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Abstract

High-quality online services demand reliable packet delivery at the network layer. However, clear

evidence documents the existence of compromised routers in ISP and enterprise networks, threat-

ening network availability and reliability. A compromised router can stealthily drop, modify, inject,

or delay packets in the forwarding path to launch Denial-of-Service, surveillance, man-in-the-middle

attacks, etc. Unfortunately, current networks fail to provide any assurance of data delivery in ad-

versarial environments, nor a reliable way to identify misbehaving routers that jeopardize packet

delivery. Data-plane fault localization serves as an imperative building block to enhance network

availability and reliability, since it localizes faulty links of misbehaving routers, enables a sender to

find a fault-free path, and enforces contractual obligations among network nodes. Until recently,

however, the design of secure fault localization protocols has proven to be surprisingly elusive. Ex-

isting fault localization protocols fail to achieve high security and efficiency, incur unacceptably long

detection delays, and require forwarding paths to be impractically long-lived. In this dissertation,

we show a suite of secure and efficient fault localization protocols exploring distinct dimensions in

the design space of fault localization. Our key idea is to achieve a lower bound on packet forwarding

correctness via fault localization by limiting the amount of malicious packet drops/forgeries at the

data plane, instead of perfectly detecting every single malicious activity which tends to result in

high overhead. In this way, we trap an attacker into a dilemma: if the attacker inflicts damage

worse than a threshold, it will be detected, which may lead to removal from the network; other-

wise, the damage is limited and thus a lower bound on data-plane packet delivery is achieved. This

design principle enables the construction of efficient probabilistic algorithms and the derivation of

provable performance bounds. Both the analytical and experimental results show that the proposed

protocols outperform prior work by 100 to 1000 times regarding efficiency with provable security

against sophisticated attackers.
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Chapter 1

Introduction

1.1 What is Fault Localization?

Performance-sensitive services, such as cloud computing, and mission-critical networks, such as the

military and ISP networks, require high assurance of network data delivery. However, real-world

incidents [2, 7, 13, 41, 55, 87] and studies [14, 21, 71, 97] reveal the existence of compromised

routers in ISP and enterprise networks, and demonstrate that current networks are surprisingly

vulnerable to data-plane attacks. Also, in a 2010 worldwide security survey [1], 61% network

operators ranked infrastructure outages due to misconfigured network equipment such as routers

as the No. 2 security threat. A compromised router or a dishonest transit ISP can easily drop,

delay, inject or modify packets on the forwarding path to mount Denial-of-Service, surveillance,

man-in-the-middle attacks, etc.

Unfortunately, current networks do not provide any assurance of data delivery in the presence

of misbehaving routers, and lack a reliable way to identify misbehaving routers that jeopardize

packet delivery. For example, a malicious or misconfigured router can “correctly” respond to

ping or traceroute probes while corrupting other packets, thus cloaking the attacks from ping

or traceroute. Yet most recent network diagnosis protocols are not designed for adversarial

environments and can be evaded by adversaries [48, 49, 99, 47]. Though secure end-to-end path

monitoring [18, 36] and multi-path routing [33, 35, 54, 72, 90, 91, 95] can mitigate data-plane

1



2 CHAPTER 1. INTRODUCTION

attacks to some extent, they are proven to render poor performance guarantees [76, 97]: without

knowing exactly which link is faulty, a source node may need to explore an exponential number

of paths in the number of faulty links in the worst case. As illustrated in Figure 1.1, where the

default route from S to D is path (1
′

, 2, 3
′

, 4), end-to-end monitoring only indicates if the current

path is faulty without localizing a specific faulty link (if any) of a compromised or misconfigured

router on the path. In the worst case, S needs to explore 24 paths to find the path with no faulty

links, i.e., path (1, 2, 3, 4).

Data-plane fault localization serves as a promising remedy for securing data delivery. In a

nutshell, a fault localization protocol monitors data forwarding at each hop and localizes abnormally

high packet loss, injection, and/or forgery on a certain link. Fault localization provides the following

vital benefits.

Intelligent path selection. The current Internet Protocol (IP) instantiates a best-effort service

model without indicating if, when, or where a packet is lost or corrupted during the packet trans-

mission. Though aiming to provide reliable packet transmission, TCP is an end-to-end protocol

which only detects whether or not a packet is lost on an end-to-end path but not exactly where

the packet is lost. In contrast, fault localization provides accurate feedback about link quality and

forwarding behavior of transit routers in the path. In recently advocated edge-controlled or multi-

path routing protocols [94, 98, 96, 79], edge routers or source nodes can utilize such information

on the network status to make the optimal path selection and adapt to adverse network conditions

for improved reliability and quality of service.

1’ 2 3’ 4

1 2’ 3 4’

S D

Figure 1.1: Exponential path exploration problem for end-to-end monitoring. Dotted links are
faulty links of malicious routers (black nodes).
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Accountability. Computer networks (such as the Internet and mesh networks) tend to represent

a contractual business in which a node pays its peers or providers for forwarding its packets. Failing

to provide information on the fate of transmitted packets by current Internet protocols prevents

nodes from detecting failures of their peers or providers. Fault localization provides forwarding

accountability, which refers to the ability to associate a certain forwarding behavior to a specific

node, or to hold a specific node responsible for its activities. Forwarding accountability proves

to be a necessary component for enforcing contractual obligations between participating nodes

in a contractual networking service, as demonstrated by Laskowski and Chuang [56]. Intuitively,

forwarding accountability can assure each node that its partners are indeed fulfilling the service

agreement for packet forwarding.

Fast failure recovery. Fault localization enables a source node S to identify a faulty link of a

malicious router M on which M drops, modifies, or injects packets during packet forwarding. By

integrating the fault localization mechanism into edge-controlled routing, a source node can avoid

using the identified faulty links when selecting routing paths, thus eliminating the exponential

path exploration problem as shown in Figure 1.1. Assuming Ω faulty links in the network, a benign

source node can identify and remove all faulty links and thus find a fault-free path after exploring

at most Ω paths (linear in Ω) in the worst case. Figure 1.2 depicts the interaction between fault

localization and routing for fast failure recovery.

Network diagnosis and performance measurement. Network diagnosis and performance

measurement play an important role in ensuring normal network operations and performing in-

formed traffic engineering. However, current practice and research studies in network diagnosis

and performance measurement largely rely on ad hoc monitoring and probing, and assume no

presence of malicious routers in the network [48, 49, 99, 47]. Secure fault localization provides

information about link quality which cannot be biased by malicious routers and is thus verifiable

to others even in the presence of adversaries.
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Forwarding Fault Localization

Path

selection
Topology 

discovery

packets

identi�ed faulty links to be 

removed

topology

path for data 

delivery

Routing plane

Forwarding plane

Figure 1.2: The network layer integrating data-plane fault localization for fast failure recovery
(linear path exploration).

1.2 Challenges and Insights

In addition to providing security against strong adversaries, a fault localization scheme must also be

practical ; in particular, it must possess all of the following properties: (i) low detection delay (i.e.,

the time required to accurately localize a faulty link), (ii) low computational overhead, (iii) low

communication overhead, and (iv) low storage overhead. Failing to achieve any of the above four

properties may render the protocol impractical. For example, a fault localization protocol with high

communication and/or storage overhead will perform poorly even when the network data plane is

not under attack; this will be unacceptable in most settings, especially in resource-constrained

networks such as sensor networks. Similarly, a fault localization protocol with a long detection

delay will enforce only a poor bound on an adversary’s ability to degrade end-to-end throughput

before being identified. This may result in a significant monetary loss to a service provider and,

worse, in cases where routing paths change periodically, the attacker may escape unscathed.

Until now, the design of fault localization protocols has proven to be surprisingly difficult when

confronting security, efficiency, and agility challenges in the presence of strong adversaries.
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• Security and efficiency: Sophisticated attacks such as framing and collusion attacks and

natural packet loss tend to break fault localization protocols (e.g., Fatih [71], ODSBR [19],

Watchers [25], AudIt [14], Network Confessional [15], etc) or lead to heavy-weight protocols

(to prevent sophisticated attacks).

• Agility: In addition, current secure and relatively light-weight protocols leverage coarse-

grained flow fingerprinting along end-to-end paths to prevent packet modification attacks

while reducing communication overhead. However, in addition to having high storage over-

head, these techniques result in long detection delays and require monitored paths to be

long-lived (e.g., after monitoring 108 packets over the same path in Statistical FL by Barak

et al. [21]), which is impractical for networks with short-lived flows and agile routing paths.

Our key insight is that we can achieve a high packet forwarding guarantee via fault localization

by limiting the number of malicious packet drops/forgeries at the data plane, instead of perfectly

detecting every single malicious activity which tends to result in high overhead. Therefore, strong

per-packet monitoring or authentication to achieve perfect detection of every single dropped or

forged packet is unnecessary for limiting the adversary’s influence. Instead, the fault localization

protocol can employ probabilistic approaches to yield statistical guarantees, e.g., via probabilistic

packet monitoring using packet sampling or probabilistic packet authentication using a set of short

packet-dependent random integrity bits. In this way, each dropped or forged packet has a non-trivial

probability of detection. Hence, if a malicious node drops or forges more than a threshold number of

packets, the malicious activity will cause a detectable deviation in the state maintained at different

routers. Essentially, this methodology traps an attacker in a dilemma: if the attacker inflicts

damage worse than a threshold, it will be detected, which may lead to removal from the network; if

the attacker inflicts damage under a threshold, the damage is limited and thus a guarantee on data-

plane packet delivery is achieved. To measure the effectiveness of confining data-plane attackers

with fault localization, we propose a new metric called guaranteed forwarding correctness,

which is the lower bound of the successful ratio of packet forwarding achievable along an end-to-

end path, even in the presence of adversaries.



6 CHAPTER 1. INTRODUCTION

1.3 Dissertation Overview

Based on the philosophy of limiting the adversarial activities, we propose four protocols in this

dissertation: PAAI, ShortMAC, TrueNet, and DynaFL, for secure and practical data-plane fault

localization. PAAI, ShortMAC, and DynaFL are probabilistic protocols. More specifically, PAAI

utilizes a secure packet probabilistic sampling technique, ShortMAC features a probabilistic packet

authentication mechanism, and DynaFL employs a probabilistic packet fingerprinting data struc-

ture. In contrast, TrueNet is a deterministic protocol leveraging trusted computing technologies

with special hardware support (such as TPM chips). From another perspective, both PAAI and

ShortMAC are path-based, where the fault localization procedure is executed on the granularity

of end-to-end paths and the source node of a path needs to directly interact with each router in

that path. In contrast, TrueNet and DynaFL are 1-hop-based, as the operations required by fault

localization are only performed between 1-hop neighbors. Figure 1.3 summarizes the characteristics

of the four protocols.

Thesis:

data-plane fault 

localization

path-based 

1-hop-based 

sampling packets 

to acknowledge

probabilistic packet 

authentication

PAAI

ShortMIC

TrueNet

DynaFL

TC-based neighbor 

veri!cation

neighborhood 

based monitoring

Approaches:

Techniques:
Protocols:

Figure 1.3: Summary of the proposed protocols in this dissertation.

These four protocols explore different approaches and directions in the design space of fault

localization, and achieve various tradeoffs between storage overhead, communication overhead,

computational overhead, and deployability. We summarize the tradeoffs of the proposed protocols
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using these performance metrics in Table 1.1 to provide some intuition (we will provide a more

detailed comparison including the effectiveness of fault localization in Chapter 9). Our results in

this dissertation show that by limiting the adversarial activities with probabilistic algorithms or

emerging hardware technologies, secure fault localization can be achieved with a lower bound on

the forwarding performance and fundamentally higher efficiency than previously known protocols

for fault localization. Our proposed fault localization protocols also address the security threats

that defy most prior work.

Protocol Storage Communication Computation Deployability

PAAI per-path state ≈ 3% per-packet PRF loose time sync

ShortMAC per-path state < 0.1% per-packet MAC change packet header

TrueNet per-neighbor state < 0.1% per-packet MAC
change packet header

require TPMs

DynaFL per-neighbor state < 0.1% per-packet hash loose time sync

Table 1.1: Metrics and tradeoffs.

The remainder of this dissertation includes the following chapters. Chapter 2 formally defines

the problem and states the assumptions. Chapter 3 sketches the challenges in achieving secure

fault localization by presenting several strawman approaches and their security vulnerabilities.

Chapters 4 and 5 present the two path-based protocols, PAAI and ShortMAC, respectively.

Both protocols (and path-based fault localization protocols in general) require a source node S to

solicit acknowledgments from intermediate routers in the forwarding path for the packets S has sent.

PAAI explores schemes where a single acknowledgment returned by a router only acknowledges a

single packet that S has sent, and focuses on studying how to employ secure sampling to reduce

protocol overhead: whether and how to sample a subset of packets to acknowledge, or whether and

how to sample a subset of routers to send the acknowledgments. In contrast, ShortMAC studies a

different approach, using a single acknowledgment to acknowledge a set of aggregated packets for

higher efficiency.

To overcome certain limitations of path-based fault localization protocols (e.g., poor support

for dynamic routing paths), Chapters 6 and 7 present two 1-hop-based protocols, TrueNet and

DynaFL, respectively. TrueNet assumes the deployment of trusted computing components in the

network, and thus achieves secure fault localization with high efficiency unachievable in traditional
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networks. Due to the inherent limitation of current trusted computing technologies, TrueNet is

most effective against software-based (as opposed to hardware-based) data-plane attacks, which we

argue is the major form of large-scale data-plane attacks. DynaFL implements secure 1-hop-based

fault localization without relying on trusted computing, and thus is resilient against hardware-based

attacks as well. DynaFL aims to localize forwarding faults to a specific 1-hop neighborhood instead

of a specific link, trading precision for practicality of fault localization.

Finally, Chapter 8 summarizes the related work and Chapter 9 concludes the dissertation.



Chapter 2

Thesis, Problem Statements, Metrics,

and Assumptions

2.1 General Thesis

This dissertation aims to achieve secure and efficient data-plane fault localization and explore the

tradeoffs in this design space. More specifically, given a set of adversarial nodes in the network, we

are interested in the design of protocols that monitor the forwarding behavior of intermediate nodes

for packet dropping, modification, injection, and delaying activities over a period of time and then

securely localize the presence of the adversary on a particular link (or a set of links). Note that

the literature has showed that such protocols can only identify links adjacent to malicious nodes,

rather than identifying the nodes [21]. Our thesis statement is as follows:

Thesis statement. Instead of aiming to detect any single forwarding failure, we explore if fault

localization can be utilized to limit the damage an adversary can inflict at the data plane and in

turn produce a provable lower bound on the forwarding correctness. We also attempt to see if the

philosophy of limiting the adversarial activities can enable the use of probabilistic algorithms and

emerging hardware virtualization technologies, which may give rise to negligible protocol overhead

without sacrificing security.

9
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To support this thesis statement, we take the following steps in this dissertation. We classify

the fault localization protocols into path-based and 1-hop-based. In a path-based approach, the

fault localization process is operating on individual end-to-end paths, where the source node of a

path requires provable “receipts”(or acknowledgments) from the destination and the intermediate

nodes on the forwarding path for the packets that the source node has sent. We study probabilistic

algorithms exploring different design dimensions to reduce the protocol overhead:

• intermediate nodes only send packet receipts for a probabilistically selected subset of packets

(PAAI);

• only a probabilistically selected subset of packets send packet receipts to the source (PAAI);

• instead of acknowledging a single packet, a packet receipt can acknowledge a set of packets

aggregated in a probabilistic and efficient way (ShortMAC).

In a 1-hop-based approach, the fault localization process is running between 1-hop neighbors, i.e.,

each node only monitors its 1-hop neighbors to detect any forwarding fault. As we show later,

compared to path-based approaches, 1-hop-based fault localization can better cope with dynamic

routing paths and traffic patterns, but tends to localize data-plane faults to a 1-hop neighborhood

instead of a specific link (DynaFL). We also show that, with the aid of trusted computing, 1-hop-

based fault localization can localize data-plane faults to a specific link with much lower overhead

(TrueNet).

2.2 Scope and Assumptions

Scope. Since we focus on data-plane security at the network layer, we assume the following

network control-plane and link-layer mechanisms, each of which represents a separate line of research

orthogonal to ours.

• We can borrow existing secure routing protocols [50, 42, 73, 96] by which nodes can learn the

genuine network topology and the source can know the outgoing path.
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• We assume secure neighbor identification so that a node upon receiving a packet knows which

neighbor sent that packet, which can be achieved via link-layer authentication.

• In addition, when needed, a source node S can set up a shared secret key Ksi with router

fi using a well-studied key exchange protocol, e.g., Diffie-Hellman as in Passport [60]. This

symmetric key exchange happens very infrequently thus representing only a one-time cost.

Barak et al. [21] prove that such a shared secret is necessary for any secure fault localization

protocol via path monitoring.

We focus on achieving secure fault localization against malicious routers. We do not consider

control-plane or routing attacks and endhost- or source-based attacks such as DoS, while TrueNet

complements existing secure routing [26, 27, 37] or DoS prevention schemes [92].

Cryptography assumptions. For the sake of efficiency, we avoid using per-packet asymmetric

cryptography due to its high per-packet computation and communication overhead. We assume

that the nodes can perform symmetric key operations as well as compute a collision-resistant hash

function and a keyed pseudo-random function PRF.

Network model. We consider a general multi-hop network model where routers relay packets

between sources and destinations, such as the ISP, enterprise, and datacenter networks. We as-

sume that the links in the network independently exhibit some natural packet loss due to congestion

and/or transmission errors. Throughout the paper, we follow the notation as illustrated in Fig-

ure 2.1. We denote the routers in a path by f1, f2, . . . , fd−1, the destination by fd, and the link

between fi−1 and fi by li. We call nodes closer to the destination downstream nodes, and nodes

that are further away from the destination as upstream nodes.

Basic notation. We denote the round-trip time from a node fi to fd as ri. Let EK(·) denote

encryption using symmetric key K. Further, let MACK(m) denote a message m authenticated

by key K using a message authentication code (MAC). For simplicity, in our description, we do

not differentiate between the keys for encryption and MAC computation; although in practice, one

would derive separate keys for encryption and MAC computation.
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i
i d-1 ddS 1
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i-1 f f l f

downstreamupstream

Figure 2.1: An example path and notation.

2.3 Attacker Model

We assume an adversary in complete control of an arbitrary number of intermediate nodes on a path,

including knowledge of their secret keys. The adversary can eavesdrop and perform traffic analysis

anywhere on the path. The adversary may drop, inject or alter packets on the links that are under

its control. We allow the protocol parameters to be public; consequently, the adversary may try to

bias the measurement results in order to evade detection or incriminate honest links. However, the

adversary cannot control the natural packet loss rate on the links in the path, because this would

constitute a physical-layer attack which can be dealt with through physical-layer protections.

The goal of an adversary who controls malicious routers is to sabotage data delivery at the

forwarding path. Instead of considering an individual forwarding attack, we seek a general way of

defining malicious forwarding behavior. We identify packet dropping and packet injection as the

two fundamental data-plane threats, while other data-plane attacks can be reduced to these two

threats as follows: (i) packet modification is equivalent to dropping the original packet and injecting

a fabricated packet, (ii) packet replay can be regarded as packet injection, (iii) packet delay can

be treated as dropping the original packet and later injecting it, and (iv) packet misrouting can

be regarded as dropping packets along the original path and injecting them on the new path. A

formal definition follows:

Definition 1. An (x, y)−Malicious Router is a router that intentionally drops up to a fraction

x of the legitimate data packets from a source S to a destination fd, and injects up to y spurious

packets to fd, pretending that the packets originate from S. The misbehavior space of such a mali-

cious router comprises (i) dropping packets, (ii) injecting packets on any of its adjacent links which

we call malicious links (non-malicious links are called benign links), (iii) strategically claiming
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arbitrary local state (e.g., number of packets received) to its own advantage, or (iv) colluding with

other malicious routers to perform the above attacks.

Such a strong attacker model is not merely born out of academic curiosity, but has been widely

witnessed in practice. For example, outsider attackers have leveraged social engineering, phish-

ing [7], exploration of router software vulnerabilities [2, 13], and compromising weak passwords [41]

to compromise ISP and enterprise routers [87]. Also, in a 2010 worldwide security survey [1], 61%

of network operators ranked infrastructure outages due to misconfigured routers, which also fall

under our attacker model, as the No. 2 security threat.

Finally, we note that the protocols proposed in this dissertation heavily depend on several

cryptographic primitives, such as the Message Authentication Code (MAC) and Pseudo-Random

Function (PRF). Though different protocols may utilize different implementations or instantiations

of these cryptographic primitives, we assume the MAC resists existential forgery under chosen-

plaintext attacks, and the PRF with a randomly chosen key provides outputs that look unpre-

dictable and cannot be distinguished from a truly random function (except with a negligible prob-

ability). In other words, we assume the adversary cannot break these cryptographic primitives

(though different implementations of them may be resilient against different numbers of adversarial

queries, assuming their high-level security properties suffices for this dissertation).

2.4 Problem Formulation

This dissertation focuses on providing data-plane fault localization for a lower-bound guarantee on

data-plane packet delivery. In this section, we define detection thresholds, faulty links, and finally

we formalize fault localization.

We introduce the detection thresholds to limit the adversarial activities at network data plane:

Definition 2. Given a drop detection threshold Tdr (i.e., fraction of dropped packets) and an

injection detection threshold Tin (i.e., number of injected packets), a link li is defined as faulty

iff: (i) more than Tdr fraction of packets are dropped on li by fi, or (ii) more than Tin packets are

injected by fi, or (iii) the adjacent router fi or fi+1 makes li appear faulty over a period of time.
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When Tdr and Tin are carefully set based on the prior knowledge such that the natural packet

loss and corruption are below Tdr and Tin, respectively, a faulty link must be a malicious link.

Definition 3. (N, δ)−Data-Plane Fault Localization is achieved iff: given an end-to-end com-

munication path p, after a detection delay of sending N packets, the source node S of path p can

identify a specific faulty link along that path (if any) with false positive or negative rate less than δ.

Definition 4. (Ω, θ)−Guaranteed Forwarding Correctness (Guaranteed Data-Plane Packet

Delivery) is achieved iff: after exploring at most Ω paths, a source can find a non-faulty path

( if any) along which all routers have correctly forwarded at least θ fraction of the source’s data

packets sent along the path to fd.

To achieve a guaranteed θ, we need to bound (not necessarily eliminate) the adversary’s ability

to drop packets and to inject packets so that if the adversary drops more than α percent of packets

or injects β bogus packets, it will be detected with a high probability. A formal definition follows.

Definition 5. For an epoch with a sufficiently large number of data packets by a source, a fault

localization protocol achieves (α, β)δ−Forwarding Security iff two conditions are simultaneously

satisfied:

1. (Low False Negative Rate) When the adversary drops more than α percent of the data packets

on a single link, or injects more than β fake packets on a single link, the source will detect at

least one of the malicious links under the adversary’s control with probability at least 1− δ;

2. (Low False Positive Rate) The probability of falsely incriminating at least one benign link is

at most δ.

2.5 Metrics

The forwarding correctness (Definition 4) and forwarding security (Definition 5) provide a system-

atic way to quantify the effectiveness and security of fault localization. We also identify three key

metrics to evaluate the efficiency or practicality of such protocols:
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• detection rate, i.e., the number of data packet transmissions required to detect a malicious

link (with the false positive and negative rates below a certain threshold),

• communication overhead, i.e., the additional packets (and their size) that are sent per data

packet from the source, and

• storage overhead, i.e., the amount of temporary storage that must be maintained at each

intermediate node per unit time.



16 CHAPTER 2. THESIS, PROBLEM STATEMENTS, METRICS, AND ASSUMPTIONS



Chapter 3

Security Challenges

A common approach to achieve data-plane fault localization is for the source node to require ac-

knowledgment packets (ACK) from the destination and the intermediate nodes in the forwarding

paths. In a realistic setting, a forwarding link may incur some benign packet loss due to congestion

or channel errors. At the same time, an adversary who potentially controls multiple intermediate

nodes may try to bias the identification procedure by selectively dropping, modifying, or injecting

packets in order to evade detection or incriminate honest nodes. Consequently, a secure fault local-

ization protocol must be simultaneously robust to both benign packet loss and malicious behavior.

In other words, it must exhibit low false positive (falsely identifying a legitimate link as malicious)

and false negative (falsely leaving a malicious link undetected) rates. This chapter presents sev-

eral common security pitfalls or vulnerabilities in prior fault localization schemes to illustrate the

challenges in achieving security against strong adversaries.

3.1 Challenge 1: Acknowledgment-based Approach

Let us consider that the source S in Figure 2.1 sends out a data packet m towards the destination

fd. Upon receiving m at each hop in the path, router fi must return an acknowledgment (ACK)

to S authenticated with the secret key shared with S (assuming S and fi have pre-established a

secret key using Diffie-Hellman [32] as in Passport [60], or some other key exchange protocol). If

S receives correct ACKs from routers f1, . . . , fi−1 but not from router fi, S concludes link li−1 is

17
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faulty. In this approach however, a malicious router fi can drop the ACK from another remote

router, say fi+5, without dropping other packets to frame li+4 as malicious to the source (framing

attack).

To reduce the overhead of ACK packets, the source node may “sample” a subset of packets

and only the sampled packets will require ACKs from the routers. In this approach however, if a

malicious router fm can distinguish between sampled and non-sampled packets, fm can safely drop

all and only non-sampled packets without being detected.

Chapter 4 presents more sophisticated attacks against such acknowledgment-based fault local-

ization protocols.

3.2 Challenge 2: Sophisticated Packet Modification Attacks

In Fatih [71], WATCHERS [25, 43], and AudIt [14], each router records a traffic summary based

on counters or Bloom Filters [24], which are updated with no secret keys for the packets the router

forwards. The routers periodically exchange local summaries with others for fault detection based

on flow reservation. Without any authentication of the data packets, these schemes suffer from

packet modification attacks. For example in AudIt [14], each router simply counts the number of

packets it received for a certain path, and periodically sends the counter to the source node of the

path for packet loss detection. However, malicious packet modification cannot be detected based

solely on packet counts. Even when Bloom Filters are used [71] to reflect the packet contents, a

malicious router can still tactically modify packets without affecting the Bloom Filter image (since

Bloom Filters may not be collision-resistant).

Chapter 7 describes more challenges in dealing with packet modification attacks in fault local-

ization protocols relying on flow conservation.

3.3 Challenge 3: Colluding attacks

Routers in a path may employ “hop-by-hop” monitoring to detect packet delivery fault to reduce

the communication overhead of sending the traffic summaries back to the source. For example in

Figure 2.1, each router fi asks for the traffic summaries (e.g., acknowledgments) only from the
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2-hop neighbor fi+2 in the path, and accuses li if fi does not receive the correct traffic summaries.

In this approach however, if fi is colluding with fi+1 and does not accuse fi+1 even if fi does not

receive the correct traffic summaries from fi+2, then fi+1 can safely drop packets without being

detected. Watchdog [66], Catch [65], and the proposal due to Liu et al. [58] are vulnerable to similar

colluding attacks.
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Chapter 4

PAAI

In this chapter, we present our first path-based fault localization protocol, PAAI (including PAAI-1

and PAAI-2), that is robust against strong adversaries with a practical tradeoff between detection

delay, communication overhead, and storage overhead. As a path-based protocol, in PAAI, the

source node requires packet receipts, or acknowledgments (ACKs), for the packets the source has

sent.

Instead of sending an ACK for each received packet by each router, PAAI employs secure sam-

pling to reduce the communication overhead incurred by the ACKs. We systematically explore the

design space of utilizing secure sampling for path-based fault localization protocols. We investigate

a set of basic protocols, each exemplifying a design dimension and examine the underlying trade-

offs. In particular, PAAI-1 and PAAI-2 sample along different dimenions: PAAI-1 investigates how

to sample a subset of packets to be acknowledged by all the routers in the forwarding path, and

PAAI-2 investigates how to sample a subset of routers to send the ACKs for each packet. We also

show the possibility of constructing hybrid protocols based on PAAI-1 and PAAI-2.

To clearly demonstrate the tradeoff between the two sampling approaches, in PAAI, a single

ACK sent by a router only acknowledges one single packet sent by the source, while we may

extend the protocols to enable one ACK to acknowledge a set of packets, just like ShortMAC

shown in Chapter 5. For the ease of understanding, the PAAI protocol described in this chapter

only focuses on detecting packet dropping and modification attacks. For PAAI-1 and PAAI-2,

21
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we present both upper and lower performance bounds via theoretical analysis, and average-case

results via simulations. We conclude that the proposed PAAI-1 protocol outperforms other related

schemes.

4.1 Introduction

We observe that designing any path-based fault localization protocols using ACKs involves making

two fundamental decisions:

1. which data packets to acknowledge; and

2. which intermediate nodes should send the ACKs.

With this in mind, we explore different design choices along the two aforementioned aspects and

investigate the tradeoff using the performance metrics. More specifically, we study the following

approaches:

1. A strawman approach: Every intermediate node sends an ACK for every lost or modified

data packet.

2. The Probabilistic ACK-based Adversary Identification (PAAI) approaches: either (i) only a

subset of data packets must be acknowledged (PAAI-1), or (ii) only a subset of intermediate

nodes must respond to an ACK request (PAAI-2).

The full-ACK scheme achieves the lowest detection delay by determining the link for every

single packet transmission failure. However, gathering such fine-grained information introduces

high communication overhead. In contrast, PAAI-1 and PAAI-2 employ probabilistic sampling to

gather only coarse-grained information, differing from each other in that they perform probabilistic

sampling in different dimensions. In both PAAI schemes, we aim to achieve a low detection delay

while retaining practicality for most networks.

The PAAI-1 protocol is fairly intuitive, simple and flexible, yet achieves more desirable proper-

ties than the full-ACK scheme, PAAI-2, and other related work. Finally, we also discuss the viability

of constructing protocols that exemplify hybrids of the basic design primitives (Section 4.11).
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Contribution. To the best of our knowledge, this is the first attempt to design a secure fault

localization protocol that obtains a practical trade-off between the detection rate and the communi-

cation and storage overhead for realistic network settings. It is also the first systematic study of the

design space for fault localization protocols (Section 4.3, Section 4.4 and Section 4.5). We propose

a set of basic fault localization protocols, one for each design dimension, where the PAAI-1 proto-

col (Section 4.5.1) is distinctly more practical than the others. We obtain theoretical bounds for

the performance of our protocols (Section 4.8), and also launch simulations to derive average-case

results and validate our theoretical results (Section 4.9).

4.2 Setting

Besides the problem formulation described in Chapter 2, we introduce additional assumptions and

conventions for this chapter below.

ACK structure. For any data packet m sent out by S, let the hash of m, denoted by H [m], be a

packet identifier for m. For any m, we define the corresponding ACK from fi to have the structure

ai = 〈H [m]||Am
i 〉, where Am

i is a report computed by fi. The report Am
i will be a function of fi’s

local report Ri and its downstream neighbor fi+1’s ACK (if present). Specific details may vary in

each protocol description.

Onion reports. We recall the well-known notion of an onion report. When each intermediate

node fi must return a local report Ri to S in an authenticated manner, then we have inductively,

for i ∈ [1, d− 1], Ai = MACKi
(i||Ri||Ai+1), while Ad = MACKd

(d||Rd).

Assumptions. We assume the presence of symmetric paths, where the forward path (for data)

and reverse paths (for acknowledgments) are identical; and we assume that a source node knows

its forwarding path to the destination. We assume that the nodes on any given path are loosely

time-synchronized.

Finally, given a path from a source to a destination, recall from Section 2.2 that the source can

establish a shared pairwise symmetric key Ksi with each intermediate node fi on the path to the
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destination.

