
On the Alignment, Robustness, and
Generalizability of Multimodal Learning

Jielin Qiu

CMU-CS-24-101

April, 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Thesis Committee:
Christos Faloutsos (Co-chair)

Lei Li (Co-chair)
Yonatan Bisk

William Wang (University of California, Santa Barbara)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright © 2024 Jielin Qiu

This research was sponsored in part by CMU CSD fellowships, the Defense Advanced Research Projects Agency
(DARPA) ADAPTER program, Adobe Research Gift Funding, Allegheny Health Network, Mario Lemieux Center
for Innovation and Research in EP, and Cleveland Clinic. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government, or any other entity. Creative Commons License: CC-BY-NC-SA.



Keywords: multimodal learning, semantic alignment, multimodal robustness, generalization,
cross-domain alignment

ii



Abstract
Multimodal intelligence, where AI systems can process and integrate information

from multiple modalities, such as text, visual, audio, etc., has emerged as a key concept
in today’s data-driven era. This cross-modal approach finds diverse applications and
transformative potential across industries. By fusing heterogeneous data streams,
multimodal AI generates representations more akin to human-like intelligence than
traditional unimodal techniques.

In this thesis, we aim to advance the field of multimodal intelligence by focusing
on three crucial dimensions: multimodal alignment, robustness, and generalizability.
By introducing new approaches and methods, we aim to improve the performance,
robustness, and interpretability of multimodal models in practical applications. In this
thesis, we address these critical questions: (1) How do we explore the inner semantic
alignment between different types of data? How can the learned alignment help advance
multimodal applications? (2) How robust are the multimodal models? How can we
improve the models’ robustness in real-world applications? (3) How do we generalize
the knowledge of one learned domain to another unlearned domain?

This thesis makes contributions to all three technical challenges. We start with
a contribution of learning cross-modal semantic alignment, where we explore estab-
lishing rich connections between language and image/video data, with a focus on the
multimodal summarization task. By aligning the semantic content of language with
visual elements, the resulting models can possess a more nuanced understanding of
the underlying concepts. We delve into the application of Optimal Transport-based
approaches to learn cross-domain alignment, enabling models to provide interpretable
explanations of their multimodal reasoning process.

For the next contribution, we develop comprehensive evaluation metrics and method-
ologies to assess the robustness of multimodal models. By simulating distribution shifts
and measuring the model’s performance under different scenarios, we can gain a deeper
understanding of the model’s adaptability and identify potential vulnerabilities. We
also adopt Optimal Transport to improve the model’s robustness performance through
data augmentation via Wasserstein Geodesic perturbation.

The third contribution revolves around the generalizability of multimodal systems,
with an emphasis on the interactive domain and the healthcare domain. In the interactive
domain, we develop new learning paradigms for learning executable robotic policy
plans from visual observations by incorporating latent language encoding. We also use
retrieval augmentation to make the vision-language models capable of recognizing and
providing knowledgeable answers in real-world entity-centric VQA. In the healthcare
domain, we bridge the gap by transferring the knowledge of LLMs to clinical ECG and
EEG. In addition, we design retrieval systems that can automatically match the clinical
healthcare signal to the most similar records in the database. This functionality can
significantly aid in diagnosing diseases and reduce physicians’ workload.

In essence, this thesis seeks to propel the field of multimodal AI forward by
enhancing alignment, robustness, and generalizability, thus paving the way for more
sophisticated and efficient multimodal AI systems.
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Chapter 1

Introduction

The world is ful�lled with various signals such as images, videos, audio, text, sensor signals, and so
on. Humans naturally perceive the world through multiple senses, such as sight, sound, touch, and
more. This multi-modal approach is a fundamental aspect of human cognition and has become a
cornerstone in the development of arti�cial intelligence (AI). In the current era, where technology
is increasingly driven by vast amounts of data, the concept of multimodal intelligence has gained
prominence. This paradigm combines various forms of data, such as language, visual information,
physiological signals, and others, to create more comprehensive and nuanced AI systems.

Despite the wealth of data available, there are currently no comprehensive tools for analyzing
this data and leveraging the patterns within it. Identifying patterns across different modalities
is essential for utilizing them to address real-world, domain-speci�c challenges. For motivation
examples: (1) Summarization and Recommendation: The automatic generation of summaries
for multimedia news or providing introductions to online videos can signi�cantly enhance the
performance of search engine and recommendation systems for online content. For instance, more
than 500 hours of video are uploaded to YouTube every minute, most without summaries. The
absence of accurate summaries makes it challenging to develop search engines and recommendation
systems that ef�ciently help users �nd the content they desire. (2) Content Creation: Text-to-image
generation models often produce incorrect, unclear, or biased content. Developing more robust
models for real-world applications is an urgent issue. (3) Household Robots: The market for
household robots, aimed at assisting people with disabilities in daily tasks, was valued at USD 10.3
billion in 2023. These robots aim to offer substantial and ef�cient support for routine tasks through
various interaction methods, including visual perception, verbal instructions, and speech dialogue,
making the utilization of multimodal information to enhance the robot's performance and reliability
a complex challenge. (4) Healthcare Applications: For example, the diagnosis of chest pain in
emergency departments (ED) alone currently incurs an estimated cost of 10 to 12 billion per year in
the US. Developing a solution that provides cost-ef�cient patient care using multimodal healthcare
data could be highly bene�cial for society.

