
Towards a More Principled Compiler:
Register Allocation and Instruction Selection

Revisited
David Ryan Koes
CMU-CS-09-157

October 2009

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Seth Copen Goldstein, Chair

Peter Lee
Anupam Gupta

Michael D. Smith, Harvard University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2009 David Ryan Koes

This research was sponsored by the National Science Foundation under grant numbers CCF-0702640, CCR-0205523,
EIA-0220214, and IIS-0117658; and Hewlett Packard under grant number 1010162.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Compilers, Register Allocation, Instruction Selection, Backend Optimization

For Mary, Andrew, and Alex
But especially for Mary

iv

Abstract
Backend optimizations are a critical part of an optimizing compiler. This thesis

develops a principled approach for understanding, evaluating, and solving backend
optimization problems. Our principled approach is to develop a comprehensive and
expressive model of the backend optimization problem, and design solution tech-
niques for this model that achieve or approach optimality. We apply our principled
approach to the classical backend optimizations of register allocation and instruction
selection.

We develop an expressive model of register allocation based on multi-commodity
network flow. This model exactly represents the complexities of the target architec-
ture. We design progressive solution techniques for our model. Progressive solution
techniques quickly find an initial solution and then improve upon the solution as
more time is allotted for compilation. Our progressive allocator allows the program-
mer to explicitly manage the trade-off between compile-time and code quality. As
more time is allowed for compilation, the resulting allocation approaches optimal,
and substantial improvements in code quality are obtained.

We describe an expressive directed acyclic graph representation of the instruction
selection problem and develop a near-optimal, linear-time algorithm that solves the
instruction selection problem using this expressive model. Our principled approach
to instruction selection results in significant improvements in code quality compared
to traditional algorithms.

We evaluate our principled approaches to register allocation and instruction se-
lection on a range of architectures and benchmarks. We achieve significant reduc-
tions in code size and increases in performance relative to previous approaches. Our
results confirm that our principled approach is a major advance in the state of the art
of backend optimization.

Contents

1 Introduction 1
1.1 Problem Description . 4

1.1.1 Register Allocation . 4
1.1.2 Instruction Selection . 6

1.2 Contribution . 7

2 Related Work 9
2.1 Register Allocation . 9

2.1.1 Graph Coloring Register Allocation . 10
2.1.2 SSA Register Allocators . 14
2.1.3 Linear Scan Allocators . 15
2.1.4 Alternative Heuristic Allocators . 20
2.1.5 Optimal Register Allocation . 21
2.1.6 Limitations . 22
2.1.7 Summary . 24

2.2 Instruction Selection . 25

3 Global MCNF Register Allocation Model 29
3.1 Multi-commodity Network Flow . 29
3.2 Local Register Allocation Model . 33

3.2.1 Source Nodes . 35
3.2.2 Sink Nodes . 36
3.2.3 Allocation Class Nodes . 37
3.2.4 Crossbar Groups . 38
3.2.5 Instruction Groups . 41
3.2.6 Full Model . 42

3.3 Global Register Allocation Model . 44
3.4 Persistent Memory . 50
3.5 Modeling Costs . 52
3.6 Limitations . 58
3.7 Hardness of Single Global Flow . 61
3.8 Simplifications . 64
3.9 Summary . 66

4 Evaluation Methodology 67

vi

4.1 Benchmarks . 67
4.2 Code Quality Metrics . 68

4.2.1 Code Size . 68
4.2.2 Code Performance . 69

4.3 Instruction Set Architectures . 71
4.3.1 x86-32 . 71
4.3.2 x86-64 . 71
4.3.3 ARM . 72
4.3.4 Thumb . 72

4.4 Microarchitectures . 73

5 Heuristic Register Allocation 75
5.1 Iterative Heuristic Allocator . 75

5.1.1 Algorithm . 76
5.1.2 Improvements . 81
5.1.3 Asymptotic Analysis . 87

5.2 Simultaneous Heuristic Allocator . 88
5.2.1 Algorithm . 88
5.2.2 Improvements . 96
5.2.3 Asymptotic Analysis . 103

5.3 Boundary Constraints . 105
5.3.1 Asymptotic Analysis . 108

5.4 Hybrid Allocator . 108
5.5 Compile Time . 113
5.6 Summary . 114

6 Progressive Register Allocation 115
6.1 Relaxation Techniques . 115

6.1.1 Linear Programming Relaxation . 116
6.1.2 Lagrangian Relaxation . 119

6.2 Subgradient Optimization . 121
6.2.1 Flow Calculation . 123
6.2.2 Step Update . 125
6.2.3 Price Update . 129
6.2.4 Price Initialization . 132
6.2.5 Summary . 136

6.3 Progressive Register Allocation . 136
6.3.1 Code Quality: Size . 138
6.3.2 Code Quality: Performance . 141
6.3.3 Optimality . 147
6.3.4 Compile Time . 148

6.4 Summary . 150

7 Near-Optimal Linear-Time Instruction Selection 151

vii

7.1 Problem Description and Hardness . 151
7.2 NOLTIS . 155
7.3 0-1 Programming Solution . 161
7.4 Implementation . 162
7.5 Results . 163

7.5.1 Optimality . 163
7.5.2 Comparison of Algorithms . 166
7.5.3 Impact on Code Size . 167
7.5.4 Compile Time Performance . 167

7.6 Limitations and Future Work . 168
7.7 Interaction with Register Allocation . 169
7.8 Summary . 170

8 Conclusion 171

Bibliography 173

viii

List of Figures

1.1 The structure of a typical compiler. 2
1.2 Simple register allocation example. 4
1.3 An example of instruction selection on a tree-based IR. 6

2.1 The flow of a traditional graph coloring algorithm. 10
2.2 Live ranges and the corresponding interference graph. 10
2.3 An example of the simplify and select phases of a graph coloring allocator. 11
2.4 The linear ordering of basic blocks, live intervals, and lifetime holes. 16
2.5 Result of simple linear scan and second-chance binpacking linear scan. 17
2.6 Percent of functions which do not spill. 23
2.7 Decrease in code quality resulting from spill code and assignment heuristics. . . . 24
2.8 The effect of various components of register allocation. 25

3.1 A simple example of a multi-commodity network flow problem. 30
3.2 A simple example of local register allocation. 34
3.3 Source nodes of a MCNF model of register allocation. 35
3.4 Sink nodes of a MCNF model of register allocation. 37
3.5 Crossbar groups for the local register allocation problem of Figure 3.2. 38
3.6 Two possible crossbar group network structures. 39
3.7 Instruction groups for the local register allocation problem of Figure 3.2. 41
3.8 The full MCNF model of the local register allocation problem of Figure 3.2. . . . 43
3.9 A simple control flow graph. 44
3.10 The three types of flow nodes in the global MCNF model of register allocation. . 44
3.11 Entry and exit groups of a global MCNF model of register allocation. 45
3.12 A crossbar group with nodes for anti-variables. 48
3.13 A network that demonstrates value modification, load remat. and anti-variables. . 49
3.14 The accuracy of the code size global MCNF cost mode. 53
3.15 Impact of single-execution costs on dynamic memory operations. 54
3.16 Impact on performance of varying single-execution costs. 55
3.17 Decrease in code quality when coalescing is separated from an optimal allocator . 58
3.18 An example of a reduction from global MCNF to minimum graph labeling. . . . 62
3.19 Decrease in code quality when move insertion is restricted in an optimal allocator. 65

5.1 An example of the behavior of the iterative heuristic allocator. 78
5.2 A simple example of global variable usage. 81
5.3 The importance of block ordering in the iterative allocator. 84

ix

5.4 The importance of tie breaking strategies in the iterative allocator. 85
5.5 Running time of iterative allocator for all benchmarked functions. 87
5.6 Example execution of the simultaneous heuristic allocator. 90
5.7 Example eviction decisions in the simultaneous heuristic allocator. 94
5.8 Effect of tie breaking heuristics on code quality in the simultaneous allocator . . 97
5.9 An example control flow graph decomposed into traces. 98
5.10 Effect of trace decompositions on code quality in the simultaneous allocator. . . . 99
5.11 Effect of trace update policy on code quality in the simultaneous allocator 102
5.12 Running time of the simultaneous allocator for all benchmarked functions. 104
5.13 A CFG that illustrates the subtleties of setting boundary constraints. 105
5.14 Code size improvement of heuristic allocators. 109
5.15 Code size improvement of heuristic allocators. 110
5.16 Memory operation reduction of heuristic allocators. 111
5.17 Average code quality improvement of heuristic allocators 112
5.18 Slowdown of various allocators relative to extended linear scan. 113

6.1 The percentage of functions that demonstrate an integrality gap. 117
6.2 Linear programming solution times of the global MCNF problem. 118
6.3 Convergence behavior of the basic subgradient optimization algorithm. 122
6.4 Convergence of subgradient optimization with different flow calculations. 124
6.5 Graphical depiction of five ratio step update rules. 125
6.6 Convergence of subgradient optimization with different step update rules. 126
6.7 Convergence of the subgradient optimization with Newton’s method step update. 128
6.8 Example price behavior using different price update strategies. 129
6.9 Convergence of subgradient optimization with different price update strategies. . 131
6.10 Effect of price initialization on the initial lower bound. 134
6.11 Convergence of subgradient optimization with different price initializations. . . . 134
6.12 Convergence of heuristic price initialization with different initial allocations. . . . 135
6.13 The behavior of three heuristic allocators within a progressive allocator. 137
6.14 Average code size improvement of the progressive allocator. 138
6.15 Code size improvement of the progressive allocator. 139
6.16 Code size improvement of the progressive allocator. 140
6.17 Average memory operation reduction of the progressive allocator. 142
6.18 Average performance improvement of the progressive allocator. 142
6.19 Memory operation reduction of the progressive allocator. 143
6.20 Code performance improvement of the progressive allocator for x86-32. 144
6.21 Code performance improvement of the progressive allocator for x86-64. 145
6.22 Effect of block frequency estimator on code quality. 146
6.23 Code size optimality bounds of progressive allocator. 148
6.24 Code performance optimality bounds of progressive allocator. 149
6.25 Register allocation time breakdown of progressive allocator. 149

7.1 An example of instruction selection as a tiling problem. 152
7.2 Expressing Boolean satisfiability as an instruction selection problem. 154

x

7.3 An example of instruction selection on a DAG. 158
7.4 The application of the NOLTIS algorithm to the example from Figure 7.3. 160
7.5 Improvement in tiling cost relative to maximal munch 164
7.6 Final code size improvement relative to maximal munch 165
7.7 Cumulative total improvement relative to maximal munch 166
7.8 Average slowdown of each instruction selection algorithm relative to cse-all . . . 167
7.9 Influence of constant rematerialization on final code size 168

xi

xii

List of Pseudocode

5.1 CONSTRUCTFEASIBLESOLUTIONITERATIVE 76
5.2 MARKFEASIBLEPATH . 76
5.3 SHORTESTFEASIBLEPATH . 77
5.4 FEASIBLEEDGECOST . 79
5.5 CONSTRUCTFEASIBLESOLUTIONSIMULTANEOUS 88
5.6 ALLOCATEVARATLAYER . 91
5.7 ASSIGNVARTONODE . 91
5.8 PROPAGATEALLOCS . 92
5.9 NODEVALIDFORALLOCATION . 92
5.10 SELECTALLOCCLASS . 93
5.11 EVICTIONCOST . 94
5.12 SETBOUNDARYCONSTRAINTS . 106
5.13 SETUNUSABLE . 107
5.14 VIOLATESBOUNDARYCONSTRAINT . 107
6.1 CALCULATENODEPRICEWEIGHT . 132
6.2 PRICEINITIALIZATION . 133
7.1 SELECT, BUTTOMUPDP, TOPDOWNSELECT 156
7.2 IMPROVECSEDECISIONS . 157
7.3 GETOVERLAPCOST . 157
7.4 GETTILECUTCOST . 159

List of Tables

3.1 Reduced benchmark suite suitable for optimal allocation. 52

4.1 Benchmarks used in evaluation of code quality. 68
4.2 Characteristics of microarchitectures used to evaluate performance. 72

6.1 Example price behavior using different price update strategies. 130

xiii

xiv

1

Chapter 1

Introduction

Compilers are a ubiquitous and essential tool, and improvements to compiler technology have a

broad impact. A compiler is responsible for translating human-understandable source code, such

as C or Java, into machine-executable binary object code. The tool-flow of a typical compilation

system is shown in Figure 1.1. The front-end of the compiler translates the source code of

a program into a target-independent intermediate representation (IR). After target-independent

optimization, the backend of the compiler translates the IR code into a target-specific assembly

listing.

Backend optimizations are a critical part of an optimizing compiler. These optimizations

are responsible for fully exploiting the complex and varied features of modern architectures.

Since backend optimization problems are typically NP-complete, the predominant approach to

solving these problems has been an amalgamation of ad-hoc heuristics. This thesis develops a

principled approach for understanding, evaluating, and solving backend optimization problems.

Our principled approach is to

• develop a comprehensive and expressive model of the backend optimization problem, and

• design solution techniques that use this model to achieve or approach the optimal solution.

Our principled approach is a departure from conventional approaches. Existing backend op-

timizations often have no explicit model of the problem. Instead, ad hoc heuristics are used.

Alternatively, if there is an underlying model, the model design does not fully capture all the

features of the optimization problem, but instead abstracts away the complexities of the prob-

2 CHAPTER 1. INTRODUCTION

COMPILER

MIDDLE END

BACKENDFRONT END

Lexical Analyzer

Parser

Semantic Analyzer

Intermediate Code
Generator

Target-Independent
Code Optimizer

Target-Dependent
Code Optimizer

Register Allocation

Target-Dependent
Code Optimizer

token stream

syntax tree

syntax tree

intermediate
representation

unallocated
assembly

unallocated
assembly

assembly

source
code Assembler

Linker

object code

assembly

executable

Instruction Selection

Figure 1.1: The structure of a typical compiler.

lem into a form that is more readily solved. In contrast, our approach embraces the complexity

of the problem. We do not compromise the fidelity of the model to accommodate algorithmi-

cally simple solution techniques. Instead, we develop solution techniques that exploit the full

expressiveness of the model. If it is not practical to obtain optimal or near-optimal solutions, we

develop progressive solution techniques.

Progressive solution techniques approach the optimal solution as more time is alloted for

compilation. Unlike conventional approaches, our focus when developing solution techniques is

to achieve the highest quality code even at the expense of substantial increases in compilation

time. Progressive compilation makes this approach practical. The programmer, not the compiler

developer, decides what the appropriate trade-off is between compile time and code quality.

We apply our principled approach to the key backend optimization problems of register allo-

cation and instruction selection. We find that our principled approach, which uses an expressive

model and solution techniques that achieve or approach optimality, results in better code quality

and a better compiler.

EXPRESSIVE MODEL

Many compiler optimization passes use a simplified model of the target architecture and, as a re-

sult, can actually produce less optimized code. Even optimizations that are intrinsically linked to

architectural features, such as register allocation, use inappropriately simple architectural mod-

3

els. For example, traditional register allocators were designed for regular, RISC-like architec-

tures with large uniform register sets. Embedded architectures, such as the 68k, ColdFire, x86,

ARM Thumb, MIPS16, and NEC V800 architectures, tend to be irregular, CISC architectures.

These architectures may have small register sets, restrictions on how and when registers can be

used, support for memory operands within arbitrary instructions, variable sized instructions, or

other features that complicate register allocation. The register allocator in a principled compiler

needs to explicitly represent and optimize for these features.

