaged regret at most
3 dm? _(dim3 dSms dim?
in 24/(Hgm + 56/d)d? +—§/50d2 log —— + 5
gelb] (Hym +56/d)d”/5 + 3 08 150 A6 IT T3 T
(2.195)

so long as m > 5dA/6.

Proof. Applying Theorem 2.A.15 and simplifying yields

8d 1
_— vm [[logk N 1+ log(T + 1)
p T 16pT

8dz(1+logT) hs(A dP d (log ¢ dp?
+ min 2 tlogT) hs(d) m+—<0g5+77mlog2d>+i

selgBlm=0 eanT n B 4k 2n

(2.196)

Then substitute 7 = 4/ 225} and set p = ¢/—L de = BLW(2) (for k A
N = A @5 p = {7707 and e = oW (3%) (for known A) or
e=4 1%“2 (otherwise). O
Corollary 2.A.15. Let § = - and B = 1. Then for known A and assuming m > 75d d Jog 4 Az

we can ensure task—averaged regret at most
75d. m\ s (dims dimé dA'm?

in 24/ (Hgm +56/d)a?/3 + 5 W (22) + O 2.197
i, (Hgm + 56/d)d°/B + 5 W (- <W+T§+ 7 (2.197)

using k = [v/d?mT|, while for unknown A we can ensure expected task-averaged regret at most

i 24/ (Ham +56/d)d7/3 + </50d2 g Am* o (dimS | dimi | dSmd
BIGI%(I)%] pgm A m g150A6 \S/T T% "
(2.198)

so long as m > > 5d+/6.

100

Proof. Applying Theorem 2.A.15 and simplifying yields

— 8dy/m [[logk N 1 +log(T + 1)
p T 16pT

(2.199)
. 81 +1logT) hg(A) ndPm d [logt) dp?
+ min + + + — S +nmlog™d | + —
selgBl=0 el U g 2k 21
Then substitute = gﬁ(/g and set p = §/-—— and ¢ = 50 W (%) (for known A) or
=4 150d (otherwise). O
Corollary 2.A.16. Let 3 = L and 3 = 1. Then for unknown A and assuming m >

logd
max{d%, 56} we can ensure task-averaged regret at most

. : 56\ df 21d4\ﬁ
52(1)2] min {8\/ dm, 2\/(H5m + 7) 7 +— A 3log A2 }

, . ; (2.200)
A dsmi dims dPms
+ +—+
T T3 T
using k = [V d2mT).
Proof. Applying Theorem 2.A.15 and simplifying yields
8d 1
—_— vm [[logk N 1+ log(T + 1)
p T 16pT
, 5 ; (2.201)
_ 8d*(1 +1logT) hg(A) nd°m d [log<) p?
+ min + + + — < +npmlog”d | + —
selpalm=0 €T U g2k 7 2
Then substitute 77 = 4/ (’jg () 75 and set p = and €= U

2.A.9 Robustness to outliers

Proposition 2.A.6. Suppose there exists a constant p € [0,1] and a subset S < [T'] of size
s such that @; € S for all but O(T?) MAB tasks t € [T]. Then if 3 € [, <] we have

logd?’ 2
di—B
Hﬁ = O(S + TB(1- p))

Proof. Define the vector eg € [0,1]% s.t. €g[q] = laes. Then by Claim B.2.2 and the mean-as-

101

minimizer property of Bregman divergences we have

Hp = —5(x)

VAN
2E
=5
N[=
WMH

=

Y
TN

340

= min —2 Z 5\’ Y B(Xifa] — 17_61%5 — 3y (2202
6€(0,1) 5 aES d t[a] (1_61565 n %)/B

o8 o8
5\” t[a] By

= _— —1a —_

o T ZZ (es d) 1= 8 (1= B)(E0yes 1 3)17

3 T d 1.

< min s'P +0%d P 4 — o

5€(0,1) (1-p)T ;; (1-— ﬁ)(ljlaeg + 2)1—5
< mi Fd P+ O —2—

oy 1—5 " M T

d=7
=0 (3 + Tﬁ(lp)>
where the last line follows by considering § = 1/7"7. [

2.A.10 Online learning with self-concordant barrier regularizers
General results

Lemma 2.A.11. Let K < R? be a convex set and) : K° — R? be a self-concordant barrier.
Suppose {1, . .., {7 are a sequence of loss functions satisfying [(£;, x)| < 1V x € K. Then if we
run OMD with step-size 7 > 0 as in Abernethy et al. [2008b, Algorithm 1] on the sequence of
estimators ¢, our estimated regret w.r.t. any x € K. for ¢ > 0 will satisfy

Z<£t,xt s < BEIXD oz (2.203)
n

Proof. The result follows from Abernethy et al. [2008b] by stopping the derivation on the second
inequality below Equation 10. []

102

Definition 2.A.2. For any convex set K and any point y € K, my(x) = inf ¢ is the
t20,y+*3Yek

Minkowski function with pole y.

Lemma 2.A.12. For any x € K < R% and ¢ : K° — R a v-self-concordant regularizer with
minimum x; € K°, the quantity ¢(c.(x)) is v+/2-Lipschitz w.r.t. € € [O, 1].

Proof. Consider any £,&’ € [0,1] s.t. & — ¢ € (0, 1] Note that for ¢ =

ca(x) + =) —el) _ X=x Xt e X1 o
t 1+¢ t

—xek (2204

S0 e, (x)(Ce(Xx)) < 51’;; < ¢’ — e. Therefore by Nesterov and Nemirovskii [1994, Proposi-

tion 2.3.2] we have

H(ex) = vleatx)) < viog () <vlog (i) < -9V

= Te.(x)(Ce(x)) I+e
(2.205)
where for the last inequality we used — log(1—2) < zv/2 for z € [0, 1]. The case of &’—¢ € (0, 1]
follows by considering " = = £ and applying the above twice. [

Theorem 2.A.16. In Algorithm 6, let OMD,, . be online mirror descent over loss estimators spec-
ified in Abernethy et al. [2008b] with a v-self-concordant barrier regularizer ¢ : K° — R that
satisfies v > 1 and || V?(x1)[|w = Si = 1. Let O, be a subset of [-1, 1] and

Blc.(
U,(x,7,¢) = w +320d? + em (2.206)

3
Note that Ut(p) (x,m,e) = Ug(x,n,¢) + M. Then there exists settings of 1,7, o, A s.t.
forall e, p € (0, 1) we have expected task averaged regret at most

51202 K25,m2(1 + log T V2 2
E min vICSmIL +losT) —€+32nd2m+5m+m T
ce[L 1],9>0 n n k
: 30201 KA/S
+3uimmin{L,4dp QK\/Sl}T (2.207)
n

| 1
7‘27" 2K/, (R/Tlogk Lt ng(T+)>

Proof. Lete = +. Forany ¢ € [g,1] and x € K we have my, (c-(x)) < 1=, so by Nesterov and
Nemirovskii [1994, Proposition 2.3.2] we have

641/231

1+ 3v 2
) Il < 252 o

1 — 7y, (c2(x))
103

192 () e < (

Thus S = maxy yer cefz.1] | V20 (co(x)) [l = %5 and also

D? = max B(c.(x)[|e:(v))
= max ¥(c.(x)) — ¥(c:(y)) —(Ve(e(y)), x —y)

1
2 _
< %%}é”log (1 - xl(cg(x))> F VIV el -l (2.209)
2K
l/log +— S \ﬁ
N 93 K\ﬁl
€

where the first inequality follows by Nesterov and Nemirovskii [1994, Proposition 2.3.2] and the
definition of a self-concordant barrier [Abernethy et al., 2008b, Definition 5]. In addition, we

have g(g) = 32d?, f(¢) = ¢, M = 12d\/2Km/ev/v3S}, and F = 1. We have
EZZ<£tuxtz X;) < E25tm + Z<£tzaxtz c., (X¢))

t=1i=1

< EZ eym + Z<’ét,ia Xti — Cey (it)>
' (2.210)
]EZ&}?TL + Z<£tzaxtz Cey (Xt)>

=1

EB(c.
< Z (e Rillxar) (32md? + £,)m
t=1 Up
where the first inequality follows by Abernethy et al. [2008b, Lemma 8], the second by Aber-
nethy et al. [2008b, Lemma 3], the third by optimality of X;, and the fourth by Lemma 2.A.11.
Substituting into Theorem 2.A.13 and simplifying yields the result.]

Specialization to the unit sphere

Corollary 2.A.17. Let K be the unit sphere with the self-concordant barrier ¢)(x) = —log(1 —
|Ix[|3). Then Algorithm 6 attains expected task-averaged regret bounded by

- (dm2 dm 1 — E|X|2
o) it + Ady [2mlog {1+ ——1212) 4 2211
<sz ﬁ) b \/ " Og(v) tem G2
using k = [\/ﬂ

Proof. Using the fact the v = 1 and K = S; = 2, we apply Theorem 2.A.16 and simplify to
obtain

~

2

Ve | 0>
E min +32nd2m+5m+(9(m—+—+—+mmm{ dp}

dm dm)
e€[11m>0 1] T nk k

VT
(2.212)

104

Then substitute n = 4\/‘%” + d?, set p = \f, and note that

A 1 — e (%) 1—(1+4¢)2x|3
87— E |log e\ _ 4 \/10g< 1(: D)n};z)
T A~ - 8 -

YL 1 - ea®)I3 2213

1 - E|X[3

<pl 14 ——=

\/og (2e + €2
where we use the fact that |X;|s = 1 and the inequality is Jensen’s. O]
q y

Specialization to polytopes, specifically the bandit online shortest-path problem

Corollary 2.A.18. Let K = {x € [0,1]"! : (a,x) < bV (a,b) € C} be the set of flows from
u to v on a graph G(V, E), where C = RI®l x R is a set of O(|E|) linear constraints. Suppose
we see 7' instances of the bandit online shortest path problem with m timesteps each. Then
sampling from probability distributions over paths from w to v returned by running Algorithm 6
with regularizer (x) = — >, . log(b — (a, x)) attains the following expected average regret
across instances 7

B E4 3 E§ 3 LT b— y Le X
& <| | ;nz N | |42m6 n mlin 4|E|E o Z log TZt:l <a C (Xt)> +em

T4 T e€[1] a,beC {/]_[thl b—a,c.(X))
(2.214)

using k = [T

Proof. Using the fact that d = |E|, v = O(|E]), K = 4/[E],and S, < Y, yec «al'l“;‘;% =
O(|E|?), we apply Theorem 2.A.16 and simplify to obtain

~

E min — +32n|E*m +em

e€l;r1lm>0 1
Efm? |B] AIEE |E|Tm< L)
+0 + = 4 i min PIE|T 4+ — + =
(nT nk k n £l p VT = pT
(2.215)
Then substitute 1) = \/T + ‘Elef setp = 4 %\G/ﬁ and note that
b a x Tf b_ y Le X
= 3 log ac — 3 log Tl bz @))5
aze \A/TIL. b (a cg(xt)> aze \A/TIE b~ (a (%))
]

105

Omniglot

1-shot

5-shot

5-way evaluation setting hyperparameters evaluation setting hyperparameters
regular transductive n= % c regular transductive n= % c

MAML (1) 98.3+0.5 99.2+0.2

Reptile 95.39+£0.09 97.68+0.04 1E-3 98.90 £ 0.10 99.48+0.06 1E -3

ARUBA 94.57+1.04 97444+032 1E-1 98.64 £0.04 99.29+0.07 1E -2
ARUBA++ 94.80+1.10 97.58+0.13 1E—-1 103 98.93+0.13 99.46+0.02 1E—-2 103
MAML (2) 98.7+ 0.4 99.9+0.1
Meta-SGD 99.53 + 0.26 99.93 £ 0.09

Table 2.3: Meta-learning evaluations on the 5-way Omniglot classification task.

Omniglot 1-shot 5-shot
20-way evaluation setting hyperparameters evaluation setting hyperparameters
regular transductive n= % c regular transductive n= % c
MAML (1) 95.8+ 0.3 98.9 +0.2
Reptile 88.14 +0.15 89.43+0.14 bHE -4 96.65 +0.33 97.124+0.32 bHE -4
ARUBA 85.61 £0.25 86.67+0.17 5E —3 96.02 £0.12 96.61 £0.13 5E—3
ARUBA++ 88.384+0.24 89.66+0.3 5E—3 102 96.994+0.35 97.494+0.28 5E-3 10
MAML (2) 95.8+ 0.3 98.9 +0.2
Meta-SGD 95.93 £ 0.38 98.97 £0.19

Table 2.4: Meta-learning evaluations on the 20-way Omniglot classification task.

2.B Experimental details

2.B.1 Adaptive gradient-based meta-learning

Code is available at https://github.com/mkhodak/ARUBA.

Reptile

For our Reptile experiments we use the code and default settings provided by Nichol et al. [2018],
except we tune the learning rate, which for ARUBA corresponds to /¢, and the coefficient ¢ in
ARUBA++. In addition to the the parameters listed in Tables 2.3,2.4, and 2.5, we set (= p = 1.0
for all experiments. All evaluations are averages of three runs.

FedAvg

For FedAvg we train a 2-layer stacked LSTM model with 256 hidden units, 8-dimensional trained
character embeddings, with a maximum input string size of 80 characters; these settings are used
to match those of McMabhan et al. [2017]. Similarly, we take their approach of only removing
those actors from the Shakespeare dataset with fewer than two lines and split each user tem-
porally into train/test sets with a training fraction of 0.8. Unlike McMahan et al. [2017], we
also split the users into meta-training and meta-testing sets, also with a fraction of 0.8, in order
to evaluate meta-test performance. We run both algorithms for 500 rounds with a batch of 10
users per round and a within-task batch-size of 10, as in Caldas et al. [2018]. For unmodified

106

https://github.com/mkhodak/ARUBA

convolutional
layer (1)

B]

convolutional convolutional

classification
layer

an |8 BRI NI R

convolutional
layer (2) layer (3) layer (4)
le-3 le-2 le-1
learning rate
(log scale)
classification
convolutional Iay_/er
layer (1)
s st FiT i
: S e He -
! s e v
" u'~ 3:5.' | s bt =tz

it i
convolutional
layer (2)

oo it 1

e
C

convolutional
layer (3)

le-4 le-3
learning rate
(log scale)

Figure 2.4: Final learning rate 7y across the layers of a CNN trained on 1-shot 5-way Omniglot

- oy 1 g
H 34 B REL L b
3 58 &t 13
" adici sl 5 i

s

onvolutional
layer (4)

TR 110 OIS AR 210 E B

(top) and 5-shot 5-way Omniglot (bottom) using Algorithm 2 applied to Reptile.

FedAvg we found that an initial learning rate of = 1.0 worked well—this is similar to those
reported in McMahan et al. [2017] and Caldas et al. [2018]—and for the tuned variant we found
that a multiplicative decay of 0.99. At meta-test-time we tuned the refinement learning rate over
{1073,1072,10'}. For ARUBA and its isotropic variant we sete = ¢ = 0.05 and p = 1.0, so

that n = ¢/¢ = 1.0 in our setting as well.

107

classification

convolutional Ia}{er
layer (1) =

R e i p.tﬁm—~ g 7]
%) ot qE

111] R S

convolutional convolutional convolutional
layer (2) layer (3) layer (4)
le-4 le-3
learning rate
(log scale)

classification

convolutional
layer (1)

H "i:j i
; | i =
: i il =
: i FEsE i R B Ep B8 ﬁ
convolutional convolutional &=
layer (2) layer (3) layer (4)

le-4 1le-3

learning rate

(log scale)

Figure 2.5: Final learning rate 1y across the layers of a CNN trained on 1-shot 20-way Omniglot
(top) and 5-shot 20-way Omniglot (bottom) using Algorithm 2 applied to Reptile.

2.B.2 Non-convex meta-learning
Number of training tasks needed for meta-learning

We also examine the number of training tasks that our meta-learning procedure needs to obtain
improvements over the single-task baseline. We use a single test task, and a variable number
of training tasks (0O through 10) to meta-learn the initialization. We use the same settings as in
Section 2.3.4, except the meta-learning experiments have been averaged over 20 iterations (to

108

Mini-ImageNet 1-shot 5-shot

5-way evaluation setting hyperparameters evaluation setting hyperparameters
regular transductive n= % c regular transductive n= % c
MAML (1) 48.07 £ 1.75 63.15 £ 0.91
Reptile 47.07+0.26 4997+032 1E-3 62.74 +£0.37 6599+058 1E-3
ARUBA 47.01 £0.37 50.73+0.32 b5E -3 62.35+0.25 65.69+061 bHE -3
ARUBA++ 47.25+£0.61 5035+0.74 bS5E-3 10 62.69 £ 0.57 65.894+0.34 5E—3 107!
MAML (2) 48.70 + 1.84 63.11 £ 0.92
Meta-SGD 50.47 £ 1.87 64.03 + 0.94

Table 2.5: Meta-learning evaluations on the 5-way Mini-ImageNet classification task.

average over randomization in the algorithms). In Figure 2.8, we plot the average regret against
number of meta-updates performed before starting the test task, and compare against the single-
task baselines. We observe gains with meta-learning with just 7' = 10 tasks for the Omniglot
dataset, and with even a single task in the Gaussian mixture dataset. The latter is likely due to a
very high degree of task similarity across all the tasks (examined below), so learning on any task
transfers very well to another task.

Task similarity and dispersion

We also examine the task similarity of the different tasks by plotting the optimal values oy of
the clustering parameter «v and the corresponding balls B(a;, m~#) used in our definition of task
similarity (Figure 2.9).

The intervals of the parameter induced by these balls correspond to the discretization used by
Algorithm 4. We notice a stronger correlation in task similarity for the Gaussian mixture clus-
tering tasks, which implies that meta-learning is more effective here (both in terms of learning
test tasks faster, and with lower regret). For knapsack the task similarity is also high, but it turns
out that for our dataset there are very ‘sharp peaks’ at the optima of the total knapsack values as
a function of the parameter p. So even though meta-learning helps us get within a small ball of
the optima, a few steps are still needed to converge and we do not see the single-shot benefits of
meta-learning as we do for the Gaussian clustering experiment.

109

classification
layer

convolutional
layer (1)

e ®

B2

i = I.;J.‘ 1 l_'u] =i e wl a 'l L' M- m Tl = |
T"-'"!‘-"i"'"i'“"'l'f‘ﬁ*"-:

h““hil—r W RN B

-] e v [Ty 3 4
K : ; Bl o o ol il v
%E. = = n'-J‘"I'ﬂl!“r—- i_p-‘ﬁ“ﬂj% ,—j "‘7 %‘* i 7 3
P s ol ot oL ol i) T TR R R R e
convolutional convolutional convolutional

layer (2) layer (3) layer (4)

le-4 le-3

learning rate
(log scale)

classification
layer

convolutional

layer (1)
™] i
4
g:
i :
5’.
i
"
-
23&
convolutional convolutional convolutional
layer (2) layer (3) layer (4)
le-4 le-3
learning rate
(log scale)

Figure 2.6: Final learning rate 7 across the layers of a CNN trained on 1-shot 5-way Mini-
ImageNet (top) and 5-shot 5-way Mini-ImageNet (bottom) using Algorithm 2 applied to Reptile.

110

input-hidden

weights (1)
character prediction
embeddings layer

hidden-hidden input-hidden hidden-hidden
weights (1) weights (2) weights (2)

le-2 1le-1 1le-0
learning rate
(log scale)

Figure 2.7: Final learning rate 1y across the layers of an LSTM trained for next-character pre-
diction on the Shakespeare dataset using Algorithm 2 applied to FedAvg.

== 1-shot, single task == 1-shot, single task
0.14 - == 1-shot, multi-task 0.14 - == 1-shot, multi-task
5-shot, single task 5-shot, single task
= 5-shot, multi-task 0.12 - = 5-shot, multi-task
© 0.12]
— —
2 2 010 EEEEEEEEEEEESS e
= 0.10: = \
o —— N iy o e e - (0] \
o T Tt e e = D 0.08- \
o S~< o \
9 0.08 S~ 9 \
Z Z 0.06 \\\
0.06 - 0.04 N e __
—_— e
0.04 — 0.02
1 1 1 1 ' ' ' '
0 2 4 6 8 10 0 2 4 6 8 10
Number of meta updates Number of meta updates

Figure 2.8: Average regret vs. number of training tasks for meta-learning. The clustering data
on the left is from Omniglot and on the right it comes a mixture of Gaussians.

111

B 8 | B 8 [i
~ = ~ —
%) wn
S 6- — 8 6- —
o o
£ B £ B
C C
@ 4 - —_— é 4 - —_—
= —_ [—_—
2 —_ 2- —_
00 2 4 6 8 10 00 2 4 6 8 10
Clustering parameter, a Clustering parameter, a
10 - —_
-~ 8 ["
~ —
0
8 6- —
()]
£ =
C
é 4 - —
}— —
2 - —
% 2 4 6 8 10

Knapsack parameter, p

Figure 2.9: Location of optimal parameter values for the training tasks. The left evaluation is for
Omniglot clustering, the right for Gaussian mixture clustering, and the bottom is Knapsack.

110 -

94_
108 -
92 - 106 -
a
=
90 - T 104 -
= 2
[*) =]
o [=]
S 88 - e 102 -
[¥) =)
s gmo
a L
86 - 2
A
98.
34_
96_
82 -
| 94 -
0 2 4 6 8 10 0 2 4 6 8 10
o p

Figure 2.10: Average performance (over algorithm randomization) for a few tasks as a function
of the configuration parameter. The left evaluation is Gaussian mixture clustering and the right is
Knapsack. This explains why, despite high task similarity in either case, few-shot meta-learning
works better for the Gaussian mixture clustering.

112

Chapter 3

FedEx: Federated hyperparameter tuning

In the previous chapter, we introduced ARUBA, a framework for designing meta-learning al-
gorithms and proving guarantees about them. We then proceeded to study meta-learning in a
variety of settings and show many new learning-theoretic guarantees for learning-to-learn across
multiple tasks. Now we turn to a more applied study of meta-learning, in which we show how
its intersection with federated learning can be exploited to develop hyperparameter tuning algo-
rithms for the latter. At the same time, we still make use of ARUBA to show provable guarantees
in a restricted setting for an algorithm we develop called FedEx.

3.1 Motivation

Federated learning (FL) is a popular distributed computational setting where training is per-
formed locally or privately on heterogeneous networks [McMahan et al., 2017, Li et al., 2020c]
and where hyperparameter tuning has been identified as a critical problem [Kairouz et al., 2021b].
Although general hyperparameter optimization has been the subject of intense study [Hutter
et al., 2011, Bergstra and Bengio, 2012, Li et al., 2018a], several unique aspects of the feder-
ated setting make tuning hyperparameters especially challenging. We formalize the problem of
hyperparameter optimization in FL, introducing the following three key challenges:

1. Federated validation data: In federated networks, as the validation data is split across
devices, the entire dataset is not available at any one time; instead a central server is given
access to some number of devices at each communication round, for one or at most a few
runs of local training and validation. Thus, because the standard measure of complex-
ity in FL is the number of communication rounds, computing validation metrics exactly
dramatically increases the cost.

2. Extreme resource limitations: FL applications often involve training using devices with
very limited computational and communication capabilities such as mobile phones. Fur-
thermore, many require the use of privacy techniques such as differential privacy that limit
the number times user data can be accessed. Thus we cannot depend on being able to run
many different configurations to completion.

OThe work presented in this chapter first appeared in Khodak et al. [2021].

113

exponentiated

FedEx (, hyperparameters

update ; " local training
local eval ® ¢ -
ocal evaluation = mode
\ T / update
model parameters FedAvg

Figure 3.1: FedEx can be applied to any local training-based FL method, e.g. FedAvg, by inter-
leaving standard updates to model weights (computed by aggregating results of local training)
with exponentiated gradient updates to hyperparameters (computed by aggregating results of lo-
cal validation).

3. Evaluating personalization: Finally, even with non-federated data, applying common hy-
perparameter optimization methods to standard personalized FL approaches (such as fine-
tuning) can be costly because evaluation may require performing many additional training
steps locally.

With these challenges in mind, we propose reasonable baselines for federated hyperparameter
tuning by showing how to adapt standard non-federated algorithms. We further study the chal-
lenge of noisy validation signal due to federation, and show that simple state-estimation-based
fixes do not help.

Our formalization and analysis of this problem leads us to develop FedEx, a method that ex-
ploits a novel connection between hyperparameter tuning in FL and the weight-sharing technique
widely used in neural architecture search (NAS) [Pham et al., 2018, Liu et al., 2019b, Cai et al.,
2019]. In particular, we observe that weight-sharing is a natural way of addressing the three
challenges above for federated hyperparameter tuning, as it incorporates noisy validation sig-
nal, simultaneously tunes and trains the model, and evaluates personalization as part of training
rather than as a costly separate step. Although standard weight-sharing only handles architec-
tural hyperparameters such as the choice of layer or activation, and not critical settings such as
those of local stochastic gradient descent (SGD), we develop a formulation that allows us to tune
most of these as well via the relationship between local-training and fine-tuning-based personal-
ization. This make FedEx a general hyperparameter tuning algorithm applicable to many local
training-based FL methods, e.g. FedAvg [McMahan et al., 2017], FedProx [Li et al., 2020d], and
SCAFFOLD [Karimireddy et al., 2020].

In Section 3.5, we next conduct a theoretical study of FedEx in a simple setting: tuning the
client step-size. Using our ARUBA framework, we show that a variant of FedEx correctly tunes
the on-device step-size to minimize client-averaged regret by adapting to the intrinsic similarity
between client data.

Finally, in Section 3.6, we instantiate our baselines and FedEx to tune hyperparameters of
FedAvg, FedProx, and Reptile, evaluating on three standard FL. benchmarks: Shakespeare, FEM-
NIST, and CIFAR-10 [McMahan et al., 2017, Caldas et al., 2018]. While our baselines already
obtain performance similar to past hand-tuning, FedEx further surpasses them in most settings
examined, including by 2-3% on Shakespeare.

114

3.2 Related work

Several papers have explored limited aspects of hyperparameter tuning in FL [Mostafa and Wang,
2019, Koskela and Honkela, 2018, Dai et al., 2020], focusing on a small number of hyperpa-
rameters (e.g. the step-size and sometimes one or two more) in less general settings (studying
small-scale problems or assuming server-side validation data). In contrast our methods are able
to tune a wide range of hyperparameters in realistic federated networks. Some papers also dis-
cussed the challenges of finding good configurations while studying other aspects of federated
training [Reddi et al., 2021]. We argue that it is critical to properly address the challenges of fed-
erated hyperparameter optimization in practical settings, as we discuss in detail in Section 3.3.