This thesis is motivated by these applications. The problems studied in this thesis are abstracted
from the common challenges across these applications. In the following, we will �rst present a few
motivating application. We will describe the problems and general approaches to the challenges.
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1.1 Motivation and Challenges

Multimodal Learning has advanced quickly in recent years with numerous applications in different
�elds, i.e., multimedia image/video and language understanding [99, 179, 389, 580], embodied
learning [38, 178, 192, 294], healthcare and psychology [146, 267], and many more.

Multimodal learning is essential in real-world applications as it empowers systems to process
and comprehend information from a variety of sources. In these scenarios, it is very important to
understand the patterns in the data such as alignment, robustness, and generalizability. Our goal is
to develop algorithms and build datasets for learning from multiple modalities, and we list here a
few motivating applications.

Multimedia search engine and recommendation systemsThe digital world is over�owing with
multimedia content, such as videos. For instance, with more than 500 hours of video uploaded to
YouTube every minute, many without detailed annotations, creating multimedia search engines
and recommendation systems is a challenging task. Traditional search engines rely on titles, text
descriptions, or video tags, but for more precise search results, additional content like summaries is
needed. However, the number of videos with summaries is small compared to the volume of new
uploads, making it crucial to �nd ways to generate summaries for videos to enhance search engine
performance and better recommendations for the users.

One promising solution is Multimodal Summarization with Multimodal Output (MSMO), which
has gained traction in recent years [52, 172, 210, 309, 576]. MSMO aims to automatically generate
keyframes and key textual summaries for media news or online videos. These applications can
deliver concise summaries of multimedia content, which can signi�cantly improve the development
of search engines and recommendation systems, helping users �nd the content they are looking for
more effectively.

Figure 1.1: Multimedia summarization: providing summaries can signi�cantly lead to better search
engines and recommendation systems.

Figure 1.1 illustrates a potential solution for addressing the randomness of videos on the internet,
which can aid in the development of improved search engines and recommendation systems. In this
context, we are particularly interested in addressing the following critical issues:

• How do we explore the inner semantic alignment between different domains?
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• How can the learned alignment help advance multimodal applications, such as providing
better summarization results?

Content Creation As the �eld of text-to-image generation models [317, 389] evolves, these
technologies are increasingly being utilized to assist in the creation of creative content. They serve
a wide range of users, from professional designers to individuals without speci�c domain expertise,
effectively enhancing the ef�ciency and creativity of content production. Despite their growing
popularity, these models encounter several challenges. One of the main issues is their vulnerability
to attacks, which can lead to the generation of incorrect, unclear, or biased content. This highlights
the pressing need for the development of more robust models that can withstand such vulnerabilities
and perform reliably in real-world applications. Addressing this concern is essential for ensuring
the utility of text-to-image generation technologies in various creative �elds.

Figure 1.2: Content creation: text-to-image models are easy to attack and generate incorrect results.
For example, they might generate an image of a dog that is not white or a scene without grass
or trees, despite these elements being speci�ed in the input description but with a few common
perturbations. (“Keyboard" simulates the mistakes made while using a keyboard.)

Figure 1.2 illustrates a text-to-image generation example, where applying keyboard typos, OCR
errors, or synonym replacements to the original sentence, can lead to generated images containing
incomplete visual information. In this context, we are interested in exploring:

• How robust are the multimodal models in the presence of noises??
• How can we improve the models' robustness in real-world applications?

Household Robot In 2023, the industry focusing on household robots designed to aid individuals
with disabilities in their daily activities was estimated to be worth USD 10.3 billion. These robots
aim to offer substantial and ef�cient support for routine tasks through various interaction methods,
including visual perception, verbal instructions, and speech dialogue, making the utilization of
multimodal information to enhance the robot's performance and reliability a complex challenge.

Large Language Models (LLMs) have recently made signi�cant advancements in supporting
robotic learning for intricate domestic tasks such as complex household management. Nonetheless,
the ef�cacy of these pre-trained LLMs depends greatly on templated text data tailored to speci�c
domains, a requirement that may not be practical for real-world robotic learning scenarios that
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involve image-based observations. Furthermore, current LLMs that process textual information
are not designed to adapt through non-expert interactions with environments. Consequently, the
pressing question arises: How can we leverage multimodal data to develop better household robots
that can more effectively assist humans in the complex environment?

Figure 1.3: Household Robot: the market is increasing with few practical solutions [3].

Healthcare applications Providing high-quality and ef�cient patient treatment is a longstanding
problem. For example, in the current practice of cardiovascular disease, patients presenting with
chest pain to the emergency department (ED) constitute a diagnostic and logistic challenge as
chest pain can be caused by an extensive variety of disorders [14]. Diagnostic tests and decision
algorithms play a critical role in speeding up the appropriate triage of chest pain patients in the
ED, and preventing unnecessary hospitalization of patients with non-critical disorders. In current
practice, about half of the patients presenting with chest pain can be discharged from the ED, and
only 5.5 % of all ED visits lead to serious diagnosis [175]. However, the diagnosis of chest pain
in the ED now incurs an estimated cost of 10 to 12 billion per year in the U.S., representing a
signi�cant �nancial burden for both patients and society. The pressing issue, therefore, is how to
provide cost-ef�cient patient care using multimodal healthcare data.