The first step of our principled approach is to define an expressive model of the optimization

problem that accurately represents the pertinent features of the problem. Chapter 3 discusses

our novel model of register allocation using a multicommodity network flow framework that

accurately represents the intricacies of register allocation for irregular architectures. Chapter 7

describes an expressive directed acyclic graph model for instruction selection that, unlike con-

ventional tree-based representations, explicitly represents redundant expressions.

OPTIMALITY

The general optimization problem, finding a correct instruction sequence that results in the best

code quality, is provably undecidable since such an optimizer could be used to solve the halting

problem. Instead, we consider the internal optimality of an optimization pass. An optimization

pass is internally optimal if it optimally performs its specific optimization goal. For example,

dead-code elimination can eliminate all code that is dead in a meets over all paths static analysis.

Dead-code elimination is internally optimal: given a restricted, but reasonable, definition of the

problem (remove all static dead code) it finds the optimal result. Many compiler optimizations,

including register allocation and instruction scheduling, are provably NP-hard for even simple

representations of the problem. In these cases, it is unlikely that efficient internally optimal

algorithms exist. Instead, we propose the use of progressive compilation.

Progressive compilation bridges the gap between fast heuristics and slow optimal algorithms.

A progressive algorithm quickly finds a good solution and then progressively finds better solu-

tions until an optimal solution is found or a preset time limit is reached. The use of progressive

solution techniques fundamentally changes how compiler optimizations are enabled. Instead

4 CHAPTER 1. INTRODUCTION

v ← 1
w← v + 3
x ← w + v
u ← v
t ← u + x
← x
← w
← t
← u

r0,r1,r2=⇒

r0v ← 1
r1w ← r0v + 3
r2x ← r1w + r0v

MEMw ← r1w

r0u ← r0v

r1t ← r0u + r2x

← r2x

r2w ← MEMw

← r2w

← r1t

← r0u

Figure 1.2: A simple example of register allocation. In this example there are only three regis-
ters. After the definition of t there are four live variables, x, w, t, and u, so it is necessary to spill
a variable to memory, in this case w.

of selecting a discrete optimization level, a programmer explicitly trades compilation time for

improved optimization.

The second step of our principled approach is to develop near-optimal or progressive algo-

rithms for the expressive model of the optimization problem. Chapters 5 and 6 describe novel

progressive algorithms for solving the global MCNF model of register allocation and Chapter 7

describes a novel near-optimal instruction selection algorithm.

1.1 Problem Description

Register allocation and instruction selection are essential passes of any compiler backend. As

can be seen in Figure 1.1, together they are responsible for finalizing a compiler’s intermediate

representation of code into machine executable assembly. In this section we define what these

passes entail and characterize their difficulty.

1.1.1 Register Allocation

The register allocation problem is to find a desirable assignment of program variables to memory

locations and hardware registers as illustrated in Figure 1.2. Various metrics, such as execution

speed, code size, or energy usage, can be used to evaluate the desirability of the allocation.

1.1. PROBLEM DESCRIPTION 5

Local register allocation considers only the task of allocating a single basic block (an instruction

sequence containing no control flow). Global register allocation finds an allocation for an entire

function. Inter-procedural register allocation is typically not done; instead, calling conventions

dictate the use of registers across function boundaries.

The register sufficiency problem, which is often confused with the register allocation prob-

lem, is to determine, for a particular function, if it is possible to find an assignment of variables

to the available registers. In other words, it is not necessary to spill (i.e., store to memory) a

variable. It is this problem that Chaitin et. al. [32] proved to be NP-hard for arbitrary control

flow graphs. However, later work has shown that program structure can be exploited to more

easily solve the register sufficiency problem [19]. For programs with bounded treewidth [15], in-

cluding all programs written in Java and goto-free C [56, 124], the register sufficiency problem

can be solved in linear time (but exponential in the fixed number of registers) [14, 101]. Alterna-

tively, constant factor approximation algorithms can be used [68, 124]. For programs that are in

SSA form, the register sufficiency problem is also readily solved [19, 25, 58, 59, 102], although

optimally converting out of SSA form remains difficult [105].

Although the register sufficiency problem is readily solved, there is much more to the prob-

lem of register allocation than register sufficiency. Other important components of the register

allocation problem are spill code optimization, rematerialization, coalescing, and register prefer-

ences. When program variables cannot be allocated solely to registers, it is necessary to generate

spill code to store and load values to and from memory. Determining the minimum number of

loads and stores needed is NP-hard even for local register allocation [20, 42]. In some cases the

register allocator may be able to avoid spilling by rematerializing a known value. In addition, the

register allocator may be able to improve code quality by allocating two variables to the same

register. For example, if the two variables are joined by a move instruction it may be possible

to coalesce the variables into the same register and eliminate the need for the move instruction.

Optimal coalescing is NP-hard, even for structured programs [18]. Finally, many architectures,

such as the x86 architecture, do not have uniform register sets. Instead, the operands of certain

instructions prefer or require specific registers. For example, the x86 div instruction always

writes its result to the eax and edx registers. In the presence of such constraints, even the lo-

6 CHAPTER 1. INTRODUCTION

+

+ +

MEM

p

xy1

(a)

movl (p),t1
leal (x,t1),t2
leal 1(y),t3
leal (t2,t3),r

(b)

+

+ +

MEM

p

xy1

(c)

movl x,t1
addl t1,(p)
movl y,t2
incl t2
movl t2,r
addl r,t1

(d)

Figure 1.3: An example of instruction selection on a tree-based IR. Two possible tilings, (a) and
(c), with their corresponding instruction sequences, (b) and (d), are shown.

cal register sufficiency problem is NP-hard [20, 132], although fixed parameter tractable in the

number of registers [13].

The register allocation problem is an NP-hard problem consisting of several important com-

ponents. In order to generate quality code, a register allocator must not only perform register

assignment, but also optimize spill code, perform coalescing and rematerialization, and take reg-

ister preferences into account.

1.1.2 Instruction Selection

The instruction selection problem is to find an efficient conversion from the compiler’s target-

independent intermediate representation (IR) of a program to a target-specific assembly listing.

In the most general sense, instruction selection is undecidable since an optimal instruction se-

lector could solve the halting problem (halting side-effect free code would be replaced by a nop

and non-halting code by an empty infinite loop). Because of this, instruction selection is usually

defined as finding an optimal tiling of the intermediate code with a predefined set of machine

1.2. CONTRIBUTION 7

instruction tiles. Each tile is a mapping from IR code to assembly code and has an associated

cost. An optimal instruction selection minimizes the total cost of the tiling.

An example of instruction selection, where a tree-based IR is converted to x86 assembly, is

shown in Figure 1.3. In this example, and in general, there are many possible correct instruction

sequences. The difficulty of the instruction selection problem is finding the best sequence for a

given cost metric, such as code performance, code size, or some other statically determined cost

metric.

For a given tile set and cost metric it is possible to find an optimal tiling in polynomial

time if the intermediate representation is in the form of expression trees [1]. However, the tree

representation is limited in its expressiveness. A more expressive representation uses directed

acyclic graphs (DAGs) to explicitly represent redundancies. As we show in Chapter 7, if a more

expressive directed acyclic graph (DAG) intermediate representation is used, then the optimal

tiling problem becomes NP-complete. Despite the fundamental hardness of the problem, in

Chapter 7 we develop the NOLTIS (near-optimal linear-time instruction selection) algorithm

which efficiently computes an optimal or near-optimal tiling of expression DAGs.

1.2 Contribution

The primary contribution of this thesis is the development of principled approaches to the chal-

lenging yet critical backend optimization problems of register allocation and instruction selec-

tion. We present expressive models that explicitly model the complexities of the target architec-

ture. We then approach an optimal solution to the problem by using progressive or near-optimal

solution techniques. After performing an extensive evaluation, we conclude that our principled

approach results in better code quality and a better compiler.

8 CHAPTER 1. INTRODUCTION

9

Chapter 2

Related Work

Register allocation and instruction selection are critical components of the compiler backend

and have been the subject of extensive study. In this chapter we describe the state-of-the-art in

register allocation, instruction selection, and instruction selection–register allocation integration.

2.1 Register Allocation

Register allocation is a fundamental part of any compiler backend and has been extensively

studied. The textbook [5, 8, 37, 93, 95] approach represents the register allocation problem as

a graph coloring problem. Although many improvements to this technique have been proposed,

the graph coloring representation is fundamentally limited, especially when compiling for highly

constrained and irregular architectures. Alternative heuristic allocators such as linear scan are

equally limited. These allocators lack an expressive and complete model of the full register

allocation problem.

Less limited methods of register allocation which use expressive models and find optimal

allocations have been proposed but are prohibitively slow. The progressive solution techniques

of the thesis will bridge the gap between existing slow, but optimal, and fast, but suboptimal,

allocators allowing programmers to explicitly trade compilation time for code quality.

10 CHAPTER 2. RELATED WORK

Build Simplify Potential Spill Select Actual Spill

Coloring Heuristic

Figure 2.1: The flow of a traditional graph coloring algorithm.

v.←
w.← v
x.← w ⊕ v

 u.← v
t.← u ⊕ x
.← w,t,u

v
w

x
u

t

(a)

v

wx

u t

(b)

Figure 2.2: (a) Live ranges and (b) the corresponding interference graph.

2.1.1 Graph Coloring Register Allocation

A traditional graph coloring allocator constructs an interference graph which is then labeled with

k “colors” representing each of k available registers. In Chapter 5 we use some of the concepts of

graph coloring allocation as building blocks for our progressive allocator and so describe graph

coloring allocation in detail.

The traditional optimistic graph coloring algorithm [21, 24, 31] consists of five main phases

as shown in Figure 2.1:

Build An interference graph is constructed using the live ranges of variables, which are com-

puted using data flow analysis. A node in the graph represents a variable. An edge con-

nects two nodes if the variables represented by the nodes interfere. Two variables interfere

if their live ranges overlap and the variables cannot be allocated to the same register. In

the example show in Figure 2.2(a), the variables v and w have overlapping live ranges and

2.1. REGISTER ALLOCATION 11

v

wx

u t
1

v

wx

u t
12

v

wx

u t
12

3

v

wx

u t
12

3 4

v

wx

u t
12

3 4

5

(a)

v

wx

u t
12

3 4

r0
v

wx

u t
12

3

r0

r1

v

wx

u t
12

r0

r1r2

v

wx

u t
1

r0

r1r2

r0

v

wx

u t

r0

r1r2

r0 r2

(b)

Figure 2.3: An example of the (a) Simplify and (b) Select phases of a graph coloring allocator.

there is an edge between their nodes in the interference graph in Figure 2.2(b). Restrictions

on what registers a variable may be allocated to can be implemented by adding precolored

nodes to the graph.

Simplify A heuristic is used to reduce the size of the graph. The most commonly used heuristic

[69] removes any node with degree less than k, where k is the number of available registers,

and places it on a stack. This is repeated until all nodes are removed, in which case the

Select phase is executed, or no further simplification is possible. In the interference graph

shown in Figure 2.3(a), for k = 3 there are initially only two nodes, v and t, with degree

less than k. The removal of node t from the graph reduces the degree of nodes u and

w and the node u becomes a candidate for simplification. In this example, simplification

continues until all nodes are removed from the graph. More complicated heuristics [88,

127] can also be used to further simplify the graph.

Potential Spill If the graph is not fully simplifiable, we mark a remaining node as a potential

spill node, remove it from the graph, and optimistically push it onto the stack. We repeat

12 CHAPTER 2. RELATED WORK

this process until there exist nodes in the graph with degree less than k, at which point we

return to the Simplify phase.

Select In this phase all of the nodes have been removed from the graph. Nodes are popped off

the stack and assigned a color (corresponding to a register) in the reverse order they were

simplified. This process is shown in Figure 2.3(b). If a node is not a potential spill node,

when it was pushed onto the stack it had a degree less than k in the simplified interference

graph. Therefore at most k − 1 of the node’s neighbors have already been pushed off the

stack and assigned a color, and it will always be possible to find a non-conflicting color

for this node. If a node is a potential spill node, then it still may be possible to assign it a

color; if it is not possible to color the potential spill node, we mark it as an actual spill and

leave it uncolored.

Actual Spill Spill code is generated for every node that is marked as an actual spill. We generate

spill code that loads and stores the variable represented by each node into new, short lived,

temporary variables everywhere the variable is used and defined. Because new variables

are created, it is necessary to rebuild the interference graph and start over.

The Simplify, Potential Spill, and Select phases together form a heuristic for graph coloring.

If this heuristic is successful, there will be no actual spills. Otherwise, the graph is modified

so that it is easier to color by spilling variables and the entire process is repeated. This coloring

heuristic is a “bottom-up” coloring [37]. A “top-down” coloring [33, 34] uses high-level program

information instead of interference graph structure to determine a priority coloring order for the

variables and then greedily colors the graph.

As an alternative to the iterative approach where the interference graph is rebuilt and reallo-

cated every time variables are spilled, a single-pass allocator can be used. A single-pass allocator

reserves registers for spilling. These registers are not allocated in the coloring phase and instead

are used to generate spill code for all variables that did not get a register assignment.

A number of improvements to the basic graph coloring algorithm have been proposed. Five

common improvements are:

Web Building [31, 67] Instead of a node in the interference graph representing all the live ranges

of a variable, a node only represents the connected live ranges of a variable (called webs).

2.1. REGISTER ALLOCATION 13

For example, if a variable i is used as a loop iteration variable in several independent loops,

then each loop represents an unconnected live range of i, a web. Each web can then be

allocated to a different register, even though the webs represent the same variable.

Coalescing [24, 31, 51, 103] If the live ranges of two variables are joined by a move instruc-

tion and the variables are allocated to the same register, it may be possible to coalesce

(eliminate) the move instruction. Coalescing is implemented by adding move edges to the

interference graph. If two nodes are connected by a move edge, they should be assigned

the same color. Move edges can be removed to prevent unnecessary spilling. Coalescing

techniques differ in how aggressively they coalesce nodes and when and how the decision

to coalesce is finalized.

Spill Heuristic [12] A heuristic is used when determining which node to mark in the Potential

Spill stage. Spill heuristics try to choose a node with a low spill cost (requiring only a

small number of dynamic loads and stores to spill) or a node whose absence will make the

interference graph easier to color and therefore reduce the number of future potential spill

nodes.

Improved Spilling [11, 24, 36] If a variable is spilled, loads and stores to memory may not be

needed at every read and write of the variable. It may be cheaper to rematerialize [22]

the value of the variable (if it is a constant, for example). Alternatively, the live range of

the variable can be partially spilled. In this case, the variable is only spilled to memory in

regions of high interference. Live range splitting can be applied before or during register

allocation [36, 78, 98].

Support for Irregular Architectures [23, 24, 66, 76, 122] The graph coloring model implic-

itly assumes a uniform register model and so must be further extended to target irregular

architectures. These techniques heuristically extend the interference graph representation

and coloring algorithm to take into account register class preferences and nonuniform us-

age requirements.

14 CHAPTER 2. RELATED WORK

2.1.2 SSA Register Allocators

Recently, several researchers have discovered that if a program is in single static assignment

(SSA) form [38] then the register sufficiency problem can be solved in polynomial time [19, 25,

59, 102]. Programs in SSA form will alway generate an interference graph that is perfect and

chordal. The special structure of these graphs admits an optimal coloring algorithm that is linear

in the number of edges in the graph. However, efficiently and optimally coloring the interference

graph of a program in SSA form is not sufficient to obtain a quality register allocation since most

interference graphs are not colorable: the chromatic number of the interference graph is larger

than the number of registers. In these cases, spill code must be inserted to reduce the number

of interfering live variables. A more subtle limitation of the SSA approach is that an optimal

register assignment of the SSA form of the program does not directly map to an optimal register

assignment when the SSA Φ functions are removed. In fact, optimally converting out of SSA

form is an NP-complete problem [105].