Throughout this chapter, we focus on the localization of packet dropping and modification

attacks, and use the general term packet corruption to denote packet dropping and modification

activities.

4.3 A Strawman Approach: Full-ack

We observe that designing any path-based fault localization protocol involves making two funda-

mental decisions: (i) which data packets to acknowledge, and (ii) which intermediate nodes should

send the acknowledgments. As a first step towards a systematic exploration of the protocol design

space for fault localization protocols along the two aforementioned aspects, we discuss the simple

and fairly intuitive ‘full-ack’ protocol (similar to the Optimistic Per-Packet FL Protocol from Barak

et al. [21]), where every intermediate node on the forwarding path must return an ACK for every

corrupted data packet sent by the source. A corrupted packet refers to one that fails to reach the

destination intact (either dropped or modified). Below, we give a brief description of the protocol

and discuss its security and performance. A theoretical analysis and simulation results for the

full-ACK protocol are given later in Section 4.8 and Section 4.9 respectively.

Protocol. Let us consider that S sends out a data packet m towards the destination fd. On

receiving m, fd must return an ack, ad, authenticated with the secret key shared with S, i.e.,

ad = MACKsd
(H [m]). If no valid ACK is received from fd within a pre-specified wait-time, S will

send out an onion report request. The onion report is computed by the intermediate nodes in the

manner explained earlier, wherein a local report Ri is set to be 〈i||H [m]||ad〉. Upon receiving the

ACK containing the onion report from f1, S can sequentially verify each report embedded in it.

For some i < d, if the MAC from each intermediate node fj , j ∈ [1, i] is valid but the MAC from

fi+1 is invalid or not present in the final ack, then S identifies link li as faulty and adds one to its

corruption score. Over a period of time, if the corruption score of a particular link exceeds a fixed

threshold determined from the natural packet loss rate then that link is identified as malicious.
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Security. In the above protocol, if a malicious node corrupts a packet (data or ack), one of its

adjacent links has its corruption score increased. This follows largely from the security of onion

reports. Since PAAI-1 employs similar techniques, we defer more details to Section 4.4. The

adversarial nodes on the path may collude to share packet corruption activities among themselves;

however, in this case, the corruption rate will still be bounded (proportional to the number of

malicious nodes in the path).

Performance. For each corrupted packet, the full-ACK scheme can determine precisely the loca-

tion of the packet corruption, thus it is able to directly compute the corruption rate of each link on

a given path and identify malicious links within a small number of packet corruption. However, this

high detection rate is achieved at the price of a large amount of communication overhead at each

node. Specifically, the full-ACK scheme imposes an overhead of at least one packet of O(1)-size per

data packet sent out by S; and an additional overhead of one packet of O(d)-size (the onion report)

in case packet corruption occurs. The storage overhead is high in the worst case but lower on

average due to the low detection delay. More details are given later in Section 4.8 and Section 4.9.

The high overhead makes the full-ACK protocol unaffordable for most networks; therefore, fault

localization protocols with a better trade off amongst the three performance metrics are desirable.

4.4 Overview of PAAI

In contrast to the full-ACK protocol, where the ACK mechanism was completely deterministic, we

now investigate probabilistic ack-based adversary identification (PAAI) approaches with the under-

lying motive of reducing the protocol overhead at the expense of slightly worsening the detection

delay. Loosely speaking, we investigate two contrasting approaches: one where only a subset of

data packets must be acknowledged, and another where only a subset of intermediate nodes must

send the acknowledgments1. In particular, we construct, (i) the PAAI-1 protocol: every intermedi-

ate node sends an ACK for only a selected fraction of data packets; and (ii) the PAAI-2 protocol:

only one selected intermediate node sends an ACK for each data packet. At first glance, the two

approaches may seem to be only minor variations of the full-ack mechanism; however, we stress

1It is natural to imagine the possibility of composing these approaches. We discuss this in Section 4.11.
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that there are several challenges involved in ensuring security of these approaches. We now briefly

outline these approaches along with the challenges involved.

In the first approach (PAAI-1), S monitors the path for only a fraction of the total traffic. More

specifically, for a given data packet, S solicits an ACK from every intermediate node only with

some probability p. Now, since a fraction of traffic is unmonitored, the protocol must ensure that a

malicious node fz is not able to determine from the content of a data packet m whether S solicits

an ACK for m. Otherwise, on receiving m, if fz determines that m need not be acknowledged,

then it could safely corrupt m without increasing its probability of being identified.

In PAAI-2, S monitors the path for every data packet, with the provision that S solicits an

ACK for a corrupted data packet from only one selected node on the path. However, the protocol

must ensure that a malicious node fz cannot decipher the identity of the selected node fe from the

content of a data packet m. Otherwise, on receiving m, if fz determines that fe ≤ fz (i.e., whether

fe is upstream to or equal to fz), then it could safely corrupt m without increasing its probability

of being identified.

In order to circumvent the above attacks and still perform probabilistic monitoring, we make

use of a delayed sampling mechanism. Specifically, in both PAAI protocols, S sends out an ack

request (henceforth referred to as a probe) at a later time for a data packet sent earlier. In PAAI-

1, the probe conveys the information that the corresponding data packet must be acknowledged

(otherwise no probe is sent). In PAAI-2, the probe content determines which intermediate node

is selected. However, in either protocol, a malicious node may withhold a data packet until the

arrival of the corresponding probe in an attempt to decide whether to corrupt m. To circumvent

this, we require loose time-synchronization among the nodes in the network such that the clock

error between two adjacent nodes fi and fi+1 is less than min(r0), i.e., the minimum value of the

round trip time from S to the destination. In this scenario, an intermediate node would discard a

data packet if it carries an expired timestamp.

Both PAAI protocols employ a scoring mechanism in order to identify malicious links over a

period of time. We set a threshold for the end-to-end corruption rate of data packets for a given

path. The threshold value is chosen based on the natural packet loss rate, such that the natural

end-to-end loss rate will not exceed the threshold value. At the end of each probe, S computes
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the end-to-end corruption rate so far, based on the number of sent data packets and successfully

received ACKs from the destination; if the corruption rate exceeds the threshold value, then it

indicates that an adversary is present on the path. Using the history of scores (i.e., the scores

accumulated so far) of the links, S will identify the adversarial presence on a link (or a set of

links) whose score exceeds a per-link score threshold within a bounded number of probes. On the

other hand, the score of an honest link will not exceed the per-link score threshold. Note that this

mechanism is in sharp contrast to the on-demand secure routing approach [19] where the probing

is launched only when the end-to-end drop exceeds a certain threshold; consequently there is no

history of scores which can be used, thus allowing an adversary to freely corrupt packets until the

end-to-end corruption rate reaches the threshold and then cause arbitrary links to be incriminated

due to natural packet loss when probing is initiated.

We now give some details on the specific scoring mechanism employed by each PAAI protocol.

Loosely speaking, in PAAI-1, if an intermediate node fails to return an ACK for a probed data

packet, then S will increase the corruption score of its upstream link. However, note that if each

intermediate node were to send a separate ack, then a malicious node could selectively drop the

ACKs from legitimate nodes in order to incriminate honest links. To circumvent this, PAAI-1

employs the use of onion reports similar to the full-ACK protocol.

PAAI-2, on the other hand, utilizes a slightly different scoring mechanism. For a given data

packet, if the selected node fe fails to return an ack, then S infers that there exists at least one

malicious link upstream of fe; consequently S will increase the corruption score of each link between

fe and itself. Now, suppose that a malicious packet corruption occurred at a link li−1. Then, let X

be the event that the intermediate node fi is selected. We ensure that event X occurs with a fixed

probability. Due to the above scoring mechanism, each occurrence of X will create a difference in

the scores of the links on either side of fi. Over a period of time, a difference in the score of two

adjacent links would indicate a potential malicious link. In order to ensure that event X occurs

with a fixed probability, PAAI-2 selects an intermediate node uniformly at random for any data

packet. The protocol must also ensure that the identity of the selected node for any data packet is

not revealed at any point in time; otherwise, a malicious node could selectively drop ACKs from

legitimate nodes in order to incriminate honest links. Specifically, in order to incriminate an honest
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link lh, a malicious node could drop the ACK every time fh+1 is selected, while behaving honestly

every time fh is selected. This would create a difference between the scores of lh−1 and lh. In order

to circumvent this, we design an oblivious selection and acknowledgment procedure, such that the

identity of the selected node is hidden to each node (except S) even through traffic analysis.

Finally, we remark that an adversary may choose to modify or drop any of the following:

(i) data packet, (ii) probe, or (iii) ack. However, our protocol design ensures that the source node

S interprets each such activity simply as a data packet drop. In what follows, we will simply use

the term drop to refer to any kind of packet modification or drop. Looking ahead, in Section 4.8, we

show that an adversary achieves the same total end-to-end corruption rate by employing different

individual corruption rates for different packet types.

4.5 The PAAI Protocols

Formally, the two PAAI protocols PAAI-1 and PAAI-2 consist of five stages: (i) send data and

decide whether to probe, (ii) probe, (iii) acknowledge, (iv) score, and (v) identify . We give the

details of both PAAI-1 and PAAI-2 below.

4.5.1 PAAI-1

PAAI-1 employs probabilistic sampling in order to determine which data packets must be acknowl-

edged. For every sampled data packet, PAAI-1 requires each intermediate node and the destination

to return an onion report. The protocol details follow.

Stage 1: send data and decide whether to probe

Consider that S sends out a data packet m = 〈data||timestamp〉 towards the destination. On

receiving m, an intermediate node fi first checks whether the embedded timestamp is recent. If

verification fails, then m is dropped. Otherwise, fi stores the identifier H [m] for m and starts a

wait timer ti = r0/2. Finally, m is forwarded toward the destination.

S then uses a secure sampling (SS) algorithm to determine whether it must send out a probe

for m. When given any input m, the SS algorithm must output “Yes” with a fixed probability p,
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where p is the probe frequency fixed at setup time. Such an algorithm can easily be constructed

by making use of a PRF keyed with a secret key known only to S. Note that such a mechanism is

necessary to prevent an adversary from correctly predicting whether or not a specific data packet

is sampled.

If the SS algorithm outputs “No”, then the protocol is terminated for the current round. Oth-

erwise, S executes the next stage of the protocol. In the following, it is implicit that a node fi

accepts a packet (probe or ack) iff it contains a data packet identifier already stored at fi.

Stage 2: probe

S sends out a probe c = H [m] towards the destination. The probe contains the identifier H [m]

for the data packet m sent earlier. On receiving a probe, an intermediate node fi starts a wait-

timer ti = ri, forwards the probe towards the destination, and moves to the next stage. Note

that, in practice, the probe frequency p will be set to a very low value. Therefore, if we use

unauthenticated probes, an adversary could potentially waste a lot of communication power of the

intermediate nodes by sending bogus probes. As a countermeasure, one could use authenticated

probe packets, where a chain of MACs (one for each intermediate node) is attached to each probe.

Stage 3: acknowledge

In this stage, the destination fd and intermediate nodes must return an onion report to S. Ideally,

the onion report must either originate at the destination, or at the upstream node of the link where

mj was dropped. To this end, we employ the following rules: (i) If no downstream ACK is received

within the wait time ti, fi originates an onion report Ai = MACKsi
(i||H [m]). (ii) Otherwise, on

receiving a downstream ACK within the wait-time, fi sets the local report Ri to be 〈i||H [m]〉

to create an onion report Ai as explained earlier in Section 4.2. Finally, fi sends out an ACK

ai = 〈H [m]||Ai〉 towards S.

Stage 4: score

Upon receiving the ACK containing the onion report from f1, S can sequentially verify each report

embedded in it. For some i < d, if the MAC from each intermediate node fj , j ∈ [1, i] is valid
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but the MAC from fi+1 is invalid or not present in the final ack, then S identifies link li as faulty

and adds one to its corruption score. In the case where S does not receive any report within a

wait-time, S can simply conclude that a packet corruption occurred at its downstream link l0.

Stage 5: identify

At any point in time, let si be the corruption score of link li, and n be the total number of probes

evoked by S so far. The average packet corruption rate ρ∗i for link li so far can be computed as si

n
.

We set a per-link corruption rate threshold (denoted by Tdr) according to the natural loss rate ρi

(Tdr > ρi). Then if ρ∗i > Tdr, S convicts li as a malicious link. More details are given in Section 4.8.

4.6 PAAI-2

Now we turn to the other design alternative: probabilistically sampling a subset of intermediate

nodes which must return an ack. We propose PAAI-2 where only one intermediate node is selected

to return a report for every data packet. We remark that the strategy of selecting a subset of

intermediate nodes which must return an ACK tends to be vulnerable to selective dropping attacks

(see Section 4.4). Consequently, we find that PAAI-2 requires more algorithmic complexity but

achieves a higher detection delay than PAAI-1.

Stage 1: send data and decide whether to probe

Consider that S sends out a data packet m = 〈data||timestamp〉 towards fd. On receiving m,

an intermediate node (including fd) first checks whether the embedded timestamp is recent. If

verification fails, then m is dropped. Otherwise, fi stores the identifier H [m] for m and starts a

wait timer ti = ri. Finally, m is forwarded toward the destination.

On receiving m, fd creates a report Ai = MACKsd
(H [m]) and returns an ACK ad = 〈H [m]||Ai〉

to S. On receiving an ACK from fd within the wait-time, an intermediate node fi stores a copy of

it, forwards it towards S, and starts a waiting time ti = r0 − ri.

If S receives a valid ACK from fd within a waiting time, it concludes that m arrived unaltered

at fd and the protocol is terminated for the current round. Otherwise, S executes the next stage
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of the protocol. In the following, it is implicit that a node fi accepts a packet (probe or ack) iff it

contains a data packet identifier already stored at fi.

Stage 2: probe

S sends out a probe c = 〈H [m]||Z〉 towards fd. The probe contains an identifier H [m] for m, and

a random challenge Z.

On receiving a probe within the wait-time, an intermediate node fi computes a PRFKi
(·)-based

predicate Ti over input Z, where Ti returns “true” with probability 1
d−i+1 . If the wait-timer expires,

then the state maintained for m is deleted. In what follows, we say that a node fi is sampled for a

data packet m if Ti returns true on input R.

Finally, fi starts a wait-timer ti = ri and forwards the probe towards fd.

Stage 3: acknowledge

In this stage, the intermediate nodes must return an ACK to S. Ideally, the ACK must originate

at the upstream node of the link where m was corrupted. To this end, we employ the following

rules: (i) If an intermediate node fi does not receive any ACK from its downstream neighbor within

the wait-time ti, it generates an encrypted report Ai = EKsi
(MACKsi

(i||c||ad)). If no ACK was

received from fd in stage 1, then ad is set to ⊥. (ii) Otherwise, on receiving a downstream ACK

within the wait-time, fi performs one of the following actions. If fi was sampled for m during stage

1, it generates an encrypted report Ai (as described in previous case) to overwrite the report in

the received ack. Otherwise it re-encrypts the report in the received ack, i.e., Ai = EKsi
(Ai+1).

The security reason for the re-encryption is given in Section 4.7. Finally, fi sends out an ack

ai = 〈H [m]||Ai〉 towards S.

Definition 6. We say that a node fe is selected for a data packet m, if (i) fe is sampled for m,

and (ii) f1, . . . , fe−1 are not sampled .

From the above definition, it follows that, for a given data packet, only one intermediate node

is selected uniformly at random with probability 1
d
. Observe that due to the ACK forwarding

mechanism described above, S expects an ACK that was generated at the selected node fe and

re-encrypted by each upstream node between fe and S.
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Stage 4: score

In this stage, S assigns numerical scores to the links. On receiving an ACK from f1, S first decodes

the embedded report Am
1 by performing successive decryption using the keys Ks1, . . . ,Kse in that

order, where Kse is the secret key shared between S and fe. If the final decoded value matches the

expected value 〈MACKse(e||c)〉, then S decides that there was no malicious activity in the interval

[l0, le−1]; consequently, no scores are updated. Otherwise, S is convinced that there exists at least

one malicious link in the interval [l0, le−1]. Since each link in this interval has equal probability of

being malicious, S adds 1 to the individual score of each link in the interval. No scores are updated

for the links in the interval [le, ld−1].

Stage 5: identify

S pre-determines a per-link corruption rate threshold Tdr, based on which it further sets a threshold

ψth for the end-to-end corruption rate of data packets. S constantly monitors the actual end-to-end

data packet corruption rate ψ based on the number of sent data packets and successfully received

ACKs from the destination. It is guaranteed that ψth < ψ iff there is at least one link with a

corruption rate exceeding Tdr. Then the source can compute per-link corruption rate based on the

accumulated data and identify the link with the excessive corruption rate. More details are given

in Section 4.8.

4.7 Security Properties

In order to prove our theoretical results in section, we require the PAAI protocols to exhibit some

key security properties. Below, we discuss four important security properties of the PAAI protocols.

Delayed Sampling. Recall that in PAAI-1, for a given data packet, S solicits an ACK only

with some probability p. We note that a malicious node fm should not be able to decipher from

the content of a data packet m whether S solicits an ACK for m. Otherwise, on receiving m, if

fm determines that m need not be acknowledged, it could safely corrupt m without increasing its

probability of being identified. Now recall from Stage 3 of PAAI-2 that for a given data packet,
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a sampled node must overwrite the ACK received from its downstream neighbor with a fresh ack.

Hence, we note that on receiving a data packetm, if a malicious node could decipher from its content

whether it is sampled for m, then it could safely corrupt m without increasing its probability of

being identified.

To prevent the above attacks, in both PAAI protocols, a probe c is sent at a later time to request

ACKs for a data packet sent at an earlier time. In PAAI-1, the probe conveys the information that

the corresponding data packet must be acknowledged. In PAAI-2, the probe content determines

whether an intermediate node is sampled. However, in both PAAI protocols, a malicious node may

now try to wait for the arrival of the probe c before forwarding m, in an attempt to decide whether

to drop m. Therefore, we require loose time-synchronization amongst the nodes in the network

such that the clock error between two adjacent nodes fi and fi+1 is less than min(r0), i.e. the

minimum value of the round trip time from S to the destination. In this scenario, an intermediate

node would discard a data packet that carries an expired timestamp.

Security against selective packet corruption. It is easy to observe that the use of onion

report mechanism prevents any selective dropping attacks by an adversary in PAAI-1. Now recall

that in PAAI-2, if an intermediate node does not receive any ACK within a wait-time, it generates

a new ACK even if it is not sampled; otherwise an adversary could observe the ACK origin to

infer whether an intermediate node is sampled. Further, the re-encrypt or overwrite technique in

PAAI-2 ensures that a constant size ACK is forwarded at each hop. If this were not the case, then

an adversary who eavesdrops at all the links on the path to observe any difference in the size of

the ACK at various links can infer additional information about the origin of the ack. Furthermore

in PAAI-2, for a given data packet, the probed node is selected uniformly at random; otherwise

an adversarial node can simply preferentially perform data-plane attacks at nodes that are not as

likely to be sampled as others.

Adversary localization. In PAAI-1, for each sampled data packet (i.e., the data packet for

which an onion report is requested) that was corrupted, S can localize the location of the packet

corruption to a specific link from the verification of the onion report. Now recall that in PAAI-2,
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for a given data packet, the ACK expected by S is the one that is generated by the selected node.

Therefore, if the selected node is located between S and the adversary, then the adversary cannot

influence the final ack received at S. This implies that if no ACK or an invalid ACK is received at

S, then there must exist at least one malicious link in the interval [l0, le−1].

4.8 Theoretical Analysis

In this section, we theoretically analyze the guaranteed end-to-end forwarding correctness, detection

delay, communication and storage overhead of the proposed protocols. Proofs of the theorems and

corollaries are given in the appendix. The results are summarized in Table 4.1, which also gives

a clear comparison between the full-ack, PAAI, and statistical FL protocol [21]. We compare our

PAAI protocols mainly with the statistical FL protocol because it is the state-of-the-art and the

only protocol with a rigorous theoretical analysis to the best of our knowledge. In Section 4.9, we

validate our theoretical results and present average-case results from simulations.

Definitions and notation. Let ρi be the natural packet loss rate of link li, and suppose that

ρi’s are i.i.d. random variables with maximum value ρ. Let Tdr denote the per-link corruption

rate threshold; and ρ∗i be the actual average corruption rate of link li, including both natural and

malicious corruption. Let ζ be the malicious end-to-end corruption rate, i.e., the corruption rate

due to malicious links. When the observed corruption rate value approaches its true value within

a small uncertainty interval, the fault localization false positive/negative rate is limited below a

certain threshold ǫ. We call this the converged condition.

Let p be the probe frequency employed in PAAI-1. Further, in PAAI-2, let ψth be the threshold

of the end-to-end data packet corruption rate. Let ηi be the number of times that node fi is selected

so far.

4.8.1 Bounding Malicious End-to-End Corruption Rate

For ease of understanding, all the theoretical bounds in this subsection are computed under the

converged condition. In Section 4.8.2 we derive the detection delay (number of data packets sent
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by the source required to reach converged condition) for the full-ACK and PAAI schemes. We can

see the detection rates are high in the full ACK and PAAI-1 schemes, so the “unconverged” time

period is negligible.

For simplicity, we first assume that an adversary employs an identical corruption rate for all

types of packets (data, probe or ACK packets) at a controlled link li, and thus the probability that

a packet of any kind is corrupted at li is ρ∗i . The following theorem proves the (Ω, θ)-guranteed

forwarding correctness (Definition 4) and (α, β)δ-forwarding security (Definition 5) of full-ACK,

PAAI-1, and PAAI-2. Since PAAI does not consider packet injection attacks, β is inapplicable

here. In addition, Ω equals to the number of malicious links in the network, which is explained

in Section 1.1. The following theorem also provides a general bound on the damage that an

adversary with an arbitrary number of links under its control can inflict to the network’s end-to-

end throughput.

Theorem 7. Forwarding Security and Correctness: Given a path of length d, the fractions

(α) of packets an adversary can drop on any link without being detected in full-ACK, PAAI-1, and

PAAI-2 are: (i) α = Tdr in full-ACK and PAAI-1, and (ii) α = 1− (1−Tdr)2d

(1−ρ)2(d−1) in PAAI-2 by setting

the end-to-end corruption rate threshold ψth as ψth = 1−(1−Tdr)
2d, respectively. And the guaranteed

forwarding correctness is θ = (1− Tdr)
d, given the drop detection threshold Tdr.

In general, an adversary in control of z intermediate links can cause (at most) the following

malicious end-to-end corruption rates without being detected: (i) ζ = zTdr in full-ACK and PAAI-

1, and (ii) ζ = 1 − (1−Tdr)2d

(1−ρ)2(d−z) in PAAI-2 by setting the end-to-end corruption rate threshold ψth as

ψth = 1− (1− Tdr)
2d.

It is possible that an adversary may choose to corrupt different types of packets at different

rates. However we can intuitively see that the adversary cannot gain any advantage by doing this,

because corrupting any type of packet will always result in an increase in the corruption score of

the link where the packet was corrupted.

Corollary 8. An adversary who employs different corruption rates for different types of packets

achieves the same maximum end-to-end corruption rate.

Corollary 9 presents the optimal strategy that an adversary can employ in order to cause
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maximum degradation to the network throughput. The corresponding bounds on the degradation

in network throughput under the optimal strategy are also presented.

Corollary 9. Given a fixed number of malicious links, the malicious end-to-end corruption rate

ζ increases approximately linearly with the increase of natural loss rate ρ. Given a fixed number

z of malicious links, the optimal strategy for the adversary in order to cause the maximum end-

to-end corruption rate across all the paths containing malicious links in the network is to deploy

one malicious link for one path. In this case, the total malicious corruption rate across all paths

containing compromised links increases linearly with z.

4.8.2 Detection Delay

We compute the detection delays and prove the (N, δ)-data-plane fault localization (Definition 3)

for the full-ACK scheme and PAAIs in the following theorem.

Theorem 10. (N, δ)- Data-Plane Fault Localization: Given the threshold Tdr = ρ+ ǫ and the

allowed false positive rate δ, the full-ACK and the PAAI protocols require the following number of

packets transmitted by the source to converge. (i) N1 =
ln( 2

δ
)

8ǫ2·(1−ρ)2+d for full-ACK scheme, (ii) N2 = N1

p

for PAAI-1, where p is the probe frequency, and (iii) N3 = 2d ln( 2
δ
)

18ǫ2
· d · log(d) for PAAI-2.

Corollary 11 shows the sensitivity of the detection delay (achieved by the full-ACK and PAAI

protocols) to the various protocol parameters. As it turns out, PAAI-1 can achieve shorter detection

delays under various parameter settings (and thus, a wide range of empirical scenarios).

Corollary 11. For both the full-ACK scheme and PAAI-1, the allowed false positive rate δ is the

dominating factor on their detection delays, while the network-related parameters (natural packet

loss rate ρ and path length d) have negligible influence on the detection delays. However, the

detection delay of PAAI-2 heavily depends on the path length d.

For example, if we set δ = 0.03 and p = 1
d2 , and choose an arbitrary network setting where

Tdr = 0.03, ρ = 0.01 and d = 6, then we have N1
.
= 1500, N2

.
= 5× 104 and N3

.
= 6× 105; whereas

the detection delay in statistical FL protocol [21] is 2× 107. Per Corollary 11, the detection delay

for PAAI-1 does not vary much given other network-related parameter settings. Table 4.1 compares

the detection delays achieved by the different protocols.
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Protocol Detection Delay Communication Storage
worst ideal

Full-ACK
ln( 2

δ
)

8ǫ2·(1−ρ)2+d O(1 + ψd) O(2r0ν) O(r0ν)

PAAI-1 p
ln( 2

δ
)

8ǫ2·(1−ρ)2+d O(pd) O(r0(0.5 + p)ν) O(r0(0.5 + p)ν)

PAAI-2 2d ln( 2

δ
)

18ǫ2
· d · log(d) O(1) O(2r0ν) O(r0ν)

Statistical FL [21] d2 ln d
δ

pǫ2
O( pǫ2

dln d
δ

) O(pr0ν) O(pr0ν)

Combination 1 p
ln( 2

δ
)

8ǫ2·(1−ρ)2+d O(p(1 + ψd)) O(r0(0.5 + 2p)ν) O(r0(0.5 + 2p)ν)

Combination 2 2d ln( 2

δ
)

18ǫ2×p
· d · log(d) O(p) O(r0(1 + p)ν) O(r0ν)

Table 4.1: Detection rate and overhead comparison. The notation is given at the beginning of Sec-
tion 4.8. We translate the related results [21] using our notation. Combination 1 and Combination
2 are described in Section 4.11.

4.8.3 Communication Overhead

In this section we compute and compare the communication overhead incurred by the full-ACK and

the PAAI protocols for a given path of length d. The analysis results are presented in Table 4.1.

Full-ack. Recall from Section 4.3 that in the benign case where no packet corruption occurs, each

data packet requires one O(1)-sized ACK from the destination. When a packet corruption happens,

the source solicits a O(d)-sized onion report via a O(1)-sized probe packet. Therefore, given the

end-to-end corruption rate ψ, the overall communication overhead per packet is O(1 + dψ).

PAAI-1. Recall from Section 4.5.1 that for each sampled data packet, the source solicits one O(d)-

sized onion report (in case of authenticated probes, the size of a probe packet is also O(d)). Since

a given data packet is sampled only with probability p, the amortized communication overhead

per data packet is O(pd). By setting p = 1
d2 we can get O(1

d
) overall communication overhead

per packet. Note that the above results apply regardless of whether there are packet corruption

activities or not.

PAAI-2. Recall from Section 4.6 that each intermediate node fi on the forwarding path either

generates a new ACK or re-encrypts the ACK received from downstream. Therefore, an ACK packet
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traversing the path has a constant size (O(1)) at any point in time. Further, PAAI-2 requires one

O(1)-sized probe packet per data packet sent by the source. Note that the above results apply

regardless of whether there are packet corruption activities or not.

4.8.4 Storage Overhead

Storage is a major concern in certain resource-constrained networks. An adversary may even exploit

the storage limitation and manipulate packet corruption activities to intentionally create the worst

case condition for the storage overhead of an fault localization protocol. On the other hand, in

practical settings, including when the adversary has been identified (and bypassed), excessive packet

corruption is infrequent (thus the worst cases do not arise frequently). A high storage overhead in

such an ideal case is undesirable. Therefore, in this section we analyze and compare the storage

overhead in both worst and ideal cases for the full-ACK scheme and PAAIs. In Section 4.9 we

present the average-case storage overhead via simulations.

In the following, let ν be the number of data packets that S sends out per unit time. Recall that

ri denotes the round trip time between node fi and fd. The results given below are summarized in

Table 4.1.

Full-ack. In the worst case, on receiving a data packet m, an intermediate node fi needs to first

wait r0 time for a probe from the source, and ri time for an ACK from fi+1. Therefore fi can at

most store O(2r0ν) packets at a time. In the ideal case without packet drop, fi only needs to store

a packet for ri time before receiving an ACK from fi+1.

PAAI-1. If a data packet m is not selected for a probe, fi needs to wait r0

2 time for a probe

packet from the source. If m is selected for a probe, in the worst case fi needs to further wait ri

time for an ACK from fi+1; whereas in the ideal case, fi needs to further wait ri time for the ACK

from fi+1. Therefore given the probe frequency p, fi can at most store (0.5 + p)r0× ν packets at a

time in both the worst and ideal cases.

PAAI-2. In the worst case, on receiving m, fi waits ri time for an ACK from fi+1, r0 − ri time

for a probe from the source, and ri time for an ACK from fi+1 again, which gives the worst case
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storage overhead O(2r0ν). In the ideal case, fi only needs to wait ri time for the ACK from fi+1.

Therefore in ideal case the storage bound is O(r0 × ν) packets at a time.

4.9 Simulation Results and Analysis

We implement a simulator to study the average-case performance of the proposed protocols, and

also contrast the average-case results with the theoretical results (as listed in Table 4.2). Through

simulations, we not only validate our theoretical results and make comparisons, but also derive new

observations missing from theoretical analysis by itself.

4.9.1 Methodology

Adversary. Note that, in practice, an adversary usually directly compromises a node, corrupting

the traffic flowing through that node at the adversary’s will. We emulate such a realistic scenario

by setting malicious nodes in the path to perform malicious packet corruption activity. We simulate

the adversary’s optimal strategy by deploying exactly one malicious node on the path (Corollary 8).

Recall that, in our protocols, if a malicious node corrupts packets, it can manifest high corruption

rates only on its adjacent links. We also set the adversary to employ the following tactics: (i) Since

the full-ACK scheme and PAAI protocols ensure that the adversary cannot gain benefit by cor-

rupting different packets at different rates (Corollary 8), the adversary corrupts all types of packets

at the same rate. (ii) Without loss of generality, we assume that, when the malicious node receives

but corrupts a data packet, on receiving an ACK request it will still send back the ACK as if it

were functioning correctly. In this way, a malicious node fi’s corruption activity always increases

the corruption score of its downstream adjacent link li. Therefore li is the target to identify.

Topology and Parameters. Recall the example topology given in Figure 2.1. We simulate the

proposed protocols on one path with various lengths and varying locations of the malicious link.

Due to lack of space, here we only present the results for an arbitrary setting where d = 6 and f4 is

set to be the node controlled by the adversary (results from other settings present similar trends and

conclusions). According to our aforementioned adversarial setting, the malicious packet corruption
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will directly increase l4’s corruption score; thus l4 is the target link for our fault localization protocols

to identify. In the following we also call l4 as the malicious link lM . We follow the example

parameter settings used in our previous theoretical analysis, i.e., we set benign per-link loss rate

threshold ρ = 0.01 and malicious per-link corruption rate Tdr = 0.03 (we implement this by setting

a corruption rate of 0.02 for the malicious node f4). However, recall from Corollary 11 and Table 4.1

that the performance of PAAI-1 does not degrade in the case of longer paths and higher natural

loss rates. Each packet traversing a link (or the malicious node) has an independent probability

of being corrupted bi-directionally below the corresponding corruption rate threshold of that link

(or the malicious node). We also set per-link bi-directional latency distributed within 0 to 5 ms

uniformly at random.