Figure 1.4: Healthcare applications: the healthcare treatment cost is a �nancial burden but still
increasing.

Since the data available in the robotics and healthcare domains are less abundant compared
to the vast amounts of multimedia image/video or text data, there are inherent challenges, even
though healthcare data, as illustrated in Figure??, comes in various types. However, the volume of
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Figure 1.5: Healthcare applications: different types of healthcare data, from [372].

data within each type is still signi�cantly lower than that of image-text data. This leads to typical
problems including:

• How do we generalize the knowledge of one learned domain to another unlearned domain?
• How to generalize from data-rich domain to data-scarce domain?

1.2 Thesis Overview

Figure 1.6: Thesis contributions to multimodal alignment, robustness, and generalizability.

Given this context, several critical questions need to be addressed to improve the alignment,
robustness, and generalizability of multimodal learning:

1. Exploring Inner Semantic Alignment How do we explore the inner semantic alignment
between different domains? How can the learned alignment help advance multimodal ap-
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plications? Understanding the relationships between different modalities and how they can
complement each other is crucial for developing more effective multimodal systems.

2. Robustness of Multimodal ModelsHow robust are the multimodal models? How can
we improve the models' robustness in real-world applications? Ensuring that multimodal
models can handle diverse and potentially noisy inputs is essential for their reliability and
effectiveness in practical applications.

3. Generalization Across DomainsHow do we generalize the knowledge of one learned
domain to another unlearned domain? Developing methods that allow models to transfer
learned knowledge to new, unseen domains is key to creating more versatile and adaptable
multimodal systems.

In this thesis, we aim to answer each of these three questions, aiming to enhance the perfor-
mance, robustness, and interpretability of multimodal models in real-world scenarios, ultimately
contributing to the advancement of multimodal intelligence.

Chapter 2: multimodal semantic alignment This chapter focuses on achieving effective multi-
modal semantic alignment, facilitating seamless connections between language and visual modalities.
To accomplish this objective, the following sub-objectives are pursued:

• Multimodal alignment: We explore establishing rich connections between language and
image/video data. By aligning the semantic content of language with visual elements, the
resulting models can possess a more nuanced understanding of the underlying concepts. In
[361], we propose a Semantics-Consistent Cross-domain Summarization (SCCS) model,
which leverages optimal transport alignment combined with visual and textual segmentation
to achieve multimodal summarization. In [347], we explore the alignment between visual and
language domains speci�cally for the task of temporally segmenting long Livestream videos,
which can establish the basis for Livestream video understanding tasks and can be extended
to many real-world applications.

• Interpretability: We delve into the application of Optimal Transport-based approaches to
learn cross-domain alignment, enabling models to provide interpretable explanations of
their multimodal reasoning process [361, 363]. The optimal transport coupling can reveal
the underlying similarity and structure, which further helps to explain the correspondence
between the text and image data.

• New datasets: We propose a new dataset, MMsum [357], to solve the problems within existing
datasets, such as insuf�cient maintenance, data inaccessibility, limited size, etc. MMSum is
speci�cally designed to cater to a wide range of tasks, with a particular emphasis on MSMO,
with diverse categorization.

Chapter 3: multimodal robustness In Chapter 3, we aim to address the challenge of multimodal
robustness, particularly under perturbations. As real-world scenarios often involve variations in data
distributions, it is crucial to ensure that multimodal models can maintain their performance across
diverse environments. To tackle this challenge, the research will focus on the following areas:

• Robustness evaluation: In [363], we build a comprehensive evaluation benchmark speci�cally
designed to assess the robustness of multimodal models. By simulating various distribution
shifts and measuring the model's performance across different scenarios, we aim to gain a

6



deeper insight into the model's adaptability and vulnerabilities. Understanding how multi-
modal models perform under diverse conditions is crucial for developing more reliable and
robust systems that can effectively handle the complexities of real-world data.

Chapter 4: multimodal generalizability capabilities in interactive environments In Chapter
4, we aim to explore the multimodal generalizability capabilities in interactive environments,
particularly in the domains of language grounding. The following sub-objectives are pursued:

• Language grounding in robot learning: In [350], we introduce a novel learning paradigm
that generates robots' executable actions in the form of text, derived solely from visual
observations. Our proposed paradigm stands apart from previous works, which utilized either
language instructions or a combination of language and visual data as inputs.

• Retrieval-augmented generation (RAG): In [353], we work on a novel task for entity-centric
VQA to assess the pro�ciency of models in accurately identifying and generating responses
that exhibit a deep comprehension of these identi�ed entities. We propose a retrieval-
augmented multimodal LLM, devised as a baseline model capable of undertaking the SnapN-
Tell [353] task, which is scalable, effective, and explainable.

Chapter 5: cross-modal applications in healthcare Finally, in Chapter 5, we explore whether
the learned knowledge can be transferred to the clinical domain. We aim to explore the cross-modal
applications in healthcare.