Methodologically, our approach draws on the fact that local training-based methods such as
FedAvg can be viewed as optimizing a surrogate objective for personalization, and more broadly
leverages the similarity of the personalized FL setup and initialization-based meta-learning [Chen
et al., 2018a, Li et al., 2020a, Jiang et al., 2019, Fallah et al., 2020]. While FedEx’s formulation
and guarantees use this relationship, the method itself is general-purpose and applicable to fed-
erated training of a single global model. Many recent papers address FL personalization more
directly [Mansour et al., 2020, Yu et al., 2020b, Ghosh et al., 2020, Smith et al., 2017, Li et al.,
2021b]. This connection and our use of NAS techniques also makes research connecting NAS
and meta-learning relevant [Lian et al., 2020, Elsken et al., 2019b], but unlike these methods we
focus on tuning non-architectural parameters. In fact, we believe our work is the first to apply
weight-sharing to regular hyperparameter search. Furthermore, meta-learning does not have the
data-access and computational restrictions of FL, where such methods using the DARTS mix-
ture relaxation [Liu et al., 2019b] are less practical. Instead, FedEx employs the lower-overhead
stochastic relaxation [Li et al., 2019, Dong and Yang, 2019], and its exponentiated update is
similar to the GAEA algorithm we introduce in Section 9.2.1. Running NAS itself in federated
settings has also been studied [Garg et al., 2020, He et al., 2020, Xu et al., 2020a]; while our
focus is on non-architectural hyperparameters, in-principle our algorithms can also be used for
federated NAS.

3.3 Federated hyperparameter optimization

In this section we formalize the problem of hyperparameter optimization for FL and discuss the
connection of its personalized variant to meta-learning. We also review FedAvg [McMahan et al.,
2017], a common federated optimization method, and present a reasonable baseline approach for
tuning its hyperparameters.

3.3.1 Global and personalized FL

In FLL we are concerned with optimizing over a network of heterogeneous clients ¢ = 1,...,n,
each with training, validation, and testing sets T}, V;, and E;, respectively. We use Lg(w) to
denote the average loss over a dataset S of some w-parameterized ML model, for w € R? some
real vector. For hyperparameter optimization, we assume a class of algorithms A1g, hyperpa-
rameterized by a € A that use federated access to training sets T; to output some element of R

115

Here by “federated access" we mean that each iteration corresponds to a communication round
at which A1g, has access to a batch of B clients! that can do local training and validation.

Specifically, we assume Alg, can be described by two subroutines with hyperparameters
encoded by b € B and ¢ € C, so that a = (b,¢) and A = B x C. Here ¢ encodes settings
of a local training algorithm Loc, that take a training set S and initialization w € R? as input
and outputs a model Loc.(S,w) € RY, while b sets those of an aggregation Agg, that takes
the initialization w and outputs of Loc, as input and returns a model parameter. For example,
in standard FedAvg, Loc, is 1" steps of gradient descent with step-size 77 and Agg, takes a
weighted average of the outputs of Loc, across clients; here ¢ = (n,T") and b = (). As detailed
in Appendix 3.B, many FL methods can be decomposed this way, including well-known ones
such as FedAvg [McMahan et al., 2017], FedProx [Li et al., 2020d], SCAFFOLD [Karimireddy
et al., 2020], and Reptile [Nichol et al., 2018] as well as more recent methods [Li et al., 2021b,
Al-Shedivat et al., 2021, Acar et al., 2021]. Our analysis and our proposed FedEx algorithm will
thus apply to all of them, up to an assumption detailed next.

Starting from this decomposition, the global hyperparameter optimization problem can be
written as .

min Z; VilLv, (819.({T3}5-1)) (3.1

In many cases we are also interested in obtaining a device-specific local model, where we take
a model trained on all clients and finetune it on each individual client before evaluating. A
key assumption we make is that the finetuning algorithm will be the same as the local training
algorithm Loc,. used by A1g,. This assumption can be justified via our work on meta-learning in
the previous chapter, where we saw that algorithms that aggregate the outputs of local SGD can
be viewed as optimizing for personalization using local SGD. Then, in the personalized setting,
the tuning objective becomes

n

min Y Vil Ly, (Loce(T}, Alg, ({T3}-))) (3.2)

a=(b,c)eA P

Our approach will focus on the setting where the hyperparameters c of local training make up a
significant portion of all hyperparameters a = (b, ¢); by considering the personalization objective
we will be able to treat such hyperparameters as architectural and thus apply weight-sharing.

3.3.2 Tuning FL methods: Challenges and baselines

In the non-federated setting, the objective (3.1) is amenable to regular hyperparameter optimiza-
tion methods; for example, a random search approach would repeatedly sample a setting a from
some distribution over .4, run A1g, to completion, and evaluate the objective, saving the best
setting and output [Bergstra and Bengio, 2012]. With a reasonable distribution and enough sam-
ples this is guaranteed to converge and can be accelerated using early stopping methods [Li et al.,
2018a], in which Alg, is not always run to completion if the desired objective is poor at inter-
mediate stages, or by adapting the sampling distribution using the results of previous objective

!For simplicity the number of clients per round is fixed, but all methods can be easily generalized to varying B.

116

Algorithm 7: Successive halving algorithm (SHA) applied to personalized FL. For
the non-personalized objective (3.1), replace Ly, (w;) by Ly, (w,). For random
search (RS) with NV samples, setn = N and R = 1.

Input: distribution D over hyperparameters .A, elimination rate 7 € N, elimination

rounds 7o = 0,7,...,7Tr

sample set of 7 hyperparameters H ~ Dln"]

initialize a model w, € R? for each a € H

for elimination round r € [R] do
for setting a = (b,c) € H do
for comm. roundt =7,_1+1,...,7,. do

for clientv =1,..., B do
send w,, c to client

W; < LOCC(T;%, Wa)
send w;, Ly, (w;) to server

Wy < Aggb(wav {wl zB;l) B
L Sa < Zi=1 Vil Lv,, (Wi)/2i=1 Vil
H<«—{a€eH:s,< %—quantile({sa ca€ H})}

Output: remaining a € H and associated model w,

evaluations [Snoek et al., 2012]. As mentioned in the introduction, applying such methods to FL
is inherently challenging due to

1. Federated validation data: Separating data across devices means we cannot immediately
get a good estimate of the model’s validation performance, as we only have access to a
possibly small batch of devices at a time. This means that decisions such as which models
to flag for early stopping will be noisy and may not fully incorporate all the available
validation signal.

2. Extreme resource limitations: As FL algorithms can take a very long time to run in
practice due to the weakness and spotty availability of devices, we often cannot afford
to conduct many training runs to evaluate different configurations. This issue is made
more salient in cases where we use privacy techniques that only allow a limited number of
accesses to the data of any individual user.

3. Evaluating personalization: While personalization is important in FL due to client het-
erogeneity, checking the performance of the current model on the personalization objec-
tive (3.2) is computationally intensive because computing may require running local train-
ing multiple times. In particular, while regular validation losses require computing one
forward pass per data point, personalized losses require several forward-backward passes,
making it many times more expensive if this loss is needed to make a tuning decision such
as eliminating a configuration from consideration.

Despite these challenges, we can still devise sensible baselines for tuning hyperparameters in
FL, most straightforward of which is to use a regular hyperparameter method but use validation
data from a single round as a noisy surrogate for the full validation objective. Specifically,

117

tuning FedAvg on FEMNIST, fully non-i.i.d. data tuning FedAvg on CIFAR, i.i.d. client data

o
©

—— 0.0 (last only) —— 0.0 (last only)
0.5 (power discount) 081 0.5 (power discount)
1.0 (average) 1.0 (average)

o
©

o
9

error of personalized model
. o o o
- w o

{
4
/
‘

M e

error of personalized model

~— 0.3 1 ¥—x
<~

I
N

e .

T T T T T T T y 0.2 - T T T T T T T T
250 500 750 1000 1250 1500 1750 2000 500 1000 1500 2000 2500 3000 3500 4000
communication round communication round

Figure 3.2: Tuning FL with SHA but making elimination decisions based on validation estimates
from different discount factors. On both FEMNIST (left) and CIFAR (right) using more of the
validation data does not improve upon just using the most recent round’s validation error.

one can use random search (RS)—repeatedly evaluate random configurations—and a simple
generalization called successive halving (SHA), in which we sample a set of configurations and
partially run all of them for some number of communication rounds before eliminating all but
the best % fraction, repeating until only one configuration remains. Note both are equivalent to a
“bracket” in Hyperband [Li et al., 2018a] and their adaptation to FL is detailed in Algorithm 7.

As shown in Section 3.6, SHA performs reasonably well on the benchmarks we consider.
However, by using validation data from one round it may make noisy elimination decisions,
early-stopping potentially good configurations because of a difficult set of clients on a particular
round. Here the problem is one of insufficient utilization of the validation data to estimate model
performance. A reasonable approach to use more is to try some type of state-estimation: using
the performance from previous rounds to improve the noisy measurement of the current one.
For example, instead of using only the most recent round for elimination decisions we can use a
weighted sum of the performances at all past rounds. To investigate this, we study a power decay
weighting, where a round is discounted by some constant factor for each time step it is in the
past. We consider factors 0.0 (taking the most recent performance only, as before), 0.5, and 1.0
(taking the average). However, in Figure 3.2 we show that incorporating more validation data
this way than is used by Algorithm 7 by default does not significantly affect results.

Thus we may need a better algorithm to use more of the validation signal, most of which is
discarded by using the most recent round’s performance. We next propose FedEx, a new method
that does so by using validation on each round to update a client hyperparameters distribution
used to sample configurations to send to devices. Thus it alleviates issue (1) above by updating at
each step, not waiting for an elimination round as in RS or SHA. By simultaneously training the
model and tuning (client) hyperparameters, it also moves towards a fully single-shot procedure in
which we only train once (we must still run multiple times due to server hyperparameters), which
would solve issue (2). Finally, FedEx addresses issue (3) by using local training to both update
the model and to estimate personalized validation loss, thus not spending extra computation on
this more expensive objective.

118

3.4 Weight-sharing for federated learning

We now present FedEx, a way to tune local FL hyperparameters. This section contains the
general algorithm and its connection to weight-sharing; we instantiate it on several FL. methods
in Section 3.6.

3.4.1 Weight-sharing for architecture search

We first lightly introduce the weight-sharing approach in NAS?, which for a set C of network
configurations is often posed as the bilevel optimization

min Lya(w,c) s.t. w e argmin Ly, (u, ¢) (3.3)
ceC ueRd

where Liin, Lvaiia €valuate a single configuration with the given weights. If, as in NAS, all
hyperparameters are architectural, then they are effectively themselves trainable model parame-
ters, so we could instead consider solving the following “single-level" empirical risk minimiza-
tion (ERM):

i, P00 = i Loan(,0) + L (v,) 34
Solving this instead of the bilevel problem (3.3) has been proposed in several recent papers [Li
et al., 2019], including our own work in Section 9.2.1.

Early approaches to solving either formulation of NAS were costly due to the need for full or
partial training of many architectures in a very large search space. The weight-sharing paradigm
[Pham et al., 2018] reduces the problem to that of training a single architecture, a “supernet"
containing all architectures in the search space C. A straightforward way of constructing a su-
pernet is via a “stochastic relaxation" where the loss is an expectation w.r.t. sampling ¢ from
some distribution over C [Dong and Yang, 2019]. Then the shared weights can be updated using
SGD by first sampling an architecture ¢ and using an unbiased estimate of Vy, L(w, ¢) to update
w. The distribution over C may itself be adapted or stay fixed. We focus on the former case,
adapting some @-parameterized distribution Dy; this yields the stochastic relaxation objective

min E..p,L(w,c) (3.5)
0cO,weRd

Since architectural hyperparameters are often discrete decisions, e.g. a choice of which of a fixed
number of operations to use, a natural choice of Dy is as a product of categorical distributions
over simplices. In this case, any discretization of an optimum 6 of the relaxed objective (3.5)
whose support is in the support of & will be an optimum of the original objective (3.4). A
natural update scheme here is exponentiated gradient [Kivinen and Warmuth, 1997], where each
successive 0 is proportional to 8 ©® exp(—n@), 1 is a step-size, and V an unbiased estimate
of VoE..p,L(w,c) that can be computed using the re-parameterization trick [Rubinstein and
Shapiro, 1993]. By alternating this exponentiated update with the standard SGD update to w
discussed earlier we obtain a simple block-stochastic minimization scheme that is guaranteed to
converge, under certain conditions, to the ERM objective (c.f. Section 9.2.1).

2A more detailed and NAS-focused introduction is given in Section 8.A.3.

119

3.4.2 The FedEx method

To obtain FedEx from weight-sharing we restrict to the case of tuning only the hyperparameters
c of local training Loc..> Our goal then is just to find the best initialization w € R? and local
hyperparameters c € C, i.e. we replace the personalized objective (3.2) by

min > [Vi|Ly,(Loc (T, w)) (3.6)
i=1

ceC,weRd

Note Alg, outputs an element of R?, so this new objective is upper-bounded by the original (3.2),
i.e. any solution will be at least as good for the original objective. Note also that for fixed c this
is equivalent to the classic train-validation split objective for meta-learning with Loc, as the
base learner. More importantly for us, it is also in the form of the r.h.s. of the weight-sharing
objective (3.4), i.e. it is a single-level function of w and c. We thus apply a NAS-like stochastic
relaxation: .

i ; \Vi|Eeepy Ly, (Loce(Ti, w)) (3.7)
In NAS we would now set the distribution to be a product of categorical distributions over differ-
ent architectures, thus making 6 an element of a product of simplices and making the optimum
of the original objective (3.6) equivalent to the optimum of the relaxed objective (3.7) as an ex-
treme point of the simplex. Unlike in NAS, FL hyperparameters such as the learning rate are
not extreme points of a simplex and so it is less clear what parameterized distribution Dy to use.
Nevertheless, we find that crudely imposing a categorical distribution over £ > 1 random sam-
ples from some distribution (e.g. uniform) over C and updating @ using exponentiated gradient
over the resulting k-simplex works well. We alternate this with updating w € R?, which in a
NAS algorithm involves an SGD update using an unbiased estimate of the gradient at the current
w and 6.

We call this alternating method for solving (3.7) FedEx and describe it for a general Alg,
consisting of sub-routines Agg, and Loc, in Algorithm 8; recall from Section 3.3 that many FL
methods can be decomposed this way, so our approach is widely applicable. FedEx has a minimal
overhead, consisting only of the last four lines of the outer loop updating 8. Thus, as with weight-
sharing, FedEx can be viewed as reducing the complexity of tuning local hyperparameters to that
of training a single model. Each update to @ requires a step-size 7, and an approximation V of
the gradient w.r.t. 0; for the latter we obtain an estimate @g[ﬂ of each gradient entry via the
reparameterization trick, whose variance we reduce by subtracting a baseline \;. How we set 7
and), is detailed in Appendices 3.C.2 and 3.E, respectively.

To see how FedEx is approximately optimizing the relaxed objective (3.7), we can consider
the case where Alg, is Reptile [Nichol et al., 2018], which was designed to optimize some ap-
proximation of (3.6) for fixed c, or equivalently the relaxed objective for an atomic distribution
Dg. As we discussed in the previous chapter, Reptile can be interpreted as optimizing a surrogate
objective minimizing the squared distance between w and the optimum of each task 7, with the
latter being replaced by the last iterate in practice. It is also shown that the surrogate objective

3We will use some wrapper algorithm to tune the hyperparameters b of Agg;,.

120

Algorithm 8: FedEx
Input: configurations ¢y, . . ., ¢, € C, setting b for Agg,, schemes for setting step-size 7,
and baseline \;, total number of steps 7 > 1
initialize #; = 1,/k and shared weights w; € R¢
for comm. roundt =1,..., 7 do

for clienti =1,..., Bdo
send wy, 6, to client

sample c;; ~ Dy,

Wi < Loce, (T, Wi)

send Wy;, ¢y, Ly,, (Wy;) to server
Wil <= ?ggb(W, {wit))
= Yoy Vail(Lvy (Wea)=At)ley =c;
Vi< Ocpj) L |Vail
0t+1 <« Ot @ exp(—ntV)
L 041 9t+1/||0t+1||1
Output: model w, hyperparameter distribution 0

v

is useful for personalization in the online convex setting.* As opposed to this past work, FedEx
makes two gradient updates in the outer loop, on two disjoint sets of variables: the first is the
sub-routine Agg;, of Alg, that aggregates the outputs of local training and is using the gradient
of the surrogate objective, since the derivative of the squared distance is the difference between
the initialization w and the parameter at the last iterate of Loc,; the second is the exponenti-
ated gradient update that is directly using an unbiased estimate of the derivative of the second
objective w.r.t. the distribution parameters 8. Thus, roughly speaking FedEx runs simultaneous
stochastic gradient descent on the relaxed objective (3.7), although for the variables w we are
using a first-order surrogate. In the theoretical portion of chapter we employ this interpretation to
show the approach works for tuning the step-size of online gradient descent in the online convex
optimizations setting.

3.4.3 Wrapping FedEx

We can view FedEx as an algorithm of the form tuned by Algorithm 7 that implements federated
training of a supernet parameter (w, @), with the local training routine Loc including a step for
sampling ¢ ~ Dy and the server aggregation routine including an exponentiated update of 6.
Thus we can wrap FedEx in Algorithm 7, which we find useful for a variety of reasons:

* The wrapper can tune the settings of b for the aggregation step Agg;, which FedEx cannot.

* FedEx itself has a few hyperparameters, e.g. how to set the baseline)\;, which can be
tuned.

* By running multiple seeds and potentially using early stopping, we can run FedEx using
more aggressive steps-sizes and the wrapper will discard cases where this leads to poor
results.

“Formally they study a sequence of upper bounds and not a surrogate objective, as their focus is online learning.

121

FEMMIST, fully non-i.i.d data CIFAR, i.i.d client data
—_—

10

0.8
0.3

07

06 0.6

05

b

04

error of personalized model
error of personalized model

02 : 03 _ .
T T 02 T T
Epsilon=1.0 Epsilon=0.1 Epsilon=1.0 Epsilon=0.1

Figure 3.3: Comparison of the range of performance values attained using different perturbation
settings. Although the range is much smaller for ¢ = 0.1 than for ¢ = 1.0 (the latter is the entire
space), it still covers a large (roughly 10-20%) range of different performance levels on both
FEMNIST (left) and CIFAR (right).

* We can directly compare FedEx to a regular hyperparameter optimization scheme run over
the original algorithm, e.g. FedAvg, by using the same scheme to both wrap FedEx and
tune FedAvg.

* Using the wrapper allows us to determine the configurations cy, ..., c; given to Algo-
rithm 8 using a local perturbation scheme (detailed next) while still exploring the entire
hyperparameter space.

3.4.4 Local perturbation

It remains to specify how to select the configurations ¢y, . . ., ¢; € C to pass to Algorithm 8. While
the simplest approach is to draw from Unif” (C), we find that this leads to unstable behavior if the
configurations are too distinct from each other. To interpolate between sampling c; independently
and setting them to be identical (which would just be equivalent to the baseline algorithm), we
use a simple local perturbation method in which ¢; is sampled from Unif(C) and ¢y, . . ., ¢ are
sampled uniformly from a local neighborhood of C. For continuous hyperparameters (e.g. step-
size, dropout) drawn from an interval [a, b] < R the local neighborhood is [¢ £ (b—a)e] for some
e = 0, i.e. a scaled e-ball; for discrete hyperparameters (e.g. batch-size, epochs) drawn from a
set {a,...,b} — Z, the local neighborhood is similarly {¢ — |(b — a)e],...,c+ [(b — a)e]}; in
our experiments we set ¢ = 0.1, which works well, but run ablation studies varying these values
in Appendix 3.E showing that a wide range of them leads to improvement. Note that while local
perturbation does limit the size of the search space explored by each instance of FedEx, as shown
in Figure 3.3 the difference in performance between different configurations in the same ball is
still substantial.

122

3.4.5 Limitations of FedEx

While FedEXx is applicable to many important FL. algorithms, those that cannot be decomposed
into local fine-tuning and aggregation should instead be tuned by one of our baselines, e.g. SHA.
FedEXx is also limited in that it is forced to rely on such algorithms as wrappers for tuning its own
hyperparameters and certain FL hyperparameters such as server learning rate.

3.5 Theoretical analysis for tuning the step-size

As noted in Section 3.4, FedEx can be viewed as alternating minimization, with a gradient step
on a surrogate personalization loss and an exponentiated gradient update of the configuration
distribution #. We make this formal and prove guarantees for a simple variant of FedEx in the
setting where the server has one client per round, to which the server sends an initialization to
solve an online convex optimization (OCO) problem using online gradient descent (OGD) on a
sequence of m adversarial convex losses (i.e. one SGD epoch in the stochastic case). Note we
use “client” and “task” interchangeably, as the goal is a meta-learning (personalization) result.
As in Chapter 2, our performance measure will be fask-averaged regret, which takes the average
over 7 clients of the regret they incur on its loss:

o 1 m
Regret = — Z Z Ci(Wyi) — Lei(w)) (3.8)

T t=11i=1

Here ¢, ; is the ith loss of client ¢, w,; the parameter chosen on its ¢th round from a compact
parameter space W, and w; € arg min,,q,, >, ¢;(w) the task optimum. In this setting, our
ARUBA framework can be used to show guarantees for a Reptile (i.e. FedEx with a server step-
size) variant in which at each round the initialization is updated as w41 «— (1 — o)Wy + uw}
for server step-size a; = 1/t; observe that the only difference between this update and FedEx’s
is that the task ¢ optimum w; is used rather than the last iterate of OGD on that task. Specifically
we bound the task-averaged regret by

ey 2 1 #12
Regret < O (\4_5 + V) vm for V* = gélyr\l};; [w — w5 (3.9)
Here V—the average deviation of the optimal actions w; across tasks—is a measure of fask
similarity: V is small when the tasks (clients) have similar data and thus can be solved by similar
parameters in)V but large when their data is different and so the optimum parameters to use
are very different. Thus the bound in (2.3) shows that as the server (meta-learning) sees more
and more clients (tasks), their regret on each decays with rate O(1/4/7) to depend only on the
task similarity, which is hopefully small if the client data is similar enough that transfer learning
makes sense, in particular if V' « diam(W). Since single-task regret has lower bound Q(D+/m),
achieving asymptotic regret 1V'/m thus demonstrates successful learning of a useful initialization
in)V that can be used for personalization. Recall that such bounds can also be converted to obtain
guarantees in the statistical meta-learning setting as well (c.f. Section 2.2.3).

A drawback of our past results using the ARUBA framework is that they either assume the
task similarity V' is known in order to set the client step-size or they employ an OCO method to

123

learn the local step-size that cannot be applied to other potential algorithmic hyperparameters.
In contrast, we prove results for using bandit exponentiated gradient to tune the client step-
size, which is precisely the FedEx update. In particular, Theorem 3.5.1 shows that by using a
discretization of potential client step-sizes as the configurations in Algorithms 8 we can obtain
the following task-averaged regret:

Theorem 3.5.1. Let VW < R be convex and compact with diameter D = diam(W) and let ¢, ;
be a sequence of m7 b-bounded convex losses—m for each of 7 tasks—with Lipschitz constant
< (. We assume that the adversary is oblivious within-task. Suppose we run Algorithm 8
with B = 1, configurations ¢; = G \ﬁ for each j = 1,...,k determining the local step-

size of single-epoch SGD (OGD), wy; = wj, regret Y./ s ;(w;) — {;;(w;) used in place of
Ly, (Wy), and \, = 0V t € [r]. Thenifn, = -L1/2% vt e [r], k2 = BE, /T and

mb
Aggy(w,w}) = (1 — a))w + ayw; for oy = 1/t ¥V t € [7] we have (taking expectations over

sampling from Dy,)
ERegret < O («S/m/T + V) vm (3.10)

The proof of this result, given in the supplement, follows the ARUBA framework of us-
ing meta OCO algorithm to optimize the initialization-dependent upper bound on the regret of
OGD; in addition we bound errors to the bandit setting and discretization of the step-sizes. The-
orem 3.5.1 demonstrates that FedEx is a sensible algorithm for tuning the step-size in the meta-
learning setting where each task is an OCO problem, with the average regret across tasks (clients)
converging to depend only on the task similarity V', which we hope is small in the setting where
personalization is useful. As we can see by comparing to the bound in (2.3), besides holding for
a more generally-applicable algorithm our bound also improves the dependence on 7, albeit at
the cost of an additional m3 factor. Note that that the sublinear term can be replaced by 1 /4/T in
the full-information setting, i.e. where required the client to try SGD with each configuration ¢;
at each round to obtain regret for all of them.

3.6 Empirical results

In our experiments, we instantiate FedEx on the problem of tuning FedAvg, FedProx, and Rep-
tile; the first is the most popular algorithm for federated training, the second is an extension
designed for heterogeneous devices, and the last is a compatible meta-learning method used for
learning initializations for personalization. At communication round ¢ these algorithms use the
aggregation

Aggy(w, {wi}2) = (1 — ay)w Z | Ty |wi (3.11)

Zz 1 |Ttl i=1
for some learning rate o, > 0 that can vary through time; in the case of FedAvg we have
ap = 1V t. The local training sub-routine Loc,. is SGD with hyperparameters ¢ over some
objective defined by the training data 7};, which can also depend on c. For example, to include

FedProx we include in ¢ an additional local hyperparameter for the proximal term compared with
that of FedAvg.

124

Table 3.1: Final test error obtained when tuning using a standard hyperparameter tuning
algorithm (SHA or RS) alone, or when using it for server (aggregation) hyperparameters
while FedEx tunes client (on-device training) hyperparameters. The target model is the
one used to compute on-device validation error by the wrapper method, as well as the
one used to compute test error after tuning. Note that this table reports the final error
results corresponding to the online evaluations reported in Figure 3.4, which measure
performance as more of the computational budget is expended.

Wrapper Target Tuning Shakespeare FEMNIST CIFAR-10
method model method ii.d. non-i.i.d. ii.d. non-i.i.d. ii.d.

lobal RS (server & client) 60.32 +£10.03 64.36 + 14.19 22.81 +4.56 22.98 +3.41 30.46 £+ 9.44
Random & + FedEx (client) 53.94 +9.13 57.70 £ 17.57 20.96 + 4.77 22.30 + 3.66 34.83 + 14.74
Search person- RS (server & client) 61.10 £9.32 61.71 +9.08 17.45+2.82 17.77 +£2.63 34.89 £+ 10.56
(RS) alized + FedEx (client) 54.90 +9.97 56.48 + 13.60 16.31 +3.77 15.93+3.06 39.13 +15.13
global SHA (server & client) 47.38 £3.40 46.79+3.51 18.64 £1.68 20.30% 1.66 21.62+ 2.51
Successive + FedEx (client) 44.52+1.68 45.24 +3.31 19.22+2.05 19.43 +1.45 20.82+1.37
Halving person- SHA (server & client) 46.77 £3.61 48.04 £3.72 14.79 £1.55 14.78 +1.31 24.81 +6.13
(SHA) alized + FedEx (client) 46.08 +2.57 45.89+3.76 1497+ 1.31 14.76 +£1.70 21.77 £+ 2.83

We tune several hyperparameters of both aggregation and local training; for the former we
tune the server learning rate schedule and momentum, found to be helpful for personaliza-
tion [Jiang et al., 2019]; for the latter we tune the learning rate, momentum, weight decay, the
number of local epochs, the batch-size, dropout, and proximal regularization. Please see the
supplementary material for the exact hyperparameter space considered. While we mainly eval-
uate FedEx in cross-device federated settings, which is generally more difficult than cross-silo
in terms of hyperparameter optimization, FedEx can be naturally applied to cross-silo settings,
where the challenges of heterogeneity, privacy requirements, and personalization remain.