Evaluation Metrics. We evaluate (i) fault localization false positive and negative rates (which

directly relate to detection delays) and (ii) storage overhead of each node for the full-ACK and

PAAI protocols. We did not simulate the communication overhead because the theoretical analysis

already gives straightforward and tightly bounded results. We run the simulation 10000 times for

each protocol to calculate the false positive and false negative rates and plot their dynamics over

time. Recall from Table 4.1 that storage overhead directly depends on packet origination rate; as

such we evaluate it for different orders of origination rate: 1000 and 100 data packets per second

(the storage overhead under a source’s sending rate of 10 packets per second is too low to exhibit

any insightful traits).

4.9.2 Results and Analysis

As presented below, we are able to both validate our theoretical results and to derive new and

interesting observations from the simulation results.

False positive and negative rates. Figure 4.1 plots the false positive and false negative rates

observed from 10000 simulation runs for each protocol. From the figure we can observe that, given

the same false positive threshold δ = 0.03, the detection delays are nearly half of the corresponding

theoretical bounds. We summarize the comparisons between theoretical and experimental results in
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(a) Full-ACK scheme. We use logarithmic scale for the
y-axis.
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(b) PAAI-1. We use logarithmic scale for the y-axis.

10
3

10
4

10
5

10
6

10
7

10
−3

10
−2

10
−1

10
0

F
al

se
 P

os
iti

ve
 / 

N
eg

at
iv

e

Time (No. of Packets)

Malicious Link Lm 

Benign Link L5 

Benign Link L0 

(c) PAAI-2. We use logarithmic scale for both axes.

Figure 4.1: False positive and negative rates. The time is measured by the number of packets sent
by the source.
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Figure 4.2: Storage overhead. The storage is measured by the number of packets stored at any
given time.
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Protocol Detection Delay (minutes) Storage (# pkt)
bound average bound average

Full-ACK 0.25 0.17 12 3.2

PAAI-1 9 4.2 3.2 3.0

PAAI-2 100 50 12 6.4

Statistical FL [21] 3333 N/A < 1 N/A

Table 4.2: Comparison of detection rates between theoretical results and simulation results. The
source’s sending rate is set to 100 data packets per second. The storage overhead is the average
number of packets stored in f1 with the presence of a malicious link l4.

Table 4.2. In addition, we can see that in PAAI-2, the source takes more time to accurately observe

the per-link corruption rate for a link farther away from the source. This fact can be theoretically

proved via the mathematical formula (we defer the proof to the full version).

Storage overhead. We launch two different sets of simulations to study the characteristics of

storage overhead in fault localization protocols. In each scenario if a fault localization protocol

reaches the converged condition (after 103, 2.5× 104 and 3× 105 data packets sent by the source in

full-ack, PAAI-1 and PAAI-2 schemes, respectively), we assume the source bypasses the identified

l4 by replacing f4 with a honest node f
′

4 to connect nodes f3 and f5 (we implement this in the

simulation by resetting f4’s corruption rate to zero). We label cases where adversary identification

comes into play as “w/ FL”. We also simulate the case where the existing adversary is not identified

and bypassed, which is labeled as “w/o FL”.

We first investigate the storage overhead of a single node f1 (which has the highest storage

overhead, as we show later) under different source’s sending rates (1000 and 100 data packets per

second). We first let the source send 2000 data packets in total, within which only the full-ACK

scheme can reach the converged condition. However, we present the results for the full-ACK scheme

in both “w/ FL” and “w/o FL” cases to compare with the PAAI protocols. Figures 4.2(a) and

4.2(b) present f1’s storage overhead when the source’s sending rate is 1000 or 100 data packets

per second, respectively. It is apparent that the storage overhead decreases with the lower sending

rate. We further observe that, in the “w/o FL case, PAAI-1 possesses the lowest storage overhead;

and the storage overhead of each protocol increases roughly linearly with the source’s sending rate.
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This fact complies with our theoretical bounds (Table 4.1). In addition, it is clear that the full-

ACK scheme achieves a lower storage overhead after bypassing the adversary (“w/ FL”). Therefore,

though the full-ACK scheme presents the highest theoretical bound of worst-case storage overhead,

it achieves the lowest storage overhead in practice when fault localization comes into play. This

observation implies that, in essence, a protocol with a lower detection delay benefits more in the

ideal cases where packet corruption activities are rare after the adversary is quickly bypassed.

In another simulation, we investigate the storage overhead of nodes at different locations in the

path and the influence of fault localization on storage overhead. Since the full-ACK scheme has

the lowest detection delay, we only present the simulation results of the full-ACK scheme due to

space limitations (the results derived from other protocols present common trends). To make the

influence of fault localization more graphically obvious, we enlarge the corruption rate of f4 to 0.1.

In this simulation we let the source send 2000 data packets at the rate of 1000 data packets per

second, and bypass the adversary after sending 1000 data packets. Figure 4.2(c) plots the resulting

dynamics of the storage overhead of nodes f1, f3 and f5, from which we can observe that, nodes

closer to the destination have lower storage overhead and are less affected after adversarial packet

corruption. This observation can be explained according to the theoretical analysis in Section 4.8.4.

4.10 Summary of Results

From the theoretical and experimental results, we can make the following major observations:

Theory vs. Simulation. The average-case results derived from our simulations are within the

corresponding theoretical bounds. For the detection delay, the average-case results are nearly two

times better than the corresponding theoretical results. For the storage overhead, the average-

case result of the full-ACK scheme is far smaller than its worst-case bound, thanks to its fast

convergence. The PAAI-1 protocol also presents low storage overhead, even with the presence of

an adversary.

Practicality. We make the following conclusions about the trade-off between the three perfor-

mance metrics achieved by the various protocols: (i) The full-ACK scheme offers the shortest
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detection delay and incurs a low storage overhead, but at the cost of impractical communication

overhead. (ii) The PAAI-1 protocol offers a practical (though not the best) detection delay and

communication and storage overhead simultaneously. More specifically, given that each data packet

is 1.5KB (which is the currently popular MTU standard), per Figures 4.2(a) and 4.2(b), PAAI-1

introduces less than 45KB additional storage overhead even at its peak value under an intense

packet sending rate of 1.5MB per second, and around 6KB at its peak value under a packet send-

ing rate of 150KB per second. Furthermore, by setting the sampling rate p = 1
5d2 , PAAI-1 poses

only around 3% additional communication overhead in a path with length d = 6, per Table 4.1;

while the detection delay is 45 minutes given by the theoretical bound, and around 20 minutes on

average per Table 4.2 (in previous analysis and simulation we set p = 1
d2 ). (iii) The PAAI-2 proto-

col presents worse performance compared to the full-ACK scheme and PAAI-1 protocol, but still

presents a more practical detection delay compared to the statistical FL scheme [21] (see below).

(iv) The statistical FL protocol [21] incurs almost optimal communication and storage overhead,

but achieves a rather impractical detection delay – nearly 50 hours in the worst case (Table 4.2).

We conclude that PAAI-1 offers the most desirable trade-off between the performance metrics. In

contrast, all the other protocols only optimize at most two performance metrics at the cost of

deteriorating the other metric(s) undesirably.

4.11 Combination

So far we have explored three different basic approaches, namely: (i) every node acknowledges

every corrupted data packet (exemplified by the full-ACK scheme), (ii) every node acknowledges a

selected fraction of data packets (instantiated by the PAAI-1 protocol), and (iii) a selected subset

of nodes acknowledge every data packet (represented by the PAAI-2 protocol). Intuitively, it might

be tempting to consider combinations of the above basic approaches in order to improve upon

a certain performance metric. However, as we demonstrate below, the combinations may not

necessarily achieve a better trade-off between the performance metrics as compared to the basic

approaches, and may therefore be unfavorable in practice. Specifically, although a combination

may further optimize a certain performance metric, other metrics can degrade undesirably at the
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same time. Due to lack of space, we will briefly discuss two sample combinations and analyze the

corresponding tradeoff.

Combination 1. By combining the basic approaches (a) and (b) above, we can design a protocol

where every node must acknowledge a selected fraction of corrupted data packets. The PAAI-

1 protocol can be easily modified to follow the above approach. Specifically, instead of using a

secret key known only to S to implement the probe function, we will use the secret key Kd shared

between S and fd. Now, on receiving a data packet, fd can independently decide whether it must

be acknowledged. For a sampled data packet m, S will send out a probe only if it fails to receive an

ack from fd. The remaining details follow from PAAI-1. While retaining the same detection delay

as PAAI-1, the new protocol further reduces the communication overhead, since S now solicits an

onion report for only a corrupted sampled packet (instead of every sampled packet in PAAI-1).

However, the storage overhead increases: in the worst case, on receiving m, each node must first

wait an additional r0 time for an ACK from fd, such waiting time which was not required in PAAI-1.

Its performance is summarized in Table 4.1.

Combination 2. By combining the basic approaches (b) and (c) above, we can design a protocol

where one selected node acknowledges a selected fraction of data packets. Similar to Combination

1, we will use a probe function that is implemented using the secret key Kd. The data packet

structure will be similar to that in PAAI-2. Now, on receiving a data packet, fd can independently

decide whether it must be acknowledged. If an intermediate node receives a valid ACK from

fd, it immediately knows that the packet was sampled and that there will be no further probe.

For a sampled data packet, S will send out a probe only if it fails to receive an ACK from fd.

The remaining details follow from PAAI-2. It is intuitive to see the new protocol incurs lower

communication overhead than both PAAI-1 and PAAI-2, but at the price of a longer detection

delay. Its performance is summarized in Table 4.1.
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4.12 Summary

In this chapter, we address the problem of designing a secure fault localization protocol that offers

a practical trade-off between detection delay, communication overhead, and storage overhead. To

this end, we systematically explore the design space of path-based fault localization protocols where

an ACK packet acknowledges a single data packet, and propose a set of basic protocols where each

protocol exemplifies a design dimension. Based on our theoretical analysis and simulation results,

we conclude that the proposed PAAI-1 protocol achieves the best trade-off, and as a result is

more practical than the other protocols. We note, however, that PAAI bears some limitations in

its extensibility and generality; e.g., both PAAI-1 and PAAI-2 require loose time-synchronization,

which, although a viable assumption for many network settings, might limit their applicability. We

address these limitations in the next chapter.
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Chapter 5

ShortMAC

Existing fault localization protocols cannot achieve a practical tradeoff between security and effi-

ciency. For example, they require unacceptably long detection delays and require monitored flows to

be impractically long-lived. Though PAAI improves the practicality of fault localization compared

to prior work, in both PAAI-1 and PAAI-2, an ACK packet sent by a router only acknowledges

a single corresponding packet. Intuitively, acknowledging a set of packets with one ACK packet

might further reduce the communication overhead, eliminate the need of packet sampling, and

eventually reduce the detection delay. In this chapter, we propose an efficient path-based fault

localization protocol called ShortMAC, in which routers locally cache fingerprints for a set of pack-

ets it receives, and periodically send the fingerprints with a single ACK packet to the source. By

leveraging probabilistic packet authentication and efficient fingerprinting data structure, ShortMAC

achieves 100 – 10000 times lower detection delay and overhead than related work.

5.1 Introduction

In this chapter, we propose ShortMAC, an efficient fault localization protocol to provide a theoret-

ically proven guarantee on end-to-end data-plane packet delivery even in the presence of sophisti-

cated adversaries. More specifically, we aim to guarantee that, given a correct routing infrastruc-

ture, a benign source node can quickly find a non-faulty path along which a very high fraction of

packets can be correctly delivered. Our key insights are two-fold:

49
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Insight 1. We first observe that localizing data-plane faults along a communication path can be

reduced to monitoring packet count (number of received packets) and packet content (payload of

received packets) at each router on that path. Furthermore, if packets can be efficiently authen-

ticated, packet count also becomes a verifiable measure of packet content, because forged packets

(with invalid contents) will be dropped by the routers and manifest an observable deviation in the

packet count. Thus, routers can dramatically reduce storage overhead by storing counters instead

of packet contents.

Insight 2. We also observe that we can achieve a high packet delivery guarantee via fault lo-

calization by limiting the amount of malicious packet drops/modifications, instead of perfectly

detecting each single malicious activity. Furthermore, strong per-packet authentication to achieve

perfect detection of every single bogus packet is unnecessary for limiting the adversary’s ability to

modify/inject bogus packets. Instead, the source can use much shorter packet-dependent random

integrity bits as a weak authenticator for each packet such that each forged packet has a non-trivial

probability to be detected. In this way, if a malicious node modifies or injects more than a thresh-

old number of (e.g., tens of) packets, the malicious activity will cause a detectable deviation on

the counter values maintained at different routers. Essentially, ShortMAC traps an attacker into a

dilemma: if the attacker inflicts damage worse than a threshold, it will be detected, which may lead

to removal from the network; otherwise, the damage is limited and thus a guarantee on data-plane

packet delivery is achieved.

Contributions. 1) We propose a data-plane fault localization protocol ShortMAC that achieves

high security assurance with 100 - 10000 times lower detection delay and storage overhead than

related work.

2) We derive a provable lower bound on successful end-to-end packet forwarding rate, by limiting

adversarial activities instead of perfectly detecting every single malicious action which would incur

high protocol overhead.

3) We theoretically derive the performance bounds of ShortMAC and evaluate ShortMAC via

SSFNet-based [6] simulation and Linux/Click router implementation. Our implementation and
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evaluation results show that ShortMAC causes negligible throughput and latency costs while re-

taining a high level of security.

5.2 ShortMAC Overview

ShortMAC monitors both the packet count and content at each hop. Specifically, a router maintains

per-path counters to record the number of received data packets originated from the source in the

current epoch. To ensure that the packet count is a verifiable measure of the desired monitoring

task, we require that both packet modification and injection by malicious (colluding) routers affect

counter values at benign nodes.

We first introduce the concept of an epoch to facilitate our protocol design and formal analysis:

Definition 12. An end-to-end communication is composed of a set of consecutive epochs. An epoch

for an end-to-end path is defined as the duration of transmitting a sequence of N data packets by

a source S toward a destination fd along that path. The epochs are asynchronous among different

paths.

At the beginning of each epoch denoted by ek, a source node S selects a path p and starts

sending packets along p, with each packet carrying several ShortMAC authentication bits. The

routers verify the authentication bits in each received packet based on the symmetric key shared

with the source node, increment locally stored counters for p accordingly, and forward only the

authentic packets. Due to the ShortMAC authentication bits, modified/injected packets can result

in an observable deviation in the counter values which enable fault localization by the source at

the end of each epoch.

At the end of each epoch ek, the source S retrieves the counter reports from all routers and

the destination in p for ek, via a secure channel as Section 5.3 will describe. S then performs fault

detection based on the retrieved counters, and bypasses the detected faulty link (if any) by finding

another path excluding the identified faulty link (e.g., via source routing, path splicing [72], pathlet

routing [35], or SCION routing [96]). The detection result is only used by S itself for selecting

its own routing paths, instead of being shared with other nodes which is susceptible to framing

attacks.
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Although the high-level epoch-based protocol flow (nodes periodically send certain locally logged

traffic summaries to the source) bears great similarity with Fatih [71], AudIt [14], and Statistical

FL with sketch [21], both Fatih and AudIt use simple counters or Bloom Filters without keyed

hash functions as the traffic summaries, thus remaining vulnerable to packet modification/injection

attacks. In addition, the sketch-based packet fingerprints used in Statistical FL consume several

hundreds of bytes for each path. In contrast, ShortMAC efficiently tackles packet modification

attacks with only several-byte counters as shown below.

5.2.1 ShortMAC Packet Authentication

Our approach is to turn packet count into a reliable measure of packet content so that routers

only need to store space-efficient counters. To this end, the integrity of the source’s data packets

must be ensured in order to detect malicious packet modification during the forwarding path;

otherwise, a malicious router can always perform packet modification attacks without affecting the

counter values, or inject bogus packets on behalf of the source to manipulate the counter values

of the reporting routers. Hence, we reduce the problem to how the source node can authenticate

its packets to all the routers in the path. However, traditional broadcast authentication schemes

provide high authenticity for every single message, which is neither necessary nor practical in our

setting where the messages are line-rate packets:

1) Not practical: On one hand, perfectly ensuring the authenticity of every single data packet

introduces high overhead in a high-speed network. For example, digital signatures or one-time sig-

natures for per-packet authentication is either computationally expensive or bandwidth-exhaustive,

and using amortized signatures would either fail in the presence of packet loss or incur high commu-

nication overhead [63]. Attaching a Message Authentication Code (MAC) for each node along the

path (as is used by Avramopoulos et al. [17]) is too bandwidth-expensive (e.g., reserving a 160-bit

MAC space for each hop). In addition, TESLA authentication [77] would require time synchro-

nization and routers to cache the received packets until the authentication key is later disclosed

(longer than the end-to-end path latency). Finally, some recently proposed multicast/broadcast

authentication schemes still require considerable communication overhead (e.g., up to hundreds of

bytes per packet [64]) or multiple rounds for authenticating a message [29].
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2) Not necessary: On the other hand, as we aim to limit the damage the adversary can inflict

for a lower-bound guarantee on data-plane packet delivery, perfect per-packet authenticity is not

necessary. Instead, our goal only requires the authenticity of a large fraction of data packets.

ShortMAC approach. Based on these observations, we propose ShortMAC, a light-weight

scheme trading per-hop overhead with the adversary’s ability to forge only a few (e.g., tens of)

packets. More specifically, in ShortMAC, the source attaches to each packet a k-bit random nonce,

called k-bit MAC, for each node on the path, where the parameter k is significantly less than the

length of a typical MAC (e.g., k = 2). To construct the k-bit MAC for fi, the source S uses a

Pseudo-Random Function (PRF) which constructs a k-bit string as a function of the packet m and

key Ksi shared between S and fi. We rely on the result that the output k-bit MAC is indistin-

guishable from a random k-bit string to any observer without the secret key Ksi [67]. Each router

fi maintains two path-specific counters Cgood
i and Cbad

i to record the numbers of received packets

along that path with correct and incorrect k-bit MACs, respectively, in the current epoch. Such

a scheme considerably reduces communication overhead compared to attaching entire MACs while

retaining high security assurance and communication throughput, as shown later.

5.2.2 ShortMAC Example

We present a toy example in Figure 5.1 to provide intuition on how ShortMAC enables data-plane

fault localization. Suppose the source node sends out 1000 packets in a certain epoch. The source

uses a PRF taking a secret key as input which can map a packet into two bits (called 2-bit MAC)

uniformly at random to anyone without knowledge of the secret key. The source computes the PRF

four times for each packet, taking as input the epoch symmetric key shared with f1, f2, f3, and the
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Figure 5.1: Fault localization example with ShortMAC using 2-bit MAC. f2 is malicious.
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destination, respectively. Then the source attaches the resulting four 2-bit MACs to each packet.

Among the 1000 packets, suppose three packets are spontaneously dropped on the first link, and

router f1 receives the remaining 997 packets. f1 computes the PRF on each of the received packets

taking as input the epoch symmetric key shared with the source, and compares the resulting

2-bit MACs with the one embedded in each packet. All verifications are successful, so f1 has

Cgood
1 = 997 and Cbad

1 = 0. Suppose the malicious router f2 drops 100 good packets and injects

100 malicious packets. For each injected packet, f2 needs to forge 2-bit MACs for both f3 and

the destination that “authenticate” the fabricated data content. However, since f2 does not know

the corresponding epoch symmetric keys of f3 and the destination, f2 can only guess the 2-bit

MACs for its injected packets. Since the 2-bit MACs produced by the PRF are indistinguishable

from random bits, f2 can correctly guess each 2-bit MAC with probability 1
4 . Since f2 must

guess two correct MACs, each forged packet will be accepted by the destination with probability

1
16 . Suppose next that 26 of the 100 2-bit MACs that f2 forged for f3 happen to be valid with

respect to the the malicious data content. f3 thus computes Cbad
3 = 100 − 26 = 74 and Cgood

3 =

997−100 (dropped legitimate packets) +26 (bogus but undetected packets) = 923. Similarly, we

can analyze the counters for the destination in Figure 5.1, assuming 7 out of the 26 received bogus

packets happen to be consistent with their 2-bit MACs at the destination.

5.2.3 Fault Localization and Guaranteed θ

At the end of each epoch, routers and the destination report their counter values to the source using

a secure transmission approach (detailed in Section 5.3). The source can identify excessive packet

drops between fm and fm+1 if the Cgood
m+1 value of fm+1 is abnormally lower than that of fm based

on the drop detection threshold Tdr that is carefully set based on the customized acceptable per-

link drop rate. Moreover, this scheme can successfully bound the total number of spurious packets

with fabricated k-bit MACs that the adversary can inject, because at least one of the downstream

recipient routers will detect the inconsistency of the k-bit MACs with a non-trivial probability, thus

having a non-zero Cbad value. For example in Figure 5.1, although f2 can claim any values for its

own counters, no matter what values f2 claims, the source can notice excessive packet loss and a

large number of fake packets either between f1 and f2, or f2 and f3. Hence one of f2’s malicious
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links will be detected by the source.

Once the source S bypasses all malicious links identified by ShortMAC, S can find a working

path with no excessive packet corruption at any link, thus achieving a guaranteed successful for-

warding rate θ. With secure fault localization, a source can find a working path after exploring

at most Ω paths, where Ω is the number of malicious links in the network. In contrast, with only

end-to-end path monitoring, a source may explore a number of paths exponential to Ω as we showed

in Section 1.1.

5.3 ShortMAC Details

In this section we describe the ShortMAC protocol in detail, where the source can either guarantee

that a high fraction θ of its data has been correctly forwarded if no malicious activities are detected,

or can bypass the faulty links and find a working path after exploring a number of paths linear to

the number of faulty links.1 In the following, we first formalize the ShortMAC packet format and

then detail the protocol.

5.3.1 ShortMAC Packet Format

A source node S adds a trailer to each data packet it sends:

(5.1) trailer = 〈SN,M1, . . . ,Md〉,

where SN is a per-path sequence number to make each packet unique along the same path to prevent

packet replay attacks, and Mi denotes the k-bit MAC computed for fi, which is constructed in a

recursive way starting from fd:

Md ← PRFKsd
(IPinvar||SN ||TTLd)

Md−1 ← PRFKs(d−1)
(IPinvar||SN ||TTLd−1||Md)

. . . . . .

Mi ← PRFKsi
(IPinvar||SN ||TTLi||Mi+1|| . . . ||Md)

(5.2)

1Recall that forwarding fault localization protocols protocols can only identify faulty links, rather than identifying
the nodes [21]. However, given that a malicious node has a limited degree, after bypassing all its malicious links the
source can eventually bypass that node.
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to TTL =2

TTL = 2
to TTL = 1
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modifies M3
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increases Cbad
3

Figure 5.2: Illustration of framing attacks. f1 is malicious.

where “||” denotes concatenation and PRFKsi
(·) denotes a PRF keyed by the symmetric key Ksi

shared between S and fi. As previously discussed, the output of this PRF can be guessed correctly

with probability no larger than 1
2k by anyone without the secret key Ksi [67]. In addition,

1) IPinvar denotes the invariant portion of the original IP packet that should not be changed

at each router during forwarding, including the packet payload and IP headers excluding variable

fields such as TTL, RecordRoute IP option, Timestamp IP option etc. If these invariant fields

are unexpectedly changed during forwarding, each downstream router can detect inconsistency

between the (modified) packet and embedded k-bit MAC with a non-trivial probability 1− 1
2k and

thus increase its Cbad counter.

2) TTLi denotes the expected TTL value at router i. Without authenticating this field in the

k-bit MAC, a malicious router can strategically lower the TTL field to cause packet drop at a

remote downstream router due to zero TTL value, thus performing framing attacks. For example

in Figure 5.2, if Mi in Eq.(5.2) had not authenticated the TTL field, f1 can maliciously change

the TTL value in the packets to 2, instead of decrementing it by 1. This causes the packets to be

dropped at f3, thus framing the link between f2 and f3.

3) Mi also authenticates the downstreamMi+1, . . . ,Md, so that if a malicious router fm changes

any of these downstream k-bit MACs, fi can observe the inconsistency in Mi with a probability

1 − 1
2k and increase its Cbad

i value. Otherwise, the protocol is vulnerable to framing attacks. For

example in Figure 5.2, ifMi in Eq.(5.2) had not authenticated the downstream k−bit MAC field,

f1 can maliciously modify M3 in the packets which causes f3 to detect inconsistent M3 with a

non-trivial probability and increase Cbad
3 , thus framing the link between f2 and f3.
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5.3.2 Protocol Details

Formally, ShortMAC consists of Request, Report, Identify, Bypass and Send stages, described as

follows.

Stage 1: Request with hop-by-hop reliable transmission

At the end of each epoch ek (i.e., after sending every N data packets), the source S will send a

request packet, denoted by request= (S, p), along the path p = (f1, . . . , fd) used in epoch ek.

This request asks each router fi and the destination fd to report their counter values (Cbad
i and

Cgood
i ) along the reverse of path p. Then S expects these counter reports in Acknowledgment (ACK)

packets from all the nodes in p containing the requested information authenticated with each node’s

Ksi.

Note that a spontaneous loss of request or ACK packets will prevent S from learning the

counter values by certain routers in the previous epoch. To preclude such damage, we use the

following hop-by-hop reliable transmission approach: when fi forwards either a request or

an ACK packet to its neighbor, fi tries up to r times (e.g., r = 5) until it gets a confirmation from

the neighbor. In this way, the failure of receiving a request or ACK packet can only indicate

malicious drops – more precisely, with the probability of 1 − ρr, where ρ is the natural loss rate

of a link. Then thanks to the Onion ACK approach presented below, the source can immediately

identify a malicious link that drops or modifies request or ACK packets; hence the request

packets do not need to be authenticated by the source as we show below.

Stage 2: Report with Onion ACK

Upon receiving a request, fi starts a timer whose value is the maximum round trip time from fi

to the destination.2 At the same time, fi constructs its local report Ri:

(5.3) Ri =
(

fi, p, C
good
i , Cbad

i

)

2We can expect a reasonable upper bound of link latency in benign cases, which can be used to compute the
maximum round trip time according to the hop count from fi to the destination. Avramopolous et al. [17] first
introduced the use of such a timer.
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where fi is the node id, p is the requested path, and Cgood
i and Cbad

i are the counter values from

the previous epoch. Each router finds Cgood
i and Cbad

i corresponding to path p based on the source

and destination IDs in p (assuming single path routing). Once the report is constructed:

Case 1. If fi receives an ACK Ai+1 from neighbor fi+1 before the timer expires, fi further commits

Ri into a new ACK Ai by combining the received Ai+1 via an Onion ACK approach:

(5.4) Ai =
(

Ri,Ai+1,MACKsi
(Ri||Ai+1)

)

,

MACKsi
(·) denotes a message authentication code computed with Ksi. Then, fi forwards Ai to

fi−1 toward S.

Case 2. If fi receives no ACK packet from fi+1 before the timer expires, fi will initiate a new

ACK with its local report and send it to fi−1.

The Onion ACK prevents the adversary from selectively dropping the request or the reports

of a certain router fi and framing a benign link li [97]. In Onion ACK, all the reports are combined

and authenticated in one ACK packet at each hop so that a malicious node can only drop or modify

the onion report from its immediate neighbors. Intuitively, if fm drops or modifies the received

request or Onion ACK, the source can receive the correct reports from f1, . . . , fm−1 but not from

fm, . . . , fd; hence one of fm’s links will be pinpointed by the source node, in the identify stage

described below.

After sending the local reports, each router fi resets Cgood
i and Cbad

i to zero, to be used for the

next epoch along path p (if p is still used).

Stage 3: Identify

Upon receiving an Onion ACK A1 from f1, S first iteratively retrieves A1,A2, . . . in order, until it

either completes at d or fails at j (j 6= d). S can verify if a certain retrieved report Ri is valid

by checking the embedded message integrity code MACKsi
(Ri||Ai+1). When the check fails at j

(j 6= d), S will immediately identify lj as faulty due to the use of reliable hop-by-hop transmission

and Onion ACK. For example, if S receives no report it will identify l1 as faulty (j = 1).
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In addition, S extracts R1, . . . ,Rj in turn which include the Cbad
i and Cgood

i values. A non-zero

Cbad
i implies the existence of malicious packet injection between fi and S. However, S cannot

blame li simply whenever Cbad
i > 0, say, Cbad

i = 1. A possible scenario is that a malicious node

fi−2 injects a fake packet, but the k-bit MAC intended for fi−1 “happens” to be consistent with the

fake packet at benign node fi−1 (e.g., when k = 2, this can happen with probability 0.25). In this

case, fi−1 will forward the fake packet which fi may detect and thus increase Cbad
i . Similarly, due

to natural packet loss, S cannot simply accuse link li when Cgood
i < Cgood

i−1 . Therefore, we leverage

two detection thresholds Tin and Tdr, where Tin is the injection detection threshold for the number

of injected packets on each link, and Tdr is the drop detection threshold for the fraction of dropped

packets on each link. As we will show in Section 5.5, these thresholds reduce false positives while

limiting the adversary’s ability to corrupt packets and ensuring a lower bound on the successful

packet forwarding rate. The detection thresholds are used in two detection procedures:

1) check-injection: S checks the extracted Cbad
1 , Cbad

2 , . . ., Cbad
j values in order. If Cbad

i ≥ Tin for

some i, then S identifies li as faulty and the check-injection procedure stops.

2) check-dropping: If no fault is detected by check-injection, S further checks the extracted Cgood
1 ,

Cgood
2 , . . ., Cgood

j values in order. If Cgood
i < (1− Tdr) · C

good
i−1 (with Cgood

0 = N) holds for certain i,

then S identifies li as faulty and the check-dropping procedure terminates.

Stage 4: Bypass and Send

If Stage 2 outputs any malicious link lm, S selects a new path excluding the previously detected

malicious links and sends its packets with ShortMAC authentication shown in Eq.(5.2). Each node

fi examines its corresponding k-bit MACMi in each packet to increase Cgood
i or Cbad

i accordingly.

In addition, each router remembers the last seen per-path SN embedded in the packets as shown

in Eq.(5.1), and discards packets with older SN in that path.

5.4 Security Analysis

This section discusses ShortMAC’s security against data-plane attacks by malicious routers. Sec-

tion 5.5 provides theoretical proofs on ShortMAC’s security. In our adversary model, a malicious
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router can drop and inject data packets, requests and ACKs, and can send arbitrary counter

values in its reports. We show that ShortMAC is secure against a single malicious router (say, fm)

as well as multiple colluding nodes.

Corrupting data packets. Dropping legitimate data packets by fm will cause a discrepancy

of the counter values between fm and its neighbors. For example, if fm correctly reports Cgood
m ,

then Cgood
m −Cgood

m+1 will exhibit a large discrepancy; if fm reports a lower Cgood
m , then Cgood

m−1−C
good
m

will exhibit a large discrepancy. Hence, either lm−1 or lm will become suspicious. Moreover, if

fm injects/modifies packets,Mm+1 will be inconsistent at fm+1 with high probability and cause a

non-zero Cbad
m+1. Hence, both dropping and injection attacks can be detected as long as the source

can learn the correct counter values in the ACK packets sent by the nodes between fm and the

destination, which is described next.

Corrupting ACKs or requests. Since the requests are not authenticated by S, fm can modify

the content of requests (such as the source ID and the path); however, this will result in S failing

to receive the correct counter reports from fm+1 (or fm) , . . . , fd in p, thus causing lm+1 or lm to

be detected. fm cannot selectively drop the ACK reports due to the use of Onion ACK. Instead,

fm can only drop the ACKs or requests from its immediate neighbors, which will again harm its

incident links.