• ECG-to-text generation: In [349], we aim to bridge the gap by transferring the knowledge
of LLMs to clinical Electrocardiography (ECG) for textual diagnosis report generation and
zero-shot disease detection. Our approach is able to generate high-quality cardiac diagnosis
reports and also achieves competitive zero-shot classi�cation performance even compared
with supervised baselines, which proves the feasibility of transferring knowledge from LLMs
to the cardiac domain.

• Connectivity between human language and brain signals: In [146], we explore the relationship
and dependency between EEG and human language to reveal the inner connection. Our
�ndings on word-level and sentence-level EEG-language alignment show the in�uence of
different language semantics as well as EEG frequency features.

• Clinical retrieval system: In [351], we design a retrieval system that can automatically match
the input Cardiovascular Magnetic Resonance (CMR) Imaging to the most similar records
in the database. This functionality can signi�cantly aid in diagnosing diseases and reduce
physicians' workload, which can provide patients with better treatment.

1.3 Summary of Contributions

Multimodal intelligence, where AI systems exhibit intelligent behaviors by leveraging data from
multiple modalities (text, visual, audio, etc.), has emerged as a key concept in today's data-driven
era. This cross-modal approach �nds diverse applications and transformative potential across
industries. By fusing heterogeneous data streams, multimodal AI generates representations more
akin to human-like intelligence than traditional unimodal techniques. In this thesis, we aim to propel
the �eld of multimodal AI forward by enhancing alignment, robustness, and generalizability, thus
paving the way for more sophisticated and ef�cient multimodal AI systems.
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Algorithms Our work has focused on:

• Multimodal alignment [347, 357, 361]: We explore establishing rich semantic connections
between language and image/video data, with a focus on Multimodal Summarization with
Multimodal Output (MSMO) task. By aligning the semantic content of language with visual
elements, the resulting models can possess a more nuanced understanding of the underlying
concepts.

• Interpretability [361, 363]: We delve into the application of Optimal Transport-based ap-
proaches to learn cross-domain alignment, enabling models to provide interpretable explana-
tions of their multimodal reasoning process.

• Language grounding in robot learning [355]: This research aims to develop techniques for
learning executable plans from visual observations by incorporating latent language encoding.
Models are trained to understand and interpret visual cues while leveraging the rich semantic
information encoded in language.

• Retrieval-augmented Multimodal LLM [353]: We develop a retrieval-augmented Multimodal
LLM model, which is capable of recognizing and providing knowledgeable answers in
real-world entity-centric Visual Question Answering (VQA).

• ECG-to-text generation [349]: We bridge the gap by transferring the knowledge of LLMs to
clinical ECG for diagnosis report generation and zero-shot disease detection.

• Connection between human language and brain signals [146]: We explore the relationship
and dependency between EEG and human language to reveal the inner connection.

• Clinical retrieval system for Cardiovascular Magnetic Resonance (CMR) Imaging [351]: We
design a retrieval system that can automatically match the input signal to the most similar
records in the database. This functionality can signi�cantly aid in diagnosing diseases and
reduce physicians' workload.

Datasets and Benchmark Our work has focused on:

• Robustness evaluation benchmark of multimodal models [363]: We develop comprehensive
evaluation metrics and methodologies to assess the robustness of multimodal models. By
simulating distribution shifts and measuring the model's performance under different scenar-
ios, we can gain a deeper understanding of the model's adaptability and identify potential
vulnerabilities.

• New MSMO dataset [357]: We propose a new dataset named MMSum to solve the problems
within existing MSMO datasets, such as insuf�cient maintenance, data inaccessibility, limited
size, and categorization, etc., spanning 17 principal categories and 170 subcategories.

• New Livestream video dataset [347]: We introduce a new large dataset of Livestream videos,
which contains 11,285 Livestream videos with a total duration of 15,038.4 hours.

• New CMR dataset [351]: The existing work falls short in providing a large CMR dataset, we
take the initiative to gather a comprehensive dataset consisting of 13,787 studies derived from
actual clinical cases.

• New entity-centric VQA dataset [353]: We have developed the SnapNTell dataset, distinct
from traditional VQA datasets as (1) It encompasses a wide range of categorized entities,
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each represented by images and explicitly named in the answers; (2) It features QA pairs that
require extensive knowledge for accurate responses. The dataset is organized into 22 major
categories, containing 7,568 unique entities in total.

Applications The works in this thesis are listed in Table 1.1 based on the topics.

Table 1.1: Thesis topics.

Model/Algorithm Dataset/Benchmark
Application

Venue

Alignment

Multimedia Robotics Healthcare

SCCS SCCS ACL Findings 2023 [361]
LiveSeg LiveSeg LiveSeg WACV 2023 [347]
MMSum MMSum MMSum CVPR 2024 [357]

Entity6K Entity6K Under Review [348]

Robustness

MMRobustness MMRobustness DMLR 2024 [363]
Cardiac-MT Cardiac-MT ICASSP 2023 [362]
Interp-OT Interp-OT ICML 2023 [574]
GeoECG GeoECG PMLR MLHC 2022 [575]

Generalization

SUM+APM SUM+APM NAACL 2024 [355]
ECG-LLM ECG-LLM EACL Findings 2023 [349]

MTAM MTAM EMNLP Findings 2023 [146]
CMRformer CMRformer CMRformer ICML 2023 Workshop [351]

ECG-Encoding ECG-Encoding ML4H 2023 [358]
SnapNTell SnapNTell SnapNTell Under review [353]

The work presented in this thesis has already had a signi�cant impact, which we categorize into
1) Application impact, 2) Academic impact, and 3) Impact through code release.