Several register allocators have been developed that attempt to exploit the colorability of

programs in SSA form [17, 55, 60, 131, 132]. These approaches perform spill code generation

as a separate phase. A heuristic is used to reduce the number of live variables at each program

point to be less than or equal to the number of available registers. When this requirement is

met, the size of the maximal clique of the resulting interference graph is less than or equal to

the number of registers. Since in a chordal graph the size of the maximal clique is equal to the

chromatic number, it is possible to find a valid register assignment if the program is in SSA form.

The problem then becomes finding an assignment that minimizes the number of move and swap

instructions in the final instruction sequence after converting out of SSA form. That is, the goal

is to assign the input and output operands of the Φ functions to the same register so that the

move instructions that implement the Φ instruction are coalesced out of the instruction sequence.

Somewhat surprisingly, these SSA-based register allocators focus mostly on effectively solving

this NP-complete coalescing problem and have relied on existing simplistic heuristics to perform

the spill code optimization pass.

SSA-based register allocators attempt to take advantage of the colorability of interference

graphs of structured programs. Despite utilizing an optimal coloring algorithm, these approaches

2.1. REGISTER ALLOCATION 15

generally perform no better than graph coloring allocators. This is not surprising for, as described

in Section 2.1.6, other components of the register allocation problem, such as spill code optimiza-

tion and register preferences, have a substantial impact on code quality.

2.1.3 Linear Scan Allocators

Linear scan allocators find a register allocation in a single sweep of the program code. They

were initially designed for just-in-time compilers and sacrificed code quality for compile-time

performance. Instead of constructing an interference graph, linear scan allocators linearize the

control flow graph and assign a numerical linear ordering to program points. The live ranges of a

variable can then be expressed as an interval between program points. For example, in Figure 2.4,

the live intervals for the variables a, b, c, and d are (1,17), (4,6), (5,13), and (12,15) respectively.

A simple live interval may contain one or more lifetime holes, a range of program points within

the live interval where the variable is not actually live. For instance, in the example, variables a

and c have lifetime holes.

The simplest and fastest linear scan allocator [106] does not represent lifetime holes. This

allocator iterates over the list of live intervals, sorted by start point, and maintains a list of active

intervals that are currently assigned a register. For each interval, the allocator first frees the

register of any interval in the active list that has expired. An active interval has expired if its

end point is smaller than the start point of the current interval. Then the allocator assigns an

available register to the current interval. If no register is available, a simple heuristic is used to

choose an interval to spill to memory. The current interval and any interval on the active list are

valid candidates for spilling. Intervals that are spilled are assigned a memory location for their

entirety. If values cannot be accessed directly in memory, a scratch register must be reserved so

that load or store instructions can be generated at every reference of a spilled variable.

When executed on the example shown in Figure 2.4 with a register set of two registers, r0

and r1, the simple linear scan allocator first allocates a to r0 and then allocates b to r1. No

registers are available to allocate c, so either a, b, or c must be spilled. If the allocator chooses a,

then c will be allocated to r0. Finally, the allocator processes d’s interval. Since b has expired

(its endpoint, 6, is less than 12, the start point of d) the register r0 is available and is allocated to

16 CHAPTER 2. RELATED WORK

3 .← a
4 b.←
5 c.←
6 .← b
7 .← c
8 a.←

1 a.←

10 c.←
11 .← a
12 d.←
13 .← c
14 .← a
15 .← d

17 .← a

B1

B2 B3

B4

(a)

a

b
c

d

B1

B2 B3

B4

c

(b)

B1 B2 B3 B4
a

b

c

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(c)

Figure 2.4: Example illustrating the linear ordering of basic blocks, live intervals, and lifetime
holes. (a) Source code and (b) live intervals illustrated within the control flow graph. (c) Linear
scan allocators linearize the control flow graph so that each variable has a single live interval
which may have holes.

d. The final allocation is shown in Figure 2.5(a). The variable a is spilled everywhere resulting

in six references to memory.

Simple linear scan allocation is unsophisticated, but fast. The assignment phase is linear

in the number of variables. Generating the live intervals and rewriting the code to implement

the found assignment are both linear in the number of instructions. More sophisticated linear

scan allocators retain the linear asymptotic complexity of simple linear scan, but support lifetime

holes, the splitting of intervals and other optimizations [115, 125, 128]. We build on the ideas of

these more sophisticated linear scan allocators in Chapter 5 and so describe them in detail.

2.1. REGISTER ALLOCATION 17

 .← Ma

r1.←
r0.←

.← r1
 .← r0

Ma.←

Ma.←

r0.←
 .← Ma

r1.←
 .← r0
.← Ma

.← r1

 .← Ma

B1

B2 B3

B4

(a)

r1.←
.← r0

 Ma.← r0
r0.←

 .← r1
. r1.← Ma

.← r1

.← r0

 .← r0
r0.←
r1.←

.← r0
 .← r1

r0.←

r0.←

 .← r1

B1

B3

B4

r1.← r0

(b)

Figure 2.5: Result of (a) simple linear scan and (b) second-chance binpacking linear scan.

A second-chance binpacking linear scan allocator [125, 128] keeps track of lifetime holes

and has a flexible spilling strategy. A variable may have several live intervals, none of which

contain holes. For example, the live intervals for variables a and c in Figure 2.4 are (1,3;8,17)

and (5,7;10,13) respectively. Each live interval is allocated independently. As with the simple

linear scan allocator, the second-chance binpacking allocator maintains a list of active variables

that are currently allocated to registers. Unlike the simple allocator, second-chance binpacking

iterates over the instructions of the program and simultaneously allocates and rewrites the code.

For each instruction, the allocator considers the variables accessed by the instruction. For each

variable, there are three possible cases:

• The variable is read by the instruction and currently active, i.e., assigned a register. In this

case the instruction is simply rewritten to access to correct register.

• The variable is read by the instruction and currently inactive, i.e., spilled to memory.

Unless the instruction can directly access memory, a load instruction is inserted before

the current location to load the variable into a register. If no registers are available, a

register is made available by evicting a variable from the active list. The variable read by

the instruction is now allocated to this register and added to the active list. This is the

18 CHAPTER 2. RELATED WORK

variable’s “second-chance” to be allocated to a register. The instruction is rewritten to use

the appropriate register.

• The variable is written by the instruction, and this is the start of a new live interval. If a

register is available, it is assigned to the variable and the variable is added to the active list.

If no register is available, a register is made available by evicting a variable from the active

list. This register is then assigned to the variable written by the instruction and the variable

is added to the active list. The instruction is rewritten to use the appropriate register.

When a variable is evicted from the active list, a store instruction saving the variable to memory

is inserted at the eviction point. If the value to be stored is known to already reside in memory

(due to an earlier store) then this store can be omitted.

Unlike the simple linear scan allocator, in second-chance binpacking a variable is not as-

signed to a single register or memory location. This additional flexibility can result in conflicts

in allocation decisions at basic block boundaries. For instance, consider the case where the two

live intervals of a in Figure 2.4 are allocated to different registers, r0 and r1. Although this

allocation is legal in the linearized traversal of the code used by the allocator and illustrated in

Figure 2.4(c), in actuality the control flow edge between blocks B1 and B3 necessitates that the

allocation of a at program point 2 equals that at program point 9. To resolve these conflicts, a

resolution phase is run after allocation that traverses the control flow edges of the program and

inserts move, load, and store instructions as necessary.

We now trace the execution of the second-chance binpacking allocator on the example shown

in Figure 2.4 with a register set of two registers, r0 and r1.

1 a is allocated to r0, a is added to the active list, the instruction is rewritten to use r0.

ACTIVE: a[1,3]:r0

3 The instruction is rewritten to use r0 for a, and a is removed from the active list.

ACTIVE:

4 b is allocated to r0, b is added to the active list, and the instruction is rewritten to use r0.

ACTIVE: b[4,6]:r0

2.1. REGISTER ALLOCATION 19

5 c is be allocated to r1, c is added to the active list, and the instruction is rewritten to use

r1.

ACTIVE: b[4,6]:r0, c[5,7]:r1

6 The instruction is rewritten to use r0 for b, and b is removed from the active list.

ACTIVE: c[5,7]:r1

7 The instruction is rewritten to use r1 for c, and c is removed from the active list.

ACTIVE:

8 a is allocated to r0, a is added to the active list, and the instruction is rewritten to use r0.

ACTIVE: a[8,17]:r0

10 c must be allocated to r1, c is added to the active list, and the instruction is rewritten to use

r1. Note that the current allocation of a to r0 is due to its most recent allocation at 8, not

its allocation at the exit of block B1 (position 2).

ACTIVE: a[8,17]:r0, c[10,13]:r1

11 The instruction is rewritten to use r0 for a.

ACTIVE: a[8,17]:r0, c[10,13]:r1

12 No registers are available so a variable from the active list must be evicted. a is chosen for

eviction, a store from r0 to memory is inserted, and a is removed from the active list. d is

allocated to r0, d is added to the active list, and the instruction is rewritten to use r0.

ACTIVE: d[12,15]:r0, c[10,13]:r1

13 The instruction is rewritten to use r1 for c, and c is removed from the active list.

ACTIVE: d[12,15]:r0

14 a is required to be in a register. The register r1 is available so a load of a from memory to

r1 is inserted. a is added to the active list and the instruction is rewritten to use r1

ACTIVE: d[12,15]:r0, a[8,17]:r1

15 The instruction is rewritten to use r0 for d, and d is removed from the active list.

ACTIVE: a[8,17]:r1

20 CHAPTER 2. RELATED WORK

17 The instruction is rewritten to use r1 for a, and a is removed from the active list.

ACTIVE:

This completes the allocation phase. The resolution phase scans through the control flow

edges of the control flow graph looking for conflicts. In this example, there is a conflict for

variable a on the edge between block B2 and block B4. The variable a is allocated to r0 at

the exit of B2 and to r1 at the entry of block B4. The conflict is resolved by inserting a move

instruction along this edge. The resulting allocation is shown in Figure 2.5(b). Compared to the

simple linear scan allocator, second-chance binpacking generates four fewer memory accesses

and one additional move instruction. In general, second-chance binpacking produces code with

fewer spill instructions and has the same linear asymptotic complexity as simple linear scan.

The extended linear scan algorithm [115] first performs spill code minimization as a sepa-

rate phase, and then uses second-chance binpacking techniques to find a spill-free register as-

signment. The spill code minimization phase identifies program points where the register need

exceeds the register availability and heuristically chooses live intervals to spill until register need

is less than or equal to register availability at every program point. Once this requirement is met,

second-chance binpacking can always find a register assignment without further spilling as long

as move and swap instructions can be inserted at basic block boundaries. This is the approach

used in the LLVM 2.4 [87] compiler framework.

2.1.4 Alternative Heuristic Allocators

Several other approaches to register allocation have been studied and implemented in production

compilers. Several allocators, including the one used by the GNU gcc compiler version 4.4 [47],

separate the register allocation problem into global allocation and local allocation problems, each

of which is done separately. Other allocators attempt to exploit program structure.

Although allocators that perform local and global register allocation separately may perform

global allocation first [93], typically local allocation is performed first in order to take advantage

of effective linear-time local register allocation algorithms [42, 63, 86]. In probabilistic register

allocation [111] and demand-driven allocation [112], the results of local allocation are used by

the global allocator to determine which variables get registers. In the gcc allocator, the local

2.1. REGISTER ALLOCATION 21

allocator performs a simple priority-based allocation. The global allocator then performs its own

single-pass priority-based allocation. A final reload phase generates and optimizes the necessary

spills for any variables that remain unallocated. When compilation time is at a premium, the

global pass, which must calculate a full interference graph, can be skipped.

Allocators that exploit program structure break the control flow graph into regions or tiles. In

hierarchical register allocation [28, 35] a tile tree corresponding to the control-flow hierarchy is

constructed. A partial allocation is computed in a bottom-up pass of the tile tree, and then the final

register assignment is calculated with a second top-down pass. A similar technique can also be

used with regions derived from program dependence graphs [100]. Hierarchical allocation results

in a more control-flow aware allocation (for example, less spill code in loops), but decisions made

when fixing the allocation of a tile may have globally poor results. A graph fusion allocator [89]

avoids fixing an allocation at tile boundaries. Instead, tiles are “fused” together until the entire

control flow graph is covered by one fused tile. Each fusion operation maintains the invariant that

the interference graph of a fused tile is simplifiable (easily colored) by splitting live ranges and

spilling variables as necessary. Register assignment is then performed on the final interference

graph. Hierarchical allocators typical exhibit mixed results, with an average case improvement

over graph-coloring allocators. When these allocators perform poorly, it is usually because the

built-in heuristics fail and excessive spill and shuffle code is generated at tile boundaries.

2.1.5 Optimal Register Allocation

The NP-hard nature of register allocation makes it unlikely that a practical optimal register al-

location algorithm exists. However, several optimal or partially optimal approaches have been

investigated. Although these algorithms do not demonstrate practical running times, they provide

insight into what is achievable and, in some cases, suggest improvements to heuristic solutions.

The local register allocation problem has been solved optimally using a dynamic program-

ming algorithm that requires exponential space and time [63]. This algorithm has been extended

to handle loops and irregular architectures [74] and multi-issue machines [92]. Essentially, this

algorithm performs a pruned exhaustive search of all possible register allocations. The expo-

nential part of the algorithm can be replaced by a heuristic to get an efficient local allocator

22 CHAPTER 2. RELATED WORK

that outperforms other local allocators on average and is generally close to optimal. Local spill

code optimization for uniform register sets can also be solved using integer linear programming

techniques [86].

The global register sufficiency problem has been solved optimally [14, 101] or approximately

[124] by exploiting the bounded treewidth property of structured programs. The asymptotic run-

ning time of the optimal approaches includes a constant factor that is exponential in the number

of registers. While the ability of these algorithms to exploit program structure is insightful, they

do not actually solve the complete register allocation problem.

The complete register allocation problem for both regular [48, 49, 54] and irregular [52,

75, 96, 97] architectures has been solved by expressing the problem as an integer linear pro-

gram (ILP) which is then solved using powerful commercial solvers. Although these tech-

niques demonstrate the significant reduction in spill code possible using optimal allocators, their

compile-time performance does not scale well as the size of the input grows. In particular, the

ILP solver is unable to find even a feasible solution for most functions with more than 1000

instructions [49].

As an alternative to ILP formulations, a simplified version of the register allocation problem

has been modeled as a partitioned boolean quadratic optimization problem (PBQP) [62, 116].

This formulation can then either be solved optimally, but exponentially slowly, or with an effi-

cient polynomial-time heuristic which is competitive with graph coloring allocators.

2.1.6 Limitations

Existing register allocators have several fundamental limitations. Several approaches, such as

graph coloring and SSA-based allocators, focus primarily on solving the register assignment

problem. Simply solving the register assignment problem is not enough to obtain quality code.