Replay, reorder, and traffic analysis attacks. To prevent replay and reorder attacks, each

packet contains a per-path sequence number SN in Eq.(5.1) and each router discards packets with

older SNs. Hence, the replayed and reordered packets will be dropped at the next-hop benign node

without influencing the counter values of benign nodes. Note that because ShortMAC runs on a

per-path basis and a SN is a per-path sequence number providing natural isolation across different

paths, packets along the same path are expected to maintain the same order during forwarding

as they were sent by the source in benign cases. On the other hand, if fm falsely reports a large

SN , fm+1 will drop the subsequent packets and lm will be identified as malicious due to its high

packet drop rate. Moreover, the per-path SN can prevent ShortMAC from traffic analysis attacks,

where fm attempts to find out the correct k-bit MAC of a packet m by re-sending m with different
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k-bit MACs and observing whether the next-hop fm+1 forwards the packet. Such traffic analysis

is ineffective because fm+1 can detect packets with the same SN and each packet is unique due to

the use of the per-path SN , and thus fm cannot send the same packet m with only the k-bit MAC

changed.

DoS attacks. A malicious router fm may launch bandwidth Denial-of-Service (DoS) attacks by

generating an excessive amount of packets. However, this attack can be reduced to a packet injection

attack and will be reflected by Cbad
m+1. A malicious router may also attempt to open many bogus

flows with spoofed sources to exhaust other routers’ state. We can borrow existing work to provide

source accountability and reliable flow/path identification [12, 92]. Also note that in our adversary

model we consider malicious routers which threaten the communication between benign hosts. We

do not consider DDoS attacks launched by malicious hosts (botnets), which other researchers have

strived to defend against [59, 92, 61]. Hence in our problem setting, a link under DDoS attacks thus

exhibiting high loss rate is simply considered a faulty link under our adversary model. Meanwhile,

the path setup phase in ShortMAC can be naturally integrated with capability schemes [92] for

DDoS limiting, and the per-path counters may also be used for per-path rate limiting.

Collusion attacks. Each of the colluding routers can commit any of the misbehavior discussed

above. We can prove by induction that in any case, one of the malicious links of one of the colluding

nodes is guaranteed to be detected. A proof sketch is given below.

Consider the base case where two nodes fm and fm′ (m < m′) collude. Without loss of gener-

ality:

m
m+1 m+2 dS m-1

lm-1

DestinationSource

f f l
m f fl fm+1m

m+1f l
mff fm

mF

Figure 5.3: Security against colluding nodes – one base case with two adjacent colluding nodes fm

and fm+1 forming a virtual malicious node Fm.
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1) When fm and fm′ are not adjacent (i.e., m′ > m + 1), the security analysis in Section 5.4

applies to fm and one of fm’s malicious links will become suspicious if fm misbehaves. This is

because if fm commits the above attacks, such misbehavior will be reflected in the benign neighbor

fm+1’s counters which cannot be biased by fm′ .

2) When fm and fm′ are adjacent (m′ = m + 1), these two nodes can be regarded as one single

“virtual” malicious node Fm with neighbors fm−1 and fm+2, as shown in Figure 5.3. (i) If fm or

fm+1 drops packets, a discrepancy will exist between Cgood
m−1 and Cgood

m+2, no matter what values of

Cgood
m and Cgood

m+1 Fm claims. (ii) If fm or fm+1 injects packets, Cbad
m+2 will become non-zero and

make lm+1 suspicious. In any case, an adjacent link of Fm (a malicious link) will become suspicious.

In the general case with n colluding nodes, we can first group adjacent colluding nodes into

virtual malicious nodes as in Figure 5.3, resulting in non-adjacent malicious nodes (including virtual

malicious nodes). Then we can show non-adjacent malicious nodes can be detected based on the

above analysis.

Despite colluding attackers cannot corrupt packets more than the same thresholds as an indi-

vidual attacker on any single link, they can choose to distribute packet dropping across multiple

links. In this case, the total packet drop rate by colluding attackers increases (and is still bounded)

linearly to the number of malicious links in the same path, as analyzed in Section 5.5.

5.5 Theoretical Results and Comparison

We prove the (N, δ)−data-plane fault localization (Definition 3) and (α, β)δ−forwarding security

of ShortMAC (Definition 5), which in turn yield the θ−guaranteed forwarding correctness (Defini-

tion 4). Proofs of the lemmas and theorems are provided in Appendix B.

Comparison of theoretical results. Before presenting the theorems, we first summarize and

compare ShortMAC theoretical results with two recent proposals, PAAI-1 [97] and Stat. FL [21]

(including two approaches denoted by SSS and sketch). Table 5.1 presents the numeric figures

using an example parameter setting for intuitive illustration, while ShortMAC presents similarly

distinct advantages in other parameter settings. In this example scenario shown in the table,
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Protocol ShortMAC PAAI-1 SSS Sketch

Detect. Delay (pkt) 3.8× 104 7.1× 105 1.6× 108 ≈ 106

Comm. (extra %) < 10−5 1 1 < 10−5

Marking Cost (bytes) 2 0 0 0

Per-path State (bytes) 21 2×105 4× 103 ≈ 500

Table 5.1: Theoretical comparison with PAAI-1 [97] and Stat. FL [21] (including two approaches
SSS and sketch). Note that the details of sketch are not provided in the published paper [21], and
the full version of [21] does not present the explicit bounds on detection delay. The above figures
for sketch are estimated from their earlier work [36]. In this example scenario, d = 5, δ = 1%,
ρ = 0.5%, Tdr = 1.5%, a symmetric key is 16 bytes, and ShortMAC uses 2-bit MACs. PAAI-1
specific parameters include the “packet sampling rate” set to 0.01, the end-to-end latency set to 25
ms, the source’s sending rate set to 106 packets per second, each packet hash is 128 bits.

the guaranteed data-plane packet delivery ratio is θ = 92%. The communication overhead for a

router in ShortMAC is 1 extra ACK for every 3.8 × 104 data packets in an epoch; the marking

cost is 10 bits for the 2-bit MACs in a path with 5 hops, and the per-path state at each router is

21 bytes (16-byte symmetric key, 2-byte Cgood, 1-byte Cbad, and 2-byte per-path SN). Though

Barak et al. proved the necessity of per-path state for a secure fault localization protocol [21],

such a minimal per-path state in ShortMAC is viable for both intra-domain networks with tens of

thousands of routers and the Internet AS-level routing among currently tens of thousands of ASes.

We provide the intuition for ShortMAC’s distinct advantages. PAAI-1 or Stat. FL used either

low-rate packet sampling or approximation techniques for packet fingerprinting, both of which

waste entropy contained in certain packet transmissions, thus resulting in long detection delay

(e.g., the transmission results of non-sampled packets will not contribute to the detection phase).

In contrast, ShortMAC counts every packet transmission thus achieving much faster detection rate.

In addition, secure packet sampling requires additional packet buffering [97], and packet fingerprint

takes considerable memory [21].

Lemma 13. Injection Detection: Given the bound δ on detection false negative and false positive

rates, the injection detection threshold Tin can be set to Tin =
2 ln 2d

δ

q4 , where d is the path length and

q = 2k−1
2k is the probability that a fake packet will be inconsistent with the associated k-bit MAC.

The number of fake packets β an adversary can inject on one of its malicious links without being
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detected is limited to:

(5.5) β =
Tin

q
+

√

(

ln 2
δ

)2
+ 8qTin ln 2

δ
+ ln 2

δ

4q2
.

In Lemma 14, we derive N , the number of data packets a source needs to send in one epoch

to bound the detection false positive and false negative rates below δ. Due to natural packet loss,

a network operator first sets an expectation based on her domain knowledge such that any benign

link in normal condition should spontaneously drop less than ρ fraction of packets. We first describe

how the drop detection threshold Tdr is set when N and δ are given. Intuitively, by sending more

data packets (larger N), the observed per-link drop rate can approach more closely its expected

value, which is less than ρ; otherwise, with a smaller N , the observed per-link drop rate can deviate

further away from ρ, and the drop detection threshold Tdr has to tolerate a larger deviation (thus

being very loose) in order to limit the false positive rate below the given δ. On the other hand,

a small N is desired for fast fault localization. We define Detection Delay to be the minimum

value of N given the required δ.

Lemma 14. Dropping Detection and (N, δ)- Data-Plane Fault Localization: Given the

bound δ on detection false positive and negative rates and drop detection threshold Tdr, the detection

delay N is given by:

(5.6) N =
ln(2d

δ
)

2
(

Tdr − ρ
)2(

1− Tdr

)d
,

where d is the path length. Correspondingly, the fraction of packets α an adversary can drop on

one of its malicious links without being detected is limited to:

(5.7) α = 1− (1− Tdr)
2 +

β

N(1− Tdr)d
.

In practice, Tdr can be chosen according to the expected upper bound ρ of a “reasonable”

normal link loss rate such that a drop rate above Tdr is regarded as “excessively lossy”.

Theorem 15. Forwarding Security and Correctness: Given Tdr, δ, and path length d, we can
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achieve (α, β)δ−forwarding security where α is given by Lemma 14 and β is given by Lemma 13.

We also achieve (Ω, θ)-Guaranteed forwarding correctness with Ω equal to the number of malicious

links in the network, and

(5.8) θ = (1− Tdr)
d −

β

N
.

where N is derived from Lemma 14

In Theorem 16, we analyze the protocol overhead with the following three metrics (we further

analyze the throughput and latency in Section 5.7 via real-field testing):

1) The communication overhead is the fraction of extra packets each router needs to transmit.

2) The marking cost is the number of extra bits a source needs to embed into each data packet.

3) The per-path state is defined as the per-path extra bits that a router stores for the security

protocol in fast memory needed for per-packet processing.3

Theorem 16. Overhead: For each router, the communication overhead is one packet for each

epoch of N data packets. The marking cost is k · d bits for the k-bit MACs where d is the path

length. The per-path state comprises one lgN -bit Cgood counter, one lg β-bit Cbad counter, one

lgN -bit last-seen per-path SN , and one epoch symmetric key.

5.6 SSFNet-based Evaluation

In addition to analyzing the theoretical performance, we implement ShortMAC prototype on the

SSFNet simulator [6] to study the detection delay and security of ShortMAC. Section 5.7 further

investigates ShortMAC’s throughput and latency. These experimental results provide average-case

performance with various attack strategies to complement the theoretical results derived in the

worst case scenario (due to multiple mathematical relaxations such as Hoeffding inequality) and

constant dropping/injection rates.

3The buffering space needed for the Onion-ACK construction of report messages in ShortMAC is not a major
concern, as the Onion-ACK is computed only once every epoch, which can be buffered in off-chip storage.
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Evaluation scenario and attack pattern. Since ShortMAC provides a natural isolation across

paths due to its per-path state, our evaluation focuses on a single path. Specifically, we present

the result of a 6-hop path (routers f1, f2, f3, f4, f5 and the destination f6) since our experiment

yields the same observation with other path lengths. We simulate both an (i) independent packet

corruption pattern where a malicious node drops/injects each packet independently with a certain

drop/injection rate, and (ii) random-period packet corruption pattern where the benign (non-attack)

period Tb and attack period Ta (when the malicious node drops/modifies all legitimate packets)

are activated in turns. The durations for both periods are randomly generated. For both attack

patterns, we control the average packet drop/injection rates and observe that both attack patterns

yield similar observations. Hence, in the following experiment, we only show the results for the

independent packet corruption pattern. Also, we infuse natural packet loss rate ρ for each link to

simulate natural packet loss, which is not provided by SSFNet. As Section 5.4 elaborates ShortMAC

security against colluding attacks, we only show the representative results for a single malicious

node f3. For each simulation setting, we run the simulation 1000 times and present the average

results.

Against various dropping attacks. Figure 5.4 depicts the detection delay N and error rates

δ with per-link natural loss rate ρ as 0.5%, drop detection threshold Tdr as 1%, and a stealthy

malicious drop rate as 2%.

We see that: (i) even against stealthy dropping attacks with a dropping rate as low as 2%,

ShortMAC can successfully localize a faulty link in < 2000 packets with an error rate δ < 1%,

which is orders of magnitudes faster than the worst-case theoretical bound (Lemma14). (ii) In

addition, the FN rate is always no lower than the FP rate, because when a FP occurs (a benign

link being falsely detected) the actual faulty link must have evaded detection for the current epoch

(ShortMAC detects only one “faulty” link each epoch). (iii) When N is large, the FP and FN rates

are almost identical, because the two rates are different only when no faulty link is detected (false

positive is 0 while false negative is non-zero), which is unlikely to happen when N is large.

Figure 5.5 depicts different detection delays with different natural packet loss rates, demon-

strating that larger |Tdr − ρ| yields higher detection accuracy and lower detection delay.
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Figure 5.4: Natural loss. The malicious drop rate is 2%, Tdr = 1%, and natural drop rate ρ = 0.5%.

 0.001

 0.01

 0.1

 1

 100  500 2000fa
ls

e 
ne

ga
tiv

e 
ra

te
s 

(lo
g 

sc
al

e)

detection delay (N) - log scale

ρ 0.1%
ρ 0.3%
ρ 0.6%

Figure 5.5: Dropping attacks. The malicious drop rate is 2%, and Tdr = 1%.
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Figure 5.6: Injection attacks. The malicious injection rate is 2% using 2-bit MACs, natural loss
rate ρ = 0.5%, and Tdr = 1%.

Against various injection attacks. Figure 5.6 shows the results when f3 injects packets at a

2% rate (relative to the legitimate packet sending rate). It shows that the error rates stay below 1%

in a few hundred packets, indicating that even with 2-bit MACs, an adversary can only inject up

to around ten packets without being detected. We further investigate the effects of using different

lengths of k−bit MACs, and Figure 5.7 shows that the detection delay and error rate dramatically

diminish as k increases.

Against combined attacks. Figure 5.8 shows how the combinations of dropping and injection

attack strategies (in our setting, dropping/injection rates are chosen between 2% – 5%) influence

the protocol. We observe that the detection delay is mainly determined by the dropping detection

process, which is much slower than the injection detection process. This also indicates that a

malicious node cannot gain any advantage (and actually can only harm itself) by injecting bogus

packets in attempt to bias the counter values.

Variance due to different malicious node positions. To investigate the influence of the

position of the malicious node, we consider a path with 6 forwarding nodes f1, f2, . . . , f6 and place

the malicious node at each position (1 to 6) in turn. We limit the error rate < 1% and obtain the
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Figure 5.7: Effects of different k-bit MAC lengths on detection delay N and false negative rate δ.
The malicious injection rate is 2%, ρ = 0.5%, and Tdr = 1%.
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Figure 5.9: Variance on detection delay N in dropping attacks. δ < 1%, Tdr = 1%, ρ = 0.5%, and
both malicious dropping and injection rates set to 5%.

corresponding detection delays. Figure 5.9 shows one representative scenario where both dropping

and injection rates are 5%. We can see that (i) the dropping detection delay increases linearly when

the malicious node is farther away from the source. This is because in the ShortMAC detection

process, the source always inspects the closer links first and stops once the first “faulty” link is

detected. The FP rate thus increases when more links exist between the source and the malicious

node due to natural packet loss on each link. (ii) In contrast, the injection detection delay exhibits

little variance (cannot be seen from the figure as the detection delay is determined by the dropping

detection), which can also be theoretically proved.

Comparison with recently proposed protocols. For comparison, we simulate the full-ACK

and PAAI-1 schemes presented in Chapter 4. Recall that full-ACK is a heavy-weight fault local-

ization protocol requiring an Onion ACK packet from every forwarding node for every packet the

source sent. In contrast, PAAI-1 employs packet sampling and only requires acknowledgments for

the securely sampled packets to reduce communication overhead while retaining desired detection

delay. Since both Full-ACK and PAAI-1 only consider packet dropping attacks, we compare their

dropping detection delays along a path with 6 hops and f3 as the malicious node. Figure 5.10
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Figure 5.10: Comparison with PAAI-1 and Full-ACK. The natural packet loss rate ρ = 0.5% and
drop detection threshold Tdr = 1%.

ShortMAC Full-ACK PAAI-1

Detect. delay 20 sec 20 sec 8.3 min

Communication 0.01% 100% 5.6%

Table 5.2: Comparison of ShortMAC, Full-ACK, and PAAI-1 with a source send rate of 100 packets
per second.

shows the results when per-link natural packet loss rate ρ = 0.5% and drop detection threshold

Tdr = 1%. To make the comparison clear, we use a metric of successful rate, which equals to 1 -

max{FP rate, FN rate}. The results show that the detection delays to achieve a successful rate

> 99% for ShortMAC, Full-ACK, and PAAI-1 are 2000, 2000, and 5× 104, respectively. Table 5.2

shows their detection delays in seconds/minutes and compares the extra communication overhead,

based on the results from Figure 5.10 and with δ < 1%.

5.7 Linux Prototype and Evaluation

We implement ShortMAC source and destination nodes as user-space processes running on Ubuntu

10.04 32-bit Desktop OS. Even implemented in user-space on a standard desktop OS, our result
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shows that the cryptographic operations of ShortMAC incur little communication degradation and

negligible additional latency at gigabit line rate. It has also been demonstrated that using mod-

ern hardware implementation and acceleration the speed of PRF functions can be fundamentally

improved [52].

Implementation details. Our ShortMAC processes listen to application packets via TUN/TAP

virtual interfaces and appending k-bit MACs to the packets. We also implement ShortMAC routers

using the Click Modular Router [51] running on Ubuntu 10.04 32-bit Desktop OS, which verify the

k-bit MACs in each packet at each hop. To approach the realistic performance of commercial-

grade routers, we implement the above elements on off-the-shelf servers with an Intel Xeon E5640

CPU (four 2.66 GHz cores with 5.86 GT/s QuickPath Interconnect, 256KB L1 cache, 1MB L2

cache, 12MB L3 cache, and 25.6 GB/s memory bandwidth) and 12G DDR3 RAM. The servers are

equipped with Broadcom NetXtreme II BCM5709 Gigabit Ethernet Interface Cards.

Evaluation methodology. We evaluate ShortMAC’s effects on communication throughput and

computational overhead, especially due to the generation and verification of k-bit MAC using

PRF operations. We utilize the widely used Netperf benchmark [4] for the ShortMAC throughput

evaluation, and write our own micro-benchmark for accurate latency evaluation. We evaluate

ShortMAC with varying packet sizes by configuring the interface Maximum Transmission Unit

(MTU) sizes. We evaluate the throughput of a ShortMAC router and a ShortMAC source separately

to better illustrate the throughput of each component, while the end-to-end path throughput can

be easily derived by taking the minimum throughput of the two evaluation results. Then we

evaluate the end-to-end latency with different path lengths ranging from 2 to 64. We also exploit

the multi-core parallel processing at the source node via OpenMP API [5].

Summary of evaluation results. The evaluation results of our Linux software prototype demon-

strate that both a ShortMAC router and source node can retain more than 92% of the baseline

throughput (no ShortMAC operations are employed). Furthermore, the additional latency due to

ShortMAC operations is negligible (tens of microseconds) even with a path length of 64 hops. The

results further indicate the ShortMAC scheme is fully scalable as the number of processing cores
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increases in a software-based implementation, while we anticipate hardware implementation of the

MAC operations in ShortMAC can further boost the protocol throughput. Details of the evaluation

results are as follows.

Router throughput with different PRF implementations. We first evaluate the throughput

of a user-level ShortMAC router with different PRF implementations (i.e.,UMAC [85], HMAC-

SHA1 [53], and AES-CMAC [83]) with the support of the new Intel AES-NI instructions [45].

The ShortMAC router connects a source machine and a destination machine, with the source

sending TCP packets via Netperf as fast as possible to the destination to stress-test the router. For

comparison, we use the Linux kernel forwarding throughput without ShortMAC operations as the

base line. The ShortMAC router runs as a single user-space process without exploring parallelism,

which already matches up the base line speed as shown below.

Figure 5.11 depicts the results with packet sizes from 100 to 1500 bytes, showing that UMAC-

based PRF implementation yields the highest throughput, which retains more than 90% of the

baseline throughput (e.g., 92% with 1.5KB packet size and 96% with 1KB packet size ). With a

small packet size of 100 bytes, both the baseline and ShortMAC throughput dropped substantially

(similar to other public testing results [3]), because the network drivers used in our experiments

are running under interrupt-driven mode, which hampers throughput when packet receiving rate

is high. However, UMAC-based PRF still retains 53.84
57.52=94% of the baseline throughput.

Source node throughput. We further evaluate the throughput of a ShortMAC source node

with different path length d, where for each path length the source needs to perform d− 1 UMAC-

based PRF operations. Originally, it might seem that the ShortMAC source node represents the

throughput bottleneck as the source needs to compute multiple k-bit MACs. However by paral-

lelizing the ShortMAC operations on readily-available multi-processor systems, the throughput of

a ShortMAC source node can fully cope with the base line rate even with a path length of 8. For

comparison, we use the source node throughput without ShortMAC operations as the baseline. We

evaluate two different parallelizations based on widely used OpenMP [5] API. Our first implemen-

tation (internal parallelism in short) uses multiple OpenMP threads to parallelize the computation
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of multiple k-bit MACs per packet. Our second implementation (external parallelism in short)

assigns different packets to different OpenMP threads.

We evaluate the ShortMAC source throughput with various packet sizes, and observe that in

all cases ShortMAC incurs negligible throughput degradation. Hence we only show the results with

packet size set to 1500 bytes in Figure 5.12. We can see that external parallelism yields the best

performance, which matches the baseline case where the source performs no ShortMAC operations.

ShortMAC latency. We also evaluate the additional latency incurred by a ShortMAC source

node for computing the k-bit MACs with different path lengths and packet sizes; while the end-

to-end latency can be derived base on our results. This additional latency in ShortMAC includes

PRF computation, k-bit MACs appending, and TCP/IP checksum updating. We write our micro-

benchmark to derive the additional time delay for the source to send each packet compared to the

baseline case where the source does not compute any k-bit MAC nor updates the checksums.

Figure 5.13 and Table 5.3 show the results. We can see that the latency incurred by the checksum

computation is stable. It does not increase with the packet size because in our implementation

we employ incremental checksum update for the short MAC appended to the packet, instead of

recomputing the checksum over the entire packet. We do not observe sharp increase of checksum

latency with increasing path length either due to ShortMAC’s efficient k-bit MAC authentication.

In addition, the latency caused by the checksum computation is small compared to the latency

introduced by UMAC-based PRF computation. The additional latency due to UMAC computation

increases linearly to the path length under the same packet size, and also increases linearly to the

packet size with a fixed path length due to the property of the UMAC algorithm. Finally, compared

to the average end-to-end network latency which is on the order of milliseconds, the additional

latency introduced by ShortMAC is negligible.

5.8 Discussion and Limitations

Incremental deployment. Although we argue it is feasible to upgrade all routers with Short-

MAC within ISP/enterprise networks, we observe that partial deployment of ShortMAC can still
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Path Length Checksum (µs)
UMAC (µs)

100 500 1000 1500

2 0.0374 0.1771 0.4760 0.8892 1.4047

3 0.0378 0.3691 0.9557 1.7635 3.3025

4 0.0442 0.5239 1.4273 2.6357 4.0944

5 0.0415 0.7080 1.9018 3.5059 5.4566

6 0.0437 0.8723 2.3758 4.3839 6.8307

7 0.0445 1.0467 2.8530 5.2617 8.2019

8 0.0474 1.2206 3.3274 6.1285 9.5483

Table 5.3: ShortMAC source node latency breakdown (checksum updates and UMAC computation).
All the data represent the average time of processing 50000 packets.
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provide benefits and thus enables incremental deployment. Specifically, the ShortMAC routers form

an overlay network on top of the physical network. In the overlay network, a “logical link” consists

of the physical links between two ShortMAC routers. The fault localization protocol runs only on

the ShortMAC routers and a data delivery fault will be localized to a logical link. Although in such

settings the source node cannot exactly identify a faulty physical link, it can nevertheless localize

the fault to a network area (a set of links between two ShortMAC routers) to facilitate further

investigation. Furthermore, the more densely the ShortMAC routers are deployed, the more accu-

rate the fault localization can be, which incentivizes incrementally deploying ShortMAC. However,

one caveat for incremental deployment is that a discovery protocol for determining which routers

support ShortMAC is needed, possibly through the use of explorer packets.

Interdomain deployment. Though ShortMAC mainly targets at intra-domain networks such

as ISP and enterprise networks, ShortMAC may also be deployed in interdomain networks such as

the Internet. In the interdomain setting, each Autonomous System (AS) can represent a node in

ShortMAC; the fault localization runs at the AS level and localizes any data delivery fault between

two ASes. To make ShortMAC applicable, different ASes need to establish secret keys (e.g., via

Passport [60]), and the egress router of an AS needs to set the TTL value of each packet to the TTL

value at the ingress router minus one to enable k-bit MAC verification (Section 5.3.1). Finally,

a source AS needs to know the downstream AS path (which is readily available in BGP) which

may dynamically change in the current Internet; however, the majority of AS paths are stable

over minutes [78] thus facilitating ShortMAC fault localization. If an adversary were to constantly

alter paths, it would essentially raise suspicion to itself, since path information is visible and the

adversary needs to remain on the path to remain effective.

Topology changes and short-lived flows. Fault localization protocols inevitably require at

least a threshold number of packets to be sent along the monitored path to obtain a statistically

accurate detection in the presence of natural packet loss. Hence, monitored paths need to be stable

over an epoch. Since ShortMAC incurs several orders of magnitude lower detection delay compared

to related work [97, 21], ShortMAC can support topology or path changes and short-lived flows
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much better than previous work. For example, as long as the path remains stable for transmitting

around 2000 packets, the source can make an accurate fault localization. While path changes do

happen during an epoch (e.g., due to link failures), the source will detect the old link where the

path is switched away as faulty. At the same time, the source can also learn the routing updates

about the path change, and by correlating the detection results with routing updates, the source

may distinguish a benign path change and a malicious packet misrouting attack (in which case

no corresponding routing updates will be received). However, the fault localization accuracy of

ShortMAC decreases for dynamic paths that transmit far fewer than 2000 packets before path

changes occur.

Multipath routing. A ShortMAC router maintains different counters for different paths, and

need to know which counter to update given a certain packet (or which path the packet belongs to).

If a source uses multiple paths simultaneously to reach a destination, the source and destination IDs

alone are no longer sufficient to identify a path. Instead, the source needs to encode the path in the

packets so that the routers know which counters to update. For example, in SCION routing [96],

the source embeds the path into packet headers, which naturally supports ShortMAC.

5.9 Summary

In this chapter, we design, analyze, implement, and evaluate ShortMAC, an efficient path-based

fault localization protocol, which enables a theoretically proven guarantee on data-plane packet

delivery and substantially outperforms related protocols in the following aspects. First, ShortMAC

achieves high security assurance even in the presence of strong adversaries in control of colluding

malicious routers that can drop, modify, inject, and misroute packets at the forwarding paths;

whereas a majority of existing fault localization protocols exhibit security vulnerabilities under

such a strong adversary model. Second, compared to existing secure protocols, ShortMAC achieves

several orders of magnitude lower detection delay and protocol overhead, which facilitates its practi-

cal deployment. Finally, we demonstrate that ShortMAC’s efficient cryptographic operations, even

if implemented in software, have negligible effects on the communication throughput via realistic



5.9. SUMMARY 79

testing on Gigabit Ethernet links. We anticipate that ShortMAC probabilistic authentication and

efficient fault localization can become a basic building blocks for the construction of highly secure

and efficient network protocols.

The high efficiency of ShortMAC facilitates its practical deployment, and enables the construc-

tion of efficient secure routing protocols. We thus anticipate that ShortMAC can become a basic

building block for the construction of highly secure and efficient network protocols. Though more

efficient compared to PAAI, ShortMAC requires changes to the packet headers (for adding the

k-bit MACs) while PAAI requires no changes to the packet headers. In addition, as a path-based

protocol, ShortMAC still suffers several limitations as discussed and addressed in the next chapter.
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Chapter 6

TrueNet

Though PAAI and ShortMAC strive to optimize the efficiency of fault localization, theoretically

proven lower bounds have shown that path-based fault localization protocols in the current network

infrastructure inevitably incur prohibitive overhead. We observe the current limits are due to a lack

of trust relationships among network nodes. This chapter demonstrates that we can achieve much

higher fault localization efficiency by leveraging trusted computing technology to design a 1-hop-

based fault localization protocol, TrueNet, with a small Trusted Computing Base (TCB). We also

intend TrueNet to serve as a case study that demonstrates trusted computing’s ability in yielding

tangible and measurable benefits for secure network protocol designs.

6.1 Introduction

Barak et al. recently proved the lower bound overhead of path-based fault localization protocols in

the current network infrastructure [21], which is impractical for large-scale ISP/enterprise/datacenter

networks. Specifically, the lower bound states that a router must share some secret (e.g., cryp-

tographic keys) with each source sending traffic traversing that router, making the key storage

overhead at an intermediate router linear in the number of end nodes. In addition, path-based

fault localization protocols run at the granularity of entire end-to-end paths, requiring each inter-

mediate router to store per-path state and the paths to be long-lived (e.g., transmitting at least 106

packets, which would hinder agile load-balancing and traffic engineering) [21, 97]. These fundamen-

81
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tal limitations exist in traditional network infrastructure due to the lack of any trust relationships

among nodes. Hence, a source node needs to directly check or monitor all intermediate routers

(thus sharing secret keys and state) in the routing path to ensure the routers behave correctly.

Furthermore, in existing secure fault localization protocols, a node n which detects a faulty link

l can only remove l from n’s local routing table but cannot share the detection result with other

nodes, otherwise a potentially malicious n make false accusation of other benign links (slander

attacks). This retards the network-wide detection/failure recovery process, and causes inconsistent

routing tables at different nodes (faulty links excluded from the routing tables of some but not all

nodes). Inconsistent routing tables violate the requirements of certain routing protocols such as

link-state routing. The lack of trust among network nodes also inhibits the global sharing of local

detection result.

In light of the fault localization limitations in current network infrastructures, we explore how

trusted computing technology can enable a network architecture with intrinsic trust of correct data

delivery among nodes with fundamentally better performance than the proven boundaries [21] in

a traditional network architecture. Our key insight is that remote code attestation provided by

trusted computing enables a node to verify if a remote communicating node runs a trusted (or

expected) version of software/protocol via authenticated “code measurements”. Isolation further

ensures that critical code execution and data are isolated from all other code and devices on the

local system. Jointly, these properties provide transitivity of verification, i.e.: if A verifies B’s

code integrity (via attestation and isolation) and B verifies C, then A believes in C’s code integrity

as well without needing to verify C’s code integrity, because A knows B’s code has correctly verified

C. Transitivity of verification, when applied to secure network protocol designs, enables each node

to perform verification and monitoring only with 1-hop neighbors, building a chain of verification

over the end-to-end path with reduced overhead, i.e., only requiring per-neighbor (as opposed to

per-node or per-path) state at each router. In short, transitivity of verification eliminates the need

of establishing direct point-to-point validation between any two nodes in the network which incurs

high storage overhead and obstructs key management.

Though useful, current trusted computing technologies are by no means a panacea when directly

applied to the realm of computer networks. Although several researchers propose Trusted Platform
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Module (TPM)-based protocols for securing general distributed systems (e.g., BIND [82]) and

specific network applications (e.g., Not-a-Bot [40]), fundamental challenges render these approaches

ineffective in securing data delivery at the network layer: (i) existing approaches cannot “attest”

raw command-line configuration for which an expected “measurement” for remote attestation is

hard to define, (ii) the extensive network stack would swell the size of the Trusted Computing Base

(TCB) and it is challenging to abstract a small-sized, invariant “critical code”, and (iii) a large ISP

network can contain different routing instances with different implementation versions [57], which

obstructs the use of a consistent “code measurement” for attestation.