Application Impact
• [347] has been patented by Adobe for production on Behance Livestream [197].
• [351] has been implemented by Cleveland Clinic for clinical trials.

Academic Impact The work presented here has been previously published in top-tier outlets in
different venues, as in Table 12.1, especially:

• [363] was accepted as the very �rst paper of the Journal of Data-centric Machine Learning
Research (DMLR).

• [357] was accepted as Poster (Highlight) in CVPR 2024, which is Top 11.9% among all
accepted papers.

• [355] was accepted as a spotlight for the ICML 2023 Workshop on Interactive Learning with
Implicit Human Feedback.

Impact Through Code Release To enable the reproducibility and extendibility of our work, we
have publicly released the source code for the algorithms presented in this thesis. As of January 28,
2024:

• [363] has 30 stars, 18 clones, 173 viewers, and 17 citations (as of March 24, 2024).
• [357] has 24 stars, 16 clones, and 424 viewers (as of March 24, 2024).
• [267] has 141 citations.
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Other Contributions Here we list some other contributions that happened during the graduate
study but are not introduced in the thesis.

• Data augmentation: Data augmentation techniques can improve the models' robustness.
In [362, 458, 575], we synthesize diverse examples encompassing a wide range of data
distributions; models can learn to generalize better and exhibit improved performance in
novel scenarios. We propose a physiologically-inspired data augmentation method to improve
the performance, generalization, and robustness of the ECG prediction model, where the new
data augmentation method was proposed from a probability perspective. We perturb the data
distribution towards other classes along the geodesic in a Wasserstein space. Also, the ground
metric of this Wasserstein space is computed via a set of physiological features so that the
perturbation lies on a manifold that exploits the physiological properties.

• ECG-encoding: In [358], we encode ECG as images and adopted a vision-language learning
paradigm to jointly learn vision-language alignment between encoded ECG images and ECG
diagnosis reports. Encoding ECG into images can result in an ef�cient ECG retrieval system,
which can be highly practical and useful in clinical applications.

• Geometry-aware representations with Wasserstein distance: In [574], we learn diverse repre-
sentations based on the Wasserstein distance. In particular, by choosing the distance metric
in the primal de�nition of the Wasserstein distance to re�ect our prior knowledge about the
data, we can formulate the corresponding dual problem and learn diverse representations,
maximizing the pairwise Wasserstein distances under certain model smoothness constraints.

Thesis Statement Multimodal intelligence refers to the ability of a system to integrate and process
information from multiple sensory modalities, such as visual, text, tactile inputs, etc., to achieve
complex understanding and perform tasks. This type of intelligence is crucial in environments where
diverse types of data are present, enabling effective interaction, decision-making, and problem-
solving by leveraging the complementary strengths of each modality.

This thesis demonstrates that by enhancing the modeling of patterns across different modalities,
we can achieve a more effective utilization of the unique modality equivalence learned through
abstract multimodal representations. This improved modeling can lead to advancements in cross-
modal applications, increasing the robustness of multimodal models under distribution shifts and
enhancing their generalization abilities. Consequently, this thesis aims to advance the �eld of
multimodal AI by focusing on the enhancement of alignment, robustness, and generalizability,
ultimately leading to the development of more sophisticated and ef�cient multimodal AI systems.

However, a notable challenge in this domain is the opaque nature of these complex models. The
internal logic behind their alignment across different modalities is often not transparent, posing
dif�culties in understanding and interpreting their behavior. Future research in this area could delve
into the interpretability of multimodal AI systems, exploring methods to elucidate the alignment
logic across different modalities and how it can be leveraged more ef�ciently.
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Chapter 2

Background and Preliminary

This chapter reviews the current literature of multimodal learning related work. We review general
methodologies and models in the literature. More speci�c ones will be introduced later in each
chapter.

2.1 Background

Multimodal Learning has advanced quickly in recent years with appealing applications in
different �elds, i.e., embodied learning [38, 178, 192, 294], multimedia image/video and language
understanding [99, 179, 389, 580], and psychology [146, 267]. Thanks to the larger datasets [334,
367, 406, 407, 539] and larger transformer models [43, 59, 68, 253, 546], many powerful multimodal
image-text models have been developed and shown great capability. However, unlike unimodal
models, the robustness study of multimodal models under distribution shift has rarely been explored.

Multimodal Alignment Aligning representations from different modalities is important in multi-
modal learning. Exploring the explicit relationship across vision and language has drawn signi�cant
attention [481]. [461, 514, 538] adopted attention mechanisms, [90] composed pairwise joint repre-
sentation, [57, 502, 547] learned �ne-grained or hierarchical alignment, [231, 503] decomposed the
inputs into sub-tokens, [470, 530] adopted graph attention for reasoning, and [141, 367, 465, 522]
applied contrastive learning algorithms.