As shown in Figure 2.6, architectures with limited registers sets, such as the Intel x86 archi-

tecture, frequently do not have sufficient registers to avoid spilling. Since almost half of all

the functions in Figure 2.6 had to generate spill code, it is clearly important that the compiler

explicitly optimize spill code. Effectively optimizing spill code is especially important when

optimizing for performance. As shown in Figure 2.7, the use of a heuristic spill code optimizer

2.1. REGISTER ALLOCATION 23

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

PPC (32) 68k (16) x86 (8)

P
e
r
c
e
n

t
 o

f
 f

u
n

c
t
io

n
s

Figure 2.6: The percent of over 10,000 functions assembled from various benchmark suites
for which no spilling is performed by a conventional graph coloring allocator. All functions are
treated equally; no attempt is made to weight functions by execution frequency or size. Although
these results are for a heuristic allocator, the heuristic used fails to find a spill-free allocation
when one actually exists in only a handful of cases [72].

with optimal register assignment greatly decreases code quality relative to an optimal allocator,

especially when optimizing for performance. In contrast, a heuristic register assignment algo-

rithm does not result in as large decreases of code quality when paired with an optimal spill code

optimizer.

The importance of other components of register allocation are further demonstrated in Fig-

ure 2.8, which shows the effect of replacing the heuristic coloring algorithm in a traditional

graph coloring allocator with an optimal coloring algorithm as described in [72]. The use of an

optimal coloring algorithm substantially degrades code quality unless additional components of

register allocation are incorporated into the objective function of the optimal allocator. Since

this is done in an ad hoc manner, i.e., no explicit cost model is used, the results are mixed with

the optimal-coloring based allocator performing more poorly on average than a purely heuris-

tic based allocator. These results strongly suggest that developing a register allocator around

the register sufficiency problem, as with the graph coloring and SSA-based allocators, and then

24 CHAPTER 2. RELATED WORK

!"#

$"#

%"#

&"#

'"#

("#

)"#

*"#

+"#

,-./# 0-1/#!
"
#$
"
%
&"
'(
)
'*
+
,
"
'-
.
%
/(
01
'2
"
/%
3
4
"
'0
+
'5
6
3
7
%
/'

0/23435/#627.38#02-88-9:#39;#627.38#<==-:9./95#

627.38#02-88-9:#>-5?#@/A4-=7B#C432?#DE8E4-9:#<==-:9./95#

@/A4-=7B#F-9/34#0B39#02-88-9:#>-5?#627.38#<==-:9./95#

Figure 2.7: Increases in execution time and code size relative to an optimal allocator when
spill code optimization and assignment are performed separately and heuristically. The optimal
allocator and benchmark suite used are described in [73] and are evaluated on the Intel x86-32
architecture. Using heuristics to perform register assignment results in an allocation that is closer
to optimal than when heuristics are used to perform spill code optimization.

heuristically extending it to incorporate the additional components of register allocation is not

the the best approach when targeting constrained and irregular architectures.

2.1.7 Summary

Register allocation is a critical component of the compiler backend. Although it has been exten-

sively studied, there remains substantial opportunity for improvement. Existing allocators do not

effectively represent all the pertinent features of register allocation. In particular, most allocators

focus on the register satisfiability problem. This thesis presents a principled approach to register

allocation that uses a comprehensive and expressive model coupled with progressive solution

techniques to bridge the gap between fast, suboptimal, heuristic register allocation algorithms

and slow, but optimal, algorithms.

2.2. INSTRUCTION SELECTION 25

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

1
6
8
.w

u
p
w

is
e

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
3
.a

p
p
lu

1
7
7
.m

e
s
a

1
7
9
.a

rt

1
8
3
.e

q
u
a
k
e

1
8
8
.a

m
m

p

2
0
0
.s

ix
tr

a
c
k

3
0
1
.a

p
s
i

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

1
9
7
.p

a
rs

e
r

2
5
2
.e

o
n

2
5
3
.p

e
rl
b
m

k

2
5
4
.g

a
p

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

T
o
ta

l

SPECfp SPECint

Benchmark

C
o

d
e
 S

iz
e
 I

m
p

r
o

v
e
m

e
n

t

Minimize Spilled Vars Minimize Spill Cost Coalescing

Ordered Assignment Preferential Assignment

Figure 2.8: The effect of incorporating various components of register allocation into the color-
ing algorithm. The coloring heuristic of a traditional graph allocator is replaced with an optimal
coloring algorithm. Results are shown for an algorithm that optimally minimizes the number
of spilled variables, that minimizes the total heuristic cost of spilled variables, and that mini-
mizes total spill cost while preferring allocations that are biased towards coalescing and register
preferences.

2.2 Instruction Selection

Instruction selection, or code generation, converts the compiler’s intermediate representation

(IR) into a target-specific assembly listing. Like register allocation, instruction selection has

been extensively studied. The textbook [3, 5, 8, 37, 95] approach is to represent instruction

selection as a tree tiling problem. Effective and efficient algorithms for tree tiling exist, but

this representation is fundamentally limited in expressiveness. An alternative approach tiles a

directed acyclic graph (DAG) representation. DAGs are more expressive than trees since they

explicitly encode redundant operations, but the problem of tiling a DAG optimally is provably

NP-complete.

Instruction selection is commonly performed by tiling expression trees. This was initially

done using dynamic programming [1, 118] for a variety of machine models including stack

machines, multi-register machines, infinite register machines, and superscalar machines [16].

26 CHAPTER 2. RELATED WORK

These techniques have been further developed to yield code-generator generators [30, 53] which

take a declarative specification of an architecture and, at compiler-compile time, generate an

instruction selector. These code-generator generators either perform the dynamic programming

at compile time [4, 40, 45] or use BURS (bottom-up rewrite system) tree parsing theory [104,

109] to move the dynamic programming to compiler-compile time [46, 110].

Directed acyclic graphs are an alternative representation to sequences of trees. Expression

DAGs are more expressive than expression trees as they explicitly model redundant expressions.

Tiling expression DAGs is significantly more difficult than tiling expression trees. DAG tiling

has been shown to be NP-complete for one-register machines [26] and for two-address, infinite

register machine models [2]. DAG tiling remains difficult on a three-address, infinite register

machine if the exterior tile nodes have labels that must match [108]. These labels may correspond

to value storage locations (e.g. register classes or memory) or to value types. Such labels are

unnecessary if instruction selection is separated from register allocation and if the IR has already

fully determined the value types of edges in the expression DAG. Chapter 7 includes a proof that

the problem remains NP-complete even without labels.

Although DAG tiling is NP-complete in general, for some tile sets it can be solved in poly-

nomial time [41]. If a tree tiling algorithm is adapted to tile a DAG and a DAG optimal tile set

is used to perform the tiling, the result is an optimal tiling of the DAG. Although the tile sets for

several architectures are DAG optimal [41], these tile sets use a simple cost model and the DAG

optimality of the tile set is not preserved if a more complex cost model, such as code size, is used.

A simplified version of the DAG tiling problem can be solved within a constant approximation

ratio using heuristics [2].

Traditionally, DAG tiling is performed by using a heuristic to break up the DAG into a forest

of expression trees [3]. More heavyweight solutions, which solve the problem optimally, use

binate covering [84, 85], constraint logic programming [83], integer linear programming [97] or

exhaustive search [70]. In addition, a 0-1 integer programming representation of the problem is

described in Chapter 7. These techniques all exhibit worst-case exponential behavior.

An alternative, non-tiling, method of instruction selection, which is better suited for linear, as

opposed to structural, IRs, is to incorporate instruction selection into peephole optimization [37,

2.2. INSTRUCTION SELECTION 27

39, 43, 44, 71]. In peephole optimization [91], pattern matching transformations are performed

over a small window of instructions, the “peephole.” This window may be either a physical

window, where the instructions considered are only those scheduled next to each other in the

current instruction list, or a logical window where the instructions considered are just those

that are data or control related to the instruction currently being scanned. When performing

peephole-based instruction selection, the peepholer simply converts a window of IR operations

into target-specific instructions. If a logical window is being used, then this technique can be

considered a heuristic method for tiling a DAG.

The tiling representation of instruction selection requires that the DAG or tree nodes that

make up an instruction tile be connected. That is, there must be a data dependency between

the nodes. Some instructions, such as SIMD instructions, perform inherently parallel and in-

dependent operations and so cannot be accurately represented by a traditional instruction tile.

Although some effort has been made to incorporate such parallel instructions into a tiling based

framework [81, 82], these approaches have worst-case exponential behavior and do not scale

well in practice. In general, vectorization and parallelization are considered separate problems

from instruction selection and are beyond the scope of this thesis.

When represented as a tiling problem over expression trees, instruction selection is a solved

problem. In contrast, scalable algorithms for tiling expression DAGs have not been developed.

This thesis describes the Near-Optimal Linear-Time Instruction Selection (NOLTIS) algorithm

that finds empirically near-optimal instruction tilings of expression DAGs in worst-case linear-

time.

28 CHAPTER 2. RELATED WORK

29

Chapter 3

Global MCNF Register Allocation Model

Existing register allocators do not effectively represent or optimize for all the pertinent features

of register allocation. A principled approach to register allocation requires an expressive and

complete model of the problem and effective progressive solution techniques. In this chapter

we describe an expressive and complete model of register allocation based on multi-commodity

network flow (MCNF).

We begin by describing the classical MCNF problem. We use MCNF to create an expressive

model of register allocation for straight-line code that explicitly and exactly represents the perti-

nent components of the problem. We then extend this MCNF model to handle control flow and

describe how we model the persistence of values in memory. We describe the implementation

of two code quality metrics, code size and code performance, within the global MCNF model.

Finally, we discuss limitations and potential simplifications of the model.

3.1 Multi-commodity Network Flow

The multi-commodity network flow (MCNF) problem is to find a minimum cost flow of com-

modities through a constrained network. The classical use of MCNF is to model transportation

problems where the commodities are physical goods that need to be transported from warehouses

to customers as cheaply as possible. For example, Figure 3.1(a) is a model of a transportation

problem where two warehouses, nodes 1 and 2, each stock a unit of a commodity. This is repre-

30 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

1

3

2

a:1 b:1

b:1a:1

1

1 3
1

(a)

minxa
12 + xb

21 + xa
13 + xb

13 + 3xa
23 + 3xb

23

subject to:
0 ≤ xa

12 ≤ 1
0 ≤ xb

12 ≤ 0
0 ≤ xa

21 ≤ 0
0 ≤ xb

21 ≤ 1
0 ≤ xa

13 ≤ 1
0 ≤ xb

13 ≤ 1
0 ≤ xa

23 ≤ 1
0 ≤ xb

23 ≤ 1



individual
capacity
constraints

xa
13 + xb

13 ≤ 1
xa

23 + xb
23 ≤ 1

}
bundle
constraints

xa
12 − xa

21 + xa
13 = 1

xb
12 − xb

21 + xb
13 = 0

−xa
12 + xa

21 + xa
23 = 0

−xb
12 + xb

21 + xb
23 = 1

−xa
23 − xa

13 = −1
−xb

23 − xb
13 = −1


network
constraints

(b)

Figure 3.1: A simple example of a multi-commodity network flow problem. (a) A graphical
representation of the problem. The two commodities, a and b, have nodes 1 and 2 respectively
as source nodes and share node 3 as a sink node. All edges have a total capacity of one, with
edges (1, 2) and (2, 1) restricted to commodities a and b respectively. (b) The complete problem
in equation form.

sented in the figure by an incoming edge labeled with the commodity and its amount (one unit

of a for node 1 and one unit of b for node 2). These warehouse nodes are source nodes because

they create a supply of a commodity. In this example there is a single customer represented by

node 3 that has a demand for both one unit of a and one unit of b. Nodes that create a demand

for a quantity are called sink nodes.

The edges connecting nodes in an MCNF problem have costs and capacities. In a transporta-

tion problem, the cost might represent a monetary cost associated with moving a commodity.

Edge costs can be specific to each commodity or, as is the case in Figure 3.1(a), all commodities

can incur the same cost along an edge. In the example, both a and b incur a cost of 1 along the

3.1. MULTI-COMMODITY NETWORK FLOW 31

edge (1, 3). In a transportation problem the capacity of an edge represents a physical constraint,

such as how many commodities can be loaded onto a truck. Individual capacity constraints are

edge capacities that are specific to each commodity. In the example, as indicated the edge style,

the individual capacity of edge (1, 2) for commodity a is 1, but for b is zero. In a transportation

problem this might correspond to a commodity requiring a special kind of truck that isn’t avail-

able between two destinations. An edge can also have a bundle constraint that constrains the

total capacity of the edge. In the example edges (1, 3) and (2, 3) both have a bundle constraint of

one. In a transportation problem the bundle constraints correspond to the payload capacity of a

truck. In the example a truck can transport only a single commodity.

In addition to the individual capacity constraints and bundle constraints, a network flow

model also has network constraints. These constraints enforce the natural requirement that the

amount of flow into a node equals the amount of flow out of the node. Source nodes are initialized

with a positive amount of incoming flow while sink nodes have a positive amount of outgoing

flow. The amount of flow available at the source nodes of a commodity must match the amount

of flow available at the sink nodes. The MCNF problem is to minimize the total cost of all the

commodity flows through the network while respecting all the constraints. Finding the minimal

cost flow of a single commodity is solvable in polynomial time even if all flows must be integer.

In Figure 3.1(a), the minimal flow for commodity a is 1→ 3 and for b is 2→ 1→ 3. However,

taken together these two flows violate the bundle constraint of edge (1, 3). The optimal solution

to the MCNF problem requires that commodity b flow over the more expensive edge (2, 3). As

shown by the example, the bundle constraints increase the complexity of the MCNF problem. In

fact, finding an optimal integer solution to the MCNF problem is NP-complete [6].

We now define the MCNF problem formally as an optimization function over the commodi-

tized edges of a network. Let xq
ij represent the flow of a commodity q over an edge (i, j), then

32 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

the MCNF problem is:

min
∑
i,j,q

cqijx
q
ij cost function (3.1)

subject to the constraints:

0 ≤ xq
ij ≤ vq

ij individual capacity constraints (3.2)∑
q

xq
ij ≤ uij bundle constraints (3.3)

Nxq = bq network constraints (3.4)

where cqij is the cost incurred by commodity q along edge (i, j), vq
ij is the maximum amount of

flow of a single commodity q allowed along edge (i, j), and uij is maximum amount of flow

of all commodities allowed along edge (i, j). For example, in Figure 3.1(a), edge (1, 2) has an

individual capacity constraint of zero for commodity b resulting in a value of zero for vb
12 and the

constraint

0 ≤ xb
12 ≤ 0

and the edge (1, 3) has a bundle constraint of one resulting in a value of one for u13 and the

constraint

xa
13 + xb

13 ≤ 1

The matrixN represents the network constraints and is a matrix representation of the network

topology. The N matrix for Figure 3.1(a) is

N =


1 −1 0 1

−1 1 1 0

0 0 −1 −1


Each row represents a node and each column an edge. In this example, the columns correspond to

the edges (x12, x21, x23, x13) and the rows to the nodes (1, 2, 3). A value in the matrix is positive

if the corresponding edge is leaving the corresponding node and negative if the edge is entering

the node. In the example, edge x12 flows out of node 1 so the value in the first column and first

row of N is positive one. The vector bq contains the source and sink information. Each value

corresponds to a node and is positive if the node is a source for commodity q, negative if the node

3.2. LOCAL REGISTER ALLOCATION MODEL 33

is a sink for commodity q, and zero otherwise. The vectors ba and bb for Figure 3.1(a) are

ba =


1

0

−1

 bb =


0

1

−1


The rows correspond to the nodes (1, 2, 3). Node 1 is a source of one unit of commodity a so

the first value of ba is a positive one. The network constraints are derived by multiplying the

matrix N by the flow vector xq of a commodity and setting the result equal to bq. For example,

we construct the network constraints for commodity a in Figure 3.1(a) as follows:

Nxa = ba ⇒
1 −1 0 1

−1 1 1 0

0 0 −1 −1



xa

12

xa
21

xa
23

xa
13

 =


1

0

−1

⇒

xa
12 − xa

21 + xa
13 = 1

xb
12 − xb

21 + xb
13 = 0

−xa
12 + xa

21 + xa
23 = 0

A complete mathematical representation of the MCNF problem of Figure 3.1(a) is shown in

Figure 3.1(b).