The TrueNet design answers these challenges of applying trusted computing. Instead of strictly

attesting the semantics of the huge, intertwined network stack itself, TrueNet attests the behavior

of the network stack, i.e., whether it has successfully delivered the data or not. On one hand,

the success of data delivery guarantees that all of the network-layer components have worked

correctly, regardless of their implementation variations. On the other hand, if any of the network-

layer components misbehaves, failures will arise in data delivery by which the faulty link(s) can be

detected. Correspondingly, our approach in TrueNet is to monitor 1-hop data delivery behavior

(behavior of the network-layer protocol stack) with a small monitoring module as the critical code

at each hop, and attest, isolate, and protect only the particular monitoring module with trusted

computing. Thus, TrueNet requires only a small amount of critical code (the small monitoring

module) as the TCB. Such a small TCB size (i) supports different network stack implementations

and flexible protocol updates, (ii) makes the attestation of the small critical code efficient, and

(iii) enables applying formal analysis [28] on the small critical code to ensure the TCB is indeed

trustworthy.

The small TCB on each TrueNet router forms a logical protected path overlayed on the physical

machines and an untrusted network stack between a source and destination, along which data

delivery is monitored and ensured. As a result, TrueNet achieves efficient fault localization with

small router state (only per-neighbor state), support for dynamic/short-lived paths (no

requirements on the minimum number of packets transmitted along a path since monitoring is

performed only between neighbors), and global sharing of detection results while eliminating

slander attacks. As a proof of concept, we implement a TrueNet prototype in Linux using existing
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trusted computing technology and a TPM, and demonstrate that TrueNet provides high throughput

while achieving the desired security properties. We also launch real trace-based measurements to

show that the router state in TrueNet is up to five orders of magnitude less than related work [21, 97].

Contributions. We design, implement, and evaluate TrueNet, which, assuming trusted hard-

ware, achieves secure fault localization with properties (i.e., per-neighbor router state, dynamic

path support, and global sharing of fault localization results while avoiding slander or framing

attacks) that invalidate the previously proven performance boundaries in traditional networks [21].

TrueNet still provides benefits for partial adoption, enabling incremental deployment, and can be

deployed in inter-domain settings with the recently proposed SCION architecture [96]. Finally,

TrueNet explores the role trusted computing might play in securing network protocols, shows the

possibility of using trusted computing to break traditional performance boundaries, and could spark

future research.

6.2 Setting

Besides the problem formulation described in Chapter 2, we introduce additional assumptions and

definitions for this chapter below.

Definition 17. We denote by δAB = {δd
AB, δ

f
AB} the number of original packets dropped and

misrouted (δd
AB), and the number of packets injected, modified, and reordered (δf

AB) on lAB. A

link lAB is faulty if δAB is larger than a certain accusation threshold {Tdr, Tin} set by the network

administrator, i.e.:

(6.1) δd
AB > Tdr, or δf

AB > Tin.

Definition 18. Aggregate fault localization is achieved iff given a routing path p, δAB can be

accurately learned for each link lAB in p. Per-packet fault localization is achieved iff given the

routing path p the failure of delivering a single packet in p can be immediately localized to a specific

link in p.
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Adversary Model. We follow the trusted computing literature and assume the adversary can

compromise the router OS, install malware on the routers, and launch remote software-based at-

tacks; but the adversary cannot compromise hardware or manipulate the physical network infras-

tructure, nor defeat trusted computing primitives (code attestation and isolation). Such a remote

attacker model is consistent with real-world router-based attacks. For example, most documented

router compromises in ISP and enterprise networks are due to phishing [7] and remote exploitation

of router software vulnerabilities [2, 13] and weak passwords [41] by remote hackers [87]. In addition,

a majority of network operators in a recent security survey [1] listed router misconfiguration, which

also falls under our software-based attack model, as an important cause of outages; and documented

router software misconfiguration has led to network partitioning [55]. Finally, software-based at-

tacks are usually more stealthy and large-scale than hardware-based attacks, since a hardware-based

attacker usually needs physical proximity to targeted routers and will likely leave physical evidence,

making the attack more auditable and less scalable.

The adversary controls multiple malicious routers which can drop, modify, inject, reorder, and

misroute packets on links incident to malicious nodes in control. Furthermore, the adversary can

launch collusion attacks where multiple malicious routers can coordinate and conspire to evade

fault localization or incriminate a benign link. However, the adversary has polynomially bounded

computational power and cannot break cryptographic primitives.

6.3 Fundamental Challenges

We further elaborate on the fundamental challenges in directly applying code attestation and

isolation to secure data delivery in large-scale networks.

Large protocol stack. The network layer contains numerous interacting software components,

i.e., (i) topology discovery, (ii) path selection from the topology, (iii) converting routing tables to

forwarding tables, (iv) forwarding table lookup, etc. The incorrect operation of any of these compo-

nents will hamper the correctness of the eventual network data delivery; therefore, straightforward

attestation of the entire protocol stack would require attesting tens of thousands of lines of code.
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For example, the IPv4 subsystem in the Linux 2.6.37 kernel contains more than 66K lines of code,

and the IP-related elements in the Click modular router [51] contain more than 15K lines of code.

This swells the TCB size and thus broadens the surface for potential vulnerabilities.

Diverse implementations and complex dependencies. In practice, there can be many co-

existing protocol implementations and instances [57] within the same large ISP or enterprise net-

work. Furthermore, due to the intrinsic and obscure interactions between network-layer compo-

nents, it is highly challenging to distill an invariant, small, infrequently updated critical code as

TCB to be attested.

Securing raw user input/configuration. In addition to the network protocol stack, data

delivery also depends on human command-line input and configuration. Unfortunately, user con-

figurations are hard to attest due to the flexibility of the configuration language, but can be utilized

by the attackers to launch attacks to sabotage data delivery. Since the current Cisco IOS provides

rich command-line interfaces to drop and alter packets, an attacker can cause damage without even

modifying the network stack.

Hence in this paper, we strive to address these challenges by ascertaining the minimal, invariant

critical code for securing network data-plane packet delivery, along with its minimal configuration

parameters.

6.4 Design Building Blocks

Remote attestation, isolation, and sealed storage are the high-level primitives that trusted comput-

ing offers pertaining to our purpose of securing network data delivery.

Trusted computing primitives. By remotely attesting a selected piece of “critical code”, a

node X can verify if a remote node Y is executing the expected, correct version of the critical

code. In conjunction with isolation, attestation can ensure that the execution of the critical code

occurs untampered by any potentially present malicious code including the OS. Specifically, with

attestation of the 1-hop monitoring module as the critical code in TrueNet, a node X can convince
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another node Y that X is indeed executing the correct monitoring module in an isolated fashion.

Furthermore, sealed storage binds a piece of sensitive data to a particular piece of software, ensuring

that only the software that originally sealed the data accesses it. In TrueNet, sealed storage can

seal a monitoring module’s secret keys so that only the same monitoring module can access the

secrets.

These trusted computing primitives have been widely deployed on commodity computers [39,

44]. In the remainder of the paper, we first use these trusted computing primitives conceptually for

presenting the TrueNet protocol. Then we delineate and implement a TrueNet router architecture

incorporating the trusted computing primitives in Sections 6.10 and 6.11.

Security properties. Remote attestation and sealed storage can be used to set up secure chan-

nels and transitivity of monitoring results as the security properties leveraged by TrueNet for

efficiently achieving fault localization.

1) Secure channel: The above trusted computing primitives enable a monitoring module MMA to

generate and convey its public key to a remote MMB [70], based on which MMA and MMB can

establish a shared secret key. By performing cryptographic operations using the secret keys sealed

and only known by the trusted monitoring modules at network routers, a compromised router

OS or malware cannot impersonate the monitoring module by forging signatures or performing

encryption/decryption based on those sealed keys. This builds a secure communication channel

among the monitoring modules at different routers.

2) Transitivity of monitoring results: End-to-end monitoring can now be achieved via a chain of

1-hop monitoring between every two adjacent neighbors while eliminating slander and collusion

attacks. This is because if a node X verifies via code attestation that its neighbor Y is executing

the correct monitoring module MMY , X knows that the monitoring results reported by MMY are

correct, and that MMY is correctly monitoring Y ’s neighbor, which recursively ensures the entire

end-to-end path is being correctly monitored.
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Figure 6.1: An example topology to illustrate the operation of TrueNet. The solid line represents
the logical protected path of packets implemented by the secure channels between the trusted
monitoring modules.

6.5 TrueNet Overview

We give an overview of TrueNet with Figure 6.1 as an example topology. The shaded areas denote

the monitoring modules isolated and protected by trusted computing at each router and thus reside

in the TCB. A router’s network stack (including the OS, network interfaces, and other related

programs) is untrusted.

The logical protected path. In TrueNet, each packet is supposed to pass through the monitor-

ing module MMi at each hop i. The MMs on the logical path are protected by trusted computing

mechanisms and are thus trusted. The dashed line in Figure 6.1 depicts the actual packet path

comprising the physical machines and network stack, originated from node S and destined to D.

In contrast, the secure channels between adjacent trusted monitoring modules along the actual

packet path form a logical protected path overlayed on the untrusted network stack. Every two

neighboring MMA and MMB on the logical protected path share a secret key KAB that is sealed

by and only accessible to the same MMA or MMB. Nodes (i.e., monitoring modules) in the logical

protected path can thus communicate with secrecy and authenticity using the shared and sealed

secret keys, and the untrusted network stack cannot inject or forge authenticated messages in the

logical protected path. Nodes in the logical protected path can also attest to each other that the

MMs are indeed intact and trusted.

The formation of this logical protected path requires only per-neighbor key storage yet greatly
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facilitates secure fault localization. Specifically, each MMi maintains a local data structure (e.g., a

counter) to reflect the reception of each packet as the “packet footprint”. In this way, each packet

should leave a certain footprint at each hop’s monitoring module iff the packet is successfully

delivered along the logical protected path. Later by comparing the packet footprints left at every

two neighbors MMA and MMB in the logical protected path, it either confirms that the packets

have been successfully delivered (if the footprints match) or some problem occurs between MMA

and MMB (if the footprints do not match). The secrecy and authenticity properties of the logical

protected path ensure that the footprints reported by each MMi will not be forged or injected by

a malicious network stack or malware.

Localizing a faulty link. Note that TrueNet detects a faulty link between two adjacent MMs,

instead of a specific malicious router. In this way, MMs do not rely on the untrusted network

stack or NIC to correctly deliver packets to the MMs: if the NIC or network stack of a router

M drops or modifies packets before sending to MMM , faults will be localized between MMM and

its neighboring MMs. For example in Figure 6.1, if the malicious OS or a malware in router A

corrupts or drops the packet before it reaches MMA, then the footprint that packet leaves at MMA

will differ from that at MMS , thus causing link lSA to be detected as we show shortly.

Small TCB. The TCB in TrueNet only includes the trusted computing primitives and the pro-

tected MM. Due to the challenges outlined in Section 6.3, it is impractical to include the entire

network stack and NIC in the TCB or for code attestation. Due to those challenges, one cannot

simply use attestation to determine if the local OS or NIC is compromised and stop any malicious

system.

TrueNet fault localization phases. From a high level, TrueNet consists of setup, 1-hop mon-

itoring, and global accusation phases as sketched below.

1) Setup: During protocol setup, an administration entity of the network installs a public/private

key pair, a public key Kadmin of the administration entity, and a neighbor list to each node. Every

two neighbors A and B establish a shared secret key KAB, which is used to authenticate the

messages exchanged between MMA and MMB in the logical protected path. The administration
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entity signs the neighbor list along with a version number using its private key K−1
admin. The node

private key, MAC key and KAB are sealed by and only accessible to the local monitoring module.

2) 1-hop monitoring: To implement the secure channel between neighboring MMs in the logical

path, a MMA computes a Message Authentication Code (MAC) for each packet sent to the next-

hop MMB in the logical protected path using KAB. By verifying the MAC, MMB can be convinced

that its neighbor A is running the correct monitoring module otherwise KAB cannot be retrieved

for authentic MAC generation. Similarly, by authenticating the footprint reports, a node can be

convinced that its neighbors are telling the correct footprints and having correctly monitored their

neighbors in the logical protected path, otherwise the sealed key cannot be retrieved for authenti-

cating the reports. This chain of 1-hop monitoring ensures all links in a logical protected path have

been correctly monitored.

TrueNet provides two types of 1-hop monitoring primitives in the monitoring modules, namely,

per-packet monitoring and aggregate monitoring for achieving per-packet fault localization and ag-

gregate fault localization, respectively. These two monitoring approaches differ in the footprint data

structure and how frequently footprints are compared between neighbors. In per-packet monitor-

ing, a monitoring module MMB maintains an identifier (e.g., a sequence number) for each received

packet with a correct MAC computed by MMA, and sends back an acknowledgment (ACK) to

MMA for each received packet from MMA immediately. In aggregate monitoring in contrast, MMB

increments a counter if a packet received from the neighbor MMA contains a correct MAC com-

puted by MMA. Then MMB exchanges the counters with its neighbor across the logical protected

paths periodically. Hence, aggregate monitoring reduces the communication overhead and tells how

many packets have been dropped or corrupted between every two neighbors in the logical protected

paths, while per-packet monitoring provides more fine-grained and immediate information about

which packets have been corrupted between two neighbors in the logical protected paths, enabling

instant failure recovery (e.g., by immediately retransmitting the corrupted packets at the network

layer on a per-link basis). In both monitoring approaches, MMs add additional per-neighbor se-

quence numbers for the data packets, which are used to prevent replay and reordering attacks and

identify dropped packets.

3) Global accusation: A monitoring module MMA constantly asks for the footprint reports from
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each neighbor MMB to learn δAB. If MMA observes an abnormally large δAB on a link lAB

in the logical protected path, MMA sends out an accusation message to its 1-hop neighbors in

the logical protected path which can verify and accept the message based on authentic MACs.

Similarly, the neighbors of MMA in the logical protected path further tell their neighbors about the

accusation. This process recursively achieves network-wide trustworthy broadcasting (Section 6.8).

Hence, all the network nodes remove faulty links from their routing tables upon identification.

Such consistency of routing tables further accelerates network-wide failure recovery, enabling the

use of link-state routing which remains the de facto routing protocol for contemporary intra-domain

networks.

Small router state and support for dynamic paths. Note that in any phase, attestation

and authentication are only performed between two neighbors; thus each node only maintains per-

neighbor state. Such 1-hop operations also eliminate the need for long-lived and stable paths,

facilitating load balancing.

The following sections detail each phase of TrueNet.

6.6 TrueNet Setup

In the setup phase, a local network administrator remains responsible for setting up and updating

a router with appropriate cryptographic keys and its neighbor list as follows.

Day Zero setup. The first time a router i physically joins a network, the network administrator

(i) launches a monitoring module MMi on router i and ensures that MMi is securely loaded and

protected by the trusted computing primitives on router i. (ii) The administrator installs a public

key Kadmin of the administration entity of the network into MMi and ensures that MMi has cor-

rectly loaded and protected Kadmin for verifying future messages from the administrator. (iii) The

administrator creates and installs a public/private key pair Ki/K
−1
i and a neighbor list NLi for

router i, along with a version number and a signature created using its private key K−1
admin. The

private key K−1
i is sealed and only accessible to MMi. (iv) Each router i exchanges a secret key

Kij with each of its neighbors j using their public/private key pairs [70]. Kij is sealed and only
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Source Router A
S1) OSS → MMS : packet m
S2) MMS genPkt: MS ← m,NS

SA,MACKSA
(m||S||NS

SA)
S3) MMS awaitACK: store NS

SA, start timer
S4) MMS incrSN: NS

SA ← NS
SA + 1

S5) MMS → OSS : MS
MS=⇒ A1) OSA → MMA MS

A2) MMA validatePkt: if MS invalid, accuse lSA

A3) MMA genACK: ackAS ← A,NA
SA,MACKSA

(A||NA
SA)

A4) MMA incrSN: NA
SA ← NS

SA

S6) OSS → MMS : ackAS
ackAS⇐= A5) MMA → OSA: ackAS

S7) MMS verifyACK: if ackAS invalid, accuse lSA A6) MMA updatePkt: MA ← m,NA
AB ,MACKAB

(m||A||NA
AB)

A7) MMA awaitACK: store NA
AB , start timer

A8) MMA incrSN: NA
AB ← NA

AB + 1
A9) MMA → OSA: MA =⇒ further sent to router B

Table 6.1: TrueNet per-packet monitoring. Shaded instructions are functions of the monitoring module MMi which is in
the TCB. MACK(m) denotes a Message Authentication Code (MAC) computed over m using the symmetric key K.
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accessible to MMi and MMj , and is used for constructing the secure channel between MMi and

MMj .

Incremental updates. After Day Zero setup, the administration entity uses the public key

Kadmin to authenticate all its update messages to the routers (e.g., when updating NLi or Ki).

These control messages from the administration entity will be protected by per-packet monitoring

as we describe below. The MMs run at routers are responsible for verifying the authenticity of

these updates messages using Kadmin. The neighboring nodes i and j can periodically update their

shared secret key Kij . However, this paper omits the details of handling these updates due to space

limitation.

6.7 TrueNet 1-Hop Monitoring

Given an end-to-end communication path p, 1-hop monitoring in TrueNet ensures that the data

sent by the source will be correctly delivered to the destination along p, otherwise a faulty link in p

that tampers with correct data delivery will be localized and accused. Thus, we assume the source

node can learn path p (e.g., from link-state routing, source routing, or recent centralized routing

protocols like 4D [37], SANE [27] or ETHANE [26]), which is a common requirement for all existing

secure fault localization schemes. We first detail each of per-packet and aggregate monitoring, and

then discuss their usage scenarios in Section 6.7.3.

6.7.1 Per-packet Monitoring

We use Figure 6.1 as an example to illustrate TrueNet per-packet monitoring. Table 6.1 shows

the interactions between the source S and the first hop router A for transmitting and protecting a

single packet. Subsequent routers in path p will perform identical operations as router A.

Packet generation. Upon receiving a packet m with path p embedded from the network stack

(OSS) of the source S, the trusted monitoring module MMS wraps the packet into MS with a

per-neighbor sequence number NS
SA for the next-hop router A, and a MAC computed over m and

NS
SA with the secret key KSA shared between MMS and MMA (Table 6.1 S2). Meanwhile, router A



94 CHAPTER 6. TRUENET

maintains a per-link sequence number NA
SA remembering the last sequence number for the packets

sent from S to A. Note that only one MAC for the next hop is attached (as opposed to attaching

one MAC for each router in the path), because the transitivity of verification provided by trusted

computing enables the chaining of trusted 1-hop verifications to achieve end-to-end guarantees.

As it transmits the packet, MMS starts a timer, expecting to receive an ACK from the next-hop

receiver MMA within the allocated time, allowing MMS to determine whether MMA successfully

received the packet. For this purpose, NS
SA is temporarily stored as the packet identifier until the

timer expires (Table 6.1 S3). MMS then increments NS
SA for the next packet to be sent to prevent

packet replay and reordering attacks (Table 6.1 S4), and sends MS back to OSS , which in turn

forwardsMS to router A.

Packet reception. Each received packet is expected to be passed through the monitoring module

at each hop. At router A, MMA first validates the received packetMS via validatePkt (Table 6.1

A2), which includes checking the sequence number, the next hop, and the MAC as follows:

1) validatePkt first checks if the per-neighbor sequence number NS
SA contained inMS matches

the locally stored per-neighbor NA
SA value. If the values differ, indicating a replay, re-ordering, or

packet injection, validatePkt terminates (skipping the following checks) and returns “invalid”.

2) validatePkt then retrieves the next hop from path p embedded in MS , and checks if the

local router A is indeed the next hop in p for the current communication flow. An inconsistency

indicates the previous router’s OS used a wrong interface (packet misrouted), and validatePkt

terminates returning “invalid”.

3) validatePkt finally checks the MAC inMS , and returns “invalid” if the MAC is incorrect.

If validatePkt outputs “valid”, MMA generates an ACK including NA
SA as the packet iden-

tifier with a MAC (Table 6.1 A3), which MMS awaits. MMA then increments the local per-

neighbor sequence number NA
SA (Table 6.1 A4) to prevent packet replay and reordering attacks. If

validatePkt returns “invalid”, MMA believes that forwarding misbehavior occurs between MMS

and MMA (denoted by lSA). MMA generates an accusation if the failure rate remains high with

efficient trustworthy broadcasting (Section 6.8), or signals MMS in the ACK for instant failure

recovery as we show shortly.
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Packet forwarding. If the packet validation succeeds, the original MAC embedded in the re-

ceived packet MS is replaced with a new one computed for the next hop MMB using the sealed

secret key KAB shared between MMA and MMB; and the per-neighbor sequence number is also

replaced with the one (NA
AB) for traffic between MMA and MMB (Table 6.1 A6). Right before the

updated packet MA departs MMA, MMA also starts a timer and expects an authenticated ACK

from the next-hop MMB (Table 6.1 A7). Finally, MMA increments the per-neighbor sequence

number NA
AB for the next-hop B to prevent packet replay and reordering attacks (Table 6.1 A8).

ACK reception and failure recovery. Upon receiving an ACK ackAS from a neighbor router

A (Table 6.1 S6), MMS checks if the corresponding packet identifier (NS
SA in this case) is still

stored indicating the timer has not expired. Then MMS checks if the MAC is correct. If any check

fails, MMS can either re-transmit the particular corrupted packet up to r times for instant failure

recovery, or globally accuses lSA for failing to deliver any of the r+1 packets corresponding to NS
SA

via trustworthy broadcasting. The number of re-transmissions r is introduced and set to tolerate

spontaneous packet loss. E.g., assuming an upper bound ρ (probability) of packet loss rate and an

upper bound ǫ of allowed false positive rate, we should set r ≥ ln ǫ
ln ρ
− 1.

Optimization. Similar to the TCP acknowledgment mechanism, a sender MM can send data

packets asynchronously to the ACKs within a certain sliding window of w packets, before the

ACKs for previous packets have been received. Accordingly, a receiver node can send one single

ACK for all the w packets in the previous sliding window to reduce communication overhead.

6.7.2 Aggregate Monitoring

In aggregate monitoring, packet forwarding at each hop is divided into consecutive monitoring

intervals, which are asynchronous among network nodes. A monitoring interval from A to B

refers to the aggregate monitoring for packets sent from A to B in that interval.

Different from per-packet monitoring where MMS starts a timer and expects an immediate ACK

from MMA for each packet sent from MMS to MMA, in aggregate monitoring, MMS increments

a local monitoring counter CS
SA for each packet sent to A. Our key observation is that, due to
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Figure 6.2: Router state in TrueNet aggregate monitoring: three counters for each neighbor.

packet authentication by 1-hop MACs, packet count becomes a verifiable measure of the packet

payload as well, because a modified packet payload will result in an invalid MAC and cause the

packet to be dropped without polluting the counter. Correspondingly, MMA also increments a

local monitoring counter CA
SA for each valid packet received from MMS ; and increments another

per-neighbor counter C
A
SA for each invalid packet received from A, as Figure 6.2 depicts. These

counters can later be compared to reflect δSA = {δd
SA, δ

f
SA}, i.e.:

(6.2) δd
SA = |CS

SA − C
A
SA|, δ

f
SA = C

A
SA

Similarly, MMA sets a counter CA
AB for the next hop B, and this process recursively builds a

trusted chain of 1-hop aggregate monitoring over the entire end-to-end path, while each node only

has per-neighbor state (monitoring counters).

Periodically, neighbors exchange local monitoring counters in a “request-and-reply” manner to

learn δAB for each link lAB and accuse any link with δAB larger than a pre-set accusation threshold.

Specifically, each monitoring interval consists of sending N packets (e.g., 104 packets). MMS counts

the number of packets sent in each monitoring interval I from S to A. Each time N packets have

been sent indicates the end of interval I, and MMS generates a counter request RSA including

the requester S, the next-hop requestee A, the interval number I to prevent replay attacks, and

a MAC computed for the next hop MMA. Then similar to per-packet monitoring, MMS stores I

and CS
SA, starts a timer to wait for the counter report from MMA, increments the interval number

I, and zeros CS
SA for the next interval. Finally, the request RSA and the report ASA proceed in

the same way as in per-packet monitoring. Based on the received ASA, MMS can calculate δSA

(Equation 6.2) and accuse a faulty link if any.
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6.7.3 Per-Packet vs. Aggregate Monitoring

Per-packet monitoring enables instant fault localization and failure recovery by re-transmitting the

corrupted packets immediately, at the cost of an additional ACK per packet (or per w packets

in a sliding window) on each link. Aggregate monitoring reduces the communication overhead by

sending one counter report for all the packets in each monitoring interval (with N packets), at the

cost of additional fault localization delay (one monitoring interval).

In TrueNet, per-packet monitoring is used to protect critical control-plane messages, e.g., the

router configuration messages from the network administrator to each router as we mentioned

earlier, global accusation message via trustworthy broadcasting as we show in Section 6.8, or flow

setup packets in TCP. Accordingly, aggregate monitoring would be used to protect line-rate data

packets for the sake of lower overhead, and the network can rely on transport layer protocols (such

as TCP) for retransmitting and recovering the lost or corrupted packets on an end-to-end basis.

6.8 TrueNet Trustworthy Broadcasting

TrueNet trustworthy broadcasting achieves reachability, integrity, and trustworthiness of the broad-

casted message. Specifically, when a certain node O broadcasts a certain message m, (i) every node

in the network will receive the message as long as the malicious nodes do not cause a graph partition

in the network topology (reachability), (ii) the broadcast message received by each node is the

same as the original one (integrity), (iii) and the broadcast message is trusted, e.g., the accused

link is indeed faulty (trustworthiness).

TrueNet trustworthy broadcasting is built on top of per-packet monitoring to achieve the above

security properties. When a node O originates a broadcast message m, it uses per-packet monitor-

ing (Table 6.1) to convince O’s neighbors that the message has not been modified from the original

one thus preserving integrity, and the message is generated by the correct monitoring module thus

preserving trustworthiness. Figure 6.3 shows an example of how a broadcast message propagates us-

ing per-hop monitoring (not showing the ACKs). The per-packet authenticated ACK in per-packet

monitoring assures a sender that its neighbors have received the correct message thus achieving

reachability, also run the correct monitoring modules, and thus will faithfully keep broadcasting
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Figure 6.3: TrueNet trustworthy broadcasting example. Node O is the originator of the broadcast
message and other nodes use per-packet monitoring to protect the broadcast message.

the message to their neighbors and so on.

Duplicate suppression. Numerous methods exist to ensure that the broadcast message traverses

each link only a single time. Due to limited space we defer detailed protocol design and analysis to

future work. However, a simple method for suppressing duplicate broadcast messages is for each

MM to keep state to detect duplicate messages it may later receive. To recover the state, messages

can contain time stamps and nodes can be loosely time synchronized, thus only requiring storage

for the maximum clock skew plus the maximum duration for the message to reach all nodes.

Global accusation. Once a node’s MM detects faults, the MM generates an accusation and dis-

seminates it inside certain network-wide, periodic beacon messages, such as the periodical routing

updates (or link state announcements in link state routing) or keep-alive messages between neigh-

bors. In TrueNet, each router R’s MMR expects to receive every neighbor’s beacon after every t

seconds, otherwise MMR accuses its neighbor which does not send a beacon on time (hence a mali-

cious router OS cannot prevent the locally generated accusations from being sent to its neighbors).

A beacon from a neighbor MMN contains any accusation generated by MMN and is protected using

per-packet monitoring. If a beacon from MMN contains an accusation, this beacon automatically

becomes a broadcast message and is further propagated using the trustworthy broadcasting.
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6.9 TrueNet Fault Localization Analysis

This section analyzes TrueNet fault localization delay, security and overhead, while Section 6.11

presents real-field implementation and evaluation.

6.9.1 Fault Localization Delay

The fault localization delay in per-packet monitoring equals the packet re-transmission time r: only

when all r + 1 packets fail to be delivered (failure recovery fails) will a link accusation be made.

Theorem 19 states the lower bound of r. During aggregate monitoring, at the end of a monitoring

interval, a router A can learn the accurate δAB for each local link lAB (thus achieving aggregate fault

localization), regardless of the interval length N (number of packets sent in that interval). Hence,

the value of N is set based on the desirable tradeoff between detection delay and communication

overhead. For example, a smaller N enables faster detection but increases the number of counter

reports (one report required for every N packets). Furthermore, since faulty links are defined and

detected based on the accusation threshold, the value of N is also determined by the accuracy of

the threshold-based faulty link accusation. Specifically, a too small N will introduce considerable

noise in the observed link loss rate, given by
δd
AB

N
, due to the existence of spontaneous packet loss.

Theorem 19 states the lower bound of N for achieving a sufficiently high accusation accuracy.

Theorem 19. Suppose the natural packet drop rate is ρ on a link, the accusation threshold Tdr =

ρ + ǫ where Tdr ∈ (0, 1)1, and the allowed false positive and negative rate is σ. Then the fault

localization delay or packet re-transmission time for failure recovery in per-packet monitoring is at

least r = ln σ
ln ρ
−1. The fault localization delay or a monitoring interval length is at least N =

ln( 2

σ
)

(Tdr−ρ)2
.

Proof. We assume each link has a natural drop rate ρ.

Per-packet monitoring. The probability that a benign link “naturally” drops all r+ 1 packets

(including r re-transmissions), or the false positive fp, is given by fp = ρr+1. Since we require

fp ≤ σ, we have r ≥ ln σ
ln ρ
− 1.

1To simplify the mathematical formula, we denote Tdr as a fraction of packets dropped, instead of the absolute
number of dropped packets as the original T d denotes.
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Aggregate monitoring. We study how many packet transmissions are required to estimate the

drop rate of a single link lij within a certain accuracy interval. Suppose that the true value of the

drop rate of lij is θ∗ij , and the estimated drop rate of lij is θij . We compute the number of packets

needed to achieve a (ǫ, σ)-accuracy for θij :

(6.3) Pr(|θij − θ
∗
ij | > ǫ) < σ

i.e., with probability 1− σ the estimated θij is within (θ∗ij − ǫ, θ
∗
ij + ǫ). We define each time a data

packet is sent over link lij as a random trial, and thus each monitoring interval has N random

trials. Then using Hoeffding’s inequality, we have:

(6.4) Pr(|θij − θ
∗
ij | > ǫ) < 2e−2Nǫ2

Then by Equation 6.3, we have:

(6.5) 2e−2Nǫ2 ≤ σ ⇒ N ≥
ln( 2

σ
)

2ǫ2

Since ǫ = Td − ρ, we further have: N ≥
ln( 2

σ
)

2(Td−ρ)2

Finally, the network-wide faulty link detection process is accelerated in TrueNet since a faulty

link detected by one node will be removed from the routing tables of all other nodes; whereas in

existing protocols a node cannot share others’ accusation because of slander attacks.

6.9.2 Security analysis

TrueNet achieves per-packet and aggregate fault localization via per-packet and aggregate monitor-

ing, respectively. Recall that the adversary can drop, modify, inject, replay, re-order, and misroute

packets at links under control.

Per-packet fault localization. Packet dropping, modification, and injection attacks between

MMA and MMB will cause MMA or MMB to fail to generate authentic ACKs for the original

packets; thus the link lAB that corrupts the packets will be localized. Packet replay and re-ordering
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attacks from MMA to MMB will cause packets to be dropped at MMB thanks to the use of per-

neighbor sequence numbers, because MMB stores and only expects a packet with the most recent

per-neighbor sequence number. Finally, packet misrouting attacks are impossible because the source

embeds the expected path p in the packets, and routers will perform next-hop checking based on

the path and will drop any packets that are misrouted.