Because our baseline is running Algorithm 7, a standard hyperparameter tuning algorithm,
to tune all hyperparameters, and because we need to also wrap FedEx in such an algorithm for
the reasons described in Section 3.4, our empirical results will test the following question: does
FedEx, wrapped by random search (RS) or a successive halving algorithm (SHA), do better
than RS or SHA run with the same settings directly? Here “better” will mean both the final
test accuracy obtained and the online evaluation setting, which tests how well hyperparameter
optimization is doing at intermediate phases. Furthermore, we also investigate whether FedEx
can improve upon the wrapper alone even when targeting a good global and not personalized
model, i.e. when elimination decisions are made using the average global validation loss. We run
Algorithm 7 on the personalized objective and use RS and SHA with elimination rate = 3, the
latter following Hyperband [Li et al., 2018a]. To both wrappers we allocate the same (problem-
dependent) tuning budget. To obtain the elimination rounds in Algorithm 7 for SHA, we set the
number of eliminations to R = 3, fix a total communication round budget, and fix a maximum
number of rounds to be allocated to any configuration a; as detailed in Appendix 3.D.1, this
allows us to determine 77, ..., T so as to use up as much of the budget as possible.

We evaluate the performance of FedEx on three datasets (Shakespeare, FEMNIST, and CIFAR-
10) on both vision and language tasks. We consider the following two different partitions of data:

1. Each device holds i.i.d. data. While data across the network can be non-i.i.d., we shuffle

local data within each device before splitting into train, validation, and test sets.

125

Shakespeare online evaluation, fully non-i.i.d. data FEMNIST online evaluation, fully non-i.i.d. data CIFAR online evaluation, i.i.d. client data

08 —*— SHA 09 —— SHA —— SHA
—— SHA+FedEx 08 —— SHA+FedEx 07 —»— SHA+FedEx
3 go7 206
g 2 g
£ 13 £
= 5 0.6 B
8 8 g 05
© 0.6 ° ©
5 505 s
s s g o4
5 504 H
0.5 03 03
0.2 0.2
0.4
500 1000 1500 2000 2500 3000 3500 4000 250 500 750 1000 1250 1500 1750 2000 500 1000 1500 2000 2500 3000 3500 4000
(((((((((tion round col unication round ‘communication round
Shakespeare online evaluation, fully non-i.i.d. data FEMNIST online evaluation, fully non-i.i.d. data CIFAR online evaluation, i.i.d. client data
08 —— SHA —v— SHA 08 v SHA
0.9
—— SHA+FedEx —— SHA+FedEx o7 —»— SHA+FedEx
] 3 08 3
207 3 2
E Eo07 E o6
= H -
g g g
H 506 3
5 5 0.5
206 e
2 | R 11
s 5 04 0.4
3 8
“os Y03 03
0.2
0.2
01

500 1000 1500 2000 2500 3000 3500 4000 250 500 750 1000 1250 1500 1750 2000 500 1000 1500 2000 2500 3000 3500 4000
ccccccccc tion round communication round communication round

Figure 3.4: Online evaluation of FedEx on the Shakespeare next-character prediction dataset
(left), the FEMNIST image classification dataset (middle), and the CIFAR-10 image classifica-
tion dataset (right) in the fully non-i.i.d. setting (except CIFAR-10). We report global model
performance on the top and personalized performance on the bottom. All evaluations are run for
three trials.

2. Each device holds non-i.i.d. data. In Shakespeare, each device is an actor and local data
is split according to temporal position in the play; in FEMNIST, each device is the digit
writer and local data is split randomly; in CIFAR-10, we do not study this setting.

For Shakespeare and FEMNIST we use 80% of the data for training and 10% each for valida-
tion and testing. In CIFAR-10 we hold out 10K examples from the usual training/testing split
for validation. The backbone models used for Shakespeare and CIFAR-10 follow from the Fe-
dAvg evaluation [McMahan et al., 2017] and use 4K communications rounds (at most 800 round
for each arm), while that of FEMNIST follows from LEAF [Caldas et al., 2018] and uses 2K
communication rounds (at most 200 for each arm).

Table 3.1 presents our main results, displaying the final test error of the target model after
tuning using either a wrapper algorithm alone or its combination with FedEx. The evaluation
shows that using FedEx on the client parameters is either equally or more effective in most
cases; in particular, a FedEx-modified method performs best everywhere except 1.i.d. FEMNIST,
where it is very close. Furthermore, FedEx frequently improves upon the wrapper algorithm by
2 or more percentage points.

We further present online evaluation results in Figure 3.4, where we display the test error of
FedEx wrapped with SHA compared to SHA alone as a function of communication rounds. Here
we see that for most of training FedEx is either around the same or better then the alternative,
except at the beginning; the former is to be expected since the randomness of FedEx leads to less
certain updates at initialization. Nevertheless FedEx is usually better than the SHA baseline by
the halfway point.

126

3.7 Conclusion

This concludes our study of the problem of hyperparameter optimization in FL, starting with
identifying the key challenges and proposing reasonable baselines that adapts standard approaches
to the federated setting. We further make a novel connection to the weight-sharing paradigm
from NAS—to our knowledge the first instance of this being used for regular (non-architectural)
hyperparameters—and use it to introduce FedEx. This simple, low-overhead algorithm for ac-
celerating the tuning of hyperparameters in federated learning can be theoretically shown to
successfully tune the step-size for multi-task OCO problems and effectively tunes FedAvg, Fed-
Prox, and Reptile on standard benchmarks. The scope of application of FedEx is very broad,
including tuning actual architectural hyperparameters rather than just settings of local SGD, i.e.
doing federated NAS, and tuning initialization-based meta-learning algorithms such as Reptile
and MAML.

127

3.A Proof of Theorem 3.5.1

Proof. Let ; ~ Dy, be the step-size chosen at time ¢. Then we have that

TERegret = i E,, i Cti (Wﬁ‘:’t &) — i Cri(wy)
4 i1
Tk m
ZZ thz ((v:t’cj)> - Z&e,i(wf)
—1j=1 i=1

1 k
< o8 + nkTm?b?
n

i 3333 (W) = i D o)

t=11i=1

< 2mby/Tklogk + minZ —Hwt —wi3 + ¢;mG?
jelk] = 2¢;

(3.12)
D?(1+1 V2

< 2mbr/ 7k log k + min w + + ¢;mG?

jelk] 2¢; 20]

D?(1 +1 %%
< 2mbr/Tklog k + (1+ ;)g:’) VT + v*mG*r

Y
1 1\ D?*(1+1 V2
+ min (— — —) (1+1og7)+ V7 + (¢j — v)mG*r
jelk] \ ¢ v* 2

1 D
< 2mbr/7k log k + 4DA /T”TOgT + (2v + ?) Gy /%
1
_ mb«/zﬂogwwqﬂ”% + (DG +26GV), [2

where the second line uses linearity of expectations over v; ~ Dy,, the third substitutes the

bandit regret of EG [Shalev-Shwartz, 2011, Corollary 4.2], the fourth substitutes = % ligkk
and the regret of OGD [Shalev-Shwartz, 2011, Corollary 2.7], the fifth substitutes the regret
guarantee of Adaptive OGD over functions 3|lw;, — w3 [Bartlett et al., 2008, Theorem 2.1]

with step-size a; = 1/t and the definition of V, the sixth substitutes the best discretized step-size

1+log T
2mTt

c; for the optimal v* € (0, ﬁ%] and the seventh substitutes #ﬁ + % for v* and

argming,. -« for argmin; ¢;. Setting ki = DTG4 /5 and dividing both sides by 7 yields the
result. 0
3.B Decomposing federated optimization methods

As detailed in Section 3.3 our analysis and use of FedEx to tune local training hyperparameters
depends on a formulation that decomposes FL. methods into two subroutines: a local training
routine Loc, (S, w) with hyperparameters ¢ over data S and starting from initialization w and

128

an aggregation routine Agg, with hyperparameters b. In this section we discuss how a variety of
federated optimization methods, including several of the best-known, can be decomposed in this
manner. This enables the application of FedEx to tune their hyperparameters.

FedAvg [McMahan et al.,2017] The best-known FL method, FedAvg runs SGD on each client

in a batch starting from a shared initialization and then updates to the average of the last iterate

of the clients, often weighted by the number of data points each client has. The decomposition

here is:

Loc. Local SGD (or another gradient-based algorithm, e.g. Adam [Kingma and Ba, 2015]), with
c being the standard hyperparameters such as step-size, momentum, weight decay, etc.

Agg, Weighted averaging, with no hyperparameters in b.

FedProx [Li et al., 2020d] FedProx has the same decomposition as FedAvg except local SGD
is replaced by a proximal version that regularizes the routine to be closer to the initialization,
adding another hyperparameter to c governing the strength of this regularization.

Reptile [Nichol et al., 2018] A well-known meta-learning algorithm, Reptile has the same
decomposition as FedAvg except the averaged aggregation is replaced by a convex combination
of the initialization and the average of the last iterates, as in Equation 3.11. This adds another
hyperparameter to b governing the tradeoff between the two.

SCAFFOLD [Karimireddy et al., 2020] SCAFFOLD comes in two variants, both of which
compute and aggregate control variates in parallel to the model weights. The decomposition here
is:

Loc. Local SGD starting from a weight initialization with a control variate, which can be merged

to form the local training initialization. The hyperparameters in c are the same as in Fe-
dAvg.

Agg, Weighted averaging of both the initialization and the control variates, with the same hy-
perparameters as Reptile.

FedDyn [Acar et al., 2021] In addition to a FedAvg/FedProx/Reptile-like training routine, this
algorithm maintains a regularizer on each device that affects the local training routine. While this
statefulness cannot strictly be subsumed in our decomposition, since it does not introduce any
additional hyperparameters the remaining hyperparameters can be tuned in the same manner as
we do for FedAvg/FedProx/Reptile. In order to choose between using FedDyn or not, one can
introduce a binary hyperparameter to c specifying whether or not Loc,. uses that term in the
objective it optimizes or not, allowing it also to be tuned via FedEx.

FedPA [Al-Shedivat et al., 2021] This algorithm replaces local SGD in FedAvg by a local
Markov-chain Monte Carlo (MCMC) routine starting from the initialization given by aggregat-
ing the previous round’s MCMC routines. The decomposition is then just a replacement of local

129

SGD and its associated hyperparameters by local MCMC and its hyperparameters, with the ag-
gregation routine remaining the same.

Ditto [Li et al., 2021b] Although it depends on what solver is used for the local solver and
aggregation routines, in the simplest formulation, the local optimization of personalized models
involves an additional regularization hyperparameter. While the updating rule of Ditto is different
from that of FedProx, the hyperparameters can be decomposed and tuned in a similar manner.

MAML [Finn et al., 2017] A well-known meta-learning algorithm, MAML takes one or more

full-batch gradient descent (GD) steps locally and updates the global model using a second-order

gradient using validation data. The decomposition here is:

Loc. Local SGD starting from a weight initialization. The hyperparameters in c are the same as
in FedAvg. The algorithm also returns second-order information required to compute the
meta-gradient.

Agg;, Meta-gradient computation, summation, and updating using a standard descent method
like Adam [Kingma and Ba, 2015]. The hyperparameters in b are the hyperparameters of
the latter.

3.C FedEx details

3.C.1 Stochastic gradient used by FedEx

Below is a simple calculation showing that the stochastic gradient used to update the categorical
distribution of FedEx is an unbiased estimate of the true gradient w.r.t. its parameters.

VO[J]ECIJ‘OLV'M (W’L - Cz]|9 L‘/tz wl)\)
Ee,jl0 (LVM w;) — A) Vg log Po(ci;))
= EC”|9 (LVt U}k Vg[j] lOgnPQ(Cij = Cj))

i=1

(3.13)

1

_E Lv;5 Wz A)lcij:cj
- euld o[/]

Note that this use of the reparameterization trick has some similarity with a recent RL ap-
proach to tune the local step-size and number of epochs [Mostafa and Wang, 2019]; however,
FedEx can be rigorously formulated as an optimization over the personalization objective, has
provable guarantees in a simple setting, uses a different configuration distribution that leads to
our exponentiated update, and crucially for practical deployment does not depend on obtaining
aggregate reward signal on each round.

130

Algorithm 9: FedEx wrapped with SHA.
Input: distribution D over hyperparameters .A, elimination rate 1 € N, elimination
rounds 7o = 0,71, ...,7Tr
sample set of * hyperparameters H ~ Dl
initialize a model w, € R? for eacha € H
for elimination round r € |R| do
for setting a = (b,c) € H do
| SasWa, 0, < FedEx(W,, b, ¢,0,, 7401 — Ty)
H<«—{a€eH:s,< %—quantile({sa ca€ H})}

Output: remaining a € H and associated model w,

FedEx(w,b, {c1,...,cx},0,7 = 1):

initialize 8; «— 0
initialize shared weights w; «— w
for comm. roundt =1,...,7do

for clientv =1,...,B do
send wy, 0; to client

sample c;; ~ D,
Wy < Loce, (Ty, wy)
send wy;, ¢, Ly,, (wy;) to server
Wi < Aggy(w, {wi},)
set step—sBize 71, and baseline)\,
= icy [Vail(Lvy, (Wei)=At) ey =c,
Vi< Or1j) Tily |Vail J
0111« 0, O exp(—n,V)
0141 0t+1/||0t+1||1
s D Vil Lv/ XLy Vil
Return s, model w, hyperparameter distribution 0

A

3.C.2 Hyperparameters of FedEx

We tune the computation of the baseline)\;, which we set to

B

1 ,.Yt—s
Zs<t 7t ’ ; Zi1 |V;‘/1| ;

for discount factor y € [0, 1]. As discussed in Section 3.4, the local perturbation factor is set to
e = 0.1. 27 configurations are used in each arm for SHA and RS. The number of configuration
used per arm of FedEx (i.e. the dimensionality of 0) is the same (27).

131

Table 3.2: Final test error obtained when tuning using a standard hyperparameter
tuning algorithm (SHA or RS) alone, or when using it for server (aggregation)
hyperparameters while FedEx tunes client (on-device training) hyperparameters. The
target model is the one used to compute on-device validation error by the wrapper
method, as well as the one used to compute test error after tuning. The confidence
intervals displayed are 90% Student-t confidence intervals for the mean estimates from
Table 3.1, with 5 independent trials for Shakespeare, 10 for FEMNIST, 10 for RS on
CIFAR, and 6 for SHA on CIFAR.

Wrapper Target Tuning Shakespeare FEMNIST CIFAR-10
method model method ii.d. non-i.i.d. ii.d. non-i.i.d. ii.d.
global RS (server & client) 60.32 +9.56 64.36 + 13.53 22.81 +2.64 2298 £1.98 30.46 +5.47

Random + FedEx (client) 53.94+8.70 57.70 £ 16.75 20.96 +£2.77 22.30 +2.12 34.83 £8.54
Search person- RS (server & client) 61.10 +8.89 61.71+8.66 17.45+£1.63 17.77 £1.52 34.89 +6.12
(RS) alized + FedEx (client) 54.904+9.50 56.48 +12.97 16.31 +£2.19 15.93+1.77 39.13 £8.77

SHA (server & client) 47.38 +3.24 46.79 £3.35 18.64 £0.97 20.30 £0.96 21.62 +1.45
Successive + FedEx (client) 44.52+ 1.60 45.24+3.16 19.22+1.19 19.43+0.84 20.82+0.79
Halving person- SHA (server & client) 46.77 +3.44 48.04+3.54 14.794+0.90 14.78 £0.75 24.81 £+ 3.55
(SHA) alized + FedEx (client) 46.08 +2.45 45.89+3.58 14.97+0.76 14.76 +0.99 21.77 +1.64

global

3.D Experimental details

Code for FedEx is available here: https://github.com/mkhodak/fedex. Shakespeare
and FEMNIST data can be found here: https://github.com/TalwalkarLab/leaf.

3.D.1 Settings of the baseline/wrapper algorithm

We use the same settings of Algorithm 7 for both tuning FedAvg and wrapping FedEx. Given
an elimination rate 7, number of elimination rounds R, budget 1, and maximum rounds per arm

M,weassignTy,..., Trst. T, =T, 1 = (T'— M)/ (”nﬂ*l —n — 1),with Ty = 0.

n—1

3.D.2 Hyperparameters of FedAvg/FedProx/Reptile
Server hyperparameters (learning rate a; = ~*):
* log;, Ir: Unif[—1, 1]
* momentum: Unif[0, 0.9]
* log,o(1 — v): Unif[—4, —2]
Local hyperparameters (n.b. we only use one epoch for Shakespeare to conserve computation):
* log,,(Ir): Unif[—4, 0]
* momentum: Unif[0.0, 1.0]
* log,,(weight decay): Unif[—5, —1]
* epoch: Unif{1,2, 3,4, 5}
* log,(batch): Unif{3,4,5,6,7}
* dropout: Unif[0, 0.5]

132

https://github.com/mkhodak/fedex
https://github.com/TalwalkarLab/leaf

error of personalized model

0.350

0325

0.300

0275

0250

0225

0200

0175

0150

Epsilon ablations on CIFAR, i.i.d. client data

— SHA only

= SHA+FedEx

error of personalized model

o
©

e © o ©o ©o o o
I S

o
e

©

FEMNIST online evaluation, fully non-i.i.d. data

1 —¥— aggressive
{ —< constant
adaptive

—200 -1.75 -150 -125 -100 —075 050 —025 000 2000

laglepsilon)

T T T T T
750 1000 1250 1500 1750

communication round

Figure 3.5: Comparison of different ¢ settings
for the local perturbation component of FedEx
from Section 3.4.

Figure 3.6: Comparison of step-size schedules
for 7, in FedEx. In practice we chose the ‘ag-
gressive’ schedule, which exhibits faster con-
vergence to favorable configurations.

3.E Ablation studies

We now discuss two design choices of FedEx and how they affect performance of the algorithm.
First, the choice of the local perturbation £ = 0.1 discussed in Section 3.4; we choose this setting
due to its consistent performance across several settings. In Figure 3.5 we plot the performance
of FedEx on CIFAR-10 between € = 0.0 (no FedEx, i.e. SHA only) and ¢ = 1.0 (full FedEx,
i.e. client configurations are chosen independently) and show that while the use of a nonzero ¢ is
important, performance at fairly low values of ¢ is roughly similar.

We further investigated the setting of the step-size 7, for the exponentiated gradient update in
FedEx. We examine three different approaches: a constant rate of 1, = \/2log k, an ‘adaptive’

schedule of n, = v/2logk/4/Y ., | V|2, and an ‘aggressive’ schedule of 7, = v/21og &/ V¢ o

Here V, is the stochastic gradient w.r.t. § computed in Algorithm 8 at step ¢ and the form of the
step-size 1s derived from standard settings for exponentiated gradient in online learning [Shalev-
Shwartz, 2011]. We found that the ‘aggressive’ schedule works best in practice, as shown in
Figure 3.6. A key issue with using the ‘constant’ and ‘adaptive’ approaches is that they con-
tinue to assign high probability to several configurations late in the tuning process; this slows
down training of the shared weights. One could consider a tradeoff between allowing FedEx to
run longer than while keeping the total budget constant, but for simplicity we chose the more
effective ‘aggressive’ schedule.

133

134

Part 11

Algorithms with predictions

135

Chapter 4

Overview

The second part of this thesis moves away from learning to parameterize learning algorithms
to learning parameters of regular algorithms. We focus on algorithms with predictions [Mitzen-
macher and Vassilvitskii, 2021], a subfield of beyond-worst-case analysis of algorithms that aims
to design methods that make use of machine-learned predictions in order to reduce runtime, er-
ror, or some other performance cost. Mathematically, given some prediction x, algorithms in this
field are designed such that the cost C;(x) of an instance ¢ while using the prediction is upper-
bounded by some measure U;(x) of the quality of the prediction on that instance. The canonical
example here is that the cost of binary search on a sorted array of size n can be improved from
O(logn) to at most Uy (x) = 2log n:(x), where n,(x) is the distance between the true location of
a query ¢ in the array and the location predicted by the predictor x [Mitzenmacher and Vassilvit-
skii, 2021]. In recent years, algorithms whose cost depends on the quality of possibly imperfect
predictions have been developed for numerous important problems, including caching [Rohatgi,
2020, Jiang et al., 2020, Lykouris and Vassilvitskii, 2021], scheduling [Lattanzi et al., 2020,
Scully et al., 2022], ski-rental [Kumar et al., 2018, Anand et al., 2020, Diakonikolas et al., 2021],
bipartite matching [Dinitz et al., 2021], page migration [Indyk et al., 2022], and many more [Ba-
mas et al., 2020, Du et al., 2021a, Mitzenmacher and Vassilvitskii, 2021].

While there has been a significant effort to develop algorithms that can take advantage of
learned predictions, there has been less focus on actually learning to predict. For example, of the
works listed above only two focusing on ski-rental [Anand et al., 2020, Diakonikolas et al., 2021]
and one other [Dinitz et al., 2021] show sample complexity guarantees, and none consider the
important online learning setting, in which problem instances are not guaranteed to come from
a fixed distribution. This is in contrast to the related area of data-driven algorithm design [Gupta
and Roughgarden, 2017, Balcan, 2021], which has established techniques such as dispersion for
deriving learning-theoretic guarantees, leading to end-to-end results encompassing both learning
and computation [Balcan et al., 2018b]. It is also despite the fact that learning even simple
predictors is in many cases a non-trivial problem.

Chapter 5 bridges this gap with a framework for obtaining learning-theoretic guarantees for
algorithms with predictions. In addition to better sample complexity bounds, we show how to
learn the parameters of interest in online via bounds on the overall regret. Moreover, we show the
first instance-dependent learning guarantees for predictions, showing that one can learn not just
static predictions but prediction policies that customize their prediction to the instance at-hand;

137

this hews more closely to what is done in practice. All of this is accomplished using a two-step
approach inspired by ARUBA, with regret-upper-bounds replaced by runtime-upper-bounds.

To show the above results we study existing algorithms with predictions, which as a subfield
has focused on graph algorithms, data structures, and online algorithms. However, incorporating
external information via predictions has significant potential across all areas of algorithm design,
as we demonstrate in Chapters 6 and7, where we extend the field to two completely new di-
rections: differentially private statistics and scientific computing. Theoretically, these directions
yield interesting new phenomena at the intersection of learning and algorithms, including (1)
the impossibility of simultaneous robustness and simple learnability for private quantile release
and (2) instance-optimal prediction for solving certain sequences of linear systems. We also
demonstrate the utility of incorporating learned predictions through extensive experiments.

4.1 Literature

Algorithms with predictions is an important approach to the beyond-worst-case analysis of al-
gorithms [Roughgarden, 2020], studies of computation that take advantage of the fact that many
real-world instances are not worst-case. Other approaches include smoothed analysis [Spielman
and Teng, 2004] and data-driven algorithm design [Balcan, 2021]. Inspired by strong empirical
success in applications such as learned index structures [Kraska et al., 2018], the area has seen
a great deal of theoretical study, with a particular focus on algorithms whose guarantees depend
on the quality of a given predictor (c.f. the survey of Mitzenmacher and Vassilvitskii [2021]
and the references therein). The actual learning of this predictor has been studied to a lesser
extent [Anand et al., 2020, Diakonikolas et al., 2021, Dinitz et al., 2021, Chen et al., 2022] and
very rarely in the online learning setting; in Chapter 5 we present the first general framework for
efficiently learning useful predictors.

Data-driven algorithm design is a closely related area that has seen much more learning-
theoretic effort [Gupta and Roughgarden, 2017, Balcan et al., 2018b, Balcan, 2021]. At a high-
level, it often studies the tuning of algorithmic parameters such as the step-size of gradient de-
scent [Gupta and Roughgarden, 2017] or settings of branch and bound for solving integer pro-
grams [Balcan et al., 2018a], whereas the predictors in algorithms with predictions often either
try to guess the full sequence in an online algorithm [Indyk et al., 2022] or the actual outcome of
the computation such as the dual in a primal-dual method [Dinitz et al., 2021]. The distinction
can be viewed as terminological, since a prediction of the outcome can be viewed as a parameter
of the algorithm, but it does mean that in the settings we study we have full information about
the loss function since it is typically some discrepancy between the full sequence or computa-
tional outcome and the prediction. In contrast, in data-driven algorithm design getting the cost
of each parameter setting often requires additional computation, and so we are often in a ban-
dit or semi-bandit setting [Balcan et al., 2020a]. A more salient difference is that data-driven
algorithm design guarantees compete with the parameter that minimizes average cost but do
not always quantify the improvement attainable via learning; in algorithms with predictions we
do generally quantify this improvement with an upper bound on the cost that depends on the
prediction quality, but we usually only compete with the parameter that is optimal for prediction
quality, which is not always optimal for the cost. In Chapter 5 we do adapt ideas from data-driven

138

algorithm design, specifically dispersions, to show guarantees for algorithms with predictions;
later in Chapter 7 we also show data-driven algorithm design-type guarantees for the problem of
tuning a linear solver, allowing us to compare results from the two subfields more directly.

4.2 Contributions

The algorithms with predictions results in this thesis stem from centering learning as a crucial
aspect of the field. This approach allows us to both design algorithms for learning to predict
by extending the ARUBA framework, which we do in Chapter 5, and guides the development
of new algorithms with predictions in the fields of differentially private statistics (Chapter 6)
and scientific computing (Chapter 7). In particular, learning influences our exploration of what
predictions to use and how they might be useful; for example, for private quantiles we study what
distributional families to use as priors for releasing statistics and for setting preconditioners in
PDE solvers we convert the entire setup into an online learning problem.

4.2.1 Learning predictions, provably

While much work in algorithms with predictions has focused on using predictions to improve
competitive ratios, running times, or other performance measures, less effort has been devoted
to the question of how to obtain the predictions themselves, especially in the critical online set-
ting. In Chapter 5 we introduce a general design approach for algorithms that learn predictors:
(1) identify a functional dependence of the performance measure on the prediction quality and
(2) apply techniques from online learning to learn predictors, tune robustness-consistency trade-
offs, and bound the sample complexity. This approach is effectively an extension of the ARUBA
framework from Chapter 2—which focused on learning algorithms with learning-theoretic per-
formance measures—to general algorithms and objectives.

We demonstrate the effectiveness of this approach by applying it to several graph algorithms,
such as bipartite matching, and online algorithms such as scheduling, ski-rental, and page migra-
tion, and job scheduling. For the graph algorithms our optimization-based approach allows us to
obtain dramatic improvements in the sample complexity, reducing it by O(n) to O(n?) factors,
where n is the number of nodes in the graph. In the online algorithms our guarantees are for the
most part the first learning-theoretic guarantees available. Importantly, our approach allows us
to reason for the first time about provable instance-dependent prediction, in which rather than
learning a fixed prediction for every instance we learn a model from instance features to cus-
tomized predictions. This reflects much better what is done in practice and will be crucial to
many of the extensions we show in the applications in Chapters 6 and 7.

4.2.2 Extending algorithms with predictions

While predictions have classically been used to augment online algorithms, graph algorithms,
and data structures, our learning-based understanding points to many other applications areas for
this paradigm, two of which we study in detail.