3.2 Local Register Allocation Model

We formulate an expressive model of the local register allocation problem using multi-commodity

network flow. Local register allocation considers only the problem of allocating the straight-line

code of a single basic block. Consider the simple example of local register allocation shown in

Figure 3.2. As this register allocation problem contains several features that an expressive model

must be able to accurately represent, we use it as a running example in our description of our

formulation of an MCNF model of local register allocation. Using a simplification of the ISA re-

strictions of the x86 architecture and optimizing for code size we derive the following constraints

and costs for each of the unallocated variables:

34 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

int example(int a, int b)
{

int d = 1;
int c = a - b;
return c+d;

}

(a) Source code

MOVE 1 → d 5 bytes
SUB a,b → c 3 bytes
ADD c,d → c 3 bytes
MOVE c → r0 2 bytes
Total Size: 13 bytes

(b) Unallocated assembly

Figure 3.2: A simple example of local register allocation.

a The parameter a is passed into the function on the stack. The register allocator may either

incur the cost of a load (3 bytes) or leave the variable in memory and pay the cost of

directly accessing memory in the SUB instruction (1 byte). The SUB instruction supports

accessing at most one unique memory location. If a is left in memory, the values of b and

c must be available in a register. The SUB instruction is the last instruction to use a. a may

be allocated to any integer register.

b The parameter b is passed into the function on the stack. The register allocator may either

incur the cost of a load (3 bytes) or leave the variable in memory and pay the cost of

directly accessing memory in the SUB instruction (1 byte). The SUB instruction supports

accessing at most one unique memory location. If b is left in memory, the values of a and

c must be available in a register. The SUB instruction is the last instruction to use b. b may

be allocated to any integer register.

c The variable c is defined by the SUB instruction. It may be defined into any integer register

or directly into memory at a cost of 1 byte.1 Since the SUB instruction supports access-

ing at most one operand in memory, if c is defined into memory, both a and b must be

available in registers. The ADD instruction redefines the value of c. The ADD instruction

can directly access at most one memory location for a cost of 1 byte. The final MOVE

instruction is the last instruction to use c. Since this is a move into a hardware register, r0,

if c is allocated to r0 the MOVE instruction can be eliminated for a savings of 2 bytes.

1For purposes of exposition we are allowing the SUB instruction to have a three-operand form where each

operand can be separately allocated. In the full x86 ISA a two-operand form is required. The ramifications of such

a requirement are discussed in Section 3.6.

3.2. LOCAL REGISTER ALLOCATION MODEL 35

a b

mem

c d

r0 r1 mem r0 r1 1

1 -5

Figure 3.3: Source nodes of a MCNF model of register allocation.

Alternatively, the MOVE instruction may directly access c in memory (becoming a load

instruction) for a cost of 1 byte.

d The initial MOVE instruction defines d to have the constant value 1. The MOVE is not per-

mitted to define a constant value directly into memory. Instead of defining d into an integer

register at this point, the allocator has the option of eliminating the MOVE instruction for

a savings of 5 bytes and rematerializing the constant value later. The ADD instruction uses

d. The ADD instruction can directly access at most one operand in memory for a cost of

1 byte. Alternatively, instead of accessing the value of d in a register, the constant value

1 of d can be directly used and a 2 byte smaller INC instruction can be used instead. The

ADD instruction is the last instruction to use d.

Our MCNF model of local register allocation can exactly represent all of these constraints

and costs. The network is constructed such that each commodity represents a variable and the

flow of the commodity exactly maps to a detailed allocation of that variable. The nodes of the

network consist of source nodes, sink nodes, and allocation class nodes. Allocation class nodes

represent a specific choice of allocation at a specific location in the program and are grouped into

instruction groups and crossbar groups based on the location they represent. We now build up a

local MCNF model for the straight-line code of Figure 3.2.

3.2.1 Source Nodes

Source nodes in the MCNF model correspond directly to source nodes in the classical MCNF

problem. There is at least one source node for every variable and every source node is associated

with exactly one variable. A source node contributes exactly one unit of flow to the network.

36 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

There is a source node for every defining location of a variable that is not a redefinition of the

variable. For example, in the instruction sequence of Figure 3.2, the SUB instruction defines the

variable c, and the ADD instruction redefines the variable c. Since there is only one defining

location that is not a redefinition, there is only a single source node for variable c corresponding

to the defining SUB instruction.

The source node of a variable connects to allocation class nodes that correspond to the lo-

cation of the definition of the variable. Only allocation class nodes representing legal allocation

choices for the definition of the variable are connected. If defining a variable into a specific al-

location class incurs a cost, the edge connecting the source node to the corresponding allocation

class node incurs the same cost.

The source nodes of our running example are shown in Figure 3.3. The parameters a and b

are connected to the same memory node because they are defined at the same location (the entry

of the function) and are constrained to be initially allocated to memory (on the stack frame).

The source node of variable c is connected to register nodes and to a memory node since c is

defined by the SUB instruction. The edge to the memory node has a cost that exactly matches

the increase in code size of accessing a memory operand within the SUB instruction. The source

node of variable d is connected to register nodes and to a constant allocation class node. The

defining instruction of d does not support defining d directly into memory, and so there is no

connection to a memory node. However, if d is defined into a constant allocation class for later

rematerialization, the defining instruction can be eliminated resulting in a code size savings of 5

bytes as indicated by the -5 cost on the edge to the constant allocation class node. Note that c

and d are defined at different locations and so connect to distinct sets of allocation class nodes.

3.2.2 Sink Nodes

Sink nodes in the MCNF model correspond directly to sink nodes in the classical MCNF prob-

lem. There is at least one sink node for every variable and every sink node is associated with

exactly one variable. A sink node creates a demand of exactly one unit of flow for a variable.

There is a sink node for every location where a variable ceases to be live, i.e., the location of the

3.2. LOCAL REGISTER ALLOCATION MODEL 37

a b

r0 r1 mem

c

r0 r1 mem r0 r1 mem 1

d

Figure 3.4: Sink nodes of a MCNF model of register allocation.

last use of the variable. For example, for the problem of Figure 3.2, both a and b are last used by

the SUB instruction.

The sink node of a variable is connected to allocation class nodes that correspond to the

location of the last use of the variable. Only allocation class nodes representing legal allocation

choices for the variable at this point are connected. The sink nodes of our running example are

shown in Figure 3.4. Note that a and b are connected to the same set of allocation class nodes.

This is because they both cease to be live at the same location: the SUB instruction. All four

variables are last used by an instruction that can access them either in registers or memory and so

are connected to the corresponding allocation class nodes. Additionally, the last use of d is the

ADD instruction which can directly use the constant value of d and so the sink of d is connected

to an additional constant allocation class node.

3.2.3 Allocation Class Nodes

Allocation class nodes represent a specific allocation class, a storage location that a variable

can be allocated to. An allocation class can be a register, a class of constants, or a memory

space. Although a register allocation class typically represents exactly one register, constant

and memory allocation classes may correspond to a class of constants or memory locations.

Constants or memory locations are grouped into a class if they are all accessed similarly. For

example, there may be separate constant allocation classes for 8-bit integer constants, floating

point constants, symbolic constants, constant address locations, and read-only hardware registers

(such as the stack pointer). The number and kind of constant classes depends upon the instruction

set architecture. For example, if all integer constants are accessed identically in an ISA, then

there is no need for separate 8-bit and 32-bit constant classes. In our running example, we define

38 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

mem

r0 r1 mem

3
3

a b

(a)

r0 r1 mem

r0 r1 mem

1

1

a,b,d a,b,d a,b d

(b)

Figure 3.5: Crossbar groups for the local register allocation problem of Figure 3.2. The memory
nodes are uncapacitated. (a) is the crossbar before the initial MOVE instruction. (b) is the cross-
bar after the initial MOVE instruction. The dashed edges can only be traversed by the flow for d.
Cost labels are omitted for clarity. The memory nodes and constant nodes are uncapacitated.

a constant class for the constant 1 since the ADD instruction treats the constant 1 differently than

other constants (it converts to an INC instruction). Typically, only a single memory allocation

class representing an area on the stack frame is necessary, but in theory other memory allocation

classes, such as an SRAM buffer or heap memory, could be considered as well.

Allocation class nodes are organized in layers where each layer corresponds to a program

point or instruction and contains nodes representing each allocation class. Nodes corresponding

to program points (locations in between instructions) belong to crossbar groups while nodes

corresponding to instructions belong to instruction groups.

3.2.4 Crossbar Groups

A crossbar group contains multiple layers of allocation class nodes. Each layer consists of at

most one representative of every possible allocation class (e.g. there are not two r0 nodes in

a layer). A layer represents a specific program point. Crossbar groups are inserted between

every instruction group. A crossbar group is also inserted before the first instruction if there are

variables live into the basic block. The defining point for these variables is considered to be

the top of the crossbar. In our running example, the parameters a and b are live into the basic

3.2. LOCAL REGISTER ALLOCATION MODEL 39

r0 r1 mem

r0 r1 mem

(a)

r0 r1 mem

r0 r1 mem

r0 r1 mem

(b)

Figure 3.6: Two possible crossbar group network structures. (a) A full crossbar and (b) a zig-zag
crossbar.

block and are defined into the top of the first crossbar as shown in Figure 3.5(a). Similarly, if

any variables are live out of the block, a crossbar is inserted after the last instruction and the sink

nodes of these variables are connected to the bottom of the crossbar.

The purpose of the crossbar group is to allow the allocation class of a variable to change.

For instance, a variable might be stored from a register into memory, loaded from memory into a

register, moved from one register to another, or rematerialized as a constant into a register. All of

these transformations can be modeled by an edge from one layer of the crossbar group to another.

For example, in the initial crossbar of Figure 3.5(a) the edges from the memory allocation class

to the register classes have a cost of 3 since the size of a load instruction is 3 bytes.

Not all variables may be allowed to flow over all edges of the crossbar. Individual capacity

constraints are used to prohibit variables from flowing through invalid allocation classes. An

allocation class is invalid for a variable if it cannot be legally allocated to that class. For instance,

a floating-point variable might not be able to be accurately or efficiently stored in an integer

register. Constant allocation classes are restricted to variables that have a known constant value

at the corresponding program point. In our example the variable d is known to have a constant

value throughout the network and the constant can be rematerialized (loaded into a register) or

used directly at any point. Figure 3.5(b) shows the crossbar inserted after the first instruction of

40 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

our running example. The edges to and from the constant allocation nodes are restricted to the

flow of d.

The crossbar nodes are responsible for implementing the capacity constraints of the repre-

sented allocation classes. In our example, since only a single variable can be allocated to a single

register at any program point, an r0 register class node permits only a single unit of flow through

it. In contrast, stack space is assumed to be essentially unlimited so the memory allocation class

node does not limit the amount of flow through it. We implement these constraints by applying

bundle constraints to the nodes of the crossbar. This is different from the classical representation

of MCNF (Figure 3.1) where capacities are applied to edges. A node with a bundle constraint

can be implemented within the framework of the classical MCNF formulation by converting the

node to an additional capacitated edge.

We consider two possible crossbar network structures. Full crossbars, as shown in Figure 3.5

and Figure 3.6(a), consist of two layers of nodes. There is an edge from every node in the top

layer to every node in the bottom layer. In a full crossbar, as shown in Figure 3.6(a), there are

flows where the corresponding changes in allocation class cannot be implemented solely with

move instructions. Instead, swap instructions are necessary. However, since the costs of the

edges in the crossbar correspond to the cost of move instructions, this means that the cost model

for the full crossbar may be inaccurate. For example, the single swap instruction that is needed

in Figure 3.6(a) may be less costly than two move instructions.

A zig-zag crossbar, Figure 3.6(b), exactly represents the costs and constraints of a target

architecture without support for swap instructions. In the zig-zag crossbar an additional middle

layer of nodes is needed. From the top layer to the middle layer, data movement is only allowed

in one direction (a zig to the right in Figure 3.6(b)) and then from the middle to the bottom

layer, data movement is only allowed in the alternate direction (a zag to the left). This construct

eliminates any need for swap instructions since flows will never cross over each other.

A full crossbar is more compact than a zig-zag crossbar. This results in lower memory re-

quirements for the model and ultimately faster register allocation performance. The full crossbar

is more flexible in that it supports the generation of swap instructions, but does not accurately

model the costs of these swap instructions. In addition, not all architectures support arbitrary

3.2. LOCAL REGISTER ALLOCATION MODEL 41

r0 r1 1

d

-5

MOVE 1→d

(a)

r0 r1 SUB a,b→cmem

c

1

a b

a,b a,b a,b

1

1

(b)

r0 r1 ADD c,d→cmem

c,d c,d c,d

1

1

-2

d

d

(c)

r0 r1 MOVE c→r0mem

c c c

1

c

-2

1

(d)

Figure 3.7: Instruction groups for the local register allocation problem of Figure 3.2. The register
nodes are uncapacitated.

swap instructions and even when an architecture supports such an instruction, many compilers

do not generate or support the instruction. As a result, the zig-zag crossbar is likely the more

practical choice for most compilers and architectures.

3.2.5 Instruction Groups

An instruction group represents a specific instruction in the program and contains a single node

for every allocation class that may be used by the instruction. The instruction groups of the

running example are shown in Figure 3.7. Instruction groups represent the allocation constraints

and preferences of the corresponding instruction.

The nodes in an instruction group constrain what allocation classes are legal for the variables

used by that instruction. In our running example, the first MOVE instruction cannot contain a

memory operand so the corresponding instruction group, Figure 3.7(a), has no memory node.

Instruction group nodes are also responsible for limiting the usage of allocation classes within an

instruction. For example, in Figures 3.7(b), 3.7(c), and 3.7(d), only a single memory operand is

42 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

allowed in the corresponding instructions. As a result, unlike in a crossbar group where a memory

node is uncapacitated, a bundle constraint is applied to the memory node in the instruction group.

However, most instruction group nodes do not have a capacity constraint. The lack of a capacity

constraint allows a variable that is defined by an instruction to be allocated to the same allocation

class as a variable that is not live out of the instruction. For instance, in the SUB instruction of

Figure 3.7(b), both a and c can be legally allocated to the register r0.

The costs on the edges into the instruction group nodes represent the allocation class prefer-

ences of the corresponding instruction. For example, in Figures 3.7(b), 3.7(c), and 3.7(d), any

edge into the memory instruction group node has a cost of 1 representing the one byte increase

in code size when an instruction contains a memory operand. In the instruction group for the first

MOVE instruction, shown in Figure 3.7(a), the edge into the constant class node has a cost of -5

since the instruction can be eliminated if d is not loaded into a register at that point. The final

MOVE instruction, shown in Figure 3.7(d), has a cost of -2 on the edge into the r0 node since

the instruction is rendered unnecessary if c is allocated to r0 at that point.

3.2.6 Full Model

Source nodes, sink nodes, crossbar groups, and instruction groups are combined to generate an

expressive model of local register allocation. The full model for the running example is shown

in Figure 3.8(a). Instruction group nodes are directly connected to the corresponding allocation

class nodes of the surrounding crossbar group nodes. If a variable is used within an instruction,

it must flow through the nodes of the corresponding instruction group. Variables not used by

an instruction bypass the instruction into the next crossbar group. In Figure 3.8(a) variables a

and b bypass the first MOVE instruction, but flow through the nodes of the instruction group of

the SUB instruction. The MCNF model exactly represents all the pertinent features of the local

register allocation problem of Figure 3.2. As a result, the optimal solution to the MCNF model

shown in Figure 3.8(a) corresponds directly to the optimal allocation of Figure 3.8(d).