Aggregate fault localization. Without loss of generality, we consider a monitoring interval

from A to B for example. Upon receiving the counters CB
AB and C

B
AB from B (otherwise MMA

can immediately accuse lAB for not sending a correct counter report), MMA can first be convinced

that the counter values were reported by the correctly running MMB and are thus correct. Then

MMA can estimate δAB and detect any fault. Similar to the analysis of per-packet fault localization

above, packet dropping will increase δd
AB, and packet modification, injection, replay, re-ordering,

and misrouting will increase δf
AB.

We give one interesting note about packet misrouting attack using Figure 6.1 as an example

topology. The malicious node B can first misroute the packets to a colluding neighbor C
′

(not

shown in the figure), which then transparently forwards the packet back to C (the legitimate next

hop of B in path p) without passing the packet through MMC′ . TrueNet treats this as a legitimate

case which does not violate aggregate fault localization, because in the logical protected path the

packets still traverse from MMB to MMC in order. This packet detouring is only possible between

colluding neighbors which can be treated as one logical malicious entity, and is akin to detouring

packets inside the same malicious router.

6.9.3 Overhead Analysis

Storage overhead. We focus on the router state required for per-packet processing which needs

to reside in on-chip memory or cache and usually becomes the system scalability bottleneck. A

router state in TrueNet includes (i) per-neighbor secret keys (e.g., 16 bytes per neighbor) for

both per-packet and aggregate monitoring, and (ii) three monitoring counters (e.g., 3 × 8 bytes)

in aggregate monitoring as Figure 6.2 shows. Since per-packet monitoring is used for infrequent
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(compared to the link rate) packets, such state can be either stored in the adequate off-chip DRAM,

or stored in a small cache (storing up to w packets in a sliding window at any time).

Communication overhead. The extra communication overhead in TrueNet per-packet moni-

toring includes one ACK per packet or per sliding window with w packets. The communication

overhead in aggregate monitoring is one counter report per monitoring interval (e.g., with 104

packets). When per-packet monitoring is only used for protecting infrequent (compared to the

line rate) control messages such as flow setup in TCP and link-state routing updates, the extra

communication overhead amortized on each data packet is small.

6.10 TrueNet Router Architecture

We present a TrueNet router architecture leveraging a dedicated hypervisor and TPM chip to

implement the trusted computing primitives (remote attestation, isolation, and sealed storage),

and modern mainstream router hardware to speed up time-critical operations in TrueNet.

Anatomy of a TrueNet router. Modern routers commonly use a switch-based router archi-

tecture with fully distributed processors [20] and the network interfaces perform almost all the

critical data-path operations for a normal packet. Figure 6.4 shows the architecture of a TrueNet

router, where the shaded components are those added in a TrueNet router but not present in a

standard modern router and also constitute the TCB for TrueNet. As Figure 6.4 shows, each

TrueNet router is equipped with a TPM chip and CPUs with hardware virtualization support (e.g.,

AMD SVM [10], or Intel TXT [44]), and installs a dedicated hypervisor such as TrustVisor [69].

The dedicated hypervisor isolates MM from the rest of the router system (e.g., router OS, periph-

eral devices, etc.), enables remote attestation and sealed storage with the support of TPM chip,

and protects MM’s execution integrity, data integrity and secrecy. Similar to TrustVisor [69], the

TPM operations are only needed when the dedicated hypervisor boots to ensure the hypervisor’s

integrity, while afterwards the dedicated hypervisor performs attestation and storage sealing to

improve the efficiency.
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Figure 6.4: TrueNet router architecture.

For better performance, we anticipate on every network interface, there is a trusted hardware

MAC Module (MACM) to perform the MAC operations in MM as described earlier. A MACM

has a piece of private memory space and a high-speed MAC computation module. The private

memory of MACM is mapped to the main memory residing in the CPU subsystem, and shared

with the local MM. The dedicated hypervisor also protects this piece of main memory from the

rest of the CPU subsystem, so that only the MM can read from and write to this main memory

region. However, MACM can also be implemented inside the software MM as we described earlier,

which we used for our prototyping (Section 6.11.1).

Software monitoring module MM. A MM handles all control-plane operations that are not

time-critical, or infrequent in a TrueNet system. First, the local MM negotiates secret keys with

the MMs on the neighboring routers, and writes the secret keys into the main memory region that

maps the private memory of MACM. Secret key negotiation only happens periodically according to

the cryptographic key lifetime. Secondly, MMs on the source nodes also handle packets originating

from the connected end-hosts by adding the entire routing path into the packets (Section 6.7) for 1-

hop monitoring. Thirdly, the MM is also responsible for generating accusations to be broadcasted

in the beacon messages. In addition, MM also periodically checks the locally stored timers for

awaiting ACKs from neighbors to detect and remove any expired entries.
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Dedicated MAC module. The dedicated MAC module (MACM) is responsible for all data-

plane operations to achieve high packet processing throughput. A MACM verifies the MAC in the

packet, validates the correct presence of the local router in the embedded path, computes the new

MAC using the shared secret key for the next hop router, updates per-neighbor sequence numbers

and monitoring counters, and attaches the new MAC to the packet on a per-packet basis. To achieve

high throughput in MAC computation, We can use parallelizable MAC algorithms such as XOR-

MAC [22], XECB-MAC [34], PMAC [23], or high speed hardware implementations [93, 81, 62, 86]

which can obtain more than 62.6 Gbps throughput.

6.11 Implementation and Evaluation

In this section, we evaluate both TrueNet’s computational overhead based on our Linux prototype

of a TrueNet router and TrueNet’s storage overhead based on real-world ISP topologies and traffic

traces. We show that even when implementing MACM inside the software MM, a TrueNet router

can achieve gigabit line rate with only commodity multi-core support, and the state in a TrueNet

router is up to five orders of magnitude less than in related work [97, 21].

6.11.1 Prototype and Computational Overhead

We implement a TrueNet router prototype in Linux with TPM chip to evaluate per-packet cryp-

tographic computational overhead of a TrueNet router. We show the performance of a TrueNet

intermediate router which performs two MAC operations per packet (verification of the previous-

hop MAC and generation of the next-hop MAC) inside the software MM. We observe that the

TrueNet per-packet cryptographic operations, even implemented in TrueNet software module MM

without any hardware acceleration, can fully cope with gigabit link-rate processing of data pack-

ets, and are fully scalable to higher performance with more CPUs. We anticipate the dedicated

hardware MACM (Section 6.10) can further boost the TrueNet router throughput.

Platform. We performed all experiments on off-the-shelf servers with one Intel Xeon E5640 CPU

(four 2.66 GHz cores, 256KB L1 cache, 1MB L2 cache, 12MB L3 cache), 12G DDR3 RAM with
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25.6 GB/s memory bandwidth. This CPU supports new Intel AES-NI instructions [45] for high

speed AES computation. The servers are equipped with TPM chips and Broadcom NetXtreme II

BCM5709 Gigabit Ethernet Interface Cards, and runs Ubuntu 10.04 32-bit Desktop OS.

Prototype. In our TrueNet prototype, we modify TrustVisor [69] as our dedicated hypervisor.

We run Ubuntu Linux OS on top of our hypervisor and implement a TrueNet intermediate router

as a multi-threaded user-space process. A TrueNet router process includes the secure software

module MM and untrusted network stack. The untrusted network stack consists of two threads: a

receiver thread that listens to network packets via TUN/TAP virtual interfaces and puts received

packets to an input packet queue, and a forwarder thread in charge of sending the packets in the

output packet queue to their appropriate next-hop routers. Multiple MMs run as child threads,

constantly poll the input packet queue, copy the new incoming packets to a shared output packet

queue, and perform MAC computations. We use the CMAC-AES-128 MAC algorithm to leverage

the new AES-NI instructions on Intel CPUs.

Our software module MM performs similar per-packet cryptographic operations as the hardware

module MACM proposed in Section 6.10 in software manner, while maintaining same security

guarantees. The MM child threads are running inside the secure and isolated execution environment

provided by dedicated hypervisor ever since threads start. The dedicated hypervisor also protects

the memory region of input packet queue as accessible by both the untrusted network stack and

MMs, and the output packet queue as writable by MMs but only readable by untrusted network

stack. This memory configuration assures MM’s execution integrity. Finally, the TPM securely

boots and late-launches the dedicated hypervisor to guarantee its integrity, as described in the

TrustVisor proposal [69].

Throughput and Latency Breakdown. We tested the throughput of our software TrueNet

router prototype using the widely adopted network performance benchmarking tool Netperf [4].

Figure 6.5 shows the test result. The baseline performance in the figure is obtained by using

a main thread to receive packets, two MM threads to move packets to the output packet queue

without any other operations, and one forwarder thread to send packets out to next-hop routers. For
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Figure 6.5: TrueNet router throughput.

Packet Size (Byte)
1500 1000 500 100

MAC Computation 4.2 2.9 1.6 0.4
Others 1.3 1.1 0.7 1.1
Total 5.5 4 2.3 1.5

Table 6.2: TrueNet software module MM’s latency overhead breakdown. All the data is the average
time (microseconds) in 50000 packet processing trials.

TrueNet prototype, the test setting is similar to baseline performance test with the only difference

that MM threads perform TrueNet packet validation and MAC computations for every packet. As

Figure 6.5 shows, TrueNet prototype incurs negligible throughput degradation when compared with

the baseline throughput (maximum degradation in our test is (817-789)/817=4.5% when packet

size is 1024 bytes, most degradation rates are under 2%).

We also shows a latency overhead breakdown of executing software module MM’s per-packet

process. From Table 6.2, we know that, leveraging the new AES-NI instruction, MAC computations

are highly efficient (on average 3 CPU cycles per packet byte). In our prototype, AES key setup

time is negligible since each TrueNet router only needs to hold one session key per neighboring

router in a session key life time, and we can pre-compute all AES sub-keys.
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Figure 6.6: Key storage overhead of a single router on ISP topologies.

6.11.2 Storage Overhead Measurement

TrueNet’s ability to deliver strong security properties (instant failure recovery with per-packet fault

localization, global accusation, etc) with less state than previous attempts [21, 97] follows logically.

Still, measurements under real-world conditions provide an exact assessment of TrueNet’s strength.

Rocketfuel-based measurements. The Rocketfuel topologies [84] of various top-tier ISPs ex-

tend from the ISPs’ peering routers to approximately the first hop within a customer’s network.

We count the node degree for each router in the topology to assess TrueNet’s overhead and com-

pare it to the number of nodes in the network, representing the recently proposed Statistical fault

localization [21] and PAAI [97]’s key storage overhead. Figure 6.6 suggests that TrueNet incurs

on average two orders of magnitude less overhead in the worst case (considering the maximum

node degree in the topologies), and three order less overhead for the average case (considering the

average node degree).

Internet2-based measurements. The Internet2 provides similar topology data for its core

routers, which Figure 6.6 also illustrates (labeled as “I2”). Since this topology only includes core

routers, TrueNet does not deliver the orders of magnitude less overhead achieved with the Rocketfuel
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Figure 6.7: Overhead comparison based on Internet2 topology and traffic traces.

topologies, providing an 83% savings in the average case and 69% in the worst case. Conveniently,

the Internet2 also provides Netflow data, allowing for measurement of TrueNet’s and Statistical

fault localization’s monitoring state overhead. These Netflow files capture 1/100 packets seen over

a five minute interval. In Statistical fault localization, the router incurs an around 500-byte “secure

sketch” [36] for each path (identified as each unique source and destination in our measurement).

In contrast, a TrueNet router maintains three counters (24 bytes) for each neighbor. Figure 6.7

shows that TrueNet requires approximately five orders of magnitude less monitoring state overhead.

Additionally, these flow data allow for a more accurate estimation of key storage overhead in

Statistical fault localization (number of sources with traffic concurrently traversing the same router),

also shown in Figure 6.7 (the key storage overhead in TrueNet is still one key per neighbor).

6.12 Discussion

6.12.1 Incremental Deployment

Although we argue it is feasible to upgrade all routers with trusted computing primitives within a

single administrative domain, we note that partial deployment of TrueNet can still benefit the early
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Figure 6.8: Incremental deployment of TrueNet. The shaded nodes have deployed TrueNet and
form logical trust links between each other.

adopters. Specifically, when only a subset of routers in a network are equipped with TrueNet, the

monitoring modules still constitute logical protected paths where a logical protected link between

two MMs may consist of multiple physical links. Figure 6.8 shows an example where the shaded

nodes have deployed TrueNet and a logical protected link consists of lAB and lBC . Hence, fault

localization is still achieved on each logical protected link (though not an exact physical link), which

helps localizing the failure to a bounded region and facilitates network diagnosis. Furthermore, the

more densely the MMs are deployed, the more accurate the failure localization can be, which incents

incrementally deploying TrueNet.

6.12.2 Interdomain Deployment

TrueNet mainly targets intra-domain networks such as ISP and enterprise networks, where so-

phisticated hardware attacks can be precluded since the remote attacker (the adversary model

we considered) does not have physical access to the routers. However, it is ineffective to deploy

TrueNet in the current inter-domain setting where each Autonomous System (AS) represents a

node in TrueNet, because a selfish or malicious AS has physical access to its routers and can thus

subvert the hardware (e.g., TPM chips) upon which trusted computing primitives rely. Fortunately,

the recently proposed SCION [96] inter-domain architecture groups the ASes into different trust

domains, within which strong contractual or legislative regulation can be enforced. Hence, an AS

tampering with the hardware can be legally penalized by the containing trust domain. This ar-

chitecture naturally enables the wide deployment of TrueNet (or trusted computing primitives in

general) across different ASes within a trust domain. Meanwhile, TrueNet also serves as an example

of how to technically achieve enforceable accountability within a trust domain in SCION.
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6.13 Summary

In this chapter, we demonstrate that trusted computing enables transitivity of verification and

eliminates the need of establishing direct point-to-point trust between any two nodes in the network

which incurs high storage overhead and obstructs key management. TrueNet employs only a small

TCB to achieve secure fault localization with small router state, dynamic path support, and global

accusation that are proven impossible in traditional networks. Though achieving much smaller

protocol overhead compared to path-based fault localization approaches (PAAI and ShortMAC),

TrueNet requires special hardware support (such as TPM chips and hardware virtualization) and

is vulnerable to hardware attacks. In the next chapter, we present a 1-hop-based fault localization

protocol with small overhead without relying on trusted computing.



Chapter 7

DynaFL

Like PAAI and ShortMAC, most existing secure fault localization protocols are path-based, which

assume that the source node knows the entire outgoing path that delivers the source node’s packets

and that the path is static and long-lived. However, these assumptions are incompatible with the

dynamic traffic patterns and agile load balancing commonly seen in modern networks. To cope

with real-world routing dynamics, we propose the first secure neighborhood-based fault localization

protocol, DynaFL, with no requirements on path durability or the source node knowing the outgoing

paths. DynaFL aims to localize data-plane faults to a 1-hop neighborhood, instead of a specific

link. Unlike TrueNet, DynaFL requires no special hardware support. Through a core technique

we named delayed function disclosure , DynaFL incurs little communication overhead and a small,

constant router state independent of the network size or the number of flows traversing a router.

In addition, each DynaFL router maintains only a single secret key, which is 100 to 10000 times

fewer than in path-based fault localization protocols based on our measurement results.

7.1 Introduction

Existing fault localization protocols that are secure against sophisticated packet dropping and

modification attacks [17, 97, 21] require that the sender know the entire path that delivers the source

node’s packets, and that the path be long-lived (e.g., stable over transmitting 108 packets [21]) to

obtain a statistically accurate fault localization. However, recent measurement studies [16, 38, 31]

111
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show that a considerable fraction of current network flows are short-lived “mice” and routing paths

are highly dynamic. Furthermore, emerging enterprise and datacenter networks call for more agile

load balancing and dynamic routing paths. For example, a recently proposed datacenter routing

architecture, VL2 [38], employs Valiant Load Balancing to spread traffic uniformly across network

paths via random packet deflection. In this case, the actual routing path is determined on the

fly during forwarding and thus cannot be predicted and known by the sender. Given the conflict

between the “static-path” assumption and the “dynamic-path” reality, researchers have concluded

that existing fault localization protocols are impractical for widespread deployment in large-scale

networks with dynamic traffic patterns [21].

In addition, in existing secure fault localization protocols, a router must share some secret (e.g.,

cryptographic keys) with each source node sending traffic traversing that router, making the key

storage overhead at an intermediate router linear in the number of end nodes. The proliferation of

key copies shared by routers with all end nodes under non-uniform (and generally poor) adminis-

tration also increases the risk of key compromise thereby enabling undetected attacks. In existing

secure fault localization protocols, a router also needs to maintain per-path state for each path

traversing that router, making the fault localization unscalable for large-scale networks.

We aim to bridge the current gap between the security of fault localization against strong

adversaries and the ability to support dynamic traffic patterns in modern networks such as ISP,

enterprise, and datacenter networks. More specifically, the desired fault localization protocol should

be secure against sophisticated packet dropping, modification, fabrication, and delaying attacks by

colluding routers, while retaining the following properties:

• Path obliviousness: A source node or a router does not need to know the outgoing/downstream

path.

• Volatile path support: The fault localization protocol requires no duration time for a

forwarding path.

• Constant router state: A router does not need to maintain per-path, per-flow, or per-

source state.
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Figure 7.1: Path-based fault localization. TSr denotes the traffic summary generated by router r.
For brevity, “TSA 6=TSB” refers to “TSA deviates from TSB more than a certain threshold”.

• O(1) key storage: A router only manages a small number of keys regardless of the network

size.

Path obliviousness and volatile path support together enable agile (e.g., packet-level) load balancing

and dynamic routing paths (e.g., Valiant load-balanced paths). These two properties also decouple

the data-plane fault localization from routing, thus enabling it to support a wide array of routing

protocols. Finally, constant router state provides scalability in large-scale networks and O(1) key

storage reduces the security risk due to key compromise.

We observe that the “static-path” assumption in existing secure fault localization protocols

stems from the fact that those fault localization protocols operate on entire end-to-end paths

(path-based), to localize the fault to one specific link. As Figure 7.1 shows, each router maintains

a certain “traffic summary” (e.g., a counter, packet hashes, etc.) for each path that traverses the

router (thus requiring per-path state), and sends the traffic summary to the source node S of each

path. S can then detect a link l as malicious if the traffic summaries from l’s two adjacent nodes

deviate greatly, as Figure 7.1 illustrates. Hence, S needs to know the entire path topology to

compare traffic summaries of adjacent nodes, and needs to send a large number of packets over the

same path so that the deviation in traffic summaries can reflect a statistically accurate estimation

of link quality. Finally, to authenticate the communication between the source and each router

in the path, a router needs to share a secret key with each source that sends traffic through that

router.

In this paper, we explore neighborhood-based fault localization approaches, where a router r’s

data-plane faults (if any) can be detected by checking the consistency (or conservation) of the

traffic summaries generated by the 1-hop neighbors of r (denoted by N(r) in Figure 7.2). That
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Figure 7.2: A neighborhood example.

is, in benign cases, the packets sent to r will be consistent with the packets received from r by

all of r’s neighbors as reflected in their traffic summaries. In this way, the fault localization is

independent of routing paths and only depends on 1-hop neighborhoods, thus supporting arbitrary

routing protocols and dynamic load balancing. Additionally, each router in a neighborhood-based

approach only needs to maintain state for each neighbor. In summary, neighborhood-based fault

localization localizes faults to a specific 1-hop neighborhood to reduce further investigation, to trade

localization precision for practicality in modern networks with dynamic traffic patterns.

Though promising, neighborhood-based fault localization is susceptible to sophisticated packet

modification and collusion attacks due to several security and scalability challenges. For example,

for the sake of scalability, the traffic summary cannot be a copy of all the original packets (or

even their hashes), but have to be a compact representation of the original packets via a certain

fingerprinting function F . On one hand, if F generates traffic summaries at different nodes

without using different secret keys, a malicious router can predict the outputs of F at other nodes

and tactically modify packets such that the outputs of F will stay the same as with the original

packets. On the other hand, if F at different nodes uses different secret keys, we cannot compare

and run consistency check over different nodes’ traffic summaries. To address these challenges,

we propose DynaFL, a protocol that employs a core technique called delayed function disclosure ,

which discloses the same key for computing F to different routers after they have forwarded the

packets. To further minimize the protocol overhead, DynaFL employs a secure sampling mechanism

also based on the delayed function disclosure, so that a malicious router cannot know if a packet

is sampled or not at the time it forwards (corrupts) the packet. Finally, a router in DynaFL only

shares a secret key with a centralized controller, thus achieving O(1) key storage.
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Contributions. Our contributions are three-fold:

1. We raise the importance of pursuing a secure fault localization design to cope with dynamic

traffic patterns in real-world operational networks with a small, constant router state and key

storage.

2. To the best of our knowledge, DynaFL is the first secure neighborhood -based fault localization

protocol that achieves path obliviousness and volatile path support, and is secure against both

packet loss and sophisticated packet modification/injection attacks.

3. In addition, a DynaFL router requires only about 4MB per-neighbor state based on our AMS

sketch [11] implementation, whereas path-based fault localization protocols require per-path state.

We also show through measurements that the number of keys a router needs to manage in path-

based fault localization protocols is 100 to 10000 times higher than that in DynaFL (which is a single

key shared with a centralized controller). Finally, our simulation results demonstrate DynaFL’s

small detection delay and negligible communication overhead.

7.2 Setting

Besides the problem formulation described in Chapter 2, we introduce additional notation and

definitions for this chapter below.

Notation. We denote the 1-hop neighborhood (or neighborhood, for brevity) of a node s as N(s),

as Figure 7.2 illustrates. For a particular packet traversing a neighborhood N(s), the neighbor

sending that packet to node s is called an ingress node in N(s) for that packet, and the node

receiving that packet from s is called an egress node. We term a sequence of packets as a packet

stream S. Particularly, we denote the packet stream sent from node i to node j as Sij , and this

packet stream is seen by nodes i and j as S
→j
i and S

←i
j , respectively. The difference of two packet

streams S and S
′

, denoted by ∆(S
′

,S
′

), refers to the number of packets in one packet stream but

not in the other, without considering the variant IP header fields such as the TTL and checksum.
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Network Setting. We consider a network with dynamic traffic patterns and a relatively static

network topology, which is best exemplified by today’s ISP, enterprise, and datacenter networks.

To provide maximum flexibility to support various routing protocols, and even packet-level load

balancing, we pose no restriction on the routing protocols and load balancing mechanisms used

in the network. We assume a trusted administrative controller (AC) in the network, which

shares a pairwise secret key with each node in the network. As we will show later, the AC is

mainly in charge of analyzing the traffic summaries gathered from different nodes and localizing

any neighborhood with data-plane faults. Finally, we require nodes in the network be loosely time-

synchronized, e.g., on the order of milliseconds. Loose time synchronization represents a common

requirement for detecting packet delaying attacks [71, 14, 15] and nowadays even high-precision

clock synchronization is available given the advent of GPS-enabled clocks and the adoption of

IEEE 1588 [46].

7.2.1 Problem Formulation

Our goal is to design a practical and secure neighborhood-based fault localization protocol to identify

a suspicious neighborhood (if any) that contains at least one malicious node. Recall that practi-

cality translates to path obliviousness, volatile path support and constant router state as stated in

Section 7.1. We further adopt the (α, β, δ)-accuracy [36] to formalize the security requirements

as below:

• If more than β fraction of the packets are corrupted by a malicious node m, the fault lo-

calization protocol will raise a neighborhood containing m or one of its colluding nodes as

suspicious with probability at least 1− δ.

• In benign cases, if no more than α fraction of the packets are spontaneously corrupted (e.g.,

dropped) in a neighborhood, the fault localization protocol will raise the neighborhood as

suspicious with probability at most δ.

The thresholds α and β are introduced to tolerate spontaneous failures (e.g., natural packet

loss) and are set by the network administrator based on her experience and expectation of network

performance.
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Neighborhood-based fault localization enables the network administrator to scope further in-

vestigation to a 1-hop neighborhood to find out which router is compromised. It is also possible

to further employ dedicated monitoring protocols, which only need to monitor a small region (the

identified neighborhood) of the network to find the specific misbehaving router.

7.3 Challenges and Overview

In this section, we first describe the high-level steps of a general neighborhood-based fault local-

ization and then explain the security challenges in the presence of strong adversaries. Finally, we

present the key ideas in DynaFL that address these challenges.

7.3.1 High-Level Steps

The general steps a neighborhood-based fault localization takes are (i) recording local traffic sum-

maries, (ii) reporting the traffic summaries to the AC, and (iii) detecting suspicious neighborhoods

by the AC based on the received traffic summaries, as we sketch below. Though intuitive, these

general steps face several security vulnerabilities and scalability challenges as Section 7.3.3 will

show.

Recording. We divide the time in a network into consecutive epochs, which are synchronous

among all the nodes including the AC in the network. For each neighbor r, a node s locally

generates traffic summaries, denoted by TS→r
s and TS←r

s , for the packet streams Ssr and Srs in

each epoch, respectively. Figure 7.3 depicts the router state in a toy example.

sr t
Srs Sst

Ssr Sts

TS→s
r

TS←s
r

TS←s
t

TS→s
t

TS←r
s

TS→r
s

TS→t
s

TS←t
s

{F(S→s
r ), t

→s
r , n→s

r }

Figure 7.3: Router state for traffic summaries.

The traffic summary recorded by a node s should reflect both the packet contents and the
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arrival/departure time seen at node s to enable the detection of malicious packet corruption and

delay. For the sake of scalability, the traffic summary can not simply be an entire copy of all the

original packets (or their hashes using a cryptographic hash function such as SHA-1 which provides

one-wayness and collusion resistance) and their timing information. Instead, we use a fingerprinting

function F to reflect the aggregates of packet contents to save both the router state and bandwidth

consumption for reporting the traffic summaries to the AC. We denote the fingerprint for a packet

stream Srs generated by r as F(S→s
r ), as Figure 7.3 depicts. In addition, as Figure 7.3 shows, for a

packet stream Srs (or Ssr), the traffic summary of node r also contains the average departure time

t
→s
r (or arrival time t

←s
r ) and the total number of packets n→s

r (or n←s
r ) in Srs (or Ssr) seen in the

current epoch to enable the detection of packet delay attacks.

Reporting. At the end of each epoch, each node s sends its local traffic summaries to the AC.

Detection. After receiving the traffic summaries at the end of an epoch, the AC runs a consis-

tency check over the traffic summaries in each neighborhood. A large inconsistency of the traffic

summaries in a certain neighborhood N(s) indicates that N(s) is suspicious.

7.3.2 The Fingerprinting Function F

Before we present the instantiation of F , we first describe the general properties that F should

satisfy. To enable the AC to detect suspicious neighborhoods, F should generate traffic summaries

with the following two properties:

Property 1. Given any two packet streams S and S
′

, the “difference” between F(S) and F(S
′

) can

give an estimation of the difference between S and S
′

, denoted by: ∆(F(S),F(S)
′

) ; ∆(S,S
′

).

Defining the “difference” between F(S) and F(S
′

) is F-specific, as we show shortly.

Property 2. Given any two packet streams S and S
′

, F(S ∪ S
′

) = F(S) ∪ F(S
′

).

The ∪ operator on the left-hand side denotes a union operation of the two packet streams S

and S
′

. The ∪ operator on the right-hand side denotes a “combination” of F(S) and F(S
′

), which

is F-specific and defined shortly.
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These two properties enable the conversion from checking packet stream conservation to checking

the conservation of traffic summaries in a neighborhood. In other words, these two properties enable

nodes to simply store the compact packet fingerprints instead of the original packet streams while

still enabling the AC to detect the number of packets dropped, modified, and fabricated between

two packet streams from their corresponding fingerprints.

Specifically, during the detection phase, the AC only needs to compare the difference between

(i) the combined traffic summaries for packets sent to node s in N(s), i.e., ∪i∈N(s)F(S→s
i ), and

(ii) the combined traffic summaries for packets received from node s in N(s), i.e., ∪i∈N(s)F(S←s
i ).

By Properties 1 and 2:

∆( ∪
i∈N(s)

F(S→s
i ), ∪

i∈N(s)
F(S←s

i ))

= ∆(F( ∪
i∈N(s)

S
→s
i ),F( ∪

i∈N(s)
S
←s
i )) based on Property 2

; ∆( ∪
i∈N(s)

S
→s
i , ∪

i∈N(s)
S
←s
i ) based on Property 1

(7.1)

Note that ∆(∪i∈N(s) S
→s
i ,∪i∈N(s) S

←s
i ) reflects the discrepancy between packets sent to and received

from node s, and a large discrepancy indicates packet dropping, modification, and fabrication

attacks in N(s).

Sketch for F . The pthmoment estimation sketch [9, 30, 88] (as used by Goldberg et al. [36] for

path-based fault localization) serves as a good candidate for F . More specifically, pthmoment esti-

mation schemes use a random linear map to transform a packet stream into a short vector, called

the sketch, as the traffic summary. In benign cases, packets, if viewed as 1.5KB (the Maximum

Transmission Unit) bit-vectors, are “randomly” drawn from {0, 1}1536×8. Hence, different packet

streams will result in different sketches with a very high probability (w.h.p.). Goldberg et al. [36]

also extensively studied how to estimate the number of packets dropped, injected, or modified be-

tween two packet streams from the “difference” of two corresponding sketch vectors, thus satisfying

Property 1. Specifically, the difference ∆(F(S),F(S)
′

) (used in Property 1) between two sketch
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vectors is defined as:

(7.2) ∆(F(S),F(S)
′

) = ||F(S)−F(S)
′

||pp

where ||x||pp denotes the pthmoment of the vector x. We can further prove (see Appendix C) that

the sketch satisfies Property 2 and the combination of F(S) and F(S)
′

used in Property 2 is defined

as:

(7.3) F(S) ∪ F(S)
′

= F(S) + F(S)
′

where + denotes the addition of two vectors.

7.3.3 Challenges in a Neighborhood-based fault localization

From Property 1, we can further derive the following conditions on the fingerprinting function F .

Given any two packet streams Sr and St seen at nodes r and t, respectively, a fingerprinting function

computed by r and t should satisfy:

if Sr = St,F(Sr) = F(St)(7.4)

if Sr 6= St,F(Sr) 6= F(St) w.h.p.(7.5)

The first condition ensures the consistency of traffic summaries (more precisely, sketches in the

traffic summaries) in the benign case when the packet streams are not corrupted between nodes

r and t. The second condition ensures that if packet corruption happens between nodes r and t,

inconsistency of the traffic summaries will be observed, which will then enable the estimation of

packet difference in the corresponding packet streams (Property 1). However, these two conditions

tend to be contradicting and lead to the following dilemma.

F without different secrets. If the random linear map in F (which can be implemented as a

hash function [21]), is not computed with different secret keys by different nodes, a malicious node

can predict the F output of any other node for any packet. Since F maps a set of packets (or
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sr t

0001 00010001

Srs S
′

t (6= Srs)

F(S→s
r ) → F(S

′

t) →

Find a S
′

t such that

F(S
′

t) →

F(S→s
r ) = F(S

′

t), no faults detected!

Figure 7.4: An example of stealthy packet modification attacks when nodes do not use different
secret keys for computing F . For simplicity, the sketch vector is represented as a ‘0-1’ bit vector.
The malicious node s modifies the packet stream in such a way that the modified packet stream S

′

t

still results in the same sketch vector as Srs at node t.

sr t

0001 1001

Srs
Sst(= Srs)

F(S→s
r ) → F(S←s

t ) →

F(S→s
r ) 6= F(S←s

t ), suspicious!