139

Private statistics. In Chapter 6 we use our learning-based design approach to develop learning-
augmented algorithms for releasing differentially private (DP) statistics about sensitive data.
Here a common way of getting improved performance is to use external information such as
other sensitive data, public data, or human priors. We propose to use the algorithms with predic-
tions framework as a powerful way of designing and analyzing privacy-preserving methods that
use such external information to improve utility. For three important tasks—(multiple) quantile
release, covariance estimation, and data release—we construct prediction-dependent DP methods
whose utility scales with natural measures of prediction quality. Our analysis enjoys several ad-
vantages, including minimal assumptions about the data, natural ways of adding robustness, and
the provision of useful surrogate losses for two novel “meta" algorithms that learn predictions
from other (potentially sensitive) data. We conclude with experiments in a diverse set of multi-
dataset quantile release settings that show how a learning-augmented approach to incorporating
external information can lead to large error reductions while preserving privacy.

Scientific computing. Chapter 7 concludes our contributions to data-driven algorithms with a
study of linear system solvers, fundamental primitives in scientific computing systems for which
numerous solvers and preconditioners have been developed. They come with parameters whose
optimal values depend on the system being solved and are often impossible or too expensive to
identify; thus in practice sub-optimal heuristics are used. We consider the common setting in
which many related linear systems need to be solved, e.g. during a single numerical simula-
tion. In this scenario, can we sequentially choose parameters that attain a near-optimal overall
number of iterations, without extra matrix computations? We answer in the affirmative for Suc-
cessive Over-Relaxation (SOR), a standard solver whose parameter w has a strong impact on
its runtime. For this method, we prove that a bandit online learning algorithm—using only the
number of iterations as feedback—can select parameters for a sequence of instances such that
the overall cost approaches that of the best fixed w as the sequence length increases. Further-
more, when given additional structural information, we show that a contextual bandit method
asymptotically achieves the performance of the instance-optimal policy, which selects the best
w for each instance. Our work provides the first learning-theoretic treatment of high-precision
linear system solvers and the first end-to-end guarantees for data-driven scientific computing,
demonstrating theoretically the potential to speed up numerical methods using well-understood
learning algorithms. In addition to these technical contributions, this is also the first instance
where the separate fields of learning-augmented algorithms and data-driven algorithm design are
used to solve the same problem, allowing us to compare these two paradigms more directly.

4.2.3 Contributions of independent interest

Our study of private estimation schemes parameterized by learned predictions highlights how
useful doing such learning-augmented analysis can be to the original field of study, in this case
yielding several results of broader interest to DP. First, for the problem of quantile estimation we
design the first private algorithm that does not require knowledge of an interval containing the
true quantile to be run. While our scheme does take a guess of the interval as an input, it has an
error guarantee of (’)(% log R), where R is the distance between the guess and the true quantile

140

and ¢ > 0 is the privacy parameter.; in contrast, past approaches have vacuous guarantee if the
interval is misspecified. Our key insight is to use a heavy-tailed (e.g. Cauchy) base distribution
in the exponential mechanism instead of the usual uniform prior; this allows sufficient weight to
be assigned to the interval containing the prior even in the case of misspecification.

A second contribution is to DP covariance estimation, where our analysis results in a strict
improvement to the state-of-the-art trace-dependent guarantees of Dong et al. [2022, Theorem 1]
without changing their algorithm. In particular, whereas they show error bounds that grow
with the trace norm |C|r, of the true covariance matrix C € R?, we replace this term by
mingg |C — cI||r,. The new guarantee can be much stronger because covariance matrices of
commonly occurring distributions such as isotropic Gaussians are often close to scalar multiples
of the identity, in which case mincg ||C —cI||1, vanishes while |C|r, = O(d). Our result follows
from the observation that a prediction-dependent extension the algorithm of Dong et al. [2022]
is invariant to perturbing the prediction by a scalar multiple of the identity.

Lastly, we introduce a non-Euclidean extension of DP-FTRL [Kairouz et al., 2021a], a pri-
vate online convex optimization method. This is the first DP online learning scheme applicable
to general convex losses that is customizable to different geometries, e.g. to obtain regret bounds
with better dimension-dependence (compared to Euclidean FTRL) when the optimization do-
main is the simplex or the trace ball.

4.3 Discussion

Our first major contribution to algorithms with predictions is a theoretical framework for ana-
lyzing how to learn the predictions themselves, a direction that has seen expanded interest in
recent years. Apart from our own work presented in DP statistics and scientific computing,
the optimization-based approach we introduced in Chapter 4 was also used to show prediction-
learning guarantees in a sequence of work on discrete convex optimization tasks [Sakaue and
Oki, 2022, 2023, Oki and Sakaue, 2023]. There have also been several efforts to go beyond the
static predictions analyzed in most learning-theoretic results for data-driven algorithms, although
the results have generally differed significantly from our approach of learning instance-dependent
prediction models on top of instance features. For example, Srinivas and Blum [2024] showed
learning guarantees for warm-start-type algorithms—e.g. those for bipartite matching—that are
competitive with multiple predictions simultaneously, while Elias et al. [2024] studied learning
to make predictions while running an online algorithm.

Beyond learning, interest in learning-augmented algorithms continues to grow, with new di-
rections including the incorporation of uncertainty about the predictions [Christianson et al.,
2024, Sun et al., 2024] and proving bounds if predictions are correct with probability € and ar-
bitrarily poor otherwise [Gupta et al., 2022, Cohen-Addad et al., 2024]. Our own work in Chap-
ters 6 and 7 points to great opportunities to develop learning-augmented methods for statistical
and numerical tasks; for example, can predictions be incorporated into probabilistic algorithms
such as sampling or numerical subroutines beyond linear solvers? As we demonstrate with our
analysis of learning-augmented scientific computing, these directions also have significant poten-
tial to connect with other subfields at the intersection of ML and algorithms, including amortized
optimization [Amos, 2023] and data-driven algorithm design [Bartlett et al., 2022].

141

4.A Background

We first give some necessary background on the field of algorithms with predictions, also known
as learning-augmented algorithms; for a more in-depth introduction see the survey by Mitzen-
macher and Vassilvitskii [2021]. The basic requirement for a learning-augmented algorithm is
that the cost C;(x) of running it on an instance ¢ with prediction x should be upper bounded—
usually up to constant or logarithmic factors—by a metric U;(x) of the quality of the prediction
on the instance. We denote this by C; < U,.

A good guarantee for a learning-augmented algorithm will have several important properties
that formally separate its performance from naive upper bounds U; = C;. The first, consistency,
requires it to be a reasonable indicator of strong performance in the limit of perfect prediction:

Definition 4.A.1. A guarantee C; < U, is ¢;-consistent if C;(x) < ¢; whenever U;(x) = 0.

Here ¢, is a prediction-independent quantity that should depend weakly or not at all on prob-
lem difficulty.

Consistency is often presented via a tradeoff with robustness [Lykouris and Vassilvitskii,
2021], which bounds how poorly the method can do when the prediction is bad, in a manner
similar to a standard worst-case bound:

Definition 4.A.2. A guarantee C; < U, is r;-robust if it implies Cy(x) < r, for all predictions w.

Unlike consistency, robustness usually depends strongly on the difficulty of the instance x,
with the goal being to not do much worse than a prediction-free approach. Note that the latter is
trivially robust but not (meaningfully) consistent, since it ignores the prediction; this makes clear
the need for considering the two properties via a tradeoff between them.

Robustness-consistency tradeoffs are often presented as parameterized upper bounds, with
a parameter A\ € [0, 1] that specifies how tolerant the user is to performance worse than the
worst-case guarantee. A typical guarantee then has an upper bound of the form

U(x, A) = min { f (M) uy(x), g:(N)} = Cy(x) 4.1)

with f monotonically increasing (often f(0) = 1), g, monotonically decreasing, and u,(x) mea-
sures the quality of the prediction x on instance ¢. A very common structure is f(A) = 1/(1 —)
and g;(\) oc 1/\. Thus specifying a small X results in good performance under good predictions
but sacrifices robustness, while setting A closer to 1 never does much worse than a prediction-free
guarantee but takes less advantage of good predictions.

142

Chapter 5

Learning predictions

As discussed in Chapter 4, past work in algorithms with predictions has focused on designing
methods with good robustness-consistency tradeoffs, i.e. that can take advantage of a good pre-
diction without doing much worse than a default approach if the prediction is poor. However,
this focus ignores the question of where the predictions come from, which is usually learning:
whether or not predictions can be learned has been much less studied, and what guarantees do
exist have exclusively shown (a) sample complexity guarantees for (b) static predictions [Anand
et al., 2020, Diakonikolas et al., 2021, Dinitz et al., 2021, Chen et al., 2022]. This chapter of
the thesis introduces a way to systematically obtain learning-theoretic guarantees for algorithms
with predictions, with a particular emphasis on avoiding the two restrictions above by (a) proving
regret bounds for sequences of adversarial instances (that still imply sample complexity guaran-
tees via online-to-batch conversion) and (b) showing guarantees that can be extended to simple
instance-dependent predictions such as linear maps from instance features.

Our approach extends the ARUBA framework from Chapter 2—which we introduced for the
purposes of designing and analyzing meta-learning—to algorithms with predictions, in particular
to learning predictions or predictors using past instances. This is a natural generalization of the
framework, as in meta-learning can be viewed as the problem of learning to predict a good
initialization for learning algorithms; the main difference now is that the objective is no longer
a learning-theoretic quantity such as regret but can rather be any performance measure such as
time complexity or competitive ratio.

The generalization manifests as a two-step framework for applying it to any algorithms with
prediction problem:

1. For a given algorithm, derive a meaningful and convenient-to-optimize upper bound U, (x)

on the cost Cy(x) that depends on both the prediction x and information specific to instance
t returned once the algorithm terminates, e.g. the optimum in combinatorial optimization.

2. Apply online learning to these upper bounds obtain both regret guarantees against adver-
sarial sequences and sample complexity bounds for i.i.d. instances.

The challenging part of this framework is usually the first step, as it is often trivially easy to

bound C} but difficult to do so with a bound that is both meaningful—i.e. non-vacuous and in-

dicative of the underlying performance—and easy-to-optimize. Whether a bound is meaningful

OThe work presented in this chapter first appeared in Khodak et al. [2022].

143

can be a subjective question, but since in this chapter we focus on showing learning guarantees
for existing algorithms with predictions, we can formalize whether or not a bound is meaningful
using existing guarantees. In particular, we find that for many tasks—e.g. bipartite match-
ing [Dinitz et al., 2021] and online page migration [Indyk et al., 2022]—past work has shown
prediction-dependent upper bounds U/ = C} that are challenging to optimize, e.g. discontinuous
or nonconvex. Assuming the bound U/ from past work is meaningful, we will say that the new,
easy-to-optimize bounds U; = C; that we derive are also meaningful if they are themselves upper
bounded (up to constant or at worst logarithmic factors) by the existing bound U.

Apart from this, our approach is designed to be simple-to-execute, leaving much of the dif-
ficulty to what the field is already good at: designing algorithms and proving prediction-quality-
dependent upper bounds U; on their costs C; Once the latter is accomplished, our framework
leverages problem-specific structure to design a customized learning algorithm for each problem,
leading to strong regret and sample complexity guarantees. In particular, in multiple settings we
improve upon existing results in either sample complexity or generality, and in all cases we are
the first to show regret guarantees in the online setting. This demonstrates the usefulness of and
need for such a theoretical framework for studying these problems.

We summarize the diverse set of contributions enabled by our theoretical framework below,
as well as in Table 5.1:

1. Bipartite matching: Our starting example builds upon the work on minimum-weight
bipartite matching using the Hungarian algorithm by Dinitz et al. [2021]. We show how
our framework leads directly to both the first regret guarantees in the online setting and
new sample complexity bounds that improve over the previous approach by a factor linear
in the number of nodes. In Appendices 5.B and 5.D we show similar strong improvements
for b-matching and other graph algorithms.

2. Page migration: We next study a more challenging application, online page migration,
and show how we can adapt the algorithmic guarantee of Indyk et al. [2022] into a learnable
upper bound for which we can again provide both adversarial and statistical guarantees.

3. Learning linear maps with instance-feature inputs: Rather than assume the existence
of a strong fixed prediction, it is often more natural to assume each instance comes with
features that can be input into a predictor such as a linear map. Our approach yields the first
guarantees for learning linear predictors for algorithms with predictions, which we obtain
for the two problem settings above and also for online job scheduling using makespan
minimization [Lattanzi et al., 2020].

4. Tuning robustness-consistency tradeoffs: Many bounds for online algorithms with pre-
dictions incorporate parameterized tradeoffs between trusting the prediction or falling back
on a worst-case approximation. This suggests the usefulness of tuning the tradeoff param-
eter, which we instantiate on a simple job scheduling problem with a fixed predictor. Then
we turn to the more challenging problem of simultaneously tuning the tradeoff and learn-
ing predictions, which we achieve on two variants of the ski-rental problem. For the
discrete case we give the only learning-theoretic guarantee, while for the continuous case
our bound uses a dispersion assumption [Balcan et al., 2018b] that, in the i.i.d. setting, is a
strictly weaker assumption than the log-concave requirement of Diakonikolas et al. [2021].

144

Table 5.1: Settings we apply our framework to, our new learning algorithms, and their regret.

Problem Algorithm with prediction Feedback Upper bound (losses) Learning algo. Regret
e e Rt ols—x@l) R o(u)
s peaciom om0 S) g 0 (nV7)
heduing (5% for predicted logite x €B7 we an | OUK=lorwle) ods’ O (fmTlogln)
oy 651 Uty mn (4258 GER oD

Ski-rental w. integer ~ Buy if price b < z, A trade- Number of min{A(blysp+nl,<p).b,n} Exponentiated o (N Tlog(NT))

days n € [N] (5.5) off with worst-case approx. ski-days n 1-(1+1/b)=P> gradient
Ski-rental with Buy after = days, A trade- Number of min {“(1::‘7{131)'}’}, Exponential ~ O(y/T log(NT)
[B-dispersed n (5.5) off with worst-case approx. ski-days n %} forecaster +N271-6)

* For these we also show guarantees in the statistical (i.i.d.) setting and for learning linear predictors that take instance features as inputs.
T We extend these results to minimum-weight b-matching and other graph algorithms with predictions in Appendices 5.C.1 and 5.D.
1 We also provide new guarantees for the problem of learning job permutations in the non-clairvoyant setting in Appendix 5.E.

5.1 Related work

While there has been a great deal of theoretical study focusing on algorithms whose guaran-
tees depend on the quality of a given predictor (c.f. the Mitzenmacher and Vassilvitskii [2021]
survey), the actual learning of these predictions has been less frequently studied [Anand et al.,
2020, Diakonikolas et al., 2021, Dinitz et al., 2021], especially in the online setting; we aim
to change this with our framework. Some approaches improve online learning itself using pre-
dictions [Rakhlin and Sridharan, 2013, Jadbabaie et al., 2015, Dekel et al., 2017], but they also
assume known predictors or only learn over a small set of policies, and their goal is minimizing
regret not computation. In-general, we focus on showing how algorithms with predictions can
make use of online learning rather than on new methods for the latter. Several works [Balcan and
Blum, 2007, Rakhlin and Sridharan, 2017, Anand et al., 2021] use learning while advising an
algorithm, in-effect taking a learning-inspired approach to better make use of a prediction within
an algorithm, whereas we focus on learning the prediction outside of the target algorithm. We
present the first general framework for efficiently learning useful predictors.

5.2 Framework overview and bipartite matching application

In this section we outline the theoretical framework for designing algorithms and proving guar-
antees for learned predictors. As an illustrative example we will use the Hungarian algorithm
for bipartite matching, for which Dinitz et al. [2021] demonstrated an instance-dependent upper
bound on the running time using a learned dual vector. Along the way, we will show an improve-
ment to their sample complexity bound together with the first online results for this setting.

We first introduce the problem, min-weight perfect matching (MWPM), which for a bipar-
tite graph on n nodes and m edges asks for the perfect matching with the least weight according to
edge-costs ¢ € ZZ,. The Hungarian algorithm is a popular convex optimization-based approach

145

for which Dinitz et al. [2021] showed a runtime bound of O (m/nmin {||x — x*(c) |, v/n}),
where x € Z" initializes the duals in a primal-dual algorithm and x*(c) € Z" is dual of the
optimal solution; note that the latter is obtained for free after running the method.

5.2.1 Step 1: Upper bound

The first step of our approach is to find a suitable function U, (x) of the prediction x that (a) upper
bounds the target algorithm’s cost Cy(x), (b) can be constructed completely once the algorithm
terminates, and (c) can be efficiently optimized. These qualities allow learning the predictor
in the second step. The requirements are similar to those of ARUBA for showing results for
meta-learning, although there the quantity being upper-bounded was regret, not algorithmic cost.

Many guarantees for algorithms with predictions are already amenable to being optimized,
although we will see that they can require some massaging in order to be useful. In many cases
the guarantee is a distance metric between the prediction x and some instance-dependent perfect
prediction x*, which is convex and thus straightforward to learn. This is roughly true of our
bipartite matching example, although taking the minimum of a constant and the distance ||x —
x*(c)||; between the predicted and actual duals makes the problem nonconvex. However, we can
further upper bound their result by O (m+/n|x — x*(c)||;); note that Dinitz et al. [2021] also
optimize this quantity, not the tighter upper bound with the minimum. While this might seem to
be enough for step one, Dinitz et al. [2021] also require the prediction x to be integral, which is
difficult to combine with standard online procedures. In order to get around this issue, we show
that rounding any nonnegative real vector to the closest integer vector incurs only a constant
multiplicative loss in terms of the ¢;-distance.

Claim 5.2.1. Given any vectors x € Z" and y € R", let y € Z" be the vector whose elements
are those of y rounded to the nearest integer. Then |[x — ¥|; < 2|x — y|s.

Proof. Let S < [n] be the set of indices ¢ € [n] for which x| > y;;; <= ¥ = [y[y]- For
i € [n]\S we have |x;; — ypij| = 1/2 = [y, — ¥/ so it follows by the triangle inequality that

Ix = Fh =D 1% = Vgl + D) Ixi —

€S i€[n]\S

< bk =yl + D) e =yl + v - il (5.1)
ies ie[n]\S

< xp =yl +2) X -yl <2x -y
ies ie[n]\S

O

Combining this projection with the convex relaxation above and the result of Dinitz et al.
[2021] shows that for any predictor x € R™ we have (up to affine transformation) a convex upper
bound Uy (x) = |x—x*(c;)|1 on the runtime of the Hungarian method, as desired. We now move
to step two.

146

5.2.2 Step 2: Online learning

Once one has an upper bound U, on the cost, the second component of our approach is to apply
standard online learning algorithms and results to these upper bounds to obtain guarantees for
learning predictions. In online learning, on each of a sequence of rounds ¢t = 1, ..., 7" we predict
x; € X and suffer U;(x;) for some adversarially chosen loss function U; : X — R that we then
observe; the goal is to use this information to minimize regret 3, Uy (x;) — minyex Uy (x),
with the usual requirement being that it is sublinear in 7" and thus decreasing on average over
time. For bipartite matching, we can just apply regular projected online (sub)gradient descent
(OGD) to losses U;(x) = |x—x*(c;)||1, i.e. the update rule x;, 1 « arg min, ., VU (X;), X+
:|x|3 for appropriate step-size a > 0; as shown in Theorem 5.2.1, this yields sublinear regret
via a textbook result. The simplicity here is the point: by relegating as much of the difficulty as
we can to obtaining an easy-to-optimize upper bound in step one, we make the actual learning-
theoretic component easy. However, as we show in the following sections, it is not always easy to
obtain a suitable upper bound, nor is it always obvious what online learning algorithm to apply,
e.g. if the upper bounds are nonconvex.

Our use of online learning is motivated by three factors: (1) doing well on non-i.i.d. instances
is important in practical applications, e.g. in job scheduling where resource demand changes over
time; (2) its extensive suite of algorithms lets us use different methods to tailor the approach to
specific settings and obtain better bounds, as we exemplify via our use of exponentiated gra-
dient over the simplex geometry in Section 5.3 and KT-OCO over unbounded Euclidean space
in Section 5.4; (3) the existence of classic online-to-batch procedures for converting regret into
sample complexity guarantees [Cesa-Bianchi et al., 2004], i.e. bounds on the number of samples
needed to obtain an e-suboptimal predictor w.p. = 1 — . While online-to-batch conversion can
be suboptimal [Hazan and Kale, 2014], as we show in Theorems 5.2.1, 5.B.1, and 5.D.1 its ap-
plication to various graph algorithms with predictions problems improves upon existing sample
complexity results. See Appendix B.4 for more details on online-to-batch conversion.

We now show how to apply the second online learning step to bipartite matching by improv-
ing upon the result of Dinitz et al. [2021] in Theorem 5.2.1; the improvement is the entirely new
regret bound against adversarial cost vectors and a @(n) lower sample complexity. Note how the
proof needs only their existing algorithmic contribution, Claim 5.2.1, and some standard tools in
online convex optimization.

Theorem 5.2.1. Suppose we have a fixed bipartite graph with n > 3 vertices and m > 1 edges.

1. For any cost vector ¢ € ZZ, and any dual vector x € R" there exists an algorithm for
MWPM that runs in time

O (mynmin {U(x), vn}) < O (my/nU(x)) (5.2)

for U(x) = |x — x*(c)|;, where x*(c) the optimal dual vector associated with c.

2. There exists a poly-time algorithm s.t. for any 6, > 0 and distribution D over integer
m-vectors with /,,-norm < C' it takes O ((%)2 log %) samples from D and returns X s.t.
w.p. = 1—4:

Ecup|X — x*(0)|l; < ||xr|1|f}/?r<10 Ecwp|x —x*(c)|1 + ¢ (5.3)

147

3. Letcy,...,cr € ZZ, be an adversarial sequence of m-vectors with {,-norm < C'. Then
OGD Wlth appropriate step-size has regret

T

max 2 Ix; — x*(cy) |1 — |[x — x* (o)1 < CnV2T (5.4)

s
Il <C &

Proof. The first result follows by combining Dinitz et al. [2021, Theorem 13] with Claim 5.2.1.
For the third result, let x; be the sequence generated by running OGD [Zinkevich, 2003] with
step-size C'/+/2T on the losses Uy(x) = |x — x*(c;)|, over domain [—C,C]". Since these
losses are /n-Lipschitz and the duals are C'y/n-bounded in Euclidean norm the regret guarantee
follows from Shalev-Shwartz [2011, Corollary 2.7]. For the second result, we apply standard

. . . . 2
online-to-batch conversion to the third result, i.e. we draw T = ((%) log %) samples c;, run

OGD as above on the resulting losses Uy, and set X = % Zthl X, to be the average of the resulting
predictions x;. The result follows by Lemma B.4.1. [

This concludes an overview of our two-step approach for obtaining learning guarantees for
algorithms with predictions. To summarize, we propose to (1) obtain simple-to-optimize upper
bounds U, (x) on the cost of the target algorithm on instance ¢ as a function of prediction x and
(2) optimize U, (x) using online learning. While conceptually simple, even in this illustrative ex-
ample it already improves upon past work; in the sequel we demonstrate further results that this
approach makes possible. Note that, like Dinitz et al. [2021], we are also able to generalize The-
orem 5.2.1 to b-matchings, which we do in Appendix 5.C.1; another advantage of our approach
is that it lets us prove online and statistical learning in the case where the demand vector b varies
across instances rather than staying fixed as in Dinitz et al. [2021]. Finally, in Appendix 5.D
we also improve upon the more recent learning-theoretic results of Chen et al. [2022] for related
graph algorithms with predictions problems.

5.3 Predicting requests for page migration

Equipped with our two-step approach for deriving guarantees for learning predictors, we inves-
tigate several more important problems in combinatorial optimization, starting with the page
migration problem. Our results demonstrate that even for learning such simple predictors there
are interesting technical challenges in deriving a learnable upper bound. Nevertheless, once this
is accomplished the second step of our approach is again straightforward.

To introduce the online task we consider, suppose we have a server that sees a sequence of
requests Spij, . . . , 5[] from metric space (/C, d) and at each timestep decides whether to change
its state a;) € IC at cost Dd(a;_1}, af;)) for some D > 1; it then suffers a further cost d(ar;, sp;))-
The onllne page migration (OPM) problem is then to minimize the cost to the server. Re-
cently, Indyk et al. [2022] studied a setting where we are given a sequence of predicted points
7 - - 1 € K to aid the page migration algorithm. They show that if there exists v, ¢ € (0, 1)
s.t. 7D € [n] and for any i € [n] we have ZZHD "1 Ls, %5, < qyD then there exists an al-
gorithm with competitive ratio (1 + ~)(1 + O()) w.r.t. to the ofﬂine optimal. This algorithm
depends on ~y but not ¢, so we study the setting where 7 is fixed.

148

5.3.1 Deriving an upper bound

As in the previous section, the predictions are discrete, so to use our approach we must convert it
into a continuous problem. As we have fixed ~y, the competitive ratio is an affine function of the
following upper bound on ¢:

1 i+yD—1
We assume that the set of points K is finite with indexing k = 1, ..., || and use this to introduce

our continuous relaxation, a natural randomized approach converting the problem of learning a
prediction into n experts problems on |K| experts. For each j € [n] we define a probability
vector ppj] € A governing the categorical r.v. 3, i.e. Pr(sy) = k) = pyg Vi € K.
Under these distributions the expected competitive ratio will be (1 + v)(1 + O(E;-pQ(S, s))),
for p the product distribution of the vectors p;. Note that forcing each p; to be a one-hot vector
recovers the original approach with no loss, so optimizing E;.,Q($, s) overp € A"}q would find
a predictor that fits the original result.

However, E;_,Q(3, s) is not convex in p. The simplest relaxation is to replace the maximum

by summation, but this leads to a worst-case bound of O (%) . We instead bound E;..,Q (5, s)—
Y

and thus also the expected competitive ratio—by a function of the following maximum over
expectations:

i+yD—1 t+yD—1
Us(p) = max Eip]Z Loppzog = 8% |]Z 1= {sppppy (5:6)
where sp;x = 1S[j]:k V k € K, ie. sy encodes the location in K of the jth request. As a

maximum over n — vD + 1 convex functions this objective is also convex. Note also that if
Us(p) is zero—i.e. the probability vectors are one-hot and perfect—then E;.,Q(8,s) = ¢ will
also be zero. In fact, ¢ is upper-bounded by a monotonically increasing function of U, (p) that is

zero at the origin, but as this function is concave and non-Lipschitz (c.f. Figure 5.1) we incur an
additive O bg(";—gDH) loss to obtain an online-learnable upper bound. This is formalized in
the following result (proof in Appendix 5.A.1).

Lemma 5.3.1. There exist constants @ < e,b < 2/e and a monotonically increasing function
f:[0,00) — [0,00) s.t. f(0) =0and

f(Us(p)) _ aUg(p) + blog(n —yD + 1)
vD vD

EgNPQ(§7 S) <

blog(n —vD + 1) .7)

vD

< aEs pQ(S,) +

As in bipartite matching—where we similarly resorted to a relaxation of a discrete problem—
we now have a prediction-dependent convex bound on the competitive ratio for the OPM algo-
rithm of Indyk et al. [2022]. However, whereas before we only incurred a multiplicative loss of
two compared to the upper bound of Dinitz et al. [2021] (c.f. Claim 5.2.1), our convex upper

149

30

f, n=5000, yD=200
linear bound e
1 — £, n=1000, yD=100
-—— linear bound
f, n=50, yD=20
linear bound

N
v
\Y

N
o
L

bound on expectation of yDq
=) G

0

0 2 4 6 8 10

max expected number of mistakes in any interval of length yD
Figure 5.1: Bounds f (c.f. Lemma 5.3.1) for different n and v D on the expected largest number
of mistakes in any yD-interval as a function of the maximum expected number U (p).

bound for OPM also incurs an additive loss relative to the original prediction-dependent of Indyk
et al. [2022] that makes it meaningful only for vD » log n. However, as the method we propose
optimizes Ug(p), which bounds ¢ with no additive error via the function f in Lemma 5.3.1, in
practice we may expect it to help minimize ¢ in all regimes. Note that the non-Lipschitzness near
zero that prevents using f for regret guarantees comes from poor tail behavior of Poisson-like
random variables with small means, which we do not expect can be significantly improved.