3.3. GLOBAL REGISTER ALLOCATION MODEL 43

r0 r1 1

d

-5

MOVE 1→d

c

r0 r1 MOVE c→r0mem

1

c

-2

1

mem

r0 r1 mem

3
3

a b

r0 r1 mem

r0 r1 mem

1

1

r0 r1 SUB a,b→cmem

1

a b

1

1

r0 r1 mem

r0 r1 mem

1

1

r0 r1 ADD c,d→cmem

1

1

-2

d

r0 r1 mem

r0 r1 mem

(a)

MOVE 1 → d 5 bytes
SUB a,b → c 3 bytes
ADD c,d → c 3 bytes
MOVE c → r0 2 bytes
Total Size: 13 bytes

(b)

Variable Flow Cost
a 3
b 1
c -2
d -7

Total -5

(c)

MOVE (fp+off a) → r0 3 bytes
SUB r0,(fp+off b) → r0 4 bytes
INC r0 → r0 1 byte
Total Size: 8 bytes

(d)

Figure 3.8: (a) The full MCNF model of the local register allocation problem of Figure 3.2. The
thick lines demonstrate a set of flows that solve the MCNF model. (b) The original unallocated
assembly code, (c) the costs incurred by each variable in the shown MCNF solution, and (d) the
allocated assembly code corresponding to this solution.

44 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

B1:
...
test x
jle B3
jmp B2

B3:
ret x

B2:
inc x
jmp B3

Figure 3.9: A simple control flow graph.

in3in2in1

out1 out3out2

∑
i

ini =
∑

i

outi

(a)

out1 out3out2

in

∀i(in = outi)

(b)

in1 in3in2

out

∀i(ini = out)

(c)

Figure 3.10: The three types of flow nodes in the global MCNF model of register allocation. A
(a) normal network node, (b) an exit node with split flow constraints, and an (c) entry node with
merge flow constraints.

3.3 Global Register Allocation Model

The MCNF model of the local register allocation problem can exactly express the costs and

constraints of the most pertinent features of local register allocation. However, it cannot represent

control flow. Consider the control flow graph of Figure 3.9. Although a local MCNF model can

be constructed for each block, it is not possible to connect these models into a larger model that

3.3. GLOBAL REGISTER ALLOCATION MODEL 45

r0 r1 mem

r0 r1 mem

r0 r1 mem

B1

r0 r1 mem

r0 r1 mem

r0 r1 mem

B3

r0 r1 mem

r0 r1 mem

r0 r1 mem

B2

r0 r1 mem

r0 r1 mem

r0 r1 mem

...

Figure 3.11: Entry and exit groups of a global MCNF model of register allocation.

46 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

accurately represents the global register allocation problem without extending the MCNF model

to include additional constraints.

In the local MCNF model, a program point has exactly one successor program point and

at each program point a variable is only allocated to a single allocation class. This invariant is

maintained in the MCNF model through the node network constraints, Figure 3.10(a), which re-

quire that the amount of flow into a node equals the amount of flow out of the node. Since source

nodes provide a single unit of flow, at each layer in the network a node either has a single unit of

flow or no flow. When control flow is permitted, a program point may have multiple successors.

For example, in Figure 3.9 the program point at the exit of block B1 has two successors: the

entry of block B2 and the entry of block B3. Both block B2 and block B3 expect a full unit of

flow for every live-in variable, but due to the node network constraints, the nodes at the exit of

blockB1 can only provide a total of one unit of flow. In order to represent control-flow, new flow

constraints that support splitting flow (for branch points in the control flow graph) and merging

flow (for merge points in the control flow graph) are needed. These node flow constraints are an

extension of the classical MCNF problem and are represented using exit nodes for splitting flow

and entry nodes for merging flow.

Exit Nodes Exit nodes do not have traditional flow constraints. Instead, the flow equations of

an exit node, Figure 3.10(b), split the flow of the predecessor into multiple equivalent flows to

each of the successor nodes. If the incoming flow of a variable is one, all the outgoing flows will

be one. If the incoming flow of a variable is zero, all the outgoing flows will be zero.

A single layer of exit nodes, an exit group, is constructed at the end of every basic block. In

order to model Figure 3.9, an exit group needs to be created for blocks B1 and B2 as shown

in Figure 3.11. An exit node, as shown in Figure 3.10(b), has a single predecessor and multiple

successors. Typically, the predecessor and successor nodes of the exit node all represent the same

allocation class since data movement instructions cannot be inserted on control flow edges. The

predecessor of an exit node is the bottom node in the final crossbar group of the basic block. The

successors of an exit node are the entry nodes belonging to the successor blocks of the block

containing the exit node. Only variables that are live out of the block flow out of an exit node.

3.3. GLOBAL REGISTER ALLOCATION MODEL 47

In Figure 3.11, the r0 exit node of blockB1 has the bottommost r0 crossbar group node as a

predecessor and the r0 entry nodes of blocks B2 and B3 as successors. If the variable x, which

is live out of block B1, is allocated to r0 at the exit of block B1, it is required to be allocated to

r0 at the entry of blocks B2 and B3.

Entry Nodes Entry nodes do not have traditional flow constraints. Instead, the flow equations

of an entry node, Figure 3.10(c), merge all the flows of the predecessors into a single reduced

flow that is equal in value to each of the incoming flows. That is, if all the incoming flows are

one, the outgoing flow will be one. If all the incoming flows are zero, the outgoing flow will

be zero. If the incoming flows are different values, the flow constraint of the entry node is not

satisfied.

A single layer of entry nodes, an entry group, is constructed at the start of every basic block.

An entry node has several predecessors, but only a single successor. Typically, all the predeces-

sors and the successor of the entry node represent the same allocation class since data movement

instructions cannot be inserted on control flow edges. The successor of an entry node is the top

node in the initial crossbar group of the basic block. The predecessors of a entry node are exactly

the exit nodes belonging to the predecessor blocks of the block containing the entry node. Only

variables that are live into the block flow through a entry node. In Figure 3.11, the r0 entry node

of block B3 has the topmost r0 crossbar group node as a successor and the r0 exit nodes of

blocks B1 and B2 as predecessors.

The global MCNF model exactly represents the control flow of the input control flow graph.

In some cases, a higher quality register allocation may be obtained if the control graph is mod-

ified. For example, if critical edges are split, then spill and shuffle code can always be inserted

along a control flow edge. If the input control flow graph contains critical edges, then the cost

of inserting a new basic block along this edge can be approximated in the global MCNF model.

Any data movement edges in crossbars after a branch instruction include the cost of creating a

new basic block.

We now define the global MCNF problem formally as an optimization function over the

commoditized edges of a network. Let xq
ij represent the flow of a commodity q over an edge

48 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

reg mem

reg mem

anti

anti

cScL00 0 0

Figure 3.12: A crossbar group with nodes for anti-variables. Anti-variables pay the cost of a
store, cS , to move from a memory node to an antionly node. Regular variables incur no cost to
move to a memory node, but a variable and the corresponding anti-variable cannot be allocated
to the same memory node. The cost of a load, cL, is always incurred when moving from memory
to a register.

(i, j) and let (ext , ent) represent a pair of connected exit and entry nodes where predext is the

predecessor of ext and succent is the successor of entry , then the global MCNF problem is:

min
∑
i,j,q

cqijx
q
ij cost function (3.5)

subject to the constraints:

0 ≤ xq
ij ≤ vq

ij individual capacity constraints (3.6)∑
q

xq
ij ≤ uij bundle constraints (3.7)

Nxq = bq network constraints (3.8)

xq
predext ,ext

= xq
ext ,ent exit boundary constraints (3.9)

xq
ext ,ent = xq

ent ,succent
entry boundary constraints (3.10)

xq
i,j ∈ {0, 1} integrality constraints (3.11)

This definition is identical to the MCNF problem formulation given in Section 3.1 with the

addition of the exit and entry boundary constraints, which implement the flow constraints of

exit and entry nodes, and the integrality constraints, which ensure that a variable cannot be

simultaneously fractionally allocated.

3.3. GLOBAL REGISTER ALLOCATION MODEL 49

r0 r1 mem anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

a'a

load 8(fp)→a

inc a→a

r0 r1 mem

r0 r1 mem

anti

anti

lea (a,2)→b

b'b

cS

cS

cS

cS

-cL-cS

cL
cL

cL
cL

cM -cS

(a)

r0 r1 mem anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

a'a

load 8(fp)→a

inc a→a

r0 r1 mem

r0 r1 mem

anti

anti

lea (a,2)→b

b'b

cS

cS

cS

cS

-cL-cS

cL
cL

cL
cL

cM -cS

(b)

load 8(fp)→r0
inc r0
store r0→Ma
lea (r0,2)→r0

(c)

inc 8(fp)
load 8(fp)→r0
lea (r0,2)→r0

(d)

Figure 3.13: A network that demonstrates value modification, load rematerialization and anti-
variables. The first instruction defines the variable a as the result of a rematerializable load from
a known stack location. The second instruction increments a. This instruction is capable of
modifying the value directly in memory. The third instruction uses a and defines b and requires
that both operands be allocated to a register. We consider two possible allocations, both of which,
for the sake of exposition, seek to allocate a and b to r0 at the lea instruction. This requires
that a be evicted immediately after the lea instruction. In allocation (a) the variable a is first
allocated to r0 and then, prior to the lea instruction, is stored to memory to support the eviction.
The resulting allocation has a total cost of cS and is shown in (c). In contrast, allocation (b) leaves
the variable a in memory, increments it directly in memory, and then loads the value into r0.
The resulting allocation has a total cost of −cL − cS + cM − cS + cL + cS + cS = cM and is
shown in (d).

50 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

3.4 Persistent Memory

The cost of an operation, such as a load or move, can usually be represented by a cost on the

edge that represents a move between allocation classes. However, this does not accurately reflect

the cost of storing to memory. If a variable has already been stored to memory and its value

has not changed, it is not necessary to pay the cost of an additional store. Values in memory are

persistent, unlike those in registers which are assumed to be overwritten.

In a model that represents the persistence of values in memory, the cost of a store should only

be incurred the first time a variable is stored to memory. This cost cannot be implemented as a

simple variable edge cost. An edge cost is incurred regardless if the transition to memory is the

first transition, which requires a store, or the second transition, which is free since the value is

already available in memory. Instead of modeling the cost of a store at the point where a variable

transitions into memory, we use an additional commodity, an anti-variable, to denote whether

a value is available in memory or not. If the value of a variable is not available in memory

at a location (a store is needed in order to transition the variable into memory), then the anti-

variable occupies the memory node for that location at no cost. However, if the variable’s value

is available in memory, the anti-variable must be allocated to an antionly allocation class for the

cost of a store.

Anti-variables can only flow through memory nodes or antionly nodes. Only anti-variables

can flow through antionly nodes and the allocation of an anti-variable to an antionly node indi-

cates that the variable’s value is available in memory. Both a regular variable and its correspond-

ing anti-variable can flow through a memory node, but they are mutually exclusive. A variable

cannot coexist with the corresponding anti-variable at a memory node.

As shown in the crossbar of Figure 3.12, an anti-variable can flow from a memory node to

an antionly node. This transition indicates that the variable’s value is now available in memory

and so always incurs the cost of a store, cS , in the crossbar. As shown in Figure 3.12, a regular

variable incurs no cost when flowing into a memory node. However, because a variable and

its corresponding anti-variable cannot coexist in the same memory node, in order for a regular

variable to be evicted to memory, the cost of a store must be incurred in order to transition the

anti-variable into an antionly node. Once this store cost is incurred, the anti-variable stays in the

3.4. PERSISTENT MEMORY 51

antionly allocation class indicating that the variable’s value remains available in memory. The

regular variable can now move from registers to memory multiple times and yet only pay the cost

of a single store (of course, every transition from memory to a register pays the cost of a load,

cL, in Figure 3.12).

The transition of an anti-variable from a memory node to an antionly node not only represents

the cost of storing the variable, it also indicates the location of the required store instruction. As

a result, edges from memory nodes to antionly nodes should only be constructed where the cor-

responding store instruction would be legal. In contrast, a regular variable may legally move into

memory at any point including at basic block boundaries and immediately after an instruction

group. This later case is illustrated by the lea instruction in Figure 3.13 where both the source

operand, a, and destination operand, b, of a lea instruction are allocated to the same register

r0. This results in the value of a in r0 being overwritten, but since the value of a is available

in memory (the anti-variable a′ is allocated to an antionly node at this point) a can be immedi-

ately evicted to memory at no cost additional cost (the cost of the store was already paid by the

anti-variable).

An anti-variable can remain allocated to the antionly allocation class as long as the value of

the corresponding variable does not change. If the variable is redefined then the anti-variable is

forced back into a memory node at the redefining instruction. In Figure 3.13(b), the value of a

is modified by the inc instruction forcing the anti-variable a′ back into the memory node of this

instruction group. Thus an additional store will be necessary if the new value needs to be evicted

to memory. If the modifying instruction supports redefining the variable directly in memory,

then, as with the inc instruction in Figure 3.13(b), the cost of a store, cS , is subtracted from

the memory access cost, cM , of the instruction. Since in order for the regular variable to stay

in memory the anti-variable must immediately transition back to an antionly node and incur the

cost of a store, the combined cost of the variable and anti-variable flows is simply the memory

access cost.

A similar application of a negative store cost is necessary when modeling load rematerializa-

tion. If the value of a variable is already available in memory, perhaps as part of a stack allocated

object, then it may not be necessary to immediately generate an explicit load instruction. This

52 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

Benchmark Suite Name Lines of Code

Mibench[57]

dijkstra 133

patricia 292

stringsearch 3070

qsort 202

Mediabench[79]
g721 encode 901

g721 decode 903

SPEC2006[123]
429.mcf 1574

470.lbm 904

Table 3.1: Reduced benchmark suite suitable for optimal allocation.

is modeled by defining the variable directly into memory. Future instructions that access the

variable can either directly access the original memory location or generate a load instruction

to move the variable into a register. If the original memory location is read-only, the network

structure is constructed accordingly. As shown by the load instruction in Figure 3.13, when a

variable is defined directly into memory as part of a rematerializeable load, the cost is equal to

negative the cost of a load (cL) and a store (cS). The negative store cost cancels out the cost of

transitioning the anti-variable into an antionly node while the negative load cost represents the

benefit of eliminating the defining load instruction. Note that the use of negative store costs to

cancel out the store costs incurred by anti-variables assumes a uniform cost model where the cost

of a store is the same at every program location. This is not the case when optimizing for per-

formance, since stores inside loops are generally considered more expensive then stores outside

loops. However, when optimizing for performance a memory modification operation is expected

to incur the cost of both reading and writing to memory, hence no negative cost is needed.

3.5 Modeling Costs

The global MCNF model of register allocation can support highly precise and detailed cost mod-

els. A unique cost can be associated for every transformation of every variable at every program

3.5. MODELING COSTS 53

0%

10%

20%

30%

40%

50%

60%

70%

80%

<0.95
<0.96

<0.97
<0.98

<0.99
<1 =1 >1 >1.01

>1.02
>1.03

>1.04
>1.05

P
er

ce
nt

 o
f F

un
ct

io
ns

Predicted/Actual Code Size Ratio

x86-32
x86-64

Figure 3.14: The accuracy of the code size global MCNF cost mode. The histogram bins
functions based on the accuracy ratio: predicted/actual.

point. However, in practice, cost models with some degree of uniformity are used. We consider

how two code quality metrics, code size and performance, affect the cost model.