Figure 7.5: Illustration of the difficulty in using different secret keys when computing F . The
sketch vector is represented as a ‘0-1’ bit vector for simplicity. In this example, nodes r, s and t
use different secret keys when computing the Sketch to generate their traffic summaries.

their 160-bit cryptographic hashes) to a much smaller sketch, hash collisions will exist where two

different packets produce the same F output (since sketch is not proven to preserve the collision

resistance property of the cryptographic hash function). Hence, a malicious node can leverage such

collisions to modify packets such that the modified/fabricated packets will produce the same F

output at other nodes, violating the condition in (7.5). Figure 7.4 depicts such an example.

F with different secrets. If nodes compute F with different secret keys to satisfy the condition

in (7.5), it is hard for the AC to perform a consistency check among the resulting sketches. For

example, even the same packet stream would result in different sketches at different nodes, thus

violating the condition in (7.4). Figure 7.5 depicts such an example. Since the sketch is only a

compact and approximate representation of the original packet stream, the AC cannot revert the

received sketches to the original packet streams to check packet stream conservation.
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Scalability vs. sampling. Even with F for packet fingerprinting, a traffic summary over a

huge number of packets can become too bandwidth-consuming to be sent frequently to the AC

(e.g., every 20 milliseconds). For example, the number of packets for an OC-192 link (10Gbps)

can be on the order of 107 per second in the worst case, which swells the size of a sketch to

hundreds of bytes to bound the false positive rate below 0.001 [36] and may require several KB/s

bandwidth for the reporting by each node. Packet sampling represents a popular approach to

reducing bandwidth consumption, where each node only samples a subset of packets to feed into

F for generating the traffic summaries. To enable a consistency check of the traffic summaries in

a neighborhood, all nodes in a neighborhood should sample the same subset of packets, and the

challenge is how to efficiently decide which subset of packets all nodes should agree to sample. For

security, the sampling scheme must ensure that a malicious node cannot predict whether a packet

to be forwarded will be sampled or not. Otherwise, the malicious node can drop any non-sampled

packets without being detected.

The problem is further complicated by the presence of collusion attacks in our strong adversary

model as well as our path obliviousness requirement. Several existing sampling schemes are broken

when applied to our setting. For example, in Symmetric Secure Sampling (SSS) [36], the packet

sender and receiver use a shared Pseudo-Random Function (PRF) P to coordinate their sampling.

Imported to our setting, e.g., using the neighborhood example in Figure 7.5, nodes r and t share

a secret key Krt and a PRF P, compute P with Krt for each packet, and sample the packet if the

PRF output is within a certain range. In this way, node s itself cannot know whether a packet is

sampled or not. However, this approach fails in our setting. Take the topology in Figure 7.5 for

example:

• If s and r collude, r can inform s of which packets are sampled, so that s can safely drop

non-sampled packets and not be detected.

• Due to the dynamic traffic pattern, an ingress node r of a neighborhood N(s) does not know

which egress node a packet will traverse in N(s) (if s has more neighbors than r and t, there

exist multiple possible egress nodes than t). Hence, r does not know which PRF or secret key

to use for packet sampling, given that r shares a different secret key with each node in N(s).
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7.3.4 DynaFL Key Ideas

In DynaFL, nodes temporarily store the cryptographic hashes (which are collision-resistant) for

all packets received/sent per neighbor in an epoch. At the end of each epoch e, nodes use epoch

sampling to decide if packets in the epoch are to be fingerprinted; if so, nodes generate the traffic

summaries and report them to the AC. This reduces both the communication overhead for sending

the traffic summaries to the AC and the computational overhead for generating and checking the

traffic summaries. Specifically, nodes first use the same per-epoch sampling key Ke
s (described

shortly) for computing a PRF P to determine if the current epoch is “selected”; if and only if

the current epoch is selected, nodes will use F with the same per-epoch fingerprinting key Ke
f

(described shortly) to map packets into per-neighbor traffic summaries. Using the same Ke
s and

Ke
f enables consistency checking over the traffic summaries from different nodes.

To address the packet modification attacks and collusion attacks mentioned earlier, nodes do

not know the per-epoch Ke
s and Ke

f until the end of each epoch e, after they have forwarded (or

possibly corrupted) packets in epoch e. Thus, when a packet is to be forwarded (or corrupted), a

malicious node does not know Ke
s and Ke

f , and thus cannot predict whether this epoch is selected

for sending traffic summaries, and if selected, what the sketch output will be for this packet. To

achieve this property, in DynaFL, the trusted AC periodically sends the per-epoch Ke
s and Ke

f via

function disclosure messages to all nodes at the end of each epoch in a reliable way (described

later) and nodes use the received Ke
s and Ke

f to select epochs and fingerprint packets that have

already been forwarded or corrupted.

A malicious node may first attempt to locally hold all the packets in an epoch e, and only

forward or corrupt packets at the end of e when the malicious node learns Ke
s and Ke

f , thus being

able to launch the sophisticated packet modification and selective packet corruption attacks as

mentioned earlier. However, since the traffic summaries also include the average departure/arrival

time of the sent/received packets, the malicious node will be detected with packet delay misbehavior

in the detection phase.

Sections 7.4, 7.5, and 7.6 detail the recording, reporting, and detection phases in DynaFL,

respectively. Section 7.7 presents the security analysis and Section 7.8 evaluates DynaFL’s perfor-

mance through measurements and simulations.
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7.4 Recording Traffic Summaries

Nodes in DynaFL generate their traffic summaries by first temporarily storing all the received and

sent packets for each epoch along with aggregate timing information. Then upon receiving the

keys disclosed by the AC, nodes determine if the current epoch is selected with a keyed PRF P,

and if so, fingerprint the cached packets with keyed F . The technical challenges in the recording

phase are how to deal with imperfect time synchronization among nodes and packet transmission

delay, and how to efficiently protect the function disclosure message from adversarial corruption.

We explain how DynaFL solves these challenges in turn below.

Definition 20. The epoch IDs are labeled as 0, 1, 2, . . .. If the current network time is t, then the

current epoch ID is ⌊ t
l
⌋, where l is the epoch length.

7.4.1 Storing Packets

In the “ideal” case (with perfect time synchronization and no packet transmission delay), nodes

simply need to store packets for the single “current” epoch and at the end of each epoch send the

traffic summaries to the AC for that epoch. However, in practice, routers need to determine which

epoch an incoming packet belongs to (or whether a received packet belongs to the current epoch or

a previous, outdated epoch). One might attempt to let routers map received packets into epochs

based on their local packet arrival time. However, this approach would introduce large errors for

the following reasons:

• Though all the nodes in the network are loosely time-synchronized, e.g., ±1 millisecond, the

epoch intervals at different nodes may still be misaligned by up to a few milliseconds. This

misalignment will result in a considerable number of packets being attributed to different

epochs at different nodes, thus causing inconsistencies in the corresponding packet finger-

prints.

• Due to the network transmission delay, a packet sent by a source at epoch e may arrive at

another node at a different epoch e + i. In other words, a packet may have been received

by an ingress node but not the egress node of a neighborhood at the end of an epoch when
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nodes need to generate their packet fingerprints, thus producing inconsistencies in the traffic

summaries.

To deal with imperfect time synchronization, the source in DynaFL embeds a local timestamp

when sending each packet. Such a timestamp can be added as an additional flow header, using the

TCP timestamp, or in the IP option field that all routers can process efficiently. Any router in the

forwarding path will determine the corresponding epoch for each packet based on the embedded

timestamp. In this way, we ensure that all routers put each packet in the same epoch for updating

the traffic summaries. For example, if the timestamp embedded by the source is ts and the epoch

length is L, then all routers will map the packet into epoch ⌊ ts
L
⌋.

To eliminate traffic summary inconsistencies due to packet transmission delay, we also need to

ensure that when generating traffic summaries for a certain epoch e, packets that are sent and not

corrupted in epoch e are received by all the nodes in the forwarding paths. To this end, if the

epoch length is set to L and the expected upper bound on the one-way packet transmission delay

in the network is D, each router stores packets sent in the current epoch e as well as in previous

⌈D
L
⌉ epochs, denoted by e − 1, e − 2, . . . , e − ⌈D

L
⌉. We call these epochs live epochs. Then at

the end of an epoch e, nodes will generate and send to the AC the traffic summaries for the oldest

live epoch e− ⌈D
L
⌉, in which the packets have either traversed all nodes in their forwarding paths

or been corrupted. The periodic function disclosure messages that the AC sends synchronize the

current epoch ID and the oldest live epoch ID for which traffic summaries are needed for reporting.

Hence, a node s maintains the following data structures for each neighbor r for each epoch, as

Figure 7.6 also shows.

• The packet cache C
↔r
s temporarily stores hashes for packets in both S

→r
s and S

←r
s that are

seen in a live epoch (using a cryptographic hash function such as SHA-1). Each entry contains

the packet hash and a bit indicating if the packet belongs to S
→r
s or S

←r
s .

• The router stores the sum of packet departure timestamps t→r
s seen in S

→r
s and the sum of

packet arrival timestamps t←r
s seen in S

←r
s in a live epoch with millisecond precision.

• Finally, the router stores the total number of packets n→r
s seen in S

→r
s and n←r

s seen in S
←r
s

in a live epoch.
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Srs or Ssr?

Figure 7.6: Router per-neighbor state details.

Among these data structures, t←r
s , t→r

s , n←r
s , and n→r

s require small constant storage, around

8 or 4 bytes for each. C
↔r
s will be used for packet fingerprinting. The size of C

↔r
s depends only

on the epoch length L and link bandwidth, but not the number of flows/paths traversing node s.

As Section 7.8.1 shows, with an epoch length of 20 milliseconds and one-way network latency of 20

milliseconds, each router line-card requires only around 4MB of memory for an OC-192 link, which

is readily available today.

For simplicity’s sake, we use C
→r
s and C

←r
s to denote the packets cached for S

→r
s and S

←r
s by

node s, respectively.

7.4.2 Secure Function Disclosure

At the end of each epoch e, the AC discloses the sampling key K
e−⌈D

L
⌉

s and fingerprinting key

K
e−⌈D

L
⌉

f to all nodes in the network via a function disclosure message dAC , and requests the traffic

summaries for the oldest live epoch e − ⌈D
L
⌉. Obviously, dAC itself needs to be protected from

data-plane attacks (dropping, modification, fabrication, or delaying) by a malicious node during

end-of-epoch broadcasting. It might be tempting to let the AC use digital signatures to authenticate

dAC in order to address malicious modification and fabrication; however, frequently generating and

verifying the signatures on a per-epoch basis can be expensive (e.g., an epoch can be as short as 20

milliseconds and signature generation and verification time could be on the order of milliseconds).

Fortunately, the function disclosure message dAC is transmitted at the end of each epoch syn-

chronously among all the nodes. If a malicious node s drops dAC, the AC will fail to receive the

traffic summaries of certain neighbors of s, thus detecting N(s) as suspicious. For example in

Figure 7.7, if s drops dAC instead of forwarding it to its neighbor r, node r cannot fingerprint
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Figure 7.7: Possible attacks in the recording phase. A malicious node s may attempt to drop the
function disclosure message dAC, or manipulate the TTL value to cause packets to be dropped at a
remote place (node a in this example), thus framing a remote neighborhood (N(a) in this example).

the packets to generate traffic summaries, thus failing the consistency check of traffic summaries

in N(s). As we show in Section 7.5, the AC expects to receive traffic summaries within a short

amount of time after each epoch ends; delaying dAC more than that amount of time is effectively

equivalent to dropping dAC and causes the malicious node’s neighborhood to be detected. Thus,

the remaining problem is to prevent the modification and fabrication of dAC, which is equivalent

to authenticating dAC to all nodes in the network without the use of digital signatures. Section 7.7

further elaborates why the authentication of dAC is needed for security purposes.

In DynaFL, time in the network is loosely time-synchronized and divided into consecutive

epochs; the authentication of dAC is required only once per epoch. This setting is naturally aligned

with that of the TESLA broadcast authentication [77], which authenticates broadcast messages

(dAC in our case) using only Message Authentication Codes (MACs) with keys derived from a one-

way hash chain. As Figure 7.8 shows, the AC applies a one-way hash function H repeatedly on the

root key Kr to derive a set of epoch authentication keys, and uses key Ke to compute a MAC for

authenticating dAC in epoch e. The AC publishes K0 through the network so that nodes can verify

if any given epoch key is indeed derived from the genuine one-way hash chain. Then dAC in epoch e

includes (i) the current epoch ID e, the oldest live epoch ID j = e−⌈D
L
⌉ to be examined, sampling

and fingerprinting keys, a MAC computed with Ke for the current epoch, and (ii) the key Kj for

computing the MAC in a previous epoch j, by which nodes can verify the authenticity of dAC in
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... ...K0 K1 Kr−1 Kr

H(K1) H(K2) H(Kr−1) H(Kr)

Figure 7.8: One-way hash chain example.

epoch j (verification delayed by ⌈D
L
⌉ epochs). That is:

dAC =e||j||Kj
s ||K

j
f ||

MACKe(e||j||K
j
s ||K

j
f )||

Kj

(7.6)

where || denotes concatenation. Section 7.7 describes the reason for disclosing the key for epoch

j = e− ⌈D
L
⌉ instead of epoch e− 1.

Furthermore, DynaFL creates a spanning tree in the network rooted at the AC, along which

dAC is delivered to each node. Since DynaFL uses a pre-generated, static spanning tree for the

broadcast messages, there is no need for dynamic path support when protecting dAC.

7.4.3 Sampling and Fingerprinting

Given the disclosed Kj
s and Kj

f at the end of an epoch e, each node t first uses the sampling PRF

P with Kj
s , denoted by P

K
j
s
, to determine if the oldest live epoch j is selected. If so, node t then

uses the fingerprinting function F to map the cached packet hashes in each per-neighbor stream

into a sketch vector, i.e., F
K

j
f

(C→r
t ) or F

K
j
f

(C←r
t ), computed with the given Kj

f . Finally, node t

generates two traffic summaries T→r
t and T←r

t for a neighbor r:

• T→r
t for packet stream S

→r
t includes a fingerprint F

K
j
f

(C→r
t ), average packet departure time

t
→r
t =

t→r
t

n→r
t

, and the total number n→r
t of packets seen in S

→r
t in epoch j;

• T←r
t for packet stream S

←r
t includes a fingerprint F

K
j
f

(C←r
t ), average packet arrival time

t
←r
t =

t←r
t

n←r
t

, and the total number n←r
t of packets seen in S

←r
t in epoch j.

Figure 7.9 summarizes the fault localization-related packet processing inside a DynaFL router.

We detail P and F in the following.
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Figure 7.9: fault localization-related packet processing inside a DynaFL router.
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Implementing P. Specifically, P maps an epoch ID to a n-bit integer uniformly distributed in

[0, 2n − 1]. Given a sampling rate λ ∈ (0, 1), a node computes P
K

j
s

over the epoch ID j that is

being examined, and epoch j is selected iff:

(7.7) P
K

j
s
(j) < λ · 2n

In this way, on average a fraction λ of the epochs will be selected. Since nodes use P with the same

Kj
s for epoch sampling, in benign case, nodes will select the same set of epochs, thus ensuring the

consistency of the traffic summaries in a neighborhood.

Implementing F . We use the second-moment sketch computed with Kj
f as a case study to

implement F , and analyze the size of the sketch vector to achieve Property 1 with the (α, β, δ)-

accuracy. We assume 107 packets per second in the worst case for an OC-192 link with an epoch

length of L (seconds). Then, the number of packets η in a sampled epoch is η = L · 107. Using the

classical Sketch due to Alon et al. [11] for example, the storage requirement for the sketch is given

by:

(7.8) M × log2

√

2η ln(
200N

δ
)

where M >
12

ǫ2
1

3− 2ǫ
ln

1

δ

and ǫ =
β − α

β + α
.

(7.9)

In Section 7.8.1 we derive numeric values for the size of the sketch vector based on the epoch length

L.

Dealing with TTL attacks. Certain fields in the IP header, such as the TTL, checksum, and

some IP option fields, will change at each hop. Both sampling and fingerprinting in DynaFL need

to properly deal with these variant fields to avoid both false positives and false negatives. Take the

TTL field for instance hereinafter (though the arguments apply similarly to other variant fields).

On the one hand, if P and F are computed over the entire packets including the TTL field, even
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Rj=Tj || MAC(Tj ||Rk)

Rr=Tr|| MAC(Tr)
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Rj=Ti|| MAC(Ti||Rj||Rs||Rr)

Figure 7.10: Example of secure transmission of traffic summary reports. For brevity, we denote the
traffic summaries of a node i as Ti and omit the secret key for the MAC notation.

in the benign case the same packet stream will leave different traffic summaries (or precisely, the

sketch vectors) at ingress and egress nodes. On the other hand, if P and F are computed over

the entire packets excluding the TTL field, a malicious node can modify the TTL field at liberty

without affecting the traffic summaries. Figure 7.7 depicts an example TTL attack, where the

malicious node s lowers the TTL value to 2 in the packets and causes the packets to be dropped

at the 2-hop-away downstream node a, thus framing neighborhood N(a).

To address the TTL attacks, when computing P and F , each node r performs either of the

following:

• For a packet received from a neighbor, node r computes P and F over the entire packet

including the TTL field.

• For a packet sent to a neighbor, node r computes P and F over the packet, but with the TTL

field additionally decreased by 2 (equal to the TTL value at the 2-hop-away egress node in

N(r)).

In this way, node r in Figure 7.7 simply uses the TTL value as contained in the packets received

from s when computing F and P, since the ingress nodes in N(s) (nodes i and j) must have

computed F and P with an adjusted TTL value equal to that at node r.

The TTL value in a packet is also decremented by one for every second the packet is buffered

at a router. Holding a packet longer than one second at a router is treated as a packet delaying

attack and will be detected due to the use of the above construction.
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7.5 Reporting Traffic Summaries

If an epoch is selected, after fingerprinting, a node t generates two traffic summaries T→r
t and T←r

t

for each neighbor r, and sends them to the AC in a traffic summary report denoted by Rt. The

challenge in the recording phase is to protect the traffic summary reports from being corrupted.

In DynaFL, nodes form a static spanning tree rooted at the AC for sending the traffic summaries.

Given the spanning tree, the goal is to protect the traffic summary reports Rts from different nodes

destined to the AC. Although Rts are also subject to data-plane attacks, they are transmitted over

static and pre-generated paths in the spanning tree. Hence, dynamic traffic is no longer a concern,

thus substantially simplifying the problem. Specifically, DynaFL utilizes an Onion Authentication

approach to protect the transmission of dAC along each path in the spanning tree. In a nutshell,

within a short timer at the end of each epoch, each node t needs to send its traffic summary report

Rt to the AC, and Rt is authenticated with a MAC computed using a pairwise secret key shared

between node t and the AC. The traffic summary reports from different nodes are sent in an onion

fashion. For example in Figure 7.10, Rj includes the report Rk of node k. In this way, DynaFL

efficiently protects dAC without the use of expensive asymmetric cryptography. Section 7.7 gives a

more detailed security analysis of such an Onion Authentication approach.

7.6 Detection

The AC performs consistency checks for each neighborhood N(r) based on the received traffic sum-

maries. However, since an epoch may only have a small number of packets, detecting a suspicious

neighborhood based on the consistency checks for individual epochs can introduce a large error

rate. Take an extreme case for example: if in a certain epoch a neighborhood N(r) only transmits

a single packet and the packet was spontaneously lost, concluding that the packet loss rate is 100%

and N(r) is suspicious would be inaccurate.

To deal with this problem, we still perform the consistency checks and estimate the discrepancy

for individual epochs, but make the detection based on the aggregated discrepancies over a set of

E epochs (called accumulated epochs), so that the total number of packets over the E epochs is

more than a certain threshold N to give a high enough accuracy (e.g., > 99.9%) on the detection
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results. Section 7.8 studies the value of N . Therefore, the AC stores the traffic summaries for

each neighborhood and makes detection when the total number of packets N is reached. More

specifically, let n←y
x (e) and n→y

x (e) denote the n←y
x and n←y

x in the traffic summary for epoch e,

respectively; for a certain neighborhood N(r), whenever

(7.10) max{
∑

e

∑

i

n→r
i (e),

∑

e

∑

i

n←r
i (e)} > N

(where i ∈ N(r) and e iterates over all the accumulated epochs), indicating N is reached, the AC

performs the following checks to inspect if N(r) is suspicious:

1. Flow conservation. The AC first extracts n→r
i (e) and n←r

i (e) for each node i in N(r) for

each epoch e, and calculates the difference between the number of packets sent to r and the number

of packets received from r over all the E accumulated epochs. If the ratio of the difference to the

total number of packets in all the E accumulated epochs is larger than a threshold β, i.e.:

(7.11)
|
∑

e

∑

i n
→r
i (e)−

∑

e

∑

i n
←r
i (e)|

max{
∑

e

∑

i n
→r
i (e),

∑

e

∑

i n
←r
i (e)}

> β

then the AC detects N(r) as suspicious. The threshold β is set based on the administrator’s

expectation of the natural packet loss rate; e.g., in the simulations in Section 7.8 we set β to be

four times of the natural packet loss rate in a neighborhood.

2. Content conservation. The AC then extracts the sketches in the traffic summaries in N(r),

and estimates the discrepancy δf between the sketches for packets sent to r and the sketches for

packets received from r. The AC detects N(r) as malicious if δf is larger than a certain threshold,

i.e.,:

δf >
2αβ

α+ β
×max{

∑

e

∑

i

n→r
i (e),

∑

e

∑

i

n←r
i (e)}

where

δf = || ∪i∈N(r) FK
j
f

(C←r
i )− ∪i∈N(r)FK

j
f

(C→r
i )||22

(7.12)
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It has been proven [36] that the above threshold can satisfy the (α, β, δ)-accuracy defined in Sec-

tion 7.2.1.

3. Timing consistency. Finally, the AC extracts the difference between the average packet

departure time and arrival time, and concludes that N(r) is suspicious if the difference is larger

than the expected upper bound on the 2-hop link latency.

7.7 Security Analysis

We show that DynaFL is secure against all attacks that are possible in the misbehavior space given

our adversary model. By our definition, a malicious router can drop, modify, fabricate, and delay

packets. In addition, a malicious router can attack data packets, function disclosure messages dAC,

and reporting messages. We first show DynaFL’s security against a single malicious node and then

sketch DynaFL’s security against colluding nodes.

Security against corrupting the data packets. Dropping, modifying, and fabricating data

packets in a neighborhood N(m) will cause inconsistencies between sketches in N(m) as mentioned

earlier. Delaying data packets in N(m) will cause abnormal deviation between average packet

arrival/departure timestamps in N(m). If a malicious router changes the timestamps in data packets

embedded by the source nodes, it is equivalent to modifying packets and packets may be mapped

to different epochs, in which case such an attack will manifest itself by causing inconsistencies in

the sketches of a neighborhood containing the malicious router.

Security against corrupting dAC. As we mentioned earlier, if a malicious node m drops the

dAC, some nodes adjacent to m will fail to send the correct traffic summaries to the AC, thus causing

a neighborhood containing m to be detected. We note that the authentication of dAC is needed.

Otherwise, a malicious node can replace the sampling and fingerprinting keys with its own fake keys,

by which the malicious node can predict the output of other nodes’s sketches and perform packet

modification attacks. In addition, if the epoch IDs in dAC were not authenticated, a malicious node

can replace the oldest live epoch ID in dAC for which the traffic summaries are requested with the
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current epoch ID. In this way, inconsistencies of traffic summaries can be detected for some benign

neighborhood due to the packet transmission delay as Section 7.4.1 describes. With the (delayed)

authentication of dAC, any attempt to modify dAC will be detected (after ⌈D
L
⌉ epochs).

It is noteworthy that the dAC sent at the end of epoch e cannot simply disclose the MAC secret

key Ke−1 for the previous epoch e− 1. This is because at the time Ke−1 is disclosed, the dAC sent

at the end of epoch e− 1 may still have not reached certain nodes. Hence, a malicious node which

has already received Ke−1 might send Ke−1 to a downstream colluding node via an out-of-band

channel, so that the colluding node can break the authenticity of the dAC sent in epoch e−1. Hence,

at the end of an epoch e, we disclose the MAC key for epoch e − ⌈D
L
⌉ to ensure the dAC sent in

epoch e− ⌈D
L
⌉ has reached all the nodes in the network.

Security against corrupting the reporting messages. First, due to the use of the Onion

Authentication, a malicious node m cannot selectively drop the reporting messages of a remote

(non-adjacent) node r, to frame a neighborhood containing node r. Since all the accumulated

reporting messages are “combined” at each hop, m can only drop the reporting messages from its

immediate neighbors, which will manifest a neighborhood containing m as suspicious.

Security against colluding attacks. We illustrate DynaFL’s security against colluding attacks

via a toy example shown in Figure 7.11. We show that for a malicious node m which actually

corrupts packets, as long as one benign node exists in N(m), a neighborhood containing either m or

one of its colluding nodes will be detected. The key observation is that since the traffic summaries

are sent to the AC and the AC performs the detection, each node can only claim one traffic summary

per selected epoch. To simplify the analysis while still unveiling the intuition, we only consider the

number (but not the payload) of packets sent by each node, as shown in Figure 7.11. Suppose

nodes c and d are colluding, and node d drops 50 packets. As long as node e is benign in N(d), to

cover the misbehavior of d, the colluding node c has to send a traffic summary to the AC falsely

claiming it sent “50” packets to d (and thus received “50” packets from node b). However, this

claim will make the neighborhood N(b) suspicious since the benign node a will claim it sent 100

packets to b.
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Figure 7.11: Example of DynaFL’s security against colluding nodes. A number denotes the packet
count each node sends.

7.8 Performance Evaluation

In this section, we analyze the protocol overhead and study the detection efficiency of DynaFL via

measurements and simulations, with our implementation of the classic Sketch [11] in C++.

7.8.1 Storage Overhead

DynaFL incurs only per-neighbor state while existing secure path-based fault localization protocols

require per-source and per-path state. In this section, we quantify the per-neighbor storage overhead

of a DynaFL router r, which primarily includes the packet cache and the sketch for each neighbor

s.

Sketch size. We derive numeric values of the sketch size based on Equations 7.8 and 7.9, using

an example setting where the average packet size is 300 bytes and the link’s capacity is 10 Gbps

(an OC-192 link). Furthermore, we consider δ = 0.001 and β = 2α for the (α, β, δ)-accuracy, i.e.,

the false positive rate and false negative rate of the sketch-based detection are limited under 0.001.

Figure 7.12 plots the result, from which we can see that a sketch with fewer than 500 bytes can

already yield a desirable accuracy.

Cache size and per-neighbor storage overhead. We now study the cache size for temporarily

storing packet hashes in live epochs, which, together with the sketch size analyzed above, constitutes

the per-neighbor storage overhead of a DynaFL router. We denote the upper bound of one-way

network latency as D, epoch length as L, and the number of packets per second as η. Using 20-byte
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Figure 7.12: Sketch size for an OC-192 link with the average packet size of 300 bytes and δ = 0.001.

packet hashes, the cache size is given by:

(7.13) ⌈
D

L
+ 1⌉ × 20 · η · L

We omit the 1-bit indicator for each packet hash entry to indicate which packet stream the packet

belongs to (see Figure 7.6). Assuming the per-neighbor sketch size is 500 bytes, one-way latency

D = 20ms, and the average packet size is 300 bytes for an OC-192 link, we derive the per-neighbor

storage overhead of a DynaFL router with different epoch lengths shown in Figure 7.13. We can

observe that, with an epoch length of 20ms, only around 4MB is required per-neighbor. The

“humps” exist in the curve due to the use of the ceiling function in Equation 7.13.

7.8.2 Key Management Overhead

One distinct advantage DynaFL presents is that each router in DynaFL shares only one secret key

with the AC, whereas in path-based fault localization protocols it is necessary for each router to

share a secret key with each source node in the network in the worst case [21], which dramatically

complicates the key management and broadens the vulnerability surface. To quantify DynaFL’s
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Figure 7.13: Router per-neighbor for an OC-192 link with the average packet size of 300 bytes and
one-way network latency as 20ms.
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Figure 7.14: Key management overhead at each router. A router in DynaFL always requires just
one key shared with the AC (hence not visible in the figure).
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advantage over path-based fault localization protocols, we leverage the measured ISP topologies

from the Rocketfuel dataset [84] and the topology from Internet2 [8]. Figure 7.14 shows the maxi-

mum number of keys each router needs to manage in path-based fault localization protocols; and a

router in DynaFL always requires only one secret key shared with the AC (thus invisible in the fig-

ure). We can see that the number of keys a router needs to manage in path-based fault localization

protocols is 100 to 10000 times higher than that in DynaFL.

7.8.3 Bandwidth Overhead

We analyze the bandwidth consumption on each link by the reporting traffic summaries based on

the measured ISP topologies from the RocketFuel dataset [84]. Recall that the reporting messages

are transmitted along a spanning tree rooted at the AC. Hence, the bandwidth consumption by

the reporting messages on a link is determined by the number of children below that link and the

degrees of the children.

For each ISP topology, we first select a “central” node as the AC, which is the node in the

network that has the highest fraction of all shortest paths that pass through that node. Then, we

create a minimum spanning tree rooted at the central node (or the AC) for transmitting reporting

messages to the AC. We consider the epoch length L=20ms, a per-neighbor traffic summary as 500

bytes, and the epoch sampling rate is 1%. Hence, on average, each node only sends one reporting

packet in every two seconds. Figure 7.15 plots the results for ISPs with AS numbers 1221, 1239,

1755, 3257, 3967, and 6461. From the results, we can see that the fraction of bandwidth used for

reporting traffic summaries on a link is small for all topologies (e.g., between 0.002% and 0.012%

for an OC-192 link).

7.8.4 Detection Delay

As Section 7.6 states, the AC performs consistency checks and detects any anomalies only when

the total number of packets over multiple epochs is accumulated more than a certain threshold

N in order to give a high enough accuracy (e.g., >99.9%) on the detection results. Hence, the

number of packets N characterizes the detection delay of the fault localization protocol. We fully

implement the classic Sketch due to Alon et al. [11] in C++ with a four-wise hash function, and
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perform simulations to study N .

Since in DynaFL, neighborhoods are inspected by the AC independently, we also perform sim-

ulations for independent neighborhoods with different sizes. Since we showed DynaFL’s security

against colluding attacks in Section 7.7, we emulate a single malicious node in our simulations.

Our setting is as follows. The natural packet loss rate in a neighborhood is 0.001 and the detection

thresholds for both flow conservation and content conservation are β = 2α = 0.004. Figure 7.16

depicts the false positive rates in benign cases where no malicious routers exist in the neighborhood.

We can see that with N > 5000 packets, the false positive rate is under 1%.

Figure 7.17 shows the false negative rates with a malicious router which only drops packets with

a probability of 0.005. Figure 7.18 plots the false negative rates with a malicious router which both

drops and modifies packets with a probability of 0.005, respectively. We can see that the sketch-

based approach is effective in detecting packet modification attacks, since by modifying packets the

malicious router is detected faster in Figure 7.18 than in Figure 7.17.

7.9 Summary

After identifying the fundamental limitations of previous path-based fault localization protocols, we

explore a neighborhood-based FL approach. We present DynaFL, which utilizes delayed function

disclosure, a novel technique that enables secure yet efficient checking of packet content conserva-

tion.

While existing path-based FL protocols aim to identify a specific faulty link (if any), DynaFL

localizes fault to a coarser-grained 1-hop neighborhood, to achieve four distinct advantages. First,

DynaFL does not require any minimum duration time of paths or flows in order to detect data-

plane faults as path-based FL protocols do. Thus, DynaFL can fully cope with short-lived flows

which are popularly seen in modern networks. Second, in DynaFL, a source node does not need

to know the exact outgoing path while path-based FL protocols require so. Hence, DynaFL can

support agile (e.g., packet-level) load balancing such as VL2 routing [38] for datacenter networks.