5.3.2 Learning guarantees

Having established an upper bound, in Theorem 5.3.1 we again show how a learning-theoretic
result follows from standard online learning. This time, instead of OGD we run exponenti-
ated (sub)gradient (EG) [Shalev-Shwartz, 2011], a classic method for learning from experts,
on each of n simplices to learn the probabilities py;; ¥V j € [n]. The multiplicative update
X1 € X O exp(—aVU(x;)) of EG is notable for yielding regret logarithmic in the size || of
the simplices, which is important for large metric spaces. Note that as the relaxation is random-
ized, our algorithms output a dense probability vector; to obtain a prediction for OPM we sample
Suj) ~ Py ¥ J € [n].
Theorem 5.3.1. Let (/C, d) be a finite metric space.

1. For any request sequence s and any set of probability vectors p € A"}q there exists an

algorithm for OPM with expected competitive ratio

(1+7) (1 +0O (Us(p) +10g7(g_7D+ 1)))

2. There exits a poly-time algorithm s.t. for any d,¢ > 0 and distribution D over request

(5.8)

sequences s € K" it takes O ((%)2 (n?log [K| + log %)) samples from D and returns p

st.wp.=1—4:
EspUs(P) < min E, pUs(p) + ¢ (5.9)

3. Letsy, ..., sy be an adversarial sequence of request sequences. Then updating the distribu-
tion py[;) over A g at each timestep j € [n] using EG with appropriate step-size has regret

T

max » U, (p:) — Us,(p) < vDnA/2T log K| (5.10)

peAl’jCI P
Proof. The first result follows by combining Indyk et al. [2022, Theorem 1] with Lemma 5.3.1.

For the third let p; be generated by running n exponentiated gradient algorithms with step-size

log | K|
2v2D2T

log | K|, the regret follows by [Shalev-Shwartz, 2011, Theorem 2.15]. For the second result, apply
standard online-to-batch conversion to the third, i.e. draw 7" = () ((ﬂ)2 (n2 log || + log %))

on losses Uy, (p) over Aj.. Since these are yD-Lipschitz and the maximum entropy is

€

samples s;, run EG on Uy, (p) as above, and set p = % Zthl p: to be the average of the resulting
actions. The result follows by Lemma B.4.1. [

As before, this result first shows how the quantity of interest—here the competitive ratio—is
upper-bounded by an affine function of some quality measure U,(p), for which we then provide
regret and statistical guarantees using online learning. The difficulty deriving a suitable bound
exemplifies the technical challenges that arise in learning predictors, and may also be encoun-
tered in other sequence prediction problems such as TCP [Bamas et al., 2020]. Nevertheless,
our approach does yield an online procedure that incurs only O(l‘;gD") additive error over Indyk
et al. [2022] in the case of a perfect predictor and, unlike their work, we provide an algorithm
for learning the predictor itself. In Appendix 5.C.2 we also show an auto-regressive extension

which does not require learning a distribution for each timestep j € [n].

5.4 Learning linear predictors with instance-feature inputs

So far we have considered only fixed predictors, either optima-in-hindsight in the online setting
or a population risk minimizers for i.i.d. data. Actual instances can vary significantly and so a
fixed predictor may not be very good, e.g. in the example of querying a sorted array it means
always returning the same index. In the online setting one can consider methods that adapt to
dynamic comparators [Zinkevich, 2003, Jadbabaie et al., 2015, Mokhtari et al., 2016], which are
also applicable to our upper bounds; however, these still need measures such as the comparator
path-length to be small, which may be more reasonable in some cases but not all.

We instead study the setting where all instances come with instance-specific features, a nat-
ural and practical assumption [Kraska et al., 2018, Lattanzi et al., 2020] that encompasses nu-
merical representations of the instance itself—e.g. bits representing a query or a graph—or other
information such as weather or day of the week. These are passed to functions—e.g. linear pre-
dictors, neural nets, or trees—whose parameters can be learned from data. We study linear pre-
dictors, which are often amenable to similar analyses as above since the composition of a convex
and affine function is convex. For example, it is straightforward to extend the matching results to
learning linear predictors of duals. OPM is more challenging because the outputs must lie in the
simplex, which can be solved by learning rectangular stochastic matrices. Both sets of results

151

are shown in Appendix 5.C. Notably, for page migration our guarantees cover the auto-regressive
setting where the server probabilities are determined by a fixed linear transform of past states.
Our main example will be online job scheduling via minimizing the fractional makespan [Lat-
tanzi et al., 2020], where we must assign each in a sequence of variable-sized jobs to one of m
machines. Lattanzi et al. [2020] provide an algorithm that uses predictions w € R”}, of “good”

machine weights w € R” to assign jobs based on how well W corresponds to machine demand;
Wil

[4]

the method has a performance guarantee of O(log min{max; —=,m}). They also discuss learn-

ing linear and other predictors, but without guarantees. We study linear prediction of the loga-
rithm of the machine weights, which makes the problem convex, and assume features lie in the f-
dimensional simplex. For simplicity we only consider learning the linear transform from features
to predictors and not the intercept, as the former subsumes the latter. For the online result, we

use KT-OCO [Orabona and Pal, 2016, Algorithm 1], a parameter-free subgradient method with

t
% M g for g, = VU,(x,); it allows us to not assume any bound

on the machine weights and thus to compete with the optimal linear predictor in all of R™*/,

update X;,1 «

Theorem 5.4.1. Consider online restricted assignment with m > 1 machines [Lattanzi et al.,
2020, Section 2.1].
1. For predicted logits x € R™ there is an algorithm whose fractional makespan has compet-
itive ratio

O(min{||x — log w||s, logm}) < O(U(x)) (5.11)
for U(x) = |x — logw|., where w € R, are good machine weights [Lattanzi et al.,

2020, Section 3].
2. There exists a poly-time algorithm s.t. for any 6, > 0 and distribution D over ma-
chine (weight, feature) pairs (w,f) € R”) x Ay s.t. |logw|s < B the algorithm takes

@ ((5)2 (mf + log %)) samples from D and returns A € R™/ s.t. wp. > 1—4

Ewn~p|Af —logw|e, < min Epy g)op||Af — log W/ + ¢ (5.12)
’ [Alwa<B
3. Let (wy,f1),...,(wp,fr) € R7) x Ay be an adversarial sequence of (weights, feature)

pairs. Then for any A € R™*f KT-OCO has regret

T
S Ak — logwill — | Af — log Wil < HA||F\/Tlog(1 1 24T AIZ) +1 (5.13)

t=1
If the matrices have B-bounded entries then OGD with appropriate step-size has regret

T
— — — <
”Arﬁi)éB;l |Af; — logwi|o — [|Af; — log Wl < BA/2mfT (5.14)

Proof. The first result follows by substituting max; %;m) for n in Lattanzi et al. [2020, Theo-

rem 3.1] and upper bounding the maximum by the ¢,,-norm. For the third, since U, is 1-Lipschitz
w.r.t. the Euclidean norm we apply the guarantee for KT-OCO [Orabona and Pal, 2016, Algo-
rithm 1] using ¢ = 1 and the subgradients of | Af; —log w;||, as rewards [Orabona and Pal, 2016,

152

Corollary 5]. The result for B-bounded A follows by applying OGD with step-size B ’;—7{6 over
|A

ing online-to-batch conversion to the latter result, i.e. draw 7" = () ((%)2 (m f +log %)) sam-

nmx < B [Shalev-Shwartz, 2011, Corollary 2.7]. Finally, the second result follows by apply-

ples (wy, f;), run OGD on the resulting losses | Af; —log w,||, as above, and set A = % Zthl A,
to be the average of the resulting actions A;. The result follows by Lemma B.4.1.]

This is the first guarantee for learning non-static predictors in the algorithms with predic-
tions literature. It demonstrates both how to extend static predictor results to learning linear
predictors—the former is recovered by f; = 1; V t—and how to handle unbounded predictor
domains. The ability to provide such guarantees is another advantage of our approach.

5.5 Tuning parameterized robustness-consistency tradeoffs

We turn to tuning robustness-consistency tradeoffs, introduced in Lykouris and Vassilvitskii
[2021]. As discussed in the previous chapter, this tradeoff captures the tension between following
the predictions when they are good (consistency) and doing not much worse than the worst-case
guarantee in either case (robustness). We focus on the case where the tradeoff is made explicit
via a parameter A € [0, 1], the setting of which is crucial but often left to the end-user. Here
we show that it is often eminently learnable in an online setting. We then demonstrate how to
accomplish a much harder task—tuning A at the same time as learning to predict—on two related
but technically very different variants of the ski-rental problem. This meta-application highlights
the applicability of our approach to nonconvex upper bounds.

5.5.1 Robustness-consistency tradeoffs

Recall the parameterized robustness-consistency tradeoff U;(x, A) = min {f(\)us(x), g:(N\)}
from Equation 4.1, where u; is some measure of the quality of x on instance ¢, f is a mono-
tonically increasing function that ideally satisfies f(0) = 1, and g, is a monotonically decreas-
ing function that (for online algorithms) ideally evaluates to the worst-case competitive ratio at
A = 1. For example, in job scheduling with predictions, a setting where we are given n jobs
and their predicted runtimes with total absolute error 1 and must minimize the sum of their
completion times when running on a single server with pre-emption. Here Kumar et al. [2018,

Theorem 3.3] showed that a preferential round-robin algorithm has competitive ratio at most

1+2n/n 2
1-X 7 A

optimal cost (consistency); on the other hand, if we know the prediction is poor we can set A = 1
and get the (tight) worst-case guarantee of two (robustness).

Of course in practice we often do not know how good a prediction is on a specific instance ¢;
we thus would like to learn to set A, i.e. to learn how trustworthy our prediction is. As a first step,
we can consider doing so when we are given a prediction for each instance and thus only need to
optimize over \. For example, the just-discussed problem of job scheduling has competitive ratio

min{ } Thus if we know the prediction is perfect we can set A = 0 and obtain the

upper-bounded by U;(\) = min {%ﬁ(“t, %} for n; and 7, the number of jobs and the prediction

153

quality, respectively, on instance ¢t. Assuming a bound B on the average error makes U; Lips-
chitz, so we can apply the exponentially weighted average forecaster [Krichene et al., 2015,
Algorithm 1], also known as the exponential forecaster. This algorithm, whose action at each
time ¢ + 1 is to sample from the distribution with density p;,1(-) o p1(-) exp(—a Y0, U()),
has the following regret guarantee (proof in Appendix 5.A.2):

Corollary 5.5.1. For the competitive ratio upper bounds U, of the job scheduling problem with
average prediction error 1)/n, at most B the exponential forecaster with appropriate step-size has

expected regret
T
E Bl1 —logT 1
)glzonlc ZUt (M) —U(N) €9 (—1—1/2 og) (5.15)

t=1

Thus a standard method produces a sequence \; that performs as well as the best A asymp-
totically. Next we study the harder problem of simultaneously tuning A\ and learning to predict.

5.5.2 Ski-rental

We instantiate this challenge on ski-rental, where each task ¢ is a ski season with an unknown
number of days n; € Z-s; to ski each day, we either buy skis at price b; or rent each day for
the price of one. The optimal offline policy is to buy iff b, < n;, and the best algorithm has
worst-case competitive ratio e/(e — 1). Kumar et al. [2018] and Bamas et al. [2020, Theorem 2]
further derive an algorithm with the following robustness-consistency tradeoff between blindly
following a prediction x and incurring cost u;(x) = b;1,~p, +1¢1.<p, OF going with the worst-case
guarantee:

mmi)\ut(:c), by, ny} l2)

—ea(=A)

Assuming a bound of N > 2 on the number of days and B > 0 on the buy price implies that U,
is bounded and Lipschitz w.r.t. A. We can thus run exponentiated gradient on the functions U;
to learn a categorical distribution over the product set [N] x {6/2,...,1 — ¢/2} for some § s.t.
1/d € Z=5. This yields the following bound on the expected regret (proof in Appendix 5.A.3).

Up(z,\) = = (14 1/b,)™* (5.16)

Corollary 5.5.2. For the competitive ratio upper bounds U; of the discrete ski-rental problem the
randomized exponentiated gradient algorithm with an appropriate step-size has expected regret

T
me[]\rfI]l,?(};{(O,l] Etzl U(xg, M) — Up(z, N) < 6N+/T log(BNT) (5.17)

Thus via an appropriate discretization the sequence of predictions (z, A;) does as well as the
joint optimum on this problem. However, we can also look at a case where we are not able to just
discretize to get low regret. In particular, we consider the continuous ski-rental problem, where
each day n; > 1 is a real number, and study how to pick thresholds z after which to buy skis,
which has cost u; () = ny1,, <+ (by+2)1,,~.. Note that x = 0 and z = N recovers the previous
setting where our decision was to buy or not at the beginning. For this setting, Diakonikolas et al.
[2021] adapt an algorithm of Mahdian et al. [2012] to bound the cost as follows:

in{ne, b
Cy(x,\) < Uy(x, A) = min { i‘tfxi GT:I_{T)’;}} (5.18)

154

While the bound is simpler in), it is discontinuous in x because u; is piecewise-Lipschitz. Since
one cannot even attain sublinear regret on adversarially chosen threshold functions, we must
make an assumption on the data. In particular, we will assume the days are dispersed:

Definition 5.5.1. A set of points ny,...,nr € R is S-dispersed if V ¢ > ~T_5 the expected
number in any e-ball is O(eT), i.e. Emaxeong [z £ €] N {n1,...,np}| = O(T).

Dispersion encodes the stipulation that the days, and thus the discontinuities of u;(z,), are
not too concentrated. In the i.i.d. setting, a simple condition that leads to dispersion with 5 = 1/2
is the assumption that the points are drawn from a x-bounded distribution [Balcan et al., 2018b,
Lemma 1]. Notably this is a strictly weaker assumption than the log-concave requirement of
Diakonikolas et al. [2021] that they used to show statistical learning results for ski-rental. Hav-
ing stipulated that the ski-days are -dispersed, we can show that it implies dispersion of the
loss functions [Balcan et al., 2018b] and thus obtain the following guarantee for the exponential
forecaster applied to U;(z, \) (proof in Appendix 5.A.4):

Corollary 5.5.3. For cost upper bounds U; of the continuous ski-rental problem the exponential
forecaster with an appropriate step-size has expected regret

T
max]EZ Uy (26, M) — Uy, \) < O (Tlog(NT) + (N + B)QTl—ﬂ) (5.19)
t=1

2€[0,N],2e(0,1

Thus in two mathematically quite different settings of ski-rental we can directly apply online
learning to existing bounds to not only learn online the best action for ski-rental, but to at the
same time learn how trustworthy the best action is via tuning the robustness-consistency tradeoff.

5.6 Conclusion

The field of algorithms with predictions has been successful in circumventing worst case lower
bounds and showing how simple predictions can improve algorithm performance. However,
except for a few problem-specific approaches, the question of how to predict has largely been
missing from the discussion. In this chapter we presented the first general framework for effi-
ciently learning useful predictions and applied it to a diverse set of previously studied problems,
giving the first low regret learning algorithms, reducing sample complexity bounds, and showing
how to learn the best robustness-consistency tradeoff. One current limitation is the lack of more
general-case guarantees for simultaneously tuning robustness-consistency and learning the pre-
dictor, which we only show for ski-rental. There are also several other avenues for future work.
The first is to build on our results and provide learning guarantees for other problems where the
algorithmic question of how to use predictions is already addressed. Another is to try to improve
known bounds by solving the problems holistically: developing easy-to-learn parameters in con-
cert with developing algorithms that can use them. We make progress in this direction in the next
chapter. Finally, there is the direction of identifying hard problems: what are the instances where
no reasonable prediction can help improve an algorithm’s performance?

155

5.A Proofs of main results

5.A.1 Proof of Lemma 5.3.1

Proof. Note that the second line follows directly by Jensen’s inequality, so we focus on showing
the first two inequalities. For each j € [n] define p; = 1 — (s[;, p[;)), i-e. the probability that
§; # s;, and the r.v. X; ~ Ber(p,). Define also the r.v. S; = Y7777 X s.t. we have

7 =1
i+yD—1
DE,q =E S;=E X, 5.20
VDB =By a5 =B max 24 X 620

Note that S; is a Poisson binomial and so has moment-generating function E, exp(tS;) =

H;ZD ! (1 — p; + pje'). Therefore applying Jensen’s inequality and the union bound yields

exp (tEp max]Si) < Epexp (t max SZ) =E, ie[max exp (tS;)

i€[n—yD+1 i€[n—yD+1] n—yD+1]
n—yD+1
< Z E, exp (tS;)
i=1
i*+yD—1
<(—yD+1) [] (1—p;+pe)
j=i*
(5.21)
forall ¢ > 0 and i* € arg max;ep,_,p11] EpSi- We then have
*+yD—1
tEp ie[nrilsgﬂ] S; <log(n —vD + 1) + j;* log(1 — p; + pje")
i*+yD—1
<log(n —vD + 1)+ log exp(p; (e’ — 1
g(n—~D +1) FZ gexp(p;(e’ — 1)) (5.22)
i*+yD—1
<log(n —yD +1) + Z pi(e' —1)
j=i*

<log(n —yD +1) + EpSix(e’ — 1)

Dividing by t = W (w) + 1 shows that f(z) = :”(eXp(t)fl);lgg("ﬂDH), where W :

[0, 0) — [0, 00) is the Lambert W -function. Define L = log(n—~yD +1)/e, so we are interested
z(exp(W(L/x)+1)—1)+eL
W(L/x)+1

in bounding f(x) = . We compute its derivative:

o a(@VEDH DWW (Ljx)? — 3x(W (L/x) + 1/3) + xeV D+ 4 2¢
f(z) = V(L)) £ 1) (5.23)

156

and second derivative:

(L/z) ((x + eL)W (L/x)* + 2(2x + eL)W(L/xz) + eL)

" . _W
JHw) = 22(W(L/z) + 1)°

(5.24)

Since the second derivative is always negative, f is a concave function on z > 0. Thus for
w = W(1) we have

f(x) <min f(y) + f'(y)(z —y)

< yL(e/w —l+e) + L{e/w —1w® = 3L(w +1/3) + Le/w + QeL(x — L)
w+1 L{w+1)3
— (efw+ 1w+ 1P = (e +1)/(w+1) = /(w+ 1))z (5.25)

+(1/(w+1)*+e/(w+1) =1/ (w+1)*) L

2
<ex+ —log(n —vyD + 1)
e

5.A.2 Proof of Corollary 5.5.1

Proof. We have that U;(\) is bounded above by 3(1 + 2B), its largest gradient is attained at
2/(3 + 2m/n) where it is bounded by (3 + 2B)/2. Applying Krichene et al. [2015, Corollary 2]
and simplifying yields the result. [

5.A.3 Proof of Corollary 5.5.2

min{bs,n¢} 1
ut(x) = N

with norm bounded by %. Let A = {kzé},lj:/ (iJ for some 0 € (0,1]. Then we run

Proof. U,(z,) is bounded above by 2N and its largest gradient is attained at A =

. . . log &
EG on the simplex over [N] x A and with step-size ﬁ 0§T5

the best element of [N] x A of 2N, /2T log % [Shalev-Shwartz, 2011, Theorem 2.15]. Setting

to obtain regret compared to

157

d = min {%ﬁ, 1} yields

T
EZ Uy (24, \) < 2NA/2T log(N|1/5]) —|— IIlIIl ZUt T, \)

-)\eA

N Bexp(l/N)éT
< 2N4 /2T log ~
85 T loxp(UN) = 1) T seinaio ZUt %)

< QN\/ZT (log(BT) + max {log N, % —2log (exp (%) - 1) })

+N\/2T+ mln ZUtx/\

1,2e(0,1]

< 6N/Tlog(BNT) + Jnin ZUta: A)

N],2e(0,1]

(5.26)

5.A.4 Proof of Corollary 5.5.3

Proof. U(z, \) is bounded above by e(N + B), its largest gradient w.r.t. \ is attained at A =

emin{n,b:} 2e(N+B)
(e—1)u¢(z)+emin{ng,be}’ -1

e(N + B). Thus the function is 5e(N + B)? —LlpSChltZ w.r.t. the Euclidean norm, apart from
discontinuities at x = n;. Now, note that our assumption that the points nq,...,np are -
dispersed implies exactly that the functions U, are S-dispersed (c.f. Definition 2.3.1), so the
exponentially-weighted forecaster attains expected regret O (Tlog(NT) + (N + B)QTl_B).

]

2
where it is bounded by () , and its largest gradient w.r.t. x is

5.B b-matching

Definition 5.B.1. For b € RZ the b-seminorm || - |1 : R" — R>g is [|x[b1 = 2, bry|xl-

Claim 5.B.1. Given any vectors x € Z" and y € R", lety € Z" be the vector whose elements are
those of y rounded to the nearest integer. Then for all b € Z™ we have |x — ¥ |b1 < 2|x — ¥||b1-

Proof. Let S < [n] be the set of indices ¢ € [n] for which x| > y;;; <= ¥, = [y[y]- For

158

i € [n]\S we have |x;; — ypiy| = 1/2 = [— ¥/ so it follows by the triangle inequality that

Ix = F o1 = > bpglxi — Fal + . bpglxp — ¥
ies ien)\S
< D bplxp — vl + Y, brlxu — vl + vy — i) (5.27)
€S i€[n]\S
< Zb[i]|x[i] — Yyl +2 Z bp [xp =yl < 2[x = ylba
€S ie[n]\S

]

Theorem 5.B.1. Suppose we have a fixed graph with n > 3 vertices and m > 1 edges.
1. For any cost vector ¢ € ZZ,, any demand vector b € ZZ,, and any dual vector x €
R"™ there exists an algorithm for minimum weight perfect b-matching that runs in time
O (mnU(x)), where U(x) = |x — x*(c, b)|p.1 for x*(c, b) the optimal dual vector asso-
ciated with c and b.
2. There exists a poly-time algorithm s.t. for any J, ¢ > 0 and any distribution D over (cost,
demand) vector pairs in ZZ, x ZZ, with respective {,-norms bounded by C' and B the

algorithm takes O ((CB”) log %) samples from D and returns X s.t. w.p. > 1 — ¢:

E(c,b)~D”5\< — X* (C, b)Hb,l = | r”nlnc E(c b ND”X X (C b)Hb 1+ ¢€ (528)
3. Let(cq,b1), ..., (cp,br) € ZZ, x ZZ , be an adversarial sequence of (cost, demand) vector

pairs with ¢,,-norms bounded by C' and B, respectively. Then OGD with appropriate step-
size has regret

T
max |x: — x*(ct, be) b1 — |x — x*(ct, by) b1 < CBnvV2T (5.29)

<
Il <C &

Proof. The first result follows by Dinitz et al. [2021, Theorem 31] and Claim 5.B.1. For the
third, let x; be the sequence generated by running OGD [Zinkevich, 2003] with step-size B\?ﬁ
on the losses Uy (x) = ||x — x*(ct, by)||b,,1 over domain [—C, C'|". Since these losses are B+/n-
Lipschitz and the duals are C'y/n-bounded in Euclidean norm the regret guarantee follows from
Shalev-Shwartz [2011, Corollary 2.7]. For the second result, apply online-to-batch conversion

to the third result, i.e. draw 7" = () ((CB”) log 5) samples (c;, b;), run OGD as above on

the resulting losses U;, and set X = % Zt:1 x; to be the average of the resulting predictions x;.
Applying Lemma B.4.1 yields the result.]

5.C Learning linear predictors with instance-feature inputs

Computational instances on which we want to run algorithms with predictions often come with
instance-specific features, e.g. ones derived from text descriptions of the instance or summary

159

statistics about related graphs or environments [Kraska et al., 2018, Lattanzi et al., 2020]. It
is thus natural to learn parameterized functions, e.g. linear mappings or neural networks, from
these features to predictions. However, there has been very little work, in either the statistical
or online setting, showing that such predictions are learnable. In this section we show how our
framework naturally handles this setting by exploiting the convexity of compositions of convex
and affine functions, resulting in the first formal guarantees for linear predictors for algorithms
with predictions. While the first application to the matching problem of Dinitz et al. [2021] is a
straightforward extension, we also show how to handle more complicated cases, such as when
the output space is constrained to probability simplices as in the page migration problem. Note
we assume all feature vectors lie in the f-dimensional simplex; this is generally easy to accom-
plish by normalization. For simplicity we also only consider learning the linear transform from
features to predictors and not the intercept, as the latter follows from the former by appending an
extra dimension with value 1/2 to the feature vector and doubling the bound on the norm of the
linear transform.

5.C.1 b-matching

Our first application for learning mappings from instance features is to the b-matching setting.
Note that the learning-theoretic results for the regular bipartite matching setting in Section 5.2
follow directly by setting b = 1,, for all instances, and that the learning-theoretic results of The-
orems 5.2.1 and 5.B.1 are also special cases of the following when f = 1, for all instances. Note
that we optimize only over A € [—C, C]™*/, but unlike in the f = 1 case the optimal A may be
unbounded; to handle that setting, one could again use an algorithm such as KT-OCO that does
not depend on knowing the set size [Orabona and Pal, 2016].

Theorem 5.C.1. Consider the setting of Theorem 5.B.1.
1. There exists a poly-time algorithm s.t. for any J,¢ > 0 and any distribution D over (cost,
demand, feature) vector triples in ZZ, x Z%; x Ay s.t. the respective {,,-norms of the first
: . 2
two are bounded by C and B, respectively, the algorithm takes O ((C%) (f*+log %))

samples from D and returns A e R™f st wp.=>1—0:

E(c7b7f)~’DHAf —x* (C, b)”b,l < ||AIHnin<C E(c,b,f)~DHAX — x* (C, b)”b,l + € (530)

2. Let (c1,by,fi), ..., (cp, by, fr) € ZZ, x ZZ, x A be an adversarial sequence of (cost,

demand, feature) vector triples s.t. the /,,-norms of the first two are bounded by C' and B,
respectively. Then OGD with appropriate step-size has regret

T
max > [Af —x*(ci, by) b1 — [Af, —x*(c;, b) b1 < CBnfvV2T (531)
t=1

| Aflmax <C

Proof. For the second result let A; be generated by running OGD with step-size B\?ﬁ on the

losses U;(Af) = |Af — x*(cy, by)||p,.1 over [-C, C]™*/. Since these are B+/n f-Lipschitz and
the duals are C'v/n f-bounded in the Euclidean norm, the regret follows from Shalev-Shwartz
[2011, Corollary 2.7]. For the first result, apply online-to-batch conversion to the second result,

160

i.e. draw T = ((%)2 (f*+log %)) samples (c;, by, f;), run OGD as above on the resulting

losses Uy, and set A = % Zle A, to be the average of the resulting predictions A;. Applying
Lemma B.4.1 yields the result. O]

5.C.2 Online page migration

Using instance features for online page migration is more involved because the output space
must be constrained to the product of n |K|-dimensional simplices. However, we can solve
this by restricting to tensors consisting of matrices whose columns sum to one, also known as
rectangular stochastic matrices. Note that the learning-theoretic results of Theorem 5.3.1 are
special cases of the following when f = 1, for all instances.