The global MCNF model can exactly and precisely model code size, modulo the limitations

of the model (Section 3.6). The code size metric is highly uniform. Costs depend exclusively

on the instruction set architecture, not the program, and can be perfectly determined at compile-

time. As such, an optimal solution to the global MCNF model should directly correspond to an

optimal register allocation. We validate the fidelity of our code size cost model by comparing the

code size predicted by the model with the actual post-register allocation code size (as measured

internally in the compiler) when the hybrid allocator of Chapter 5 is used to register allocate the

benchmarks described in Chapter 4.

A histogram of the ratio of the predicted value relative to the actual value is shown in Fig-

ure 3.14 for two instruction set architectures, x86-32 and x86-64. For the x86-32 ISA, nearly

80% of the functions are exactly predicted and more than 93% of the functions are predicted to

be within 1% of the actual result. Nearly all of the mispredicted functions are over-predictions. In

54 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

(a) Load Instructions (b) Store Instructions

(c) Load+Store Instructions (d) Load+Store Instructions

Figure 3.15: The relative change in the number of dynamic (a) load and (b) store instructions in
an optimal register allocation as the single-execution costs of memory operations are changed.
(c) and (d) show two different views of the same data. Load and store costs are relative to the cost
of a executing a move instruction. The extend linear-scan heuristic allocator of the compiler is
the baseline. Regardless of the cost configuration, the optimal allocation achieves at least a 20%
reduction in executed memory operations compared to the default allocator. Results are from a
reduced benchmark set (Table 3.1) where an optimal register allocation can be found for each
configuration in a matter of hours.

3.5. MODELING COSTS 55

(a) Core 2 (b) Core 2

(c) Pentium III (d) Pentium III

Figure 3.16: The impact on performance of varying single-execution costs in an optimal register
allocator when targeting the x86-32 instruction set architecture. Two views, (a) and (b), of the
performance of an Intel Core 2 Quad (Q6600) processor and two views, (c) and (d), of the
performance of an Intel Pentium III (Coppermine) processor are shown. Load and store costs
are all relative to the cost of a executing a move instruction. The default extended linear-scan
heuristic allocator of the compiler is the baseline. Larger (“hotter”) values indicate improved
performance. Results are from a reduced benchmark set (Table 3.1) where an optimal register
allocation can be found for each configuration in a matter of hours.

56 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

these cases, the register allocation enables an optimization that is not captured within the model,

such as move coalescing. The model is not as accurate when predicting register allocation out-

comes on the x86-64 ISA. Only 71% of the functions are predicted to be within 1% of the actual

result and most mispredictions are over-predictions. This is due to the increased relevance of

the limitations discussed in Section 3.6. On the x86-64 architecture the model must approximate

the cost of certain allocation decisions and these approximations are chosen to conservatively

overestimate the final cost of allocation.

In contrast to code size, a fully accurate cost model of performance is unattainable. Perfor-

mance depends on the execution behavior of the program, which is mostly unknown at compile-

time. Even if a good approximation of run-time behavior can be derived, the performance char-

acteristics of modern architectures are difficult to impossible to quantify at compile-time due to

complex micro-architectural features such as caches, branch and value predictors, and reorder

buffers.

In light of these difficulties, instead of attempting to design a cost model that directly mod-

els processor performance, we define a weighted execution costs metric of code quality that is

closely related to performance. The weighted execution costs metric attempts to minimize the

total dynamic cost of memory operations and instructions. In this cost model a specific kind of

operation, such as a load, incurs the same cost every time it is executed regardless of the context

of execution. For example, a load instruction might always incur a cost of 3. In actuality, the

latency of the load instruction will depend on its execution context, such as the contents of the

cache and load store queue, but given the opacity of these architectural features to the compiler, a

uniform cost approximation is reasonable. Although costs are uniform across execution contexts,

they a specific to each type of operation. There can be a different cost for a load than for a store,

for example. We refer to these costs as the single-execution cost of an operation.

In order to optimize for the run-time behavior of a program, the single-execution cost of

a specific operation needs to be multiplied by the number of times that operation is expected

to be executed. Since all instructions in a basic block are executed the same number of times,

what is needed is an approximation of run-time behavior that provides execution frequencies

of basic blocks. Ideally, high quality profile data that accurately represents the future run-time

3.5. MODELING COSTS 57

behavior of a program can provide accurate execution frequencies. If high quality profile data is

not available, more sophisticated static analyses [10, 27, 130] can be used to predict basic block

execution frequencies. This cost model is easily applied to the global MCNF model. The costs of

memory operations and data movement instructions are represented by edge costs. An edge cost

is simply set to the product of the execution frequency of the basic block and the single-execution

cost of the corresponding operation.

To achieve the best possible performance, the single-execution costs need to be set appropri-

ately. When optimizing for performance, the three most important costs are loads, stores, and

moves. Using an optimal allocator targeting the x86-32 architecture and a reduced benchmark

set, shown in Table 3.1, for which optimal allocations can be found relatively quickly we con-

sider a large configuration space of possible load/store/move costs. In computing our optimal

allocation we use perfect profiling data to derive basic block execution frequencies. Since the

ratio between costs is what determines the quality of the optimal allocation, we fix the cost of a

move instruction to 1 and vary the costs of loads and stores exponentially from 1 to 512. That

is, we consider single-execution costs of 2i for i from 0 to 9 for loads and stores resulting in 100

data points.

The effect of varying load/store cost ratios on the dynamic execution count of load operations

is shown in Figure 3.15(a). As expected, as the cost of a load relative to a store and a move

increases, the number of dynamic load instructions decreases. This is the bottom right point in

Figure 3.15(a). On the opposing side, where store and move instructions are expensive relative

to a load instruction, many more load instructions are generated. Unsurprisingly, the results for

store operations, Figure 3.15(b), show the opposite trend. If the goal is to minimize the total

number of memory operations, the sum of load and store operations, then Figures 3.15(c) and

3.15(d) suggest a simple strategy for setting the single-execution costs. The trough shape of this

graph suggests that load and store operations have an identical cost. The value of this cost does

not appear to be very important as long as it is more than twice the cost of a move instruction.

The weighted execution costs metric only imperfectly models the code performance metric.

We consider the effect of varying load/store cost ratios on performance for two Intel microarchi-

tectures in Figure 3.16. Unlike Figure 3.15, no clear patterns emerge. The noise in the data is

58 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

Figure 3.17: Increases in execution time and code size relative to an optimal allocator when
coalescing is performed as a separate pass prior to register allocation. Results are shown both for
a heuristic aggressive coalescer and an optimal coalescer. The optimal allocator and benchmark
suite used are described in [73] and are evaluated on the Intel x86-32 architecture.

not due to measurement error, but to legitimate differences in performance that are not correlated

with the number of memory operations. For instance, register allocation can affect branch pre-

diction performance by incidentally changing the values of branch targets. Despite the noisiness

of the data, it does appear that the best performing configurations are clustered around the same

diagonal that defined the trough of Figure 3.15(c). This suggests a similar metric, where load

costs and store costs are identical but more than twice move costs, is effective at optimizing for

performance.

3.6 Limitations

The global MCNF model can explicitly model instruction usage constraints and preferences,

spill code generation, move insertion, constant rematerialization, and load rematerialization. In

addition, our model can model a limited amount of register-allocation driven instruction selec-

tion. For example, in Figure 3.8(a) the model explicitly encodes the fact that if an operand of

the ADD instruction is the constant 1, a more efficient INC instruction can be used. There are

3.6. LIMITATIONS 59

some fundamental limitations of the model. Inter-variable allocation class usage preferences and

constraints cannot be represented so move coalescing, two-op conversion of commutative op-

erations, consecutive register requirements, coupled register preferences, and source-dependent

store costs cannot be precisely modeled. Additionally, the model does not support value cloning.

The global MCNF model cannot represent inter-variable allocation class usage preferences

or constraints. That is, the model cannot represent a statement such as, “if a is allocated to X and

b is allocated to Y in this instruction, then a 2 byte smaller instruction can be used.” For example,

on the x86 architecture a sign extension from a 16-bit variable a to a 32-bit variable b is normally

implemented with a 3-byte movsxw instruction, but if both a and b are allocated to the register

eax then a 1-byte cwde instruction may be used with the same effect. This code size savings

cannot be exactly represented in our model because edge costs only apply to the flow of a single

variable. If the instruction stream is modified so that a move from a to b is performed before

the sign extension and the sign extension has b as its only operand, then the model is capable of

exactly representing the cost savings of allocating b to eax with the caveat of requiring a more

constrained and possibly less efficient instruction stream as input.

Inter-variable register usage constraints are required in order to exactly model the costs asso-

ciated with move coalescing. Since our model cannot explicitly represent the benefits of move

coalescing, moves are aggressively coalesced before register allocation. The model explicitly

represents the benefit of inserting a move so there is no harm in removing as many move instruc-

tions as possible. Furthermore, there is little difference in code quality between aggressively

coalescing and then finding an optimal, coalescing-agnostic, allocation and finding a fully op-

timal allocation. This is shown empirically in Figure 3.17. When optimizing for performance,

a fully optimal allocator is slightly outperformed by sub-optimal allocators indicating that any

performance benefit from fully integrating coalescing into an optimal framework is dominated

by the unavoidable noise when optimizing for performance. In contrast, when optimizing for

code size, an increase in code size is observed with the less optimal allocators. However, the

difference is less than a tenth of a percent. It is also worth noting that a heuristic aggressive co-

alescing algorithm performs nearly as well as an optimal coalescing algorithm further justifying

our approach.

60 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

Another example where inter-variable register usage preferences are useful is in modeling

the conversion of a three operand representation of a commutative instruction into a two operand

representation. Internally, a compiler might represent addition as c = a + b even though the

target architecture requires that one of the source operands be allocated to the same register as

the destination operand. Ideally, the model would be able to exactly represent the constraint that

one of the source operands, a or b, be allocated identically with c. Converting non-commutative

instructions into two operand form does not pose a problem for our model as these instructions

can be put into standard form without affecting the quality of register allocation.

On some architectures inter-variable register usage constraints might exist that require a

double-width value to be placed into two consecutive registers. The SPARC architecture, for

example, requires that 64-bit floating point values be allocated to an even numbered 32-bit float-

ing point register and its immediate successor. Our MCNF model is not capable of representing

such a constraint. This limitation does not effect our ability to handle SIMD instruction that

manipulate several values at once. The register allocator treats these several values as a single

variable that requires a SIMD register allocation class.

A coupled register preference is when an instruction prefers that two or more of its operands

be allocated from the same set of registers. For example, the x86-64 ISA has 16 integer registers,

8 of which are legacy registers from the x86-32 ISA (eax, edx, etc.). If an instruction manipu-

lates values with bit-widths less than or equal to 32, an additional byte is needed in the instruction

word if one or more of the non-legacy registers are used. Since only a single additional byte is

needed regardless of how many operands are allocated to non-legacy registers, this preference

cannot be exactly modeled using costs on individual flows. Instead, when optimizing for code

size, we model an approximation where each non-legacy register allocation contributes a byte.

If two operands are allocated to a non-legacy register, then a cost of two bytes is incurred.

Source-dependent store costs are another feature of the x86-64 ISA that require inter-variable

allocation class preferences, in this case between a variable and the corresponding anti-variable.

An ISA has source-dependent store costs if the cost of the store depends on the source register.

On x86-64, a 32-bit or smaller store from a legacy register is one byte smaller than a store

from a non-legacy register. In our model, the cost of the store is paid by the anti-variable and

3.7. HARDNESS OF SINGLE GLOBAL FLOW 61

is independent of the register the corresponding variable is allocated to at the location of the

store. This problem only arises if a variable can be legally allocated to two source registers with

different store costs at the same program point. Also, load instructions, where the cost is paid

by the variable itself, can still be correctly modeled. The over-estimation of costs in the x86-64

model due to coupled register preferences and source-dependent store costs is clearly seen in the

histogram skew of Figure 3.14.

An additional limitation of our model is that it assumes that it is never beneficial to allocate

the same variable to multiple registers at the same program point. This limitation arises because

there is a direct correspondence between the flow of a variable through the network and the al-

location of the variable at each program point. The assumption that it will not be beneficial to

allocate a variable to multiple registers at the same program point seems reasonable for architec-

tures with few registers where register pressure is a prime concern. However, if an architecture

has highly non-orthogonal register preferences, it might be advantageous to clone the value of a

variable to meet these preferences without introducing extra data movement instructions.

3.7 Hardness of Single Global Flow

In this section we show that the global MCNF problem is harder than the local MCNF repre-

sentation of register allocation. Although both problems are NP-complete (both local and global

register allocation are NP-hard problems), the optimal flow for a single variable in the local

MCNF model can be found with a simple shortest path computation. In contrast, we now prove

that in global MCNF the optimal flow problem for a single variable is NP-complete. We first

define the minimal graph labeling problem, then show that global MCNF single optimal flow

is reducible to minimal graph labeling, which we show to be NP-complete via a reduction from

graph coloring. Finally, we show that minimal graph labeling is reducible to global MCNF single

optimal flow, completing the NP-completeness proof.

First, we simplify our consideration of the problem by computing shortest paths in every

block in the model and using the results to reduce each block to a full crossbar between the

possible allocation classes. The costs on each edge of the crossbar are the shortest path costs

62 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

(a)

f(B,B) = 0
f(B,Y = 1
f(Y,B) = 1
f(B,B) = 0

f(B,B) = 0
f(B,Y = 2
f(Y,B) = 2
f(B,B) = 0

f(B,B) = 0
f(B,Y = 1
f(Y,B) = 1
f(B,B) = 0

(b)

Figure 3.18: An example of a reduction from global MCNF to minimum graph labeling. In the
global MCNF problem (a) there are three fully connected sets of cross-block edges. These edge
sets map directly to nodes in a minimal graph labeling problem (b). The two allocation classes
map directly to the labels B and Y . The edge cost functions are determined from the costs of the
cross bar edges in the global MCNF problem.

from the entry node of the top allocation class to the exit node of the bottom allocation class.

Furthermore, we recognize that due to the boundary constraints, any set of fully connected cross-

block edges must all carry the same flow. That is, each set of fully connected cross-block edges

represents a single allocation choice.

Using these insights, we view the global single optimal flow problem as a minimal graph

labeling problem. Given a graph G = (E, V) and a set of k ∈ K labels where every edge e ∈ E

has a cost function fe : K × K → Z the minimal graph labeling problem is to find a labeling

l(v) : V → K such that
∑

e∈E fe(l(esrc), l(edst)) is minimized.

The global MCNF single optimal flow problem is reducible to the minimal graph labeling

problem. Let G = (E, V) be constructed such that every v ∈ V corresponds to a set of fully

3.7. HARDNESS OF SINGLE GLOBAL FLOW 63

connected cross-block edges in the global MCNF problem and an edge (v1, v2) ∈ E exists if the

sets of fully connected cross-block edges corresponding to v1 and v2 are adjacent: share a block

as a common endpoint. Let K correspond to the allocation classes in the global MCNF problem.

Define fe(k1, k2) to be equal to the cost of transitioning allocation classes between cross-block

edge sets. If the edge sets are separated by a single block then this cost is just the result of a single

shortest path computation. Otherwise it is a sum of shortest path computations. An example of

such a reduction is shown in Figure 3.18.