Multimodal Summarization explored multiple modalities for summary generation by learning
the alignment [114, 324, 494, 541] learned the relevance or mapping in the latent space between
different modalities. In addition to only generating visual summaries, [19, 236, 576] generated
textual summaries by taking audio, transcripts, or documents as input along with videos or images,
using seq2seq model [445] or attention mechanism [24]. The methods above explored using
multiple modalities' information to generate a single modality output, either textual or visual
summary. Recent trends on the MSMO task have also drawn much attention [114, 115, 154, 295,
360, 361, 452, 552, 557, 576]. Speci�cally, [452] summarized a video and text document into a
cover frame and a one-sentence summary. The most signi�cant difference between multimodal
summarization and MSMO lies in the inclusion of multiple modalities in the output.
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Multimodal LLMs Expanding text-only LLMs to interpret visual information typically involves
integrating a visual encoder with a frozen LLM, using extensive image captioning datasets for align-
ment [68, 219, 504]. This integration can be accomplished through methods such as adapter-based
tuning [8], which �ne-tunes a small portion of the model to process visual inputs, or pre�x tuning
[463], where trained pre�xed vectors are inputted to guide the frozen LLM towards contextually
relevant text outputs based on the visual data. These techniques allow LLMs to maintain their
linguistic prowess while gaining visual understanding without full model retraining [534].

2.2 Preliminary

Several fundamental methodologies have been established in the literature. In this section, we
present their preliminaries, which will be utilized in subsequent chapters.

Optimal Transport (OT) Basis OT is the problem of transporting mass between two discrete
distributions supported on latent feature spaceX . Let � = f x i ; � i g

n
i =1 andv =

�
y j ; v j

	 m

j =1
be

the discrete distributions of interest, wherex i ; y j 2 X denotes the spatial locations and� i ; vj ,
respectively, denoting the non-negative masses. Without loss of generality, we assume

P
i � i =P

j vj = 1. � 2 Rn� m
+ is a valid transport plan if its row and column marginals match� andv,

respectively, which is
P

i � ij = vj and
P

j � ij = � i . Intuitively, � transports� ij units of mass at
locationx i to new locationy j . Such transport plans are not unique, and one often seeks a solution
� � 2 �( � ; v) that is most preferable in other ways, where�( � ; v) denotes the set of all viable
transport plans. OT �nds a solution that is most cost-effective w.r.t. cost functionC(x ; y ):

D(� ; v) =
X

ij

� �
ij C

�
x i ; y j

�
= inf

� 2 �( �;v )

X

ij

� ij C
�
x i ; y j

�
(2.1)

whereD(� ; v) is known as OT distance.D(� ; v) minimizes the transport cost from� to v w.r.t.
C(x ; y ). WhenC(x ; y ) de�nes a distance metric onX , andD(� ; v) induces a distance metric on
the space of probability distributions supported onX , it becomes the Wasserstein Distance (WD).

Wasserstein Distance As above, Wasserstein distance (WD) is introduced inOT, which is a
natural type of divergence for registration problems as it accounts for the underlying geometry
of the space, and has been used for multimodal data matching and alignment tasks [54, 81, 230,
360, 540, 575]. In Euclidean settings, OT introduces WDW(�; � ), which measures the minimum
effort required to “displace” points across measures� and� , where� and� are values observed in
the empirical distribution. In our setting, we compute the temporal-pairwise Wasserstein Distance
on EEG features and language features, which are(�; � ) = ( Ve; Vt ). For simplicity without loss
of generality, assume� 2 P(X) and� 2 P(Y) denote the two discrete distributions, formulated
as� =

P n
i =1 ui � x i and� =

P m
j =1 vj � yj , with � x as the Dirac function centered on x.�( �; � )

denotes all the joint distributions
 (x; y), with marginals� (x) and � (y). The weight vectors
u = f ui g

n
i =1 2 � n and v = f vi g

m
i =1 2 � m belong to then� and m� dimensional simplex,

respectively. The WD between the two discrete distributions� and� is de�ned as:

WD(�; � ) = inf

 2 �( �;� )

E(x;y )� 
 [c(x; y)] = min
T 2 �( u ;v )

nX

i =1

mX

j =1

Tij � c(x i ; yj ) (2.2)
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where�( u;v )= f T 2 Rn � m
+ jT 1m = u;T > 1n = vg, 1n denotes ann� dimensional all-one vector, andc(x i ; yj )

is the cost function evaluating the distance betweenx i andyj .

Canonical Correlation Analysis Canonical Correlation Analysis (CCA) is a method for exploring
the relationships between two multivariate sets of variables. It learns the linear transformation
of two vectors to maximize the correlation between them, which is used in many multimodal
problems [16, 129, 352]. In this chapter, we apply CCA to capture the cross-domain relationship.
Let low-level transformed EEG features beVe and low-level language features beL t . We assume
(Ve; Vt ) 2 Rn1 � Rn2 has covariances(� 11; � 22) and cross-covariance� 12. CCA �nds pairs of
linear projections of the two views,(w0

1Ve; w0
2Vt ) that are maximally correlated:

(w�
1; w�

2) = argmax
w1 ;w2

corr (w0
1Ve; w0

2Vt ) = argmax
w1 ;w2

w0
1� 12w2p

w0
1� 11w1w0

2� 22w2
(2.3)

Transformer Architecture The transformer is based on the attention mechanism [468]. The
original transformer model is composed of an encoder and a decoder. The encoder maps an input
sequence into a latent representation, and the decoder uses the representation with other inputs to
generate a target sequence.