Theorem 5.C.2. In the setting of Theorem 5.3.1 let S**/*1*/ be the set of stacks of |K| x f
nonnegative matrices whose columns have unit ¢;-norm.
1. There exists a poly-time algorithm s.t. for any d,c > 0 and distribution D over request
sequences s of length n in K and associated feature vectors f € A\ it takes

2
(@) <<%) (n2f2 log |K| + log %)) (5.32)

samples from D and returns Asit w.p. = 1—4:

Esr)~pUs(Af) < min B gopUs(Af) +¢ (5.33)
AeSnx || x f
2. Let (s1,f1),..., (s, fr) be an adversarial sequence of (request sequence, feature) pairs.

Then updating the distribution A,j; ;) over Ax| at each (timestep,column) pair (J,k) €
[n] x [f] using EG with appropriate step-size has regret

T
max > U, (Af,) — U, (Af,) < 7Dnf~/2T log|K] (5.34)
t=1

AeSnx|KlIxf

Proof. For the second result let A; be the sequence generated by running n f EG algorithms with

log | K]
292D2T

and the maximum entropy over the simplex is log ||, the regret guarantee follows from Shalev-
Shwartz [2011, Theorem 2.15]. For the first result, apply standard online-to-batch conversion to

the second result, i.e. draw T' = () ((%)2 (n?f?log |K| + log %)) samples (s, f;), run EG on

the resulting losses U, (Af;) as above, and set A= % ZtT=1 A, to be the average of the resulting
actions A;. Applying Lemma B.4.1 yields the result.]

on the losses Us, (Af) over S**IX1*f Since these losses are D-Lipschitz

step-size

We can further also show a result in the perhaps more-natural setting where the linear pre-
dictor A is the same for each element in the sequence, and maps directly from features to the
|IC|-simplex. Notably, the linear auto-regressive setting, in which we want a linear map from the
past k sequence elements to a probabilistic prediction of the next one, is covered by this result if
we allow the features to be k|K|-dimensional concatenations of & one-hot |K|-length vectors.

161

Theorem 5.C.3. In the setting of Theorem 5.3.1 let S**° be the set of a x b nonnegative matrices
whose columns have unit ¢;-norm.

1. There exists a poly-time algorithm s.t. for any 6, > 0 and distribution D over re-
quest sequences s of length n in K and associated feature sequence F' € S/*" it takes

O ((%)2 (n?f?log |K| + log %)) samples from D and returns A s.t. w.p. =1 — 6

Em~pUs(FAT) < Jnin Em~pUs(FAT) + ¢ (5.35)
2. Let (s1,Fy),...,(sr,Fr) be an adversarial sequence of (request sequence, feature se-
quence) pairs. Then updating the distribution A,z over A\ at each column £ € [f] has
regret
T
max U, (F,A]) — U, (F:AT) < yDf+/2T log |K| (5.36)
t=1

Proof. For the second result let A; be the sequence generated by running f EG algorithms with

log |K]|
272D2T

the maximum entropy over the simplex is log ||, the regret guarantee follows from [Shalev-
Shwartz, 2011, Theorem 2.15]. For the first result, apply standard online-to-batch conversion to

the second result, i.e. draw 7' =) ((%)2 (f*log |K]| + log %)) samples (s;, f;), run EG on the

step-size

on the losses U, (FA ") over S*I*/, Since these losses are v D-Lipschitz and

resulting losses U, (F;AT) as above, and set A= %Zle A, to be the average of the resulting
actions A;. Applying Lemma B.4.1 yields the result.]

5.D Faster graph algorithms with predictions

In this section we compare to the results of Chen et al. [2022], who analyze several prediction-
based graph algorithms, including one with an improved prediction-dependent runtime for the
matching approach of Dinitz et al. [2021] and a prediction-dependent bound for single-source
shortest path. From the learnability perspective, they observe two important error metrics in the
analysis of graph algorithms with predictions: the ¢;-metric of Dinitz et al. [2021] measuring
the ¢;-norm between the prediction and a ground truth vector such as the dual and the /,,-metric
measuring the /,,-norm between the same quantities. In the first case their setting and results are
equivalent to those of Dinitz et al. [2021], so we improve upon this by a factor of O(d), where d
is the dimension of the hint.

To analyze the /., case, we start by showing that—as in the /; case—we can round integer
vectors with only a multiplicative factor loss:

Claim 5.D.1. Given any vectors x € Z" and y € R", let y € Z" be the vector whose elements
are those of y rounded to the nearest integer. Then we have || x — ¥ < 2|Xx — ¥//co-

Proof. Let S < [n] be the set of indices ¢ € [n] for which x| > y;; <= ¥ = [y[y]- For

162

i € [n]\S we have |x;; — ypiy| = 1/2 = [— ¥/ so it follows by the triangle inequality that

b = 51 = ma { g = 51l s i 0l
- R 1— Vi 5.37
maX{I?gXlX yial max xp =yl + [y Y[1|} (5.37)
< e { gy~ ¥10 2 e i il < 2 = vl

]

We are thus able to also use online convex optimization in this setting and apply the rounded
outputs to graph algorithms. In particular, we can use regular OGD to improve upon the (-
learnability result of Chen et al. [2022] by a factor of O(d?), where d is the dimension of the
prediction:

Theorem 5.D.1. Consider any graph algorithm with optimal d-dimensional M -bounded predic-
tions h(c) associated with every instance c.
1. There exists a poly-time algorithm s.t. for any d, ¢ > 0 and distribution D over instances it

takes O ((%)2 (d + log %)) samples from D and returns h € R? s.t. wp. > 1—§

Epllh —h(c)|e < Jnin E.opllh — h(c)|w + & (5.38)
2. Let cq, ..., cr be an adversarial sequence of instances. Then OGD with appropriate step-

size achieves regret

T
max " lhy — h(c,)]o — b = h(ee) oo < MV24T (5.39)

<
Il <M

Proof. The proof is the same as for the last two results of Theorem 5.4.1 in the special case
f=1L [

S5.E Permutation predictions for non-clairvoyant scheduling

Finally, we discuss the the applicability of our framework to the results in Lindermayr and
Megow [2022], who study how to prioritize among n jobs by predicting the best permutation
of them under weights w € RZ, and processing requirements p € RY, that are only known after
completion. Ignoring robustness-consistency tradeoffs and terms that do not depend on the pre-
diction, they show that in several settings the competitive ratio depends linearly on the following
error of an n x n permutation matrix X:

Uwp(X) = Tr(Xw((UOX)p)') = Tr(UOGX) ' Xwp') (5.40)

where U € {0, 1} is upper triangular. The above expression is derived from the third equation
in the proof of Theorem 4.1 of Lindermayr and Megow [2022] for the case of 2 = 1 sample; we
construct the matrix form to reason about its online learnability.

163

Naively, a sequence of bounded functions of permutations is computationally inefficiently
learnable by using randomized EG over the n! experts corresponding to each permutation:

Theorem 5.E.1. Consider the setting of Lindermayr and Megow [2022] with n jobs with W -
bounded weights and P-bounded processing times. Let P"*" be the set of n x n permutation
matrices.

1. There exists an algorithm that s.t. for any ¢, ¢ > 0 and distribution D over weights and pro-
cessing requirements it takes O ((@)2 (n logn + log %)) samples from D and returns

a discrete distribution X € A\, over P"*™ such that

EX~ﬁE(w,p)~DUW,p(X) < Xlel[lpginE(w’p)NDUw’p (X) + ¢ (5.41)
2. Let (wy1,p1), ..., (wr, pr) be an adversarial sequence of job (weight, processing require-

ment) pairs. Then running EG with appropriate step-size over A pnxn| has regret

T
E max » Uw,p,(Xt) = Uw,p,(X) < WPna/2nT logn (5.42)

Xe]P)’an
t=

where the expectation is over the randomness of the algorithm.

Proof. For the second result let x; € A\, be the sequence generated by running EG with step-

size 4/ % over the n! experts corresponding to each element of P"*". Then the sequence

of permutation matrices X; ~ x; sampled from this distribution satisfies the guarantee on the
expected regret [Shalev-Shwartz, 2011, Corollary 2.14] since log(n!) < nlogn and U is
W Pn-bounded. The first result follows by applying online-to-batch conversion to this sequence,

i.e. wedraw T = () ((@)2 (n logn + log %)) samples (wy, p;), run randomized EG as above,

and set X = % Zthl X; to be the average of the resulting distributions x;. Applying Lemma B.4.1
yields the result.]

The sample complexity guarantee resulting from online-to-batch conversion matches that of
Lindermayr and Megow [2022], except that the output is a distribution over permutation matrices
so the error is in expectation over that distribution. However, randomized EG is incredibly inef-
ficient due to the need to store and sample from a distribution over n! variables. Another way of
learning over permutation matrices is to run an online learning algorithm over the set of doubly
stochastic matrices [Helmbold and Warmuth, 2009]. When the losses are linear functions of the
permutation matrices this is yields efficient low-regret algorithms because each doubly stochas-
tic matrix corresponds to a small convex combination of permutation matrices, i.e. a distribution
from which one can sample an action. However, the losses Uy, , are nonlinear and so a different
approach is needed.

164

Chapter 6

Private algorithms with private predictions

In the previous chapter we provided learning-theoretic guarantees for several existing learning-
augmented algorithms. We now show how our framework can be deployed when extending
algorithms with predictions in new directions, starting with differential privacy (DP). The differ-
entially private release of statistics about a sensitive dataset x € R" is an inevitably error-prone
task because we are by definition precluded from revealing exact information about the instance
at hand [Dwork and Roth, 2014]. However, DP instances rarely occur in a vacuum: even in
the simplest practical settings, we usually know basic information such as the fact that all indi-
viduals have a nonnegative age. Often, the dataset we are considering is drawn from a similar
population as a public dataset x’ € RY and should thus have similar statistics, a case known as
the public-private setting [Liu et al., 2021a, Bie et al., 2022]. Alternatively, in what we call se-
quential release, we aim to release information about each of a sequence of datasets xi, ..., Xy
one-by-one. These could be generated by a stationary or other process that allows information
derived from prior releases to inform predictions of future releases. In all of these settings, we
might hope to incorporate external information to reduce error, but approaches for doing so tend
to be ad hoc and assumption-heavy.

We propose that the framework of algorithms with predictions [Mitzenmacher and Vassilvit-
skii, 2021]—provides the right tools for deriving DP algorithms in this setting, and instantiate this
idea for multiple quantile release [Gillenwater et al., 2021, Kaplan et al., 2022], covariance esti-
mation [Biswas et al., 2020, Amin et al., 2019, Dong et al., 2022], and data release [Hardt et al.,
2012, Liu et al., 2021a]. Whereas in past algorithms with predictions work the goal is usually
to bound the cost Cx(w) of running on instance x given a prediction w by some metric Uy (W)
of the quality of the prediction on that instance, we instead aim to design learning-augmented
algorithms where it captures the error of some statistic—e.g. quantiles—computed privately on
instance an x given a prediction w. We are interested in bounding this cost in terms of the quality
of the external information provided to our algorithm, which we denote by U, (w).

While incorporating external information into DP is well-studied, c.f. public-private meth-
ods [Bie et al., 2022, Liu et al., 2021a] and private posterior inference [Dimitrakakis et al., 2017,
Geumlek et al., 2017, Seeman et al., 2020], by deriving and analyzing a learning-augmented
algorithm for multiple quantiles we show numerous comparative advantages, including:

OThe work presented in this chapter first appeared in Amin et al. [2023] and Khodak et al. [2023a].

165

1. Minimal data assumptions, sometimes even fewer than used by the unaugmented baseline.

2. Existing tools for studying the robustness of algorithms to noisy predictions [Lykouris and
Vassilvitskii, 2021].

3. Co-design of algorithms with predictions with methods from Chapter 5 for learning those
predictions from data, which we show is crucial for both the public-private and sequential
release settings.

We derive learning-augmented extensions of the state-of-the-art ApproximateQuantiles (AQ)
method [Kaplan et al., 2022] for quantile release and of the covariance estimation algorithms
SeparateCov [Dong et al., 2022] and IterativeEigenvectorSampling [Amin et al., 2019]; for data
release we show how our framework applies to MWEM [Hardt et al., 2012], for which using a
non-uniform (i.e. prediction-based) prior has been studied in past work [Liu et al., 2021a]. In
all cases our instance-dependent guarantees (nearly) match past worst-case bounds while being
much better if a natural measure U, (w) of prediction quality is small. We also show how these
algorithms can be made robust to poor predictions w and how they can be efficiently and pri-
vately learned by optimizing Uy across related datasets x. In addition, our analysis yields several
contributions of independent interest for differential privacy:

1. The first robust algorithm for (single or multiple) private quantile release that avoids as-
suming the data is bounded on some interval, specifically by using a heavy-tailed prior.

2. Prediction-free trace-sensitive guarantees for SeparateCov (for both the pure and zCDP
versions) that strictly improve upon the original bounds of Dong et al. [2022] for the same
algorithm.

3. A non-Euclidean extension of DP-FTRL [Kairouz et al., 2021a] that is the first DP online
convex optimization method that can be easily customized to obtain better regret guaran-
tees on different geometries.

Finally, we conclude with an empirical study where we use our framework to design algorithms
to reduce the error of private quantile release in both the public-private and sequential release
settings described above. Our technical approach takes advantage of a novel connection between
DP quantiles and censored regression to obtain both guarantees and practical algorithms. The ex-
perimental results highlight the effectiveness of our framework for ensuring robust performance
in the face of noisy predictions and for designing surrogate loss functions that can be optimized
to yield useful predictions.

6.1 Problem formulation

As discussed in Section 4.A, in algorithms with predictions we seek to bound some algorithmic
performance measure Cy(w) by a prediction-dependent upper bound Uy (w) that measures the
quality of a prediction w for the instance x. In our work this cost will be the error of a privately
released statistic, as compared to some ground truth. We will use the following privacy notion:

166

Definition 6.1.1 ([Dwork and Roth, 2014]). Algorithm A is (¢, §)-differentially private if for
all subsets S of its range, Pr(A(x) € S) < e° Pr(A(X) € S) + 0 whenever x ~ X are neighbor-
ing datasets.

Using ¢-DP to denote (g, 0)-DP, our broad goal will be to reduce the error Cx(w) of e-
DP multiple quantile release while fixing the privacy level €. For easier comparison to past
prediction-free results, we will define neighboring datasets differently depending on the appli-
cation; specifically, for quantile release we use add-remove privacy, where x can be obtained
from x by adding or removing an entry, while for covariance estimation and data release we use
swap privacy, in which x can be obtained from X by replacing one entry with another.

Working with the learning-augmented algorithms framework when incorporating external
information into DP methods allows us to make use of its existing language for quantifying useful
properties such as robustness and learning. In past work robustness-consistency tradeoffs have
mainly been studied for online algorithms with predictions, as for runtime we can easily show
robustness by running the learning-augmented algorithm with a worst-case optimal algorithm in
parallel. However, DP statistics are similar to online algorithms in that we have limited access to
data, albeit in a very different manner, and so robustness to poor predictions is nontrivial to show.

In the previous chapter we argued that the prediction quality measures Uy(w) we derive
should be useful for making good predictions, e.g. by Uy, being learnable from multiple instance

T
x;. We will again mainly focus on online learnability, i.e. bounds on the regret max 21 Us, (W) —
t=

Uy,(w) of predictions w; in some space V given instances X, ...,X; 1. Since Uy, roughly
upper-bounds the error C,, this means that asymptotically the average error is governed by the
average prediction quality minwew = Zthl Uy,(w) of the optimal w € W. As in Chapter 5, we
will seek to derive upper bounds Ux that are amenable to familiar gradient-based optimization
schemes, which will also enable instance-dependent linear prediction: setting w; using a learned
function of some instance features f;. However, since the upper bounds depend on sensitive
datasets x;, the learning algorithms we use will themselves have to be private, so in Section 6.5
we derive a non-Euclidean extension of DP-FTRL (c.f. Theorem 6.5.1) to show online and PAC
learnability of the prediction quality measures Uy for all three DP tasks we consider.

The usefulness of both the learning-theoretic and robustness-consistency analysis is demon-
strated in Section 6.6 on two applications where it is reasonable to have external information
about the sensitive dataset(s). In the public-private setting, the prediction w is obtained from a
public dataset x’ that is assumed to be similar to x but is not subject to privacy-protection. In se-
quential release, we privately release information about each dataset in a sequence Xy, . .., Xr;
the release at time ¢ can depend on x; and on a prediction w;, which can be derived (privately)
from past observations. We show that sequential release can be posed directly as a private on-
line learning problem, while the public-private setting can be approached via online-to-batch
conversion [Cesa-Bianchi et al., 2004]. Both can thus be solved by treating the prediction qual-
ity measures Uy, as surrogate objectives for the actual cost functions Cx and applying standard
optimization techniques, as we demonstrated in Chapter 5.

167

6.2 Overview of theoretical results

We now summarize the main results for the three tasks we consider, focusing on the prediction-
dependent performance bounds Uy = C that we show for our learning-augmented private al-
gorithms. These will be stated more formally in Section 6.3. We also highlight the utility of
these results in ensuring robustness and enabling learning, which will be further detailed in Sec-
tions 6.4 and 6.5, respectively.

6.2.1 Related work

There has been significant work on incorporating external information to improve DP methods.
A major line of work is the public-private framework, where we have access to public data that
is related in some way to the private data [Liu et al., 2021a, Amid et al., 2022, Li et al., 2022, Bie
et al., 2022, Bassily et al., 2022]. The use of public data can be viewed as using a prediction, but
such work starts by making (often strong) distributional assumptions on the public and private
data; we instead derive instance-dependent upper bounds with minimal assumptions that we then
apply to such public-private settings. Furthermore, our framework allows us to ensure robust-
ness to poor predictions without distributional assumptions, and to derive learning algorithms
using training data that may itself be sensitive. Another approach is to treat DP mechanisms
(e.g. the exponential) as Bayesian posterior sampling [Dimitrakakis et al., 2017, Geumlek et al.,
2017, Seeman et al., 2020]. Our work can be viewed as an adaptation where we give explicit
prior-dependent utility bounds. To our knowledge, no such guarantees exist in the literature.
Moreover, our approach does not necessitate specifying the external information in the form of
(explicit) priors, e.g. for covariance estimation we use matrix predictions.

Our approach for augmenting DP with external information centers the algorithms with pre-
dictions framework, where past work has focused on using predictions to improve metrics related
to time, space, and communication complexity. Tuning DP algorithms has been an important
topic in private machine learning, e.g. for hyperparameter tuning [Chaudhuri and Vinterbo,
2013] and federated learning [Andrew et al., 2021], but these have not considered incorporating
per-instance predictions.

6.2.2 Multiple quantile release

In the quantile problem, given a quantile ¢ and a sorted dataset x € R" of n distinct points, the
goal is to release a number o that upper bounds exactly |gn| of the entries. The error metric,
Gap,(x, 0), is the number of entries between the released number o and |gn|. A straightfor-
ward application of the well-known exponential mechanism [McSherry and Talwar, 2007] with

utility — Gap, outputs o that satisfies Gap,(x,0) < 2log ﬁq}l&q) wp. = 1 — B, where U is

the probability j¢((X[ign|], X[|gnj+17]) that the prior assigns to the optimal interval. We thus use

UL (1) = —log U as our measure of prediction quality in the single-quantile setting, which
allows us to recover standard guarantees that assume x € (a,b)" is bounded and set 4 to be the
uniform measure on (a, b). As our first major contribution, we show by studying U, how to dis-
pense with this assumption by instead using the Cauchy distribution with location “T*b and scale

168

b_T“. If the boundedness assumption holds then the resulting mechanism has nearly the same
bound on Gap, as the uniform measure, up to an additive 2 = log 7 factor, but if does not—e.g.
if all points xp; in the dataset are a distance R > b=a 5" “*b —then we still have the
guarantee Gap, = @(@) w.h.p. (c.f. Corollary 6.3.1). In contrast, the error of the released
quantile when using the uniform measure in the latter scenario is 2(n) a.s.

The main technical challenge is then to extend the single-quantile guarantee to the case
where we must estimate m > 1 quantiles ¢y, ..., ¢, € (0,1) while making use of m priors
M1, [bm. In particular, we want a guarantee on the maximum gap that encodes how use-
ful each prior y; is for its quantile ¢; and that grows sublinearly in m, ideally recovering the
max; Gap,, = O(%g(m)) bound of Kaplan et al. [2022] in the prediction-free limit. Although

it requires several major modifications to AQ, we are able to nearly achieve this goal, devising a

method (c.f. Algorithm 13) that guarantees a bound of O(T(m) log ",)(“1)) on the maxi-
mum gap w.h.p. (c.f. Theorem 6.3.3), where r(m) is sub-polynomial but super—polylogarithmie
in m. This yields a quality measure Uy for pq, ..., i, that aggregates the single-quantile mea-
sures U)((‘Ii)(ai) via their log-sum-exp, a convenient form that allows us to easily extend single-
quantile robustness and learning-theoretic results to multiple quantiles.

Our quantile results exemplify the advantages of our approach to incorporating external
information into DP algorithms that we discussed in the introduction: minimal assumptions,
robustness-consistency tradeoffs, and learning. In-fact, the first outcome of our analysis was
removing a boundedness assumption. This contrasts with past public-private work [Liu et al.,
2021a, Bie et al., 2022], which makes distributional assumptions, and is why we can obtain
guarantees in two very distinct settings in Section 6.6. We next highlight how our results imply
convenient robustness-consistency tradeoffs and efficient learnability.

away from

Robustness

Using the formalization of robustness and consistency in Definitions 4.A.1 and 4.A.2, algorithms
with predictions provides a convenient way to deploy them by parameterizing the robustness-
consistency tradeoff, in which methods are designed to be r,(\)-robust and ¢, (\)-consistent for
a user-specified parameter A € [0, 1] [Bamas et al., 2020, Lykouris and Vassilvitskii, 2021]. For
quantiles, we can obtain an elegant parameterized tradeoff by interpolating prediction priors with
a “robust" prior. In particular, we can pick p to be a trusted prior such as the uniform or Cauchy

and for any prediction y use u® = (1 — \)u + Ap instead. Then since U is linear we have

U@ (MY = (1 = N (1) + AV (p), which implies the following guarantee:

Corollary 6.2.1 (of Lem. 6.A.1; c.f. Cor. 6.4.1). For any quantile ¢ € (0, 1), applying EM with

prior u™ = (1 — XN + Apis (log —8

Ao)) -robust and (2 log /B> -consistent.

Thus w.h.p. error is simultaneously at most g log % worse than that of only using the robust

prior p and we only have error = log 1B ’8 if the prediction p is perfect, i.e. if it is only supported
on the optimal interval. This is easy to extend to the multiple-quantile metric Uy = — log Wy. In
fact, we can even interpolate between the polylog(m) prediction-free guarantee of past work and
our learning-augmented guarantee with the worse dependence on m (c.f. Corollary 6.4.2); thus

169

if the prediction is not good enough to overcome the worse rate we can still ensure that we do not
do much worse than the original guarantee. These results show the advantage of our framework
in designing algorithms that make robust use of possibly noisy predictions. Notably, related
public-private work that studies robustness still assumes source and target data are Gaussian [Bie
et al., 2022], whereas we make no distributional assumptions. We demonstrate the importance
of our robustness techniques throughout the experiments in Section 6.6.

Learning

A last important use for prior-dependent bounds is as surrogate objectives for optimization. Be-
ing able to learn across upper bounds Uy, , . . ., Uy, of a sequence of (possibly sensitive) datasets
x; 1s useful for both the public-private setting and for the sequential release setting (c.f. Sec-
tion 6.6). As we saw in Chapter 5, algorithms with predictions guarantees are often sufficiently
nice to do this using off-the-shelf online learning, a property that largely holds for our upper
bounds as well. Most saliently, the bound U,((q) = —log \1153 is a convex function of an inner
product U between the EM score and the prior u; thus by discretizing one can learn over a
large family of piecewise-constant priors, which themselves approximate Lipschitz priors over a
bounded domain. The same is true of the multiple quantile bound Uy because it is the log-sum-
exp over UL and thus also convex. We therefore can apply an entropic variant of DP-FTRL
to (privately) online learn the sequence Uy, with low-regret w.r.t. any set of m Lipschitz priors
(c.f. Theorem 6.5.2). However, in practice we may not want to learn in the high dimensions
needed by the discretization, and rather than fixed priors we may wish to learn a mapping from
dataset-specific features.

Thus, in Section 6.6 we focus on the less-expressive family of location-scale models, which
allows us to develop algorithms that are amenable to both analysis and implementation. In par-
ticular, we show that Uy has the same form as the negative log-likelihood of censored regression,
which for log-concave location-scale families is convex in a convenient reparameterization of the
location and scale [Pratt, 1981, Burridge, 1981]. We can thus show DP online learning guarantees
in the sequential release setting (c.f. Theorem 6.6.3) and derive an algorithm for public-private
transfer whose error is bounded by the TV-distance between the order statistics of the public and
private distributions (c.f. Theorem 6.6.2).

6.2.3 Covariance estimation

While encoding predictions via base measures of DP mechanisms is a natural starting point
for learning-augmented algorithms, it is not the only way of doing so. We can instead start
with existing algorithms whose errors have explicit or implicit dependence on some measure of
complexity of the data and use this to convert them into algorithms with predictions. The errors
will then have an (explicit) dependence on a related measure of the error between the data and a
point (rather than distributional) prediction, leading to highly interpretable bounds U (w) on the
utility loss.

Our application to covariance estimation exemplifies this approach. For this task we take
advantage of recent “trace-sensitive" results, which bound the Frobenius error between the co-
variance matrix C = XX /n of a dataset X € R?*" by some function of its trace [Amin et al.,

170

2019, Dong et al., 2022]. Since the core component of these algorithms is a DP estimate of a
symmetric d x d matrix, if we have a symmetric prediction W € R%*¢ we can try to use the
methods to instead privately estimate the error C — W and then add W to the result; we can then
hope to show that the error depends on the trace norm ||C — W 1, of the error rather than the
trace of C. We achieve exactly this and more by extending the analysis in this prior work to the
negative spectrum, in order to handle the possibly negative eigenvalues of C — W. The result be-
low, for the learning-augmented extension of the state-of-the-art SeparateCov algorithm [Dong
et al., 2022], is characteristic of these results (c.f. Section 6.3.2):

Corollary 6.2.2 (of Thm. 6.3.4; c.f. Cor 6.3.2). If X € RdX”Ahas columns bounded by 1 in
{5-norm then applying SeparateCov to C — W and obtaining C by adding W to the result is

e-DP and satisfies |C — C||2 < O (r + f mingg |C — W — cId||Tr> w.h.p.