Third, a DynaFL router only needs around 4MB per-neighbor state based on our classic Sketch

implementation, while a router in a path-based FL protocol requires per-path state. Finally, a
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DynaFL router only maintains a single secret key shared with the AC, while a router in a path-

based FL protocol needs to manage 100 to 10000 secret keys in measured ISP topologies.

We anticipate that our work can spark future endeavors in designing practical network FL

protocols for modern networks such as ISP, enterprise, and datacenter networks.
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Figure 7.15: CDF of per-link bandwidth consumption for the reporting messages in DynaFL.
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Figure 7.16: False positive rates with no malicious activity in a neighborhood with different numbers
of nodes. The natural packet loss rate in a neighborhood is 0.001 and the detection thresholds for
both flow conservation and content conservation are Td = β = 2α = 0.004.
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Figure 7.17: False negative rates in a malicious neighborhood with five nodes, where the malicious
node only drops packets. The natural packet loss rate in a neighborhood is 0.001, the detection
thresholds for both flow conservation and content conservation are Td = β = 2α = 0.004, and the
malicious packet dropping rate is 0.005.
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Figure 7.18: False negative rates in a malicious neighborhood with five nodes, where the malicious
node both drops packets and modifies packets. The natural packet loss rate in a neighborhood is
0.001, the detection thresholds for both flow conservation and content conservation are Td = β =
2α = 0.004, the malicious packet dropping rate is 0.005, and the malicious packet modification rate
is 0.005.



Chapter 8

Related Work

In this chapter, we summarize the related work and discuss their limitations. We first discuss

the deficiencies of existing fault detection and fault localization protocols, and then briefly discuss

existing work utlizing trusted computing for solving other network security problems.

8.1 Detecting the Presence of Data-Plane Attacks

A related line of research aims to only detect the presence of data-plane attacks, without providing

the ability to localize the attacks [18, 36, 68].

For example, the protocol due to McCune et al. [68] aims to detect the presence of “Denial-

of-Message” attacks in sensor networks, where a malicious sensor node drops broadcast messages

sent by a base station. The base station solicits authenticated acknowledgments from a randomly

selected subset of sensor nodes unpredictable to the attacker. Hence, the failure to receive au-

thenticated acknowledgments from certain selected sensor nodes indicates the presence of packet

dropping attacks. However, the protocol does not provide a mechanism to localize malicious sensor

nodes that drop the messages.

Both Stealth probing [18] and PQM [36] employ secure probing techniques to detect data-

plane attacks and monitor the forwarding quality for an entire end-to-end paths. These end-to-end

path monitoring schemes are commonly used in conjunction with secure multi-path routing which

aims to mitigate data-plane attacks. For example, both ACR [90] and Sprout [33] rely on end-to-
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end monitoring to evaluate path quality and to avoid low-quality paths by switching to fail-over

paths. However, being too lenient and oblivious to the faulty elements, such monitor-and-switch

methods suffer from long path exploration delays, because without localizing the faulty elements,

further explored paths may still contain the same faulty elements, thus resulting in exponential

path exploration complexity in the worst case.

Realizing the importance of localizing data-plane attacks, researchers have recently proposed

several approaches for network fault localization. As we show below, the known secure fault local-

ization protocols are all path-based and suffer from either security vulnerabilities or high protocol

overhead.

8.2 Vulnerabilities of Existing Fault Localization Schemes

Perlman first described the idea of acknowledgment-based approaches to detect data-plane adver-

saries and achieve robust routing in the presence of Byzantine failures [76]. However, details of how

to achieve secure fault localization are not presented. We summarize the major security pitfalls of

recent fault localization protocols as follows.

Evading and framing attacks. In ODSBR [19] and Secure Traceroute [74], the source node

monitors the end-to-end loss rate of the path; and only when the observed loss rate exceeds a certain

threshold, the source starts probing specific nodes in the path soliciting acknowledgments for the

subsequent packets the source sends. However, a malicious node can safely drop packets when the

probing is not activated, while behaving “normally” when probing is invoked. Hence, the source

can never catch the malicious nodes nor bound the malicious dropping rate, unless the probing

is always activated which incurs high overhead. In addition, ODSBR employs binary search in

the probing phase for dropping localization, until the algorithm converges to a specific link. Since

the binary search algorithm proceeds on each packet lost (possibly due to natural loss), in the

presence of natural packet loss the algorithm either does not converge or incurs high false positives

by framing benign links.
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Packet modification attacks. A considerable number of fault localization protocols require

each router to maintain certain traffic summaries for the received and sent packets. By periodically

comparing the local traffic summaries with other routers’ and checking flow conservation, such

fault localization protocols can identify faulty links based on flow conservation. However, due

to the challenges of efficiently authenticating packets and the traffic summaries, many of such

fault localization protocols fail to authenticate packets using the traffic summaries, thus vulnerable

to sophisticated packet modification attacks. For example, WATCHERS [43], AudIt [14] and

Fatih [71] implement the traffic summaries using either counters or Bloom Filters [24] with no secret

keys, thus remaining vulnerable to packet modification attacks. The recently proposed Network

Confessional [15] also fails to prevent packet modification attacks due to the lack of efficient packet

authentication.

Collusion attacks. Liu et al. propose enabling two-hop-away routers in the path to monitor each

other [58] by using 2-hop acknowledgment packets. However, such a 2-hop-based detection scheme

is vulnerable to colluding neighboring routers. Similarly, both Watchdog [66] and Catch [65] can

identify and isolate malicious routers for wireless ad hoc networks, where a sender S verifies if

the next-hop node fi indeed forwards S’s packets by promiscuously listening to fi’s transmission.

Both Watchdog and Catch are vulnerable to collusion attacks, where a malicious node fm drops

the packets of a remote sender S (which is out of the promiscuous listening range of fm) while the

colluding neighbors in the promiscuous listening range of fm intentionally do not report the packet

dropping behavior of fm.

8.3 Applicability and Practicality

Among the known secure proposals, the protocol due to Avramopoulos et al. [17] incurs high

computational and communication overhead, because it requires acknowledgments from all routers

in the path, and requires multiple digital signature generation and verification operations for each

data packet.

Recently, Barak et al. proposed a set of fault localization protocols for the Internet [21]. How-
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ever, their statistical FL protocol is mainly optimized to reduce communication overhead; and

consequently achieves a rather poor best case detection rate on the order of 106 packets.

A recent proposal due to Wang et al. [89] for forwarding fault localization in sensor networks

requires a special tree-like routing infrastructure where the communications take place only between

a sensor node and the same trusted base station.

8.4 Trusted Computing for Network Security

Many efforts in trusted computing focus on efficient implementation of remote attestation, sealed

storage, and secure boot for bootstrapping trust on commodity computers [75, 69]. A few proposals

also consider utilizing trusted computing to address network security plagues [82, 40, 80]. However,

BIND [82] focuses on routing security and cannot secure against raw user input and configurations.

Not-a-Bot [40] leverages trusted computing and TPM to mitigate DDoS attacks but not to secure

the network layer. Recently, Saroiu et al. [80] propose the design of TPM-based “trusted sensors”

via remote attestation to secure a broad range of mobile applications.
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Conclusion

The rising demand for high-quality online services requires reliable packet delivery at the network

layer. Data-plane fault localization is recognized as a promising means to this end, since it enables

a source node to localize faulty links, find a fault-free path, and enforce contractual obligations

among network providers. This dissertation designs, analyzes, implements, and evaluates secure

and practical fault localization protocols. Instead of aiming to detect any single forwarding failure,

we demonstrate that fault localization protocols can effectively limit the negative influence an

adversary can inflict at the data plane, with a provable lower bound on the forwarding correctness.

Based on the philosophy of limiting the adversarial activities, we develop a suite of probabilistic

algorithms and leverage emerging hardware virtualization technologies, by which we dramatically

reduce the protocol overhead without sacrificing security.

While we compare the efficiency of the proposed protocols early in Chapter 1 (Table 1.1),

Table 9.1 further compares the effectiveness of fault localization between the proposed protocols.

Clearly, PAAI incurs longer detection delay than the other protocols due to its use of packet

sampling, where the fate of unsampled packets (e.g., > 90% packets) cannot contribute to the

monitoring process. Hence, PAAI requires more packet transmissions to achieve accurate fault

localization. However, PAAI does not require any changes to the existing packet headers; thus it

is most applicable to networks where the packet header cannot be changed.

ShortMAC represents a more efficient path-based protocol than PAAI, by acknowledging a set
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of packets using counters in a single ACK. In addition, ShortMAC does not require loose time

synchronization as PAAI and DynaFL do. By utilizing the efficient k-bit MAC authentication,

ShortMAC dramatically reduces the communication overhead, and enables the use of state-efficient

counters. As a path-based protocol, ShortMAC localizes data-plane faults to a specific link without

the use of special hardware support (as TrueNet does), which cannot be achieved by DynaFL.

Protocol Detection Delay
Forwarding

Precision Global Sharing?
Correctness

PAAI 3.5× 104 pkts 95% link no

ShortMAC 2× 103 pkts 95% link no

TrueNet 2× 103 pkts 95%
link

yes
(software attack only)

DynaFL 5× 104 pkts 95% 1-hop neighborhood yes

Table 9.1: Comparison of the fault localization effectiveness between the proposed protocols. The
numeric values for the detection delay and guaranteed forwarding correctness are derived from
simulations with the path length d = 5, allowed upper bound on false positive and negative rates
δ = 0.01, natural loss rate ρ = 0.005, and per-link detection threshold Tdr = 0.01.

However, 1-hop-based fault localization protocols have several fundamental advantages over

path-based protocols. First, in both TrueNet and DynaFL, routers only maintain per-neighbor

state, while as path-based protocols, both PAAI and ShortMAC require storing per-path state at

routers. In addition, 1-hop-based fault localization protocols can support dynamic routing paths

and traffic patterns. Finally, TrueNet enables secure global sharing of detection results, due to the

use of trusted computing, and DynaFL achieves this property due to the involvement of a trusted

centralized controller. However, these benefits of 1-hop-based protocols come at a cost. Specifically,

TrueNet requires the use of trusted computing, thus potentially relying on special hardware support

(such as TPM chips) and being vulnerable to hardware-based data-plane attacks. DynaFL does

not rely on trusted computing, but localizes fault to a specific 1-hop neighborhood instead of a

specific link.

Finally, we discuss the applicability of these protocols to different types of real networks, namely,

1) wireless sensor networks or mesh networks (or wireless multi-hop networks in general), 2) ISP

networks, 3) enterprise and datacenter networks, and 4) the Internet.



151

Wireless multi-hop networks. First, since wireless multi-hop networks tend to have lower

bandwidth resources than wired networks (and particularly, packet transmission is costly in sensor

networks), DynaFL may be inapplicable due to its relatively high communication overhead for

reporting the traffic summaries to the AC. In addition, since nodes in a wireless multi-hop network

may be deployed at publically accessible locations (such as sensor networks), these nodes may be

subject to physical compromise in which case the (physical) security of the trusted computing

primitives required by TrueNet may no longer hold. Both ShortMAC and PAAI-1 can deal with

physical compromise of nodes and are bandwidth-efficient. ShortMAC requires forwarding nodes

to maintain per-path monitoring state, while the router state of PAAI-1 is bounded by the link

bandwidth. Hence, to further decide whether ShortMAC or PAAI-1 is more state-efficient, a

network administrator needs to take as inputs the network size, path distribution, and link capacity

to calculate and compare the router storage cost for each protocol.

ISP networks. ISP networks are generally well managed and routers are physically protected.

Hence, such a network can satisfy the security requirements of trusted computing (in other words,

most attacks are through remote software exploits) and enjoy the high efficiency and small router

state of TrueNet. In contrast, both PAAI and ShortMAC require per-sender key storage and path

monitoring state, which may not scale in a large ISP network. Though DynaFL provides small

router state and constant key storage, it only localizes data-plane faults to a 1-hop neighborhood,

which requires further investigation within the suspicious neighborhood (thus incurring additional

overhead).

Enterprise and datacenter networks. As already mentioned in DynaFL, modern enterprise

and datacenter networks may employ fine-grained load balancing which results in both dynamic

flows and paths. DynaFL is the only protocol among the proposed ones that does not require path-

knowledge or path stability, and hence is most applicable to enterprise and datacenter networks.

The Internet. When performing fault localization at the scale of the Internet, we treat each

Autonomous System (AS) as a single “node”. Establishing “trust of code” via trusted computing

across administrative domains would be troublesome; in addition, each AS physically controls its
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own routers and thus can compromise the “trust” hardware to subvert the trusted computing

primitives. Hence, TrueNet would be inapplicable to the Internet setting. In addition, DynaFL

requires a centralized controller to manage all the nodes, which may be impractical either. PAAI

requires time synchronization among different ASes, which may incur additional complexity and

overhead at the scale of the Internet. Finally, ShortMAC can be deployed in the Internet, while the

shared secret keys between ASes can be established via existing protocols such as Passport [60].

We anticipate that this dissertation demonstrates the possibility of achieving guaranteed for-

warding correctness via secure and efficient fault localization. We hope the proposed fault local-

ization protocols and probabilistic algorithms can serve as building blocks for constructing other

secure network protocols such as secure routing and Denial-of-Service (DoS) defenses. In addition,

we intend for TrueNet to be used as a case study to spark future research on leveraging trusted

computing to solve other network security problems. As future work, we plan to derive theoretical

performance bounds for fault localization protocols with a distribution of natural packet loss rate

other than the uniform distribution. We plan to further investigate the incremental deployment

and real deployment issues of fault localization protocols.
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Appendix A

Proofs for PAAI

A.1 Proof of Theorem 7

In the following, we analyze the full-ack and PAAI-1 protocols together, and PAAI-2 separately.

We prove for the general case where the adversary controls z malicious links in a forwarding path,

and an upper bound of α in Definition 5 can be derived by setting z = 1.

Full-ack and PAAI-1. Since the onion report used in the full-ack and PAAI-1 schemes can be

used to locate a specific link for each lost packet, under converged condition each malicious link

can at most drop Tdr fraction of packets without being detected. This in turn implies our results

in Theorem 7 for the full-ack and PAAI-1 schemes.

PAAI-2. First note that the score difference ∆i = |si+1 − si| is given by

(A.1) ∆i = ηi+1 · {1− [
i

∏

y=0

(1− ρ∗y)]
3},

where ηi+1 is the number of times that fi+1 is selected, and ρ∗i is the average drop rate of link

li. Based on the values of ∆i and ηi known to S, S can compute the average drop rate ρ∗i by (let

C =
∏k−1

y=0(1− ρ
∗
y)

3):

(A.2) ρ∗k =











1− (1− ∆0

η1
)

1

3 , k = 0

ρ∗k = 1− [ 1
C

(1− ∆k

ηk+1
)]

1

3 , k ≥ 1.
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Now we establish an end-to-end drop rate threshold ψth. We must ensure that the actual end-

to-end drop rate exceeds ψth only when at least one malicious link drops more than Tdr percentage

of packets (where Tdr is the per-link drop rate threshold). Thus in the worst case (with the most

natural packet drop loss, i.e., using Tdr as the per-link drop rate), we can compute

(A.3) ψth = 1− (1− Tdr)
2d.

If each link li has a drop rate ρ∗i < Tdr, the end-to-end drop rate ψd is given by:

(A.4) ψd = 1− [
d−1
∏

i=0

(1− ρ∗i )]
2 < 1− (1− Tdr)

2d ⇒ ψd < ψth.

Thus when ψd > ψth, there must be at least one malicious link. Then S derives the individual drop

rate ρ∗i of each link li by using Equation A.2. By comparing each ρ∗i with Tdr, S can identify the

malicious links. Note that in the converged condition, there is no false negative, while the false

positive is given by Theorem 10.

Now we compute the maximum end-to-end drop rate that an adversary can cause without being

detected, i.e., without causing ψd > ψth. Suppose there are z malicious links with the drop rate

ρ∗M1
, . . . , ρ∗Mz

> Tdr. Given the fixed threshold ψth, when the malicious links can cause maximum

drop rate with ψd < ψth, we have:

(A.5) 1− (1− ρ)2(d−z) · [
z

∏

k=1

(1− ρ∗Mk
)]2 = 1− (1− Tdr)

2d.

Therefore, z malicious links can drop at most

(A.6) 1− [
z

∏

k=1

(1− ρ∗Mk
)]2 = 1−

(1− Tdr)
2d

(1− ρ)2(d−z)
.

percentage of traffic without being detected.

A.2 Proof of Corollary 8

Suppose that a malicious link lMk
(k = 1, 2, . . . , z) drops data, probe and ack packets at different

rates, denoted by µMk
, νMk

and ωMk
respectively. Given the fixed threshold ψth, the malicious
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links can cause the maximum drop rate when ψd < ψth, yielding:

(A.7) 1− (1− ρ)2(d−z) ·
z

∏

i=1

(1− µMi
)(1− νMi

)(1− ωMi
) < ψth.

Therefore, the adversary can drop at most

(A.8) 1−
z

∏

i=1

(1− µMi
)(1− νMi

)(1− ωMi
) = 1−

(1− Tdr)
2d

(1− ρ)2(d−z)
.

fraction of packets without being detected. This yields the same result as Theorem 7.

A.3 Proof of Corollary 9

The results are straightforward for full-ack and PAAI-1. For PAAI-2, leveraging (1− x)n = 1− nx

when x → 0 and neglecting the second order ρ2 term, we can transform the formula of ζ in

Theorem 7 as:

(A.9) ζ
.
= 2dǫ+ ρ ·

(

4d2ǫ+ z(2− 4dǫ)
)

.

This proves that ζ increases proportionally to ρ. Next, we show that the optimal strategy of the

adversary (to drop the maximum traffic with z compromised links) is to deploy only one malicious

link for one path. We give a sketch of the proof by showing two extreme cases to illustrate the

intuition:

In one extreme case where the adversary deploys all z compromised links on one path, the

adversary can drop at most:

(A.10) ζ1 = 2dǫ+ ρ ·
(

4d2ǫ+ z(2− 4dǫ)
)

.

fraction of packets as calculated above. In the other extreme case, where the adversary deploys

one compromised link for one path (thus z paths contain a comprised link), the adversary can drop

at most:

(A.11) ζ2 = z

(

2dǫ+ ρ ·
(

4d2ǫ+ 1 · (2− 4dǫ)
)

)
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fraction packets. Obviously we have

(A.12) ζ1 ≤ ζ2 ≤ z · ζ1.

A.4 Proof of Theorem 10

In the following proof, we first study how many packet transmissions are required to estimate the

drop rate of a single link li within a certain accuracy interval. Suppose that the true value of drop

rate of li is ρ
′

i, and the estimated drop rate of li is ρ∗i . We compute the number of packets needed

to achieve a (ǫρ∗i , δ)-accuracy for ρ∗i :

(A.13) Pr(|ρ∗i − ρ
′

i| > ǫρ∗i ) < δ,

i.e., with probability 1− δ the estimated ρ∗i is within

(A.14) (ρ
′

i − ǫρ∗ , ρ
′

i + ǫρ∗).

Then we compute the total number of packets needed to achieve a (ǫρ∗i , δ)-accuracy for every link’s

ρ∗i . In the following we analyze the full-ack scheme and the PAAI protocols in turn.

Full-ack. We first study a given link li. Let ρ∗i be the estimated drop rate of link li, and pi

be the observed conditional probability that link li correctly forwards both a data packet and the

returning ack given that a data packet reaches the upstream end of li, i.e., node fi in Figure 2.1.

Thus we have:

(A.15) pi = (1− ρ∗i )
2.

We define each time a data packet reaches node fi as a random trial of li (or trial for li, in

short). Then using Maximum Likelihood Estimation of p∗i and Hoeffding’s inequality, we have:

(A.16) Pr(|pi − p
∗
i | > ǫpi

) < 2e−2Niǫ
2
pi ⇒ Ni =

ln(2
δ
)

2ǫ2pi

.

Note that we are not interested in ǫpi
, but ǫρ∗i instead. However, ρ∗i cannot be directly estimated,
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but must be derived from Equation A.15, i.e.:

(A.17) ρ∗i = 1− p
1

2

i .

Given the error ǫpi
of pi, we can further derive the error ǫρ∗i of ρ∗i using the Uncertainty Propa-

gation Rule:

(A.18) ǫρ∗i = |
∂ρ∗i
∂pi

ǫpi
| =

1

2
p
− 1

2

i · ǫpi
⇒ ǫpi

= 2ǫρ∗i · p
1

2

i .

Combining Equations A.15, B.13 and A.18, and given ǫρ∗i ≤ ǫ we have:

(A.19) Ni =
ln(2

δ
)

2
(

2ǫρ∗i · p
1

2

i

)

=
ln(2

δ
)

8ǫ2ρ∗i
· (1− ρ)2

≥
ln(2

δ
)

8ǫ2 · (1− ρ)2
.

Now we compute the number of packets needed to give an estimate with (ǫ, δ)-accuracy for

every link in a given path. When each packet transmitted by the source can reach node fd−1, it

provides a trial for every link li. Therefore, transmitting Ni packets to fd−1 also suffices to give

other links enough trials, which requires

(A.20) Nd−1
1

(1− Tdr)d
=

ln(2
δ
)

8ǫ2 · (1− ρ)2+d

total packets transmitted from the source.

PAAI protocols The result for PAAI-1 is straightforward, therefore we now focus on PAAI-2.

Let ρ∗k be the estimated drop rate of link lk. Let the event that node fk+1 is selected be a random

trial for lk (or trial for lk for short). Let pk be the observed conditional probability that node fk+1

fails to ack when fk+1 is selected, and p∗k be the true value of pk. Similar to the proof of full-ack

scheme above, using Hoeffding’s inequality we can have:

(A.21) Pr(|pk − p
∗
k| > ǫpk

) < 2e−2Nkǫ2pk ⇒ Nk =
ln(2

δ
)

2ǫ2pk

.

Again, since we are not interested in ǫpk
, but instead ǫρ∗

k
, we derive ǫρ∗

k
from ǫpk

in the following.

Since pk = ∆k

ηk+1
, leveraging Equation A.2 and simplifying it using (1−x)n = 1−nx when x→ 0
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and neglecting high order (≥ 2) terms of x, we can have:

(A.22) ρ∗k =
1

3
pk −

k−1
∑

y=0

ρ∗y.

Using the Uncertainty Propagation Rule further yields:

(A.23) ǫ2ρ∗
k

=
k−1
∑

y=0

(∂ρ∗k
∂ρ∗y
· ǫρ∗y

)2
+

(∂ρ∗k
∂pk

· ǫpk

)2
=

k−1
∑

y=0

ǫ2ρ∗y +
1

9
ǫ2pk
.

Solving the above recursion and leveraging Equation A.21, we further have:

(A.24) N
.
= 2d ln(2

δ
)

18ǫ2
.

Now we compute the total number of packets needed to give a (ǫ, δ)-accuracy estimate for every

link’s drop rate in a given path. If we abstract a random trial for link lk as coupon k, then a path

with length D has D different coupons. The problem is to compute the expected wait time (number

of trials) to gather N copies for each coupon k. When N = 1 the problem reduces to the classic

Coupon Collector problem, which has an expected wait time O(d · log(d)). With N 6= 1, the wait

time has a simple upper bound:

(A.25) O(N · d · log(d)) = O(2d ln(2
δ
)

18ǫ2
· d · log(d)).

This proves the theorem.

A.5 Proof of Corollary 11

Since the proof of this corollary is straightforward, we only give a proof sketch here. Given that the

natural loss rate ρ << 1 in practice, we can approximate (1− ρ)2+d ≈ 1 for calculating N1 and N2

in Theorem 10. We can then study the influence of each parameter by taking a partial derivative

on each parameter from N1 and N2.



Appendix B

Proofs for ShortMAC

B.1 Proof of Lemma 13

Recall from Section 5.3 that in ShortMAC, the source finds the first Cbad
i such that Cbad

i > Tin, and

identifies link li as malicious. In this proof, we first derive the upper bound β of malicious packet

injection (which is based on Tin) according to the upper bound δ of false negative rate. Then we

calculate the injection threshold Tin given the false positive upper bound δ.

With k-bit MACs, when fi−1 receives a fake packet, the probability that Cbad
i−1 will be increased

is q = 2k−1
2k , since the adversary can only randomly generate a k-bit string for the fake packet

without knowledge of the secret keys of other (benign) routers. The probability that Cbad
i will be

increased is q(1− q).

Malicious Injection Bound. WLOG, suppose fm is a malicious router and fm+1 is benign

(there can be other malicious routers between the source and fm). Suppose the malicious routers

between the source and fm (including fm) inject y packets on link lm+1. Then whether lm+1 will

be detected depends on the value of Cbad
m+1, and the false negative rate Pfn is given by:

Pfn = P(Cbad
m+1 < Tin)

= P
(

(q − ǫ)y < Tin

)

≤ 2e
−2y

(

q−
Tin

y

)2

(Hoeffding’s inequality),

(B.1)
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where ǫ is the deviation and 0 ≤ ǫ ≤ q. To achieve the desired upper bound Pfn ≤ δ, we set the

threshold β such that

(B.2) 2e
−2β(q−

Tin
β

)2
= δ.

Solving for β gives:

(B.3) β =
Tin

q
+

√

(

ln 2
δ

)2
+ 8qTin ln 2

δ
+ ln 2

δ

4q2
.

(B.3) implies that if the adversary injects more than β packets on a single link lm+1, C
bad
m+1 will

exceed Tin and lm+1 will be detected with a high probability ≥ 1− δ (or a false negative rate lower

than δ).

Injection Detection Threshold. WLOG, suppose fm is a malicious router and fm+1 is benign

(there can be other malicious routers between the source and fm). Suppose the malicious routers

between the source and fm (including fm) inject y packets on link lm+1. False positives occur when

Cbad
m+1 < Tin but Cbad

i ≥ Tin (where i ≥ m+ 2). (WLOG, suppose fi−1 and fi are honest.) Hence,

a benign link li is falsely accused, and the false positive rate Pfp is:

Pfp :=
d

∑

i=m+2

P(Cbad
m+1 < Tin, C

bad
i ≥ Tin|li benign)

≤ d · P(Cbad
m+1 < Cbad

m+2).

(B.4)

The actual Cbad
m+1 and Cbad

m+2 values can be represented by:

Cbad
m+1 = (q − ǫ1) · y

Cbad
m+2 =

(

q(1− q) + ǫ2
)

· y.
(B.5)

If we can bound

(B.6) ǫ1 = ǫ2 = ǫ ≤
p2

2
,
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then we can guarantee that Cbad
m+1 > Cbad

m+2. Therefore, we have:

Pfp ≤ 1− P(ǫ ≤
q2

2
)

= P(ǫ >
q2

2
)

≤ 2e−2y( q2

2
)2 .

(B.7)

Note that in (B.7), we leverage Hoeffding’s inequality and the fact y ≥ Tin in the false positive

cases.

To achieve the desired upper bound Pfp ≤ δ, we set the threshold Tin such that

(B.8) 2e−2Tin( q2

2
)2 = δ.

Solving for Tin gives

(B.9) Tin =
2 ln 2d

δ

q4
.

B.2 Proof of Lemma 14

Drop Detection Threshold and Detection Space. False positives arise when the observed

drop rate of a benign link li, denoted by ρ∗i , exceeds the drop detection threshold Tdr. To bound

the total false positive rate below δ, it is sufficient to ensure that each ρ∗i may exceed Tdr with

a probability δi = δ
d

(since we need to ensure the overall false positive rate
∑

i δi ≤ δ), i.e.,

P(ρ∗i > Tdr) <
δ
d
, which is equivalent to:

(B.10) P(ρ∗i − ρ > Tdr − ρ) <
δ

d
.

By using Hoeffding’s inequality, we have:

P

(

ρ∗i − ρ > Tdr − ρ

)

< 2e−2C
good
i−1

(Tdr−ρ)2

⇒ Cgood
i−1 ≥

ln(2d
δ

)

2(Tdr − ρ)2
.

(B.11)
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Recall that the check-dropping procedure will detect the malicious link with excessive drop rate

closest to the source, denoted by lm. So we need to guarantee Cgood
i ≥

ln( 2d
δ

)

2(Tdr−ρ)2
for any i < m.

Since we also have

(B.12) Cgood
i ≥ N(1− Tdr)

i for i < m,

we get:

(B.13) N =
ln(2d

δ
)

2(Tdr − ρ)2(1− Tdr)d
.

Analogously, we can also calculate the false negative rate, which yields the same result.

Malicious Dropping Bound. Suppose a malicious node fm closest to the source receives Crecv
m

data packets, but claims that it receives Cgood
m data packets, and drops x fraction of the received

Cgood
m data packets on lm+1. We first have the following facts:

Crecv
m ≤ Cgood

m−1

Cgood
m+1 = (1− x)Crecv

m + β.
(B.14)

To make neither of its incident links undetected, fm must manage to satisfy:

Cgood
m

Cgood
m−1

≥ 1− Tdr

Cgood
m+1

Cgood
m

≥ 1− Tdr,

(B.15)

which yields

Cgood
m−1 ≥ (1− Tdr)

m−1N

≥ (1− Tdr)
dN.

(B.16)

Solving (B.14), (B.15) and (B.16), we have

x ≤ 1− (1− Tdr)
2 +

β

N(1− Tdr)d

= α.

(B.17)
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B.3 Proof of Theorem 15

(α, β)δ−Statistical Security can directly follow Lemma 13 and Lemma 14. In the following, we will

prove (Ω, θ)−Guaranteed Forwarding Correctness.

Given N and δ, we can set the drop detection threshold Tdr from Lemma 14 and the injection

bound β from Lemma 13. Let ηfake denote the fake data packets the destination has received but

not detected yet, and ηleg denote the legitimate data packets the destination has received out of N

data packets from the source. Then we have:

θ =
ηleg

N

=
Cgood

d+1 − η
fake

N
.

(B.18)

When no fault is detected in the identify stage, it satisfies:

Cgood
d+1 ≥ (1− Tdr)

dN

ηfake ≤ β.
(B.19)

By (B.18) and (B.19), we have

(B.20) θ = (1− Tdr)
d −

β

N
.

Finally, we can integrate ShortMAC with routing as follows. The control plane first provides

a routing path p for the source S, and then avoids faulty links using feedback (fault localization

results) from the data plane. In this way, ShortMAC enables the source to identify the malicious

links that reside in previously explored paths. In a network with Ω malicious links, the source can

bypass at least one of the malicious links after each epoch until a working path is found, resulting

in an exploration of at most Ω epochs to find a working path.
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Appendix C

Proof for DynaFL

C.1 Proof of Property 2 for Sketch

A sketch function F over a set of elements S = {p1, p2, . . . , pn} can be implemented in a “streaming”

mode using a hash function h [36], where:

(C.1) h(pi)→ ~vi

and ~vi denotes a vector. More specifically:

(C.2) F(S) = F({p1, p2, . . . , pn}) = h(p1) + h(p2) + . . .+ h(pn)

Hence, given two packet streams S = {p1, p2, . . . , pn} and S
′

= {p
′

1, p
′

2, . . . , p
′

n′}, we have:

F(S ∪ S
′

) = F({p1, . . . , pn, p
′

1, . . . , p
′

n′})

= h(p1) + . . .+ h(pn) + h(p
′

1) + . . .+ h(p
′

n′)
(C.3)

and:

F(S) + F(S
′

) = F({p1, . . . , pn}) + F({p
′

1, . . . , p
′

n′})

= h(p1) + . . .+ h(pn) + h(p
′

1) + . . .+ h(p
′

n′)
(C.4)

From Equations C.3 and C.4 we can see that: when F(S) ∪ F(S
′

) is defined as F(S) + F(S
′

),

we have F(S ∪ S
′

) = F(S) ∪ F(S
′

), thus proving Property 2 for Sketch.
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