First, we feed out the input into an embedding layer, which is a learned vector representation
of the input feature, by mapping the features to a vector with continuous values. Then we inject
positional information into the embeddings by:

PE(pos;2i ) = sin
�

pos=100002i=dmodel

�
; PE(pos;2i +1) = cos

�
pos=100002i=dmodel

�
(2.4)

The attention model contains two sub-modules, a multi-headed attention model and a fully connected
network. The multi-headed attention computes the attention weights for the input and produces an
output vector with encoded information on how each feature should attend to all other features in
the sequence. There are residual connections around each of the two sub-layers followed by a layer
normalization, where the residual connection means adding the multi-headed attention output vector
to the original positional input embedding, which helps the network train by allowing gradients to
�ow through the networks directly.

Multi-headed attention applies a self-attention mechanism, where the input goes into three
distinct fully connected layers to create the query, key, and value vectors. The output of the residual
connection goes through a layer normalization.

MultiHead( Q; K; V ) = Concat ( head1; : : : ; headh) W O

where headi = Attention
�

QW Q
i ; KW i

K ; V Wi
V

� (2.5)

The attention model containsN same layers, and each layer contains two sub-layers, which are
a multi-head self-attention model and a fully connected feed-forward network. Residual connection
and normalization are added in each sub-layer. So the output of the sub-layer can be expressed as:
Output= LayerNorm(x + ( SubLayer(x))) For the Multi-head self-attention module, the attention
can be expressed as:attention= Attention(Q; K; V ), where multi-head attention usesh different
linear transformations to project query, key, and value, which areQ, K , andV, respectively, and
�nally concatenate different attention results:

MultiHead(Q,K,V)= Concat(head1; :::; headh)W O (2.6)
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headi = Attention(QW Q
i ; KW K

i ; V WV
i ) (2.7)

where the projections are parameter matrices:

W Q
i 2 Rdmodeldk ; W K

i 2 Rdmodeldk ;W V
i 2 Rdmodeldv ; W O

i 2 Rhdv � dmodel (2.8)

where the computation of attention adopted scaled dot-product:

Attention(Q; K; V ) = softmax(
QK T
p

dk
)V (2.9)

Vision Transformer (ViT) A Vision Transformer (ViT) [92] is a type of transformer speci�cally
developed for computer vision tasks. Unlike text-based transformers that split text into tokens, a ViT
divides an input image into several patches. Each patch is then converted into a vector and reduced
to a smaller dimension through matrix multiplication. These vector embeddings are processed by a
transformer encoder, similar to how token embeddings are handled. ViTs are utilized in various
applications, including image recognition, image segmentation, and so on.

Given an input imageI with dimensionsH � W � C, whereH is the height,W is the width,
andC is the number of channels (e.g., 3 for RGB): The image is divided intoN patches, each of
sizeP � P, resulting in patches with dimensionsH

P � W
P � C. Each patch is then �attened and

linearly projected to aD-dimensional embedding vector using a learnable matrixE 2 R(P 2 �C)� D .
Positional embedding is then added to the patch embeddings to retain positional information. The
�nal input embeddings for the transformer encoder is the sum of patch embedding and position
embedding. The input embeddings are passed through a series of transformer encoder layers, each
consisting of multi-head self-attention (MHSA) and feed-forward (FF) networks. The output of the
transformer encoder is then used for various vision tasks, such as classi�cation, segmentation, etc.

CLIP CLIP [367] is designed to understand and generate associations between textual and visual
data. The model is trained on a large dataset of images and their corresponding textual descriptions,
allowing it to learn a wide range of visual concepts and their linguistic representations.

CLIP consists of two encoders: an image encoder and a text encoder. The goal of CLIP is to
learn a joint embedding space where corresponding images and texts are close to each other. LetI
be an input image. The image encoderf I mapsI to aD-dimensional embedding vector:

v = f I (I ) 2 RD (2.10)

Let T be an input text (e.g., a caption or a sentence). The text encoderf T mapsT to aD-dimensional
embedding vector:

w = f T (T) 2 RD (2.11)

CLIP uses a contrastive loss to train the encoders. For a batch ofN image-text pairs, the
contrastive loss is de�ned as:

L = �
NX

i =1

log
exp(v i � w i =� )

P N
j =1 exp(v i � w j =� )

(2.12)

where� is a temperature parameter, andv i � w j is the dot product between the image embedding
v i and the text embeddingw j . The goal of the training is to minimize the contrastive loss, which
encourages the model to align the embeddings of corresponding image-text pairs while pushing
apart the embeddings of non-corresponding pairs.
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Part I

Learning Cross-modal Semantic Alignment
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Chapter 3

Multimodal Summarization via
Cross-domain Alignment

In this chapter, we start with the discussion of learning cross-domain alignment, with a focus on a
new multimedia application named Multimodal summarization with multimodal output (MSMO).
MSMO is a recently explored application in language grounding. It plays an essential role in
real-world applications, i.e., automatically generating cover images and titles for news articles
or providing introductions to online videos. However, existing methods extract features from
the whole video and article and use fusion methods to select the representative one, thus usually
ignoring the critical structure and varying semantics with video/document. In this chapter, we
propose a Semantics-Consistent Cross-domain Summarization (SCCS) model based on optimal
transport alignment with visual and textual segmentation. Our method �rst decomposes both videos
and articles into segments in order to capture the structural semantics, and then follows a cross-
domain alignment objective with optimal transport distance, which leverages multimodal interaction
to match and select the visual and textual summary. We evaluate our method on three MSMO
datasets, and achieved performance improvement by 8% & 6% of textual and 6.6% &5.7% of video
summarization, respectively, which demonstrated the effectiveness of our method in producing
high-quality multimodal summaries.