Notably, for W = 0,4, this bound improves upon the corresponding prediction-free result
of Dong et al. [2022], who only show it for ¢ = 0. A simple setting where this improvement
is tangible is when the columns of X are drawn from a bounded distribution whose covari-
ance is a scalar multiple of the identity, in which case w.h.p. mingg |[XXT/n — cly|n <
O(dmin{1,+/d/n}) but |[XXT /n|l, = O(d); therefore for constant ¢ the bound in Corol-
lary 6.3.2 becomes (7)(@ /min{d, d?/n}) whereas the bound of Dong et al. [2022, Lemma 19]
is no better than (’)(d2 \f d/n). In particular, for d = O(1) our bound is asymptotically dominated
by the error O() of (non-privately) estimating the population covariance.

Robustness

Because of its nonconvexity, we drop the minimum over ¢ € R for our robustness and learning-
theoretic analyses of covariance estimation, using the looser bound at ¢ = 0 to define our predic-
tion quality metric Ux (W) = | XX /n — W | r. To ensure robustness, we take the approach of
privately checking if the quality Ux (W) of the prediction W &€ R¥*? is better than Ux (0gxq),
i.e. that of the prediction-free approach. In doing so we pay for robustness by a factor of v/d in
the leading (non-trace-sensitive) term, although as we discuss later this may be an artifact of the
setting.

Corollary 6.2.3 (of Thm. 6.3.4; c.f. Cor. 6.3.2). Running SeparateCov with the prediction W
only if its trace distance | XX /n — W/||1, is smaller than ||XXT /1| according to the Laplace
mechanism is O (d (L + ||XXT/nHTr))—robust and O (

En

Learning

Similar to before, we can pose the problem of learning to release covariance estimates across
multiple datasets as the online learning problem of obtaining low regret w.r.t. any matrix W €
R for the functions Ux, (W) = || X;X, /n; — W|x, determined by the sequence of datasets
{X; € R} We apply DP-FTRL with with a Schatten p-norm regularizer, which applies
p-norm regularization to the spectrum of the matrix [Duchi et al., 2010]; this yields a (’)(\/&)—
improvement in the regret—and a corresponding O(d)-improvement in sample complexity—
over regular DP-FTRL, highlighting the usefulness of our non-Euclidean analysis.

171

Theorem 6.2.1 (c.f. Thm. 6.5.3). There exists an (¢/,¢')-DP online learner whose regret w.r.t.
all symmetric W € R%* is bounded w.h.p. by O ((1+d/e"T) Furthermore, if the datasets

X, are all drawn i.i.d. from the same distribution and we set W = T Zthl W, to be the average

iterate then 7 = Q (%) samples suffice to ensure that w.h.p. its excess risk is at most a.

6.2.4 Data release

In our last application we study private data release, where we seek to construct a synthetic
dataset X € RZ using sensitive data x € Z< such that the maximum error of a finite set Q of
linear queries q € [—1, 1]¢ is bounded. To do so we use the well-known MWEM method of Hardt
et al. [2012], which has an implicit dependence on the KL-divergence Dy (x/n||14/d) between
the data distribution and the uniform distribution it uses to initialize its iterative approach; by
instead initializing with a prediction w € A\, in the d-dimensional simplex one can instead
obtain a dependence on Dy (x/n||w):

Lemma 6.2.1 (c.f. Lem. 6.3.2). Initializing MWEM with w € A, and running it for m itera-
tions on dataset x is e-DP and w.p. = 1 — 3 produces a synthetic dataset s.t. the largest mean
squared error of any linear query in () is bounded by O <%DKL(§||W) + % log? 5 log® |Q|),

where n = |x||;.

As in quantile release, for this task we can again ensure robustness via an interpolation-
based approach, although here we are mixing finite-dimensional vectors rather than probability

. 4 2 .
distributions. Note that using the uniform prior guarantees O (¥ %) error, so since the

data-dimension d can be very large in this application, if we use small enough A we can obtain a
strong advantage under perfect predictions while ensuring performance similar to the prediction-
free guarantee.

Corollary 6.2.4 (of Lem. 6.3.2; c.f. Cor. 6.4.4). There exists a fixed number of iterations s.t.
using wd = (1 — A)w + M\1,/d instead of the prediction w € A, to initialize MWEM is

~ ~ . 2 . .
@ (,3/ = {ég i log %) -robust, and O ()\ ; %) -consistent, where 7 is the number of records.

The observation that MWEM can be initialized non-uniformly is not novel, having been used
by both the original authors and by subsequent public-private work [Liu et al., 2021a]. However,
our learning-theoretic analysis reveals interesting aspects that this prior work does not consider
as closely, such as how the optimal choice for other parameters of the algorithm are influenced
by the prediction quality. In-particular, when online learning the sequence of prediction quality
measures Uy, (W) =~ ™ Dyp (x;/n||[w) + % that bound the error of data release—here 7, is the
number of examples in x; and m is the number of iterations—we note that the optimal setting of
m depends on the similarity between instances: if miny 3, n, Dy (x;/n:||w), i.e. the entropy

of the average distribution (Zthl Xt) / ZtT=1 ng, is small then we can take advantage of this

by taking fewer iterations. However, we do not know this entropy a priori, so we can instead
adapt to it by competing with the best step-size—which will encode the unknown entropy—by

172

simultaneously running online learners both for w and for m, with the optimization domain of
the latter being the m-simplex A,,. We again apply entropic DP-FTRL to get the following
guarantee:

Theorem 6.2.2 (c.f. Thm. 6.5.4). There exists an (&, ¢')-DP algorithm that adaptively sets the
initializations w; € A, and number of iterations m; > 0 s.t. the regret w.r.t. the optimal (ini-

4
dN3

; _) .
Nmin(1.2%] T/e), where N = max; n; is the maximum

tialization, iteration) pair (w,m) is O (
number of entries in any dataset x;.

6.2.5 Discussion

This concludes our overview of our theoretical results, where we highlight multiple ways of in-
corporating predictions—as priors in DP mechanisms, as offsets to be corrected using sensitive
data, or as initializations for iterative methods—as well as two ways of making the methods ro-
bust to noisy predictions: (1) interpolating with a default prediction and (2) privately checking
whether the quality of the default prediction is better. We also illustrate how learning-augmented
analysis can yield new insights in the prediction-free setting, as demonstrated by our results for
unbounded quantile release and trace-sensitive covariance estimation. Next we will go into fur-
ther detail about these prediction-dependent guarantees, robustness-consistency tradeoffs, and
learning-theoretic results in Sections 6.3, 6.4, and 6.5, respectively. Then in Section 6.6 we will
present a theoretical and empirical investigation of of how to use predictions to improve multiple
quantile release in both the public-private and sequential release settings.

6.3 Prediction-dependent utility bounds

As formulated in Section 6.1, the basic guarantee of learning-augmented private algorithm is an
upper bound Uy (w) on the error C(w) of the statistic it releases about a dataset x when using
a prediction w. We now demonstrate how to design methods for different DP tasks that enjoy
such guarantees. While for single quantile release and data release we take the straightforward
approach of incorporating a prediction-dependent prior into the EM mechanism, we also show
how to handle difficulties that arise when multiple mechanisms need to be combined for releasing
multiple quantiles and how to incorporate matrix predictions instead of explicit distributional
priors by estimating the additive error between true and predicted covariances. This section
also discusses DP contributions of independent interest that arise from our study of measures
of prediction quality, specifically our Cauchy-based approach for releasing quantiles without
assuming boundedness (Corollary 6.3.1) and our improved bounds for the SeparateCov algorithm
proposed by Dong et al. [2022] (Corollary 6.3.2).

6.3.1 Quantile estimation via prediction-dependent priors

Given a quantile ¢ € (0, 1) and a sorted dataset x € R" of n distinct points, we want to release o €
[X[1gn]]> X[|gn|+1])- i.€. such that the proportion of entries less than o is g. As in prior work [Kaplan

173

et al., 2022], the error of o will be the number of points between it and the desired interval:

Gap, (x,0) = [I{F 313 < o} = Lon] = | masx g 6.1)
Gap,(x,0) is constant on intervals I, = (X[, X[x+1)] in the partition by x of R (let I, =
(—oo,xpy] and I, = (X[n),0)), so we also say that Gap,(x, I;) is the same as Gap,(x,0)

for some o in the interior of [;.

Warm-up: Releasing one quantile

For single quantile release we choose perhaps the most natural way of specifying a prediction
for a DP algorithm: via the base measure ;. : R — R~ of the exponential mechanism:

Theorem 6.3.1 (McSherry and Talwar [2007]). If the utility u(x, 0) of an outcome o of a query
over dataset x has sensitivity max, x.z |u(x, 0) — u(X,0)| < A then the exponential mecha-
nism, which releases o w.p. o¢ exp(55u(x, 0))u(o) for some base measure i, is e-DP.

The utility function we use is u, = — Gap,, so since this is constant on each interval I the
mechanism here is equivalent to sampling & w.p. oc exp(eu,(x, I})/2)u(I;) and then sampling
o from Ij, w.p. oc u(0). While the idea of specifying a prior for EM is well-known, the key idea
here is to obtain a prediction-dependent bound on the error that reveals a useful measure of the
quality of the prediction. In particular, we can show (c.f. Lemma 6.A.1) that running EM in this
way yields o that w.p. > 1 — [satisfies

VR S V/:
W e e

Gap,(x,0) < g log (6.2)

where the quantity) —

and the EM score while U{¥) = lim. o o) = p((X[ign]]> X[lgn)+1]]) is the probability that the
prior assigns to the optimal interval.
This suggests two metrics of prediction quality: the negative log-inner-products Ure) (n) =

= {exp(—5 Gap,(x, 0))p(0)do is the inner product between the prior

—log U (1) and UL (1) = —log W@ (11). Both make intuitive sense: we expect predictions
4 that assign a high probability to intervals that the EM score weighs heavily to perform well,
and EM assigns the most weight to the optimal interval. There are also many ways that these
metrics are useful. For one, in the case of perfect prediction—i.e. if ;1 assigns probability one to
the optimal interval /|,,—then U9 (1) = U@ (1) = 1, yielding an upper bound on the error
of only glog % Secondly, as we will see, both are also amenable for analyzing robustness (the
mechanism’s sensitivity to incorrect priors) and learning. A final and important quality is that
the guarantees using these metrics hold under no extra assumptions. Between the two, the first
metric provides a tighter bound on the utility loss while the second does not depend on ¢, which
may be desirable.

It is also fruitful to analyze the metrics for specific priors. When x is in a bounded interval
(a,b) and p(0) = % is the uniform measure, then \Il(q)() = ;2 where 9y is the minimum
distance between entries; thus we recover past bounds, e.g. Kaplan et al. [2022, Lemma A.1],
that implicitly use this measure to guarantee Gap,(x,0) < flog 2_73 Here the support of the

174

uniform distribution is correct by assumption as the data is assumed bounded. However, analyz-
ing U also yields a novel way of removing this assumption: if we suspect the data lies in (a, b),
a+b

we set 11 to be the Cauchy prior with location > and scale b’T“ Even if we are wrong about the

interval, there exists an B > 0 s.t. the data lies in the interval (“TH’ + R), so using the Cauchy

yields U0 > % and thus the following guarantee:
Corollary 6.3.1 (of Lem. 6.A.1). If the data lies in the interval (“T“’ + R) and p is the Cauchy

measure with location “TH’ and scale b’T“ then the output of the exponential mechanism satisfies

4R?

b—a+7"—
Gap,(x,0) < glog (WW) w.p. >1— (.

IfR = b’Ta i.e. we get the interval right, then the bound is only an additive factor glogw
worse than before, but if we are wrong then performance degrades as O(log(1 + R?)), unlike
the O(R) error of the uniform prior. Note our use of a heavy-tailed distribution here: a sub-
exponential density decays too quickly and leads to error O(R) rather than O(log(1 + R?)).
We can also adapt this technique if we know only a single-sided bound, e.g. if values must be
positive, by using an appropriate half-Cauchy distribution.

Releasing multiple quantiles

To simultaneously estimate quantiles ¢, ..., q,, we adapt the ApproximateQuantiles [Kaplan
et al., 2022], which assigns each ¢; to a node in a binary tree and, starting from the root, uses
EM with the uniform prior to estimate a quantile before sending the data below the outcome
o to its left child and the data above o to its right child. Thus each entry is only involved in
[log, m] exponential mechanisms, and so for data in (a, b) the maximum Gap,, across quantiles

is O <log§ ~ log mél:;a)> , which is much better than the naive bound of a linear function of m.

Given one prior y; for each ¢;, a naive extension of (6.2) gets a similar polylog(m) bound
(c.f. Lem 6.A.2); notably we extend the Cauchy-unboundedness result to multiple quantiles (c.f.
Corollary 6.A.1). However the upper bound is not a deterministic function of ;, as it depends
on restrictions of x and y; to subsets (0, 05) of the domain induced by the outcomes of EM for
quantiles ¢; and g, earlier in the tree. It thus does not encode a direct relationship between the
prediction and instance data and is less amenable for learning.

We instead want guarantees depending on a more natural metric, e.g. one aggregating
Pl (u;) from the previous section across pairs (g;, 14;). The core issue is that the data splitting
makes the probability assigned by a prior y; to data outside the interval (o;, o) induced by the
outcomes of quantiles ¢; and g, earlier in the tree not affect the distribution of 0;. One way to
handle this is to assign this probability mass to the edges of (o;, 0y), rather than the more natural
conditional approach of ApproximateQuantiles. We refer to this as “edge-based prior adapta-

tion" and use it to bound Gap,, = max; Gap,,(x,0;) via the harmonic mean U of the inner

products W% (11,):

175

Theorem 6.3.2 (c.f. Thm. 6.A.1). If m = 2% — 1 for some k, quantiles ¢, . . ., ¢, are uniformly
spaced, and for each we have a prior p; : R — R, then running ApproximateQuantiles with
edge-based prior adaptation (c.f. Algorithm 13) is e-DP, and w.p. > 1 — 3

-1
/5 o_ (v Um

X =1

2
Gap,., < 6= D [log,(m + 1)]
g

max

Here ¢; = and ¢ = ”‘[is the golden ratio.

S
[loga (m+1)]

The golden ratio is due to a Fibonacci-type recurrence bounding the maximum Gap,, at each
depth of the tree. \11§f> depends only on x and predictions p;, and it yields a nice error metric

U = — log v = log >, U However, the dependence of the error on m is worse
than that of ApproximateQuantiles, as ¢'°22™ is roughly O(m?"), although the bound is still
sublinear and thus better than the naive baseline of running EM m times. Note that, as in the
single-quantile case, we can construct a looser but e-independent upper bound

X

Uy = —log Uy = log 3 ™" = U 6.4)
using the harmonic mean ¥, of %) We will make heavy use of this prediction quality measure
as a surrogate loss function in applications (c.f. Section 6.6).

The O(¢'°%2™) dependence on the number of quantiles m in Theorem 6.3.2 results from
error compounding across depths of the tree, so we can try to reduce depth by going from a
binary to a K-ary tree. This involves running EM K — 1 times at each node—and paying K — 1
more in budget—to split the data into K subsets; the resulting estimates may also be out of
order. However, by showing that sorting them back into order does not increase the error and
then controlling the maximum Gap,, at each depth via another recurrence relation, we prove the
following:

Theorem 6.3.3 (c.f. Thm. 6.A.2). For any qi, ..., gy, using K = [exp(4/log2log(m + 1))]
and edge-based adaptation guarantees e-DP and w.p. > 1 — [has

2 2
Gap,,, < —exp (2\/ log(2) log(m + 1)) log \Ij{ f
€ g

The rate in m is both sub-polynomial and super-poly-logarithmic (o(m®) and w(log® m) ¥ o >
0); while asymptotically worse than the prediction-free original result [Kaplan et al., 2022], for
almost any practical value of m (e.g. m € [3,10?]) it does not exceed a small constant (e.g.

(6.5)

nine) times log® m. Thus if the error — log U of the prediction is small—i.e. the inner products
between priors and EM scores are large on (harmonic) average—then we may do much better
with this approach.

We compare K-ary AQ with edge-based adaptation to regular AQ in Figure 6.1. The orig-
inal is better at higher € but similar or worse at higher privacy. We also find that conditional
adaptation is only better on discretized data with repetitions, where neither method provides
guarantees. Overall, we find that our prior-dependent analysis covers a useful algorithm, but for
consistency with past work and due to its better performance at high € we focus on the original
binary approach in experiments.

176

= 4001 e = 300 T
o ,,‘,_.,..v_.,h,—f o \
: swol]
© 3007 S J —— binary (AQ)
N i 200
Il —— binary (AQ) Il —— K-ary (edge-based)
W K _ W a .
= 2001 K-ary (edge. l?ased) = 150/ K-ary (conditional)
© K-ary (conditional) ©
O] o
g g 100 4
100 A
S S
=S % 901 OSSN T
g z T
0 -~ 0{ -
0 20 40 60 80 100 0 20 40 60 80 100
number of quantiles number of quantiles

Figure 6.1: Maximum gap as a function of m for different variants of AQ when using the
uniform prior, evaluated on 1000 samples from a standard Gaussian (left) and the Adult “age"
dataset (right). The dashed and solid lines correspond to € = 1 and 0.1, respectively.

6.3.2 Covariance estimation by estimating the prediction error

Encoding predictions as priors for EM and other mechanisms is a natural starting point for inte-
grating external information into DP algorithms, but one might also wish to use a point prediction
directly and hope to perform well if some distance measure between it and the output is small.
While this is a less natural requirement for quantile release, where errors are measured using data
points rather than metrics over the domain they live in, we show how this is easily achievable
for the important problem of covariance estimation. In this setting we have a dataset X € R%*",
where each of n records is a d-dimensional column with /5-norm bounded by 1, and we want
to privately release an approximation C of its covariance matrix C = XX /n such that the
Frobenius distance between the two is small.

Given a prediction W € R%*? of C, one can immediately construct the trivial, private,
prediction-sensitive algorithm of just releasing W, which has the obvious prediction-dependent
performance guarantee of ||[W — C||r. However, we can hope to use the data to get an error that
both decreases with n and is small if some distance between the prediction and ground truth is
small. To do so, we make use of recent approaches that enjoy frace-sensitive guarantees, 1.e.
their utility improves if Tr(XX") is small [Amin et al., 2019, Dong et al., 2022]; for exam-
ple, the state-of-the-art method SeparateCov returns C that is e-DP and satisfies |C — C|[% =

(7)(5 7 + d\f 4 Tr(XX " /n)) w.h.p. [Dong et al., 2022, Lemma 18]. This suggests a natural way
to 1ncorporate a symmetric prediction matrix W: use the existing algorithm to privately estimate
its difference C — W with the ground truth, and then add W to the result; since C — W is no

longer PSD, the hope would be to obtain error that scales with its trace norm.

We do exactly this in Algorithm 10, which uses the SeparateCov approach of separately esti-
mating and combining eigenvalues and eigenvectors but applies it to C — W. The one potential
issue is showing that their main error bound holds for symmetric matrices with negative eigen-

values, but this follows in Lemma 6.3.1 by applying their argument to both sides of the spectrum
(c.f. Appendix 6.B.1):

177

Algorithm 10: SeparateCov with predictions

Input: data X € R%*" symmetric prediction matrix W € R?*?, privacy ¢ > 0

UAU" « XX /n - W

A—A+ diag(z) where z[;) ~ Lap (;in) // add noise to error eigenvalues
C — XX /n + Z for Zysy) = Ziy ~ Lap (222)

UAU' -« C-W // get eigenvectors of noised prediction error
Output: C = UAU" + W // combine to estimate XX"/n—W and add W

Lemma 6.3.1. For X € R®" and symmetric W € R, if UAUT = XX /n — W + Z for
some symmetric Z € R?*? and A = A + diag(z) for UAU' = XX /n — W and some vector
z € R? then

[CATT + W - XX"/n|% < 4 (23 + |1Z]|o| XX/~ W) (6.6)

We can then apply Laplace concentration to obtain the performance-dependent guarantee in
Theorem 6.3.4, which recovers the guarantee of Dong et al. [2022, Lemma 18] when W = 04xq.!
The result shows that if we have a good guess of the prediction matrix in terms of trace distance
then the error can be made to depend mostly on the first term—which has a better dependence on
both d and n—without sacrificing privacy. Note that the algorithm requires the same number of
eigen-decompositions as the one without predictions [Dong et al., 2022] and only requires some
extra matrix additions to implement.

Theorem 6.3.4. If X has columns bounded by 1 in ¢5-norm then Algorithm 10 is e-DP and w.p.
>1-0

144d + O(log? % log”d) 48dv2d + O(dlog % log d)
l’

~ T 2
”C - XX /n”F < 202 en

HXXT/n - WHTr
(6.7)

Proof. Following the analysis in Amin et al. [2019, Theorem 1] (c.f. Lemma 6.B.1) the /-
sensitivity of the eigenvalues of XX /n — W is 2/n, and upper-bounding the /,-sensitivity of
the covariance XX " /n of \/§/n [Biswas et al., 2020, Lemma 3.2] shows that its /;-sensitivity
is dv/2/n. Thus the privacy guarantee follows from the composition of two Laplace mecha-
nisms with budget /2 each. For the utility guarantee we use concentration of |y, < 3v/d/2 +

O (log % log d) w.p. = 1 — (/2 foriid. yj ~ Lap(l) [Dong et al., 2022, Lemma 15] and
Y|l < 3Vd+ O (log%logd) w.p. = 1— /2 foriid. Y} ;; ~ Lap(l) fori > j and

Y1 = Y fori < j [Dong et al., 2022, Lemma 16]. Substituting z = iy and Z = %QY
into Lemma 6.3.1 yields the result. [

In addition to its computational simplicity, there are two other aspects of Algorithm 10 that
are important for understanding the utility of its output: (1) it adds the same amount of noise

'Unlike Dong et al. [2022] we square the Frobenius norm for the purposes of learning predictions later; in the single-
instance setting this is immaterial. Whether one is more interested in one or the other is application-dependent.

178

Algorithm 11: MWEM with predictions

Input: dataset x € ZZ,, with n entries, query set @ < [—1, 1|%, prediction w € A,
number of iterations m > 0, privacy parameter € > 0

Wi «<— W
for:=1,...,mdo
sample q; € Q) w.p. o€ exp (% HZVVV”11>‘) // exponential mechanism
qQi X~ 1o +Lap
Wi < W; ©exp (< ” 2”;2)qz) // mult. weights update

Output: X = %Zzl Ww; // release average iterate

as the original SeparateCov method [Dong et al., 2022, Algorithm 1], despite our two-sided
sensitivity analysis, and (2) it is invariant to perturbations of the prediction matrix by any scalar
multiple of the identity, i.e. C is the same when W is replaced by W + ¢l for any ¢ € R.
Crucially, this means we can obtain a tighter bound for free by replacing the trace difference in
the upper bound (6.7) by min.eg |[XX"/n — W + cly|r,.. Substituting W = 04,4 then yields
the following corollary, which is a strict improvement upon the main pure-DP guarantee of Dong
et al. [2022, Lemma 19] for prediction-free SeparateCov:

Corollary 6.3.2. If X has columns bounded by 1 in {,-norm then Algorithm 10 with W = 044

returns w.p. > 1 — 3 an estimate C € R%*? satisfying

144d + O(log? L log” d) 48dv/2d + O(dlog § log d)
+

g2n? En

|C-XXT/n|} < min [XX /n—clg|

(6.8)

While this improvement is for a prediction-free method, it is the direct result of the two-sided
analysis we needed to incorporate predictions; as with our unbounded quantile release result,
this is another example of how learning-augmented analysis is useful even in the prediction-free
setting.

Lastly, we point the interested reader to several supplementary results that highlight the broad
applicability of our framework. First, while we focus on pure DP (except for learning), the main
analysis of Dong et al. [2022] is in the zCDP setting; in Appendix 6.B.2 we show that similar
guarantees hold there. Note that a prediction-free improvement similar to that of Corollary 6.3.2
can also be shown for SeparateCov under zCDP (c.f. Corollary 6.B.1, which improves upon Dong
et al. [2022, Theorem 1]). Lastly, we show that prediction-dependent guarantee also holds for
the older approach of Amin et al. [2019], albeit with a modified algorithm and a more involved
sensitivity analysis (c.f. Appendix 6.B.3).

6.3.3 Initializing synthetic dataset construction with a predicted dataset

Our final application is to private data release, in which the goal is to privately respond to queries
of a dataset, with the latter being defined via counts of items from some finite universe. For
simplicity we will assume an indexing that allows us to specify datasets as vectors x € ZZ,, and

179

we will consider a finite set () of linear queries, i.e. ones that can be defined as an inner product
of x with a vector q € [—1,1]¢. Here again we will incorporate a prediction into an existing
algorithm, specifically the MWEM method of Hardt et al. [2012], which uses multiplicative
weights to iteratively update a distribution over the data domain and to construct a synthetic
dataset X € R, such that the maximum error maxqeo |{q, x — X)| of all queries is small. The
natural approach here is to assume the prediction can be written as a distribution w € /\; and
use it instead of the uniform initialization used by Hardt et al. [2012]. Indeed this observation
has been made in both the original work and by Liu et al. [2021a], who adapt the method to only
operate over the support of a source dataset. A prediction-dependent guarantee also follows in a
straightforward manner from the original analysis:?

Lemma 6.3.2. Algorithm 11 is -DP and produces X € R% s.t. w.p. > 1 — 3

16m2 2 2
w)+ (3108 27 4 21082 Q) 6.9)
e?n B

Our main purpose with this application is thus to discuss interesting issues arising in its
robustness and especially in learning the prediction. We also conclude by noting the similarity
of deriving prediction-based guarantees for all four methods—finding algorithms that implicitly
use a default prediction such as a uniform distribution or zero matrix—even while the actual
algorithms and uses of the predictions are quite different.

—_%)2 8
max KEX =P 8n (5
q€eQ n m n

6.4 Robustness-consistency tradeoffs

While prediction-dependent guarantees work well if the prediction is accurate, without safe-
guards they may perform catastrophically poorly if the prediction is incorrect. In this section
we provide robust alternatives to the methods we derived in the previous section, demonstrating
the usefulness of the algorithms with predictions framework for understanding robustness when
incorporating external information into DP algorithms.

6.4.1 Quantile estimation

While prediction-dependent guarantees work well if the prediction is accurate, without safe-
guards they may perform catastrophically poorly if the prediction is incorrect. Quantiles provide
a prime demonstration of the importance of robustness, as using priors allows for approaches
that may assign very little probability to the interval containing the quantile. For example, if one
is confident that it has a specific value x € (a, b) one can specify a more concentrated prior, e.g.
the Laplace distribution around x. Alternatively, if one believes the data is drawn i.i.d. from
some a known distribution then p can be constructed via its CDF using order statistics [David
and Nagaraja, 2003, Equation 2.1.5]. These reasonable approaches can result in distributions
with exponential or high-order-polynomial tails, using which directly may work poorly if the
prediction is incorrect.

2Similar to covariance estimation, we consider the mean squared error for the purposes of learning the prediction.