3.1 Introduction

New multimedia content in the form of short videos and corresponding text articles has become
a signi�cant trend in in�uential digital media. This popular media type has been shown to be
successful in drawing users' attention and delivering essential information in an ef�cient manner.
MSMO has recently drawn increasing attention. Different from traditional video or textual sum-
marization [143, 191], where the generated summary is either a keyframe or textual description,
MSMO aims at producing both visual and textual summaries simultaneously, making this task
more complicated. Previous works addressed the MSMO task by processing the whole video
and the whole article together which overlooked the structure and semantics of different domains
[96, 114, 115, 150, 295, 399, 576].

The video and article can be regarded as being composed of several topics related to the
main idea, while each topic speci�cally corresponds to one sub-idea. Thus, treating the whole
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Figure 3.1: Comparison with previous work: We proposed a segment-level cross-domain alignment
model to preserve the structural semantics consistency within two domains for the MSMO task. We
solve an optimal transport problem to optimize the cross-domain distance, which in turn �nds the
optimal match.

video or article uniformly and learning a general representation ignores these structural semantics
and easily leads to biased summarization. To address this problem, instead of learning averaged
representations for the whole video & article, we focus on exploiting the original underlying
structure. The comparison of our approach and previous works is illustrated in Figure 3.1. Our
model �rst decomposes the video & article into segments to discover the content structure, then
explores the cross-domain semantics relationship at the segment level. We believe this is a promising
approach to exploit theconsistencylie in the structural semantics between different domains.

Previous models applied attention or fusion mechanisms to compute image-text relevance scores,
�nding the best match of the sentences/images within the whole document/video, regardless of the
context, which used one domain as an anchor. However, an outstanding anchor has more weight in
selecting the corresponding pair. To overcome this, we believe the semantics structure is a crucial
characteristic that can not be ignored. Based on this hypothesis, we propose Semantics-Consistent
Cross-domain Summarization (SCCS), which explores segment-level cross-domain representations
throughOT-based multimodal alignment to generate both visual and textual summaries. We
decompose the video/document into segments based on its semantic structure, then generate sub-
summaries of each segment as candidates. We select the �nal summary from these candidates
instead of a global search, so all candidates are in a fair competition arena.

Our contributions can be summarized as follows :
• We propose SCCS, a segment-level alignment model for MSMO tasks.
• Our method preserves the structural semantics and explores the cross-domain relationship

through optimal transport to match and select the visual and textual summary.
• On three datasets, our method outperforms baselines in both textual and video summarization

results qualitatively and quantitatively.

17



Figure 3.2: SCCS at work: A real example of the summarization process given by our SCCS method.
Here we conduct OT-based cross-domain alignment to each keyframe-sentence pair, and a smaller
OT distance means better alignment. (For example, the best-aligned text and image summary (0:08)
delivers the �ooding content clearly and comprehensively.)

• Our method serves as a hierarchical MSMO framework and provides better interpretability via
OT alignment. The OT coupling shows sparse patterns and speci�c temporal structure for the
embedding vectors of ground-truth-matched video and text segments, providing interpretable
learned representations.

Since MSMO generates both visual & textual summaries, We believe the optimal summary
comes from the video and text pair that are both 1) semantically consistent, and 2) best matched
globally in a cross-domain fashion. In addition, our framework is more computationally ef�cient as
it conducts cross-domain alignment at the segment level instead of inputting whole videos/articles.

3.2 Related Work
Multimodal Summarization Multimodal summarization explored multiple modalities, i.e., audio
signals, video captions, transcripts, video titles, etc, for summary generation. [114, 324, 494, 541]
learned the relevance or mapping in the latent space between different modalities. In addition to
only generating visual summaries, [19, 236, 576] generated textual summaries by taking audio,
transcripts, or documents as input along with videos or images, using seq2seq model [445] or
attention mechanism [24]. Recent trending on the MSMO task has also drawn much attention
[114, 115, 295, 552, 576].

Optimal Transport OT studies the geometry of probability spaces [471], a formalism for �nding
and quantifying mass movement from one probability distribution to another. OT de�nes the
Wasserstein metric between probability distributions, revealing a canonical geometric structure
with rich properties to be exploited. The earliest contribution to OT originated from Monge in the
eighteenth century. Kantorovich rediscovered it under a different formalism, namely the Linear
Programming formulation of OT. With the development of scalable solvers, OT is widely applied to
many real-world problems and applications [11, 54, 55, 96, 105, 215, 230, 540, 573].

3.3 Proposed Method

SCCS is a segment-level cross-domain semantics alignment model for the MSMO task, where
MSMO aims at generating both visual and language summaries. We follow the problem setting in
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