180

Luckily, for our negative log-inner-product error metric it is straightforward to show a param-
eterized robustness-consistency tradeoff by simply mixing the prediction prior x with a robust
prior p:

Corollary 6.4.1. For any prior i : R +— R, robust prior p : R — R, and robustness
parameter A € [0,1], releasing 0 € R w.p. o exp(—¢ Gap,(x,0)/2)u™ (o) for p™ = (1 —

A+ Apis (g log wé{g(p))—robust and (log 1/5) -consistent w.p. = 1 — 3.

Proof. Apply Lemma 6.A.1 and linearity of U&= (u™) = (1 — N9 (1) + 2089 (p). O

Thus if the interval is finite and we set p to be the uniform prior, using 1 in the algorithm
will have a high probability guarantee at most g log %—Worse than the prediction-free guarantee
of Kaplan et al. [2022, Lemma A.1], no matter how poor y is for the data, while also guarantee-
ing w.p. = 1 — 3 that the error will be at most 2 = log £ 1B ﬂ if u 1s perfect. A similar result holds for
the case of an infinite interval if we instead use a Cauchy prior. Corollary 6.4.1 demonstrates the
usefulness of the algorithms with predictions framework for not only quantifying improvement
in utility using external information but also for making the resulting DP algorithms robust to
prediction noise.

The above argument for single-quantiles is straightforward to extend to the negative log of
the harmonic means of the inner products. In-fact for the binary case with uniform quantiles
we can tradeoff between polylog(m)-guarantees similar to those of Kaplan et al. [2022] and our
prediction-dependent bounds:

Corollary 6.4.2. Consider priors fi1, ...,y : R — Ry, Cauchy prior p : R — R., with
location a”’ and scale %2, and robustness parameter A € [0, 1]. Then running Algorithm 13 on

quantiles that are unlform negative powers of two with K = 2, edge-based prior adaptation, ¢; =
b—a+ R2

g = ¢/[logy m] V 4, and priors ug’\) =M+ (1 =N Viis <§[log2 m]?log (ﬂm DY a))_

robust and (2¢1°g2m[10g m|log 3 /6) -consistent w.p. > 1 — 3.

Proof. Apply Lemma 6.A.2, Theorem 6.A.1, and linearity of the inner products in ¥ and
v, 0

6.4.2 Covariance estimation

We take a different approach to making our prediction-based covariance estimation method ro-
bust to matrices W with large trace distance to XX /n. Instead of combining the prediction
with a robust default, we simply spend some privacy to check whether |[XX'/n — W, is
larger than | XX /n[l1, and if so run Algorithm 10 with the zero matrix instead. This has the
following guarantee:

Corollary 6.4.3. Pick A\ € (0,1) and run Algorithm 10 with privacy (1 — \)e and symmet-
ric prediction matrix W if | XX /n — W1, + 2z < |XX"|1/n and 0,44 otherwise, where
z ~ Lap(s%;). This procedure is e-DP, O (d‘nf (£ + HXXT/nHTr)>—robust, and O (g

ﬁ)_
2n2

consistent w.h.p.

181

Proof. By Lemma 6.B.1 the difference | XX /n — W|p, — |XXT /n|1, has sensitivity 4/n, so
the comparison of |[XXT/n — W|x + 2z and |[XXT /n/1, is equivalent to using the Laplace
mechanism with A\e-DP to estimate this difference and then taking the sign Composing this
with the privacy guarantee of Theorem 6.3.4 yields e-DP. Since Pr(|z| > 1= log ﬁ) < 3/2, the
matrix W, € {W, ded} passed to Algorithm 10 satisfies [XX /n—W_ |1, < min{||XX"/n—
W ||, [XX /0| 1} + 52 log % w.p. = 1—/3/2. Applying the utility guarantee of Theorem 6.3.4
w.p. 1 — /2 for constant A € (0, 1) yields the result. O

Adding this check for robustness make the data-independent term worse by a factor of v/d;
note that the data-dependent term can still be up to O(en|XX" /n||1,) times larger, so this does
not remove the usefulness of the prediction guarantee. The additional cost results from the large
dependence on d of this latter term in the original bound, which is itself be caused by a mismatch
between the ¢;-sensitivity measure and the ¢5-bound on the columns. Specifically, if instead
the ¢;-norms of the columns are assumed bounded by one then the ¢;-sensitivity of XX /n is
2/n, making the numerator of the second term in Theorem 6.3.4 be O(+/d) and thus causing no
(asymptotic) cost due to robustness.® Similarly, under the original assumption the corresponding
term in the /y-sensitivity-based zCDP guarantee is also O(\f) (c.f. Theorem 6.B.2) and leads to
a term that is O(4/n/d) worse (multiplicatively) due to robustness (c.f. Corollary 6.B.2); while
worse in some regimes, in sufficiently high dimensions (d = §2(n)) this means no (asymptotic)
cost of robustness.

6.4.3 Data release

As with quantiles, a natural approach to making data release robust is to mix the initialization
with the default uniform distribution, achieving a tunable tradeoff. In the following result we
specify the number of steps based on the the worst-case guarantees for a prediction-free algorithm
and obtain a favorable tradeoff that allows for very small values of A for high consistency while
still maintaining robustness due the latter’s log % dependence.

Corollary 6.4.4. For d > 2 and any w € /\y, running Algorithm 11 with m = F % and
initialization w® = (1 — A\)w + Al,/d is e-DP, O ((1 +10g"|Q)) W 2 log g) -robust, and

O ()\(1 +10g*? |Q|) &/ ”log d> -consistent w.h.p., where O hides poly-log terms in % -, n,logd,
and log |Q)|.
Proof. If w = X then we have Dy (2||[w™) < (1 — A) Dgr(2||w) + ADkr(Z||w < Alogd by

joint convexity of Dg;. On the other hand Dy (X||wV) < (%,log &) < log . Substituting
into Lemma 6.3.2 and simplifying yields the result.]

31t is not as clear that the /;-sensitivity of the eigenvalues would be as affected by the different assumption.

182

Algorithm 12: Non-Euclidean DP-FTRL. For the ITnitializeTree, AddToTree,
and Get Sum subroutines see Kairouz et al. [2021a, Section B.1].
Input: Datasets xy, . . ., X7 arriving in a stream in arbitrary order, domain © c RP?,
step-size 17 > 0, noise scale o > 0, /5-sensitivity Ay > 0, regularizer ¢ : © — R
g1 < 0,
T «—InitializeTree(T,o0?, Ay) // start tree aggregation
fort=1,...,7T do
0, < argmingeq ¢(0) + 1(g:, 0)
suffer /x, (6;)
T «AddToTree(T,t, Voly, (0:)) // add gradient to tree

g1 <—Getsum(T,1t) // estimate 22:1 Volx.(05)

6.5 Learning predictions, privately

Our last objective will be to learn predictions that do well according to the quality metrics we
have defined, which themselves control the utility loss of running the DP algorithms. Past work,
e.g. the public-private framework [Liu et al., 2021a, Bassily et al., 2022, Bie et al., 2022], has of-
ten focused on domain adaptation-type learning where we adapt a public source to private target.
We avoid assuming access to large quantities of i.i.d. public data and instead assume numerous
tasks that can have sensitive data and may be adversarially generated. As discussed before, this
is the online setting where we see loss functions defined by a sequence of datasets xi, ..., Xy
and aim to compete with best fixed prediction in-hindsight. As in the previous chapter, such a a
guarantee can also be converted into excess risk bounds (c.f. Lemma B.4.1).

6.5.1 Non-Euclidean DP-FTRL

Because the optimization domain is not well-described by the /5-ball, we are able to obtain
significant savings in dependence on the dimension and in some cases even in the number of
instances 7' by extending the DP-FTRL algorithm of Kairouz et al. [2021a] to use non-Euclidean
regularizers, as in Algorithm 12. For this we prove the following regret guarantee:

Theorem 6.5.1. Let 0, ..., 0 be the outputs of Algorithm 12 using a regularizer ¢ : © — R
that is strongly-convex w.r.t. | - |. Suppose ¥ ¢t € [T'] that ¢4, (-) is L-Lipschitz w.r.t. || - | and its
gradient has f5-sensitivity Ay. Then w.p. > 1 — ' we have V 8* € © that

ZE(Gt;xt) —0(0%;x;) < w +nL (L + (G + Cy [2]og %) oAg+/[log, T]) T

(6.10)
where G = E, (0, 1,) SUDjy|<1{%, ¥) = Esnnr(0,.1)]2]« is the Gaussian width of the unit | - |-
ball and C is the Lipschitz constant of | - |, w.r.t. | -|o. Furthermore, for any ¢’ < 2log 3, setting

7= 5\/ 2[log, Tl log % makes the algorithm (¢, §')-DP.

183

Proof. The privacy guarantee follows from past results for tree aggregation [Smith and Thakurta,
2013, Kairouz et al., 2021a]. For all ¢ € [T'] we use the shorthand V; = Vg/ly, (6;); we can then
define 0, = arg mingeg #(8) + 1Y (V,,0)andb, = g, — > V.. Then

T

Dk, (8)) — £, (6%) Z<vt,9t 0*)

t=1 t=1
S SRR LA
] tTl . (6.11)
P(0*) — (6)
< % + 0 Y V2 + D1Vl 6, — 6
t=1 t=1

i VN (LT + i ||bt*>

n t=1

S

S

where the first inequality follows from the standard linear approximation in online convex opti-
mization [Zinkevich, 2003], the second by the regret guarantee for online mirror descent [Shalev-
Shwartz, 2011, Theorem 2.15], and the last by applying McMahan [2017, Lemma 7] with
$1(-) = () + 1 24 1{Vs, 0, V() = 1¢by,), and ¢a(-) = ¢(-) + 1, -, yielding 6, — 6, <
n|b¢l« ¥Vt € [T]. The final guarantee follows by observing that the tree aggregation protocol adds
noise b; ~ A (0,, 0?A3[log, t]) to each prefix sum and applying the Gaussian concentration of
Lipschitz functions [Boucheron et al., 2012, Theorem 5.6]. L]

The above proof of this result follows that of the Euclidean case, which can be recovered by
setting G = O(v/d), C = 1, and Ay = O(L).* In addition to the Lipschitz constants L, a key

term that can lead to improvement is the Gaussian width G of the unit | - |-ball, which for the
Euclidean case is O(v/d) but e.g. for | - | = | - |, is O(v/log d). Note that a related dependence

on the Laplace width of © appears in Agarwal and Singh [2017, Theorem 3.1], although their
guarantee only holds for linear losses and is not obviously extendable. Thus Theorem 6.5.1 may
be of independent interest for DP online learning.

6.5.2 Learning priors for one or more quantiles

We now turn to learning vectors p; = (ut[l], SEIEN ut[m]) Or priors p [] : : R +— R to privately
estimate m quantiles ¢, ..., g, on each of a sequence of 7' datasets x;. We will aim to set
K1, ..., pr s.t. if at each time ¢ we run Algorithm 13 with privacy € > 0 then the guarantees
given by Lemmas 6.A.1 and 6.A.2 will be asymptotically at least as good as those of the best set
of measures in F"™, where F is some class of measures on the finite interval (a, b). The latter we
will assume to be known and bounded. Note that in this section almost all single-quantile results
follow from setting m = 1, so we study it jointly with learning for multiple quantiles.

4As of this writing, the most recent arXiv version of Kairouz et al. [2021a, Theorem C.1] has a typo leading to
missing a Lipschitz constant in the bound, confirmed via correspondence with the authors.

184

Ignoring constants, the loss functions implied by our prediction-dependent upper bounds for
multiple-quantiles are the following negative log-harmonic sums of prior-EM inner-products:

= log Z

Q151
11\1/

1
=lo 6.12
gZS exp(—e; Gap,, (x4, 0)/2) i (0)do €12
We focus on minimizing regret max,,e rm Zthl U,((f) (py)— U)(j) () over these losses for priors fu[;)
in a class Fy,4 of probability measures that are piecewise V' -Lipschitz over each of d intervals
uniformly partitioning [a,b). This is chosen because it covers the class Fy,; of V-Lipschitz
measures and the class of F 4 of discrete measures that are constant on each of the d intervals.
The latter can be parameterized by W e A, so that the losses have the form U,(j)(pw) =

log >3 {st.i, W)™ for s;; € RL. This can be seen by setting

d a+25%j
Stalj] = 3 J exp(—e; Gap,, (%, 0)/2)do (6.13)

— @ Jarbze(j-1)
and prwi(0) = 7=W(; ;) over the interval [a + 2=2(j — 1),a + ©%5). Finally, for A € [0, 1]
we also let F® = {(1 — \)p + 2= : p € F} denote the class of mixtures of measures 1 € F
with the uniform measure.

As detailed in Appendix 6.D.1, losses of the form — log(sy, -), i.e. those above when m = 1,
have been studied in (non-private) online learning [Hazan et al., 2007], including in this the-
sis (c.f. Section 2.3). However, specialized approaches, e.g. those taking advantage exp-
concavity, are not obviously implementable via prefix sums of gradients, the standard approach
to private online learning [Smith and Thakurta, 2013, Agarwal and Singh, 2017, Kairouz et al.,
2021a]. Still, we can at least use the fact that we are optimizing over a product of simplices to
improve the dimension-dependence by applying Non-Euclidean DP-FTRL with entropic regular-
izer 9(W) = m(W , log W), which yields an m-way exponentiated gradient (EG) update [Kivi-
nen and Warmuth, 1997]. To apply its guarantee for the problem of learning priors for quantile
estimation, we need to bound the sensitivity of the gradients VwUx (€)(uw) to changes in the
underlying datasets x;. This is often done via a bound on the gradient norm, which in our case
is unbounded near the boundary of the simplex. We thus restrict to ~y-robust priors for some
v € (0,1] by constraining W € A" to have entries lower bounded by ~v/d—a domain where
|VwUsx, © (uw)|1 < d/7 (c.f. Lemma 6.D.1)—and bounding the resulting approximation error;
we are not aware of even a non-private approach that avoids this except by taking advantage of
exp-concavity [Hazan et al., 2007].

We thus have a bound of 2d/v on the ¢5-sensitivity. However, this may be too loose since it
allows for changing the entire dataset x;, whereas we are only interested in changing one entry.
Indeed, for small € we can obtain a tighter bound:

Lemma 6.5.1. The (5-sensitivity of VUL (pty) is %min{Q,egm — 1}, where &,, = (1 +
1m>1) max; €;.

185

Proof for m = 1; c.f. Appendix 6.D.1. Let X; be a neighboring dataset of x; and let U,Ej) (uw) =
— log(8;, w) be the corresponding loss. Note that max,e[q) | Gap, (X, 0) — Gap,(X;, 0)| <

=
2]
o

o+

_ a-‘rb_Taj c _ L. c
St[j] = eXp (_5 Gapq(xt7 O)) do € ez exXp <_§ Gapq(Xt, O)) do

at+ b= (j-1) a+25%(j—1)

VWU () — Voo UL () |2 =

d ~ 2
Stls] Stl]
\J; <<St,w> <§t,W>>
(gt[]] <St, W>) 2 (6 15)

St[4] <§t) W>

_ \ 2 Z <St’w>2
<[VU (o) [1 maxc 1 — x|

S¢r1¢st, W) S¢r41 exp(E£ £) se,w) .
where k; = SE Gows € SE <wa>gxp(i3 € exp(te) by Equation 6.14. The result follows by

taking the minimum with the bound on the Euclidean norm of the gradient (Lemma 6.D.1). [

Since ef — 1 < 2¢ for € € (0, 1.25], for small ¢ this allows us to add less noise in DP-FTRL.
With this sensitivity bound, we apply Algorithm 12 using the entropic regularizer to obtain the
following result (c.f. Appendix 6.D.1):

Theorem 6.5.2. For d > 2, € (0, 1] if we run Algorithm 12 on US; (pw) = log Z =
x; U (pw

and reg-

log(d)/T
1+ (2\/10g(md)+\/2 log %)U\/log logy Tl min{1,6m}
ularizer (W) = m(W,log W) then for any V' > 0, A € [0,1], and ' € (0, 1] we will have
regret

over 7y-robust priors with step-size n = \/

max, Z U (pw,) — U ()
B €5, dt 1
VmT
<2 ——(b—a)® + 2max{y — A, 0}T log 2
ydy
2md T . .
+ —— [1+ | 44/log(md) + 2 QIOgE o/ |log, T| min{1,&,,} | T'logd

Y

(6.16)

w.p. = 1 — (', where 1 is the harmonic mean of ¥y, = miny X 1] — Xyt and &, =

(1 4 1j,>1) max; ;. For any ¢’ < 2log 5 setting o = 5\/2[10g2 T1log 5; makes this proce-
dure (¢, 0")-DP.

186

Note that in the case of V' > 0 or A = 0 we will need to set d = wr (1) ory = op(1) in order to
obtain sublinear regret. Thus for these more difficult classes our extension of DP-FTRL to non-
Euclidean regularizers yields improved rates, as in the Euclidean case the first term has an extra
v/d-factor. The following provides some specific upper bounds derived from Theorem 6.5.2:

Corollary 6.5.1. For each of the following classes of priors there exist settings of d (where
needed) and v > 0 in Theorem 6.5.2 that guarantee obtain the following regret w.p. > 1 — (5’

1. A-robust and discrete ;) € .Féii): 10) (v \/(1 + M) T)

2. A-robust and V-Lipschitz p[; € }“Vl (\/7\/ 1+ mm{l sm} T3)

3. discrete pp;) € Foq: O (\/7 \/ mm{l am} T3)
4. V-Lipschitz pj;) € Fy: O (W%i/ 1 X mm{allim}) T7)

Thus competing with A-robust priors with discrete PDFs enjoys the fastest regret rate of
@(ﬁ), while either removing robustness or competing with any V'-Lipschitz prior has regret
O(T?*), and doing both has regret O(T"/3). When comparing to Lipschitz priors we also incur
a dependence on the inverse of minimum datapoint separation, which may be small. A notable
aspect of all the bounds is that the regret improves with small € due to the sensitivity analysis
in Lemma 6.5.1; indeed for ¢ = O(¢’) the regret bound only has a O(log 5,) dependence on
the privacy guarantee. Finally, for A\-robust priors we can also apply the log ——boundedness

of —log VA)() and standard online-to-batch conversion (c.f. Appendix B.4) to obtain the
following sample complexity guarantee:

Corollary 6.5.2. For any o > 0 and distribution D over finite datasets x of i)-separated points
from (a, b), if we run the algorithm in Theorem 6.5.2 on

log 3 [d?m? min{1, &,,} 1
— 6 y~m
T=0 (" < 32 (1 +—) + log? A@b) (6.17)

i.i.d. samples from D then w.p. > 1 — [’ the average W = % Zthl W, of the resulting iterates
satisfies

1
Eywp 1og2 - < min Eyop 1og2 -t (6.18)
\II(qZ ’L) (MW[Z]) []E]:O(d \Il(ql Z) (l’l'[l])

For a-suboptimality w.r.t. p[; €]—"‘(/1) the sample complexity is

log 5 (V2m? min{1,&,,} 1
_ B yEm 2
T =0 < = (szaz (1 ") + log _Mb) (6.19)

6.5.3 Learning to estimate covariance matrices

We next study how to learn prediction matrices for DP covariance estimation by targeting the
trace distance between them and the ground truth. This is a more straightforward learning task,

187

with Lipschitz losses over a finite-dimensional domain. Indeed, we could apply standard DP-
FTRL and obtain regret O(1/(1 + d/e’)dT) w.r.t. any symmetric matrix W because the losses
Ux,(W) = |X;X]/|X;| — W/ are 4/d-Lipschitz w.r.t. the Frobenius norm. However, we
can reduce the dependence on the dimension by a +/d-factor by combining our non-Euclidean
DP-FTRL algorithm with the well-known matrix-learning technique of using Schatten p-norm
regularization [Duchi et al., 2010]:

Theorem 6.5.3. Let X, ..., X7 be a sequence of datasets with d-dimensional columns bounded
by 1 in the ¢;-norm. If we run Algorithm 12 on losses Ux, (W) = | X, X/ /|X;|—W |1, with step-

sizen = \/ - (\/8+\/§11<?:(§“,))/ :\/dﬂogQ = and regularizer ¢(-) = 2 log d||-||2 then we will have regret

T
T
Wrggﬁd; Ux, (W) — Ux, (W) < O (1 + (\/E + 4 /log @) o+/d[log, T]> Tlogd

(6.20)
w.p. = 1—f. Forany ¢’ < 2log 5; setting o0 = \/2[10g2 T'|log 5 makes this procedure (¢', 0')-

DP. Furthermore, suppose the datasets are drawn i.i.d. from some distribution D. If we run the
same algorithm and return the average prediction W = T Zt L WithenT = Q (1+d/ = log 6’)

samples suffice to guarantee that w.p. 1 — 5’

Ex-p|XX"/|X| - W|x < H\lni/n Ex-p||XX"/|IX| = W]t + @ (6.21)

Proof. The loss functions | X; X/ /|X;|—W/| 1, have gradients —U,;S, U]/, where Uy, is the matrix
of eigenvectors of X, X, /|X;| — W and S; is the diagonal matrix of the signs of its eigenvalues;
the losses are thus v/d-Lipschitz w.r.t. the Frobenius norm and 1-Lipschitz w.r.t. the trace norm.
Note that these gradients can be computed in polynomial time via eigendecomposition and used
in DP-FTRL with the Schatten-p norm regularizer £ logd|| - ||2 for p = 1 + 1/logd, which is
strongly-convex w.r.t. the trace norm || - ||, [Duchi et al., 2010]. Since the Gaussian width of the
(symmetric) trace ball is (9(\/3) [Latata et al., 2018] and the spectral norm is 1-Lipschitz w.r.t.
the Frobenius norm, applying Theorem 6.5.1 yields the bound

2
Slog d|[Wil, C;'?W"p) (1 ; (om) " @) o/ dllog, T1> T 622

For any optimal W we have

Wl < Wil < IIW X, Xy /Xl e + XX/ 1Kol

(6.23)

’ﬂll\? 'ﬂl

Tr(X, X))/ |IX,| <

so the regret follows by substituting 77. The sample complexity result follows from online-to-
batch conversion (c.f. Lemma B.4.1). [l

188

Thus prediction matrices for covariance estimation are efficiently and privately learnable, in
both the online and distributional settings. Moreover, for both our extension to non-Euclidean
DP-FTRL is critical for obtaining a weaker dependence on the dimension. One limitation of
the analysis is that, unlike for quantiles, we did not conduct a refined analysis by studying how
swapping single columns of X, rather than the entire dataset affects the gradient of Ux,. It is
not immediately clear that an improvement is possible, with the difficulty being the gradient’s
dependence on the signs of the eigenvalues.

6.5.4 Learning the initialization and number of iterations for data release

Finally, we learn to initialize MWEM-based data release. Here we are faced with optimizing

&n 16m? 2m 2
Uy, (W, m) = —tDKL < ||w > pem— (31og7 + 2log” |Q|) (6.24)

Notably, unlike the past learning settings, this function is parameterized by both a prediction w
and the number of steps m, which we will also set online. The reason for this is that the op-
timal step-size depends on the similarity between instances: if for the optimal w the measure
Dy (x¢/n¢||w) is small for most datasets x; then it is better to set a small m above, whereas if it
is usually large it should be counter-acted with a larger m. Our goal will thus be to set w; and m,
together in an online fashion so as to simultaneously compete with the optimal A-robust w € A\,
for some A > (0 and the optimal number of steps m > 0. To do so we will run DP-FTRL with the
entropic regularizer, i.e. private exponentiated gradient (EG), to set both the initialization from
the simplex A, and to set the number of iterations m; at step ¢ by sampling from a categorical
distribution. This has the following regret guarantee (c.f. Appendix 6.D.3):

Theorem 6.5.4. Let x1,...,x7 € Z% be a sequence of datasets with n; = x| entries each,
let N = max; n;, and consider any v € (0,1] and A € [0, 1]. Then there exists M € Z., and
M, 01,M2,02 > 0 s.t. running DP-FTRL with regularizer ¢(w) = (w,log w), step-size 7, and
noise o on the losses n; Dk (3t ||w) over the domain wf; > /d to set w, and simultaneously
running DP-FTRL with regularizer ¢(0) = (0, log), step-size 12, and noise o, on the losses
E,~eUx, (W, m) over the domain A, and setting m; using the categorical distribution defined
by 0, over the Unif{1, ..., M} such that the entire scheme is (¢’,')-DP and w.h.p. has regret

O ((_ N N.E/\@ LIV ﬂﬁ) VT + max{y — /\,O}NT> (6.25)
min{l,e2} min{l,e} v AV ¢

A

wrt. any m > 0 and w € Ay satisfying wy;) = For A > 0 setting v = A\ yields regret

@ (m]\f% \ﬁ), for \ = 0and T = d?, setting v = :ﬂ has regret O (mln{1€2}T \/7)

As in quantile learning, we suffer a strong dependence on the dimension here, and the rate
is worse if we try to compete the non-robust initializations (A = 0). It thus remains an open
question whether either a better learning result or upper bound is possible. Nevertheless, to inter-

pret this guarantee, note that for) = miny,, >/ (Zthl ny Dy (x¢/ny |W)) / (Zthl nt) and if

R.

189

n, = n ¥V t then we have that the optimum-in-hindsight for the average upper bound is

2
T 4 15T 3
1 | 1003 (Zm”t) 2 ~ [s/nlog?
Omin A/dTZUX*(W’m):O og 2|Q| T =6 3 %JQ'H%
t=1 ny
(6.26)
Since H) approximates the entropy of the aggregate distribution across instances Xy, . .., X;—

indeed for A = 0 it is exactly the entropy of the average distribution (Zthl xt) /3T n—the

regret guarantee shows that we will do well asymptotically if the entropy is small. Note that being
able to choose m in addition to w is crucial to adapting to this entropy, and is closely related to
the problem of choosing the step-size in meta-learning, where similar aggregate measures appear
as forms of task similarity (c.f. Sections 2.2 and 2.3).

6.6 Applications

Having derived prediction-dependent performance bounds for three DP tasks and analyzed their
robustness and learnability, we now investigate how these algorithms might be deployed in prac-
tice. We focus on the problem of multiple quantile release and consider the two motivating set-
tings from the introduction: public-private transfer and sequential release. While we make direct
use of the robust mixing scheme devised in Section 6.4, our learnability analysis in Section 6.5
yielded unwieldy discretization-based algorithms due to the focus on approximating very gen-
eral priors. This generality seems unnecessary, as we might reasonably expect simple, unimodal
distributions to be good priors for quantiles.

We thus consider instead the problem of optimizing the performance bounds Uy = — log Wy
for multiple quantile release across classes of location-scale priors, which for some measure
f: R+ Rz have the form 4, ,(z) = 2 f (£%) for v € R and ¢ > 0. Such families allows us
to model both the location of a quantile using v = (w, f)—where w € R? is a linear model from
public features f € R about the dataset—and our uncertainty about it using o, all while staying
in reasonable dimensions. Note that in this section we target only the e-independent bound Uy, as
UL does not yield a convex objective; furthermore, while we mainly discuss the single-quantile
bound UL for simplicity, the general results (c.f. Section 6.E) extend naturally to the case of

m > 1 because it is the log-sum-exp of the former.

6.6.1 Convexity vs. robustness of location-scale models

We must first determine which location-scale family to use, as this include Gaussians with mean
v and variance o2, Laplace with mean v and scale o, Cauchy with location v and scale o, and
more. To