It is easy to see that graph coloring is also reducible to the minimal graph labeling problem.

Simply let K correspond to the set of colors and define fe such that:

fe(k1, k2) =

 0 k1 6= k2

1 k1 = k2

If the minimal labeling has a cost of zero, the graph G is colorable. Since the decision problem

for minimal graph labeling is clearly in NP and graph coloring is reducible to minimal graph

labeling, minimal graph labeling is NP-complete.

We now show that the minimal graph labeling problem is reducible to the general global

MCNF single optimal flow problem. Given an instance of the minimal graph labeling problem,

we create a global MCNF problem. Let K correspond to the allocation classes of the global

MCNF problem. Let G′ = (V ′, E ′) be the line graph of G. That is, for every edge in G create

a node in G′ and connect two nodes in G′ if the corresponding edges in G are adjacent (share

a common endpoint). Now let G′ represent the control flow graph of a global MCNF problem.

Every block in the global MCNF problem corresponds to a node inG′ that corresponds to an edge

inGwith a cost function fe. For each block, construct a full crossbar such that the cost of an edge

from allocation class k1 to allocation class k2 is equal to fe(k1, k2). Clearly, an optimal single

flow through the resulting global MCNF problem directly corresponds to an optimal minimal

labeling. Since minimal graph labeling is NP-complete and minimal graph labeling is reducible

to a single optimal flow global MCNF problem, the global MCNF single optimal flow problem

is NP-complete.

Although the general form of the problem is NP-complete, it is worth noting that real global

MCNF problems are not necessarily as challenging. First, the proof relies on the ability to cre-

64 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

ate arbitrary control flow graphs. Although arbitrary control graphs can always be constructed

using language constructs such as goto, real programs are generally limited in their structure

[56, 124]. Additionally, the proof relies on the ability to create arbitrary crossbars. In particular,

a graph-coloring derived global MCNF problem would need to consistently penalize maintain-

ing an allocation in the same allocation class across a block while rewarding changing allocation

classes. Such a cost structure could be created through the highly contrived use of register pref-

erences and constraints, but real programs would be expected to exhibit the opposite behavior. It

is therefore reasonable to expect that effective solution techniques for tackling this NP-complete

problem can be developed.

3.8 Simplifications

The global MCNF model of register allocation is a highly detailed and expressive representa-

tion of the register allocation problem. However, in some cases the model is overly expressive.

Model simplifications that reduce the number of nodes or edges not only reduce the memory

requirements of the model, but also make the model easier to solve.

The global MCNF model is uniformly expressive. However, in several instances the expres-

siveness of the model can be reduced with little or no impact on the optimal value of the model.

One easy simplification is to not model instructions, such as unconditional jumps, that do not

influence register allocation. These instructions make up about 4-5% of an average instruction

stream.

Another relatively straightforward simplification is to only model loads of a variable imme-

diately before the instructions that use the variable. Similarly, stores of a variable need only be

modeled immediately after the instructions that define the variable. Crossbar groups at the entry

and exit of all basic blocks are left unsimplified so that inter-block allocation decisions can be

unified. A variable can always be loaded from memory or stored to memory at the beginning and

end of each block. This simplification does not affect the value of the optimal solution as long as

the cost of a memory operation is independent of the position of the operation within a block.

3.8. SIMPLIFICATIONS 65

Figure 3.19: Increases in execution time and code size relative to an optimal allocator when
move insertions are restricted. The optimal allocator and benchmark suite used are described in
[73] and are evaluated on the Intel x86-32 architecture. In the no move insertion configuration
the register allocator cannot insert any register to register moves. In the limited move insertion
configuration the register allocator can only insert register to register moves at basic block bound-
aries. The difference in quality is small for the no move insertion configuration, but miniscule
for the limited move insertion configuration.

A more sophisticated simplification identifies regions with no register pressure. In the ab-

sence of register preferences, there is no incentive for variables to change allocations within such

a region since there is no competition for registers. If register preferences are present but only

affect a single allocation class per a variable, then there remains no incentive for variables to

change allocations within the region. As a result, such regions can be greatly simplified by re-

moving all the crossbar groups and directly connecting instruction groups. Any load or store

edges can be shifted prior to the simplified region (loads) or after the simplified region (stores).

Empirically, when targeting the x86-32 architecture, an average function has about two-thirds of

the crossbars simplified out. This fraction is expected to be larger for architectures with larger

register sets.

A simplification that can substantially reduce the number of edges in the network, but that

may alter the optimal value of the problem, reduces the number of edges in every crossbar group

by prohibiting or restricting the movement of variables between register allocation classes. The

66 CHAPTER 3. GLOBAL MCNF REGISTER ALLOCATION MODEL

justification for this simplification comes from the observation that register to register move

instructions rarely need to be inserted to obtain a near-optimal allocation. Indeed, as shown in

Figure 3.19, restricting register to register move insertions to basic block boundaries has almost

no affect on code quality in an optimal register allocator.

Finally, we consider a simplification that dramatically reduces the size of the model, but also

fundamentally changes the nature of the problem. Instead of treating each register as a single

register allocation class with a unit capacity, we can merge similar registers into a single register

allocation class with a capacity equal to the number of registers. This approach is especially ef-

fective on architectures with many registers. However, the resulting global MCNF problem does

not model the full register allocation problem. Instead, it represents the spill code optimization

problem. A solution to this problem could replace heuristic spill code generators in register allo-

cators that separate the spill code and assignment problems (Section 2.1.2) or it could be used as

a starting point for finding a solution to the full global MCNF problem.

3.9 Summary

In this chapter we described our global MCNF model of register allocation. Our global MCNF

model explicitly and exactly represents the pertinent components of the register allocation prob-

lem. As we shall see in the next chapters, the structure of the model naturally lends itself both

to heuristic solution techniques and more principled solution techniques that can approach an

optimal solution. These properties make global MCNF an ideal model for register allocation.

67

Chapter 4

Evaluation Methodology

In this chapter we describe the methodology used to evaluate the effectiveness of our backend

compiler optimizations. We implement our optimization algorithms within version 2.4 of the

state-of-the-art LLVM compiler infrastructure [87]. In the LLVM compiler, the code is converted

out of SSA-form and move instructions are aggressively coalesced prior to register allocation. We

evaluate the quality of register allocation on an expansive benchmark suite using two code quality

metrics, four instruction set architectures, and two microarchitectures. Unless stated otherwise,

all our results are expressed relative to the extended linear-scan allocator of the LLVM compiler.

This allocator has been shown to outperform traditional graph coloring allocators [115].

4.1 Benchmarks

We perform our evaluations using a subset of the C benchmarks of the SPEC2006 [123] bench-

mark suite. This is an industry standard suite of real-world benchmarks. A descriptive list of the

benchmarks is shown in Table 4.1. These benchmarks consist of approximately 100,000 lines of

code. A subset is used so that we can perform an extensive evaluation in a limited amount of

time.

68 CHAPTER 4. EVALUATION METHODOLOGY

Suite Benchmark Lang. LoC Brief Description

SPECint

401.bzip2 C 5,731
File compression. bzip2 version 1.0.3, modified
to do most work in memory, rather than doing I/O.

429.mcf C 1,574
Vehicle scheduling. Uses a network simplex algo-
rithm to schedule public transport.

456.hmmer C 20,658 Protein sequence analysis using profile hidden
Markov models.

458.sjeng C 10,544 A highly-ranked chess program that also plays
several chess variants.

462.libquantum C 2,605
Simulates a quantum computer running Shor’s
polynomial-time factorization algorithm.

464.h264ref C 36,098
A reference implementation of H.264/AVC, en-
codes a videostream using 2 parameter sets.

433.milc C 9,575
A gauge field generating program for quantum
chromodynamics.

SPECfp 470.lbm C 904
Implements the “Lattice-Boltzmann Method” to
simulate incompressible fluids in 3D.

482.sphinx3 C 13,128
A widely-known speech recognition system from
Carnegie Mellon University

Table 4.1: Benchmarks used in evaluation of code quality.

4.2 Code Quality Metrics

We consider two code quality metrics: code size and code performance. Both metrics are com-

mon measures of code quality and most compilers support explicitly optimizing for these metrics.

4.2.1 Code Size

Code size is the size of the binary application after compilation and linking. Code size as a code

quality metric is of primary interest to the embedded community, where applications often face

tight memory constraints. Reductions in code size can directly translate to higher profit margins

if a smaller amount of ROM can be used.

Since code size depends upon the instruction set architecture and the static program code, it

can be almost perfectly predicted at compile-time (on some architectures the final size of branch

instructions must be determined at link-time). As a result, we can evaluate both the post-regalloc

code size, the code size immediately after register allocation, and the final code size. We measure

the post-regalloc code size internally in the compiler by summing the size of all the instructions

4.2. CODE QUALITY METRICS 69

in all the compiled functions. We measure final code size as the size of the .text section of

the final executable. The two measurements differ because optimizations after register allocation

may impact the final code size and the size of the .text section includes alignment padding

between functions. Unless stated otherwise, we report code size results in terms of final code

size.

Unless stated otherwise, when reporting code size results we report a code size improvement

relative to the default LLVM allocator:

code size improvement =
sizeLLV M − size

sizeLLV M

Note that there is a maximum code size improvement of 100% corresponding in a complete

elimination of all code. A -100% code size improvement corresponds to a doubling in code

size. When reporting an average code size improvement of a suite of benchmarks we report the

geometric mean of the improvements of the component benchmarks. The cumulative code size

improvement of a suite of benchmarks is computed by treating the entire benchmark suite as a

single benchmark. The sum of the sizes of the individual benchmarks is used to calculate the

code size improvement.

Large improvements in code size are difficult to obtain. Improving code size by as little as

1% in a high quality compiler is considered a feat worthy of a full year of development [7]. It

is worth keeping in mind that our code size improvements are due exclusively to improvements

in one pass of the compiler, the register allocator. Unlike performance improvements, code

size improvements are indicative of how well an allocator can optimize the entire code of the

program, not just a few frequently executed regions. Also, since the global MCNF model can

exactly represent the code size metric, code size results provide a relatively noise-free assessment

of how the different global MCNF solution techniques discussed in this thesis compare.

4.2.2 Code Performance

Code performance is the execution time of an application on a representative input. As discussed

in Section 3.5, it is not possible to incorporate an exact model of performance into the global

MCNF model. Instead, a weighted execution costs metric with a load:store:move cost ratio of

70 CHAPTER 4. EVALUATION METHODOLOGY

8:8:1 is used. We consider both exact execution frequencies and simple static execution frequen-

cies. Exact execution frequencies of basic blocks are determined using perfect profiling data,

i.e., the input used to benchmark is the same as the input used to profile. Simple static execution

frequencies use the loop depth of a basic block to calculate an estimation of its frequency:

BB execution frequency = 10loopdepth(BB)

Except when stated otherwise, we report results using exact execution frequencies.

In addition to reporting performance, we report the change in total memory operations. The

total number of memory operations is the sum of the dynamic count of load and store instructions.

We measure the dynamic count of these instructions during execution using high-resolution per-

formance counters [77]. We report the reduction in total memory operations relative to the default

LLVM allocator:

memory operations reduction =
memopsLLV M − memops

memopsLLV M

The memory operation reduction metric indicates how well an allocator is optimizing for the

weighted execution costs metric.

We measure the execution time of benchmarks in cycles using high-resolution performance

counters. The resulting execution times are more precise and more accurate than more conven-

tional wall clock measurements. Benchmarks are run under the Ubuntu 9.0.4 Linux operating

system. Virtual address space randomization is turned off in the kernel to improve the repeata-

bility of the results. Performance results are reported as an improvement relative to the LLVM

default allocator:

performance improvement =
timeLLVM − time

time

Note that a 100% performance improvement means the benchmark was twice as fast, i.e., took

half as long. A -50% performance improvement means the benchmark took twice as long. When

evaluating performance we execute the benchmark 3 times and report the mean and the standard

error (shown as error bars). When reporting a performance improvement of a suite of benchmarks

we report the geometric mean of the improvements of the component benchmarks.

4.3. INSTRUCTION SET ARCHITECTURES 71

4.3 Instruction Set Architectures

We consider two CISC-like instruction set architectures, x86-32 and x86-64, and two RISC-

like instruction set architectures, ARM and ARM Thumb. The Intel x86 architectures dominate

the desktop, workstation, and server markets. In the embedded space, there is no predominant

architecture, but ARM is the market leader and the CISC design principles of the x86 are com-

monplace.

4.3.1 x86-32

The venerable Intel x86 32-bit instruction set [65] has variable length instructions, supports direct

access to memory in most instructions, and has a limited register set of 8 integer and 8 floating

point registers. Two of the integer registers, ebp and esp, are reserved for use as the frame and

stack pointers. Floating point registers are implemented as a register stack; however, in LLVM

the register allocator allocates floating point values to a fictional 7-register flat register file, and

a later pass uses this allocation to generate register stack operations. As a result, the result of

register allocation does not map exactly to the final output for floating-point values.

4.3.2 x86-64

The Intel x86 64-bit instruction set [65] also has variable length instructions and support for

memory operands, but has an extended register set of 16 integer and 16 floating point registers.

Two of the integer registers, rbp and rsp, are reserved for use as the frame and stack pointer.

Although the legacy 8-register floating point stack is still available, LLVM instead uses the 16-

register flat floating-point xmm register file to allocate floating point values.

The x86-64 ISA is an extension of the x86-32 ISA that is implemented in large part through

the use of prefix bytes that modify the meaning of x86-32 instructions. As a result, the same

instruction can have different sizes depending upon what register modes are used within the

instruction. These additional code size costs are approximated as register preferences within the

global MCNF model as described in Section 3.6.

72 CHAPTER 4. EVALUATION METHODOLOGY

Atom 330 Core 2 Quad

Cores 2 4

Clock Speed 1.6Ghz 2.4Ghz

L1 Cache 24KB/32KB 32KB/32KB

L2 Cache 2x512KB 2x4MB

Reorder Buffer Size - 96

Reservation Station - 32

Execution Width 2 4

FSB Speed 533Mhz 1066Mhz

Transistors 47 million 582 million

Table 4.2: Characteristics of microarchitectures used to evaluate performance.

4.3.3 ARM

The ARM instruction set [117] has four-byte RISC-like instructions and 15 general purpose

integer registers that are uniformly accessed. Two registers are reserved for use as a stack pointer

and a link register. We target an ARMv6 core with software floating point.

4.3.4 Thumb

The Thumb instruction set [117] is an alternative instruction set for ARM processors optimized

for code size. It has two-byte RISC-like instructions and can only efficiently access 8 integer

registers. The stack and link registers are distinct from these 8 general purpose registers and

are accessed implicitly. For our investigation we restrict the allocator to only allocate to these

8 efficiently accessed registers so that our Thumb target is representative of architectures with

limited register sets. We target an ARMv6 core with software floating point and do not generate

Thumb-2 instructions.

4.4. MICROARCHITECTURES 73

4.4 Microarchitectures

When evaluating performance we utilize two x86-based microarchitectures: an Intel Atom 330

and an Intel “Kentsfield” Core 2 Quad (Q6600). The differences between these microarchitec-

tures are shown in Table 4.2. The Core 2 Quad is a modern out-of-order superscalar architecture

with large caches, plentiful memory bandwidth, and ample resources to support parallelism. The

Atom 330 is a modern low-power nettop processor. Unlike the Core 2, the Atom is an in-order

processor and does not speculatively execute instructions. As a result, we expect that reducing

the amount of memory accesses will have a larger impact on performance for the Atom than

the Core 2 processor. We evaluate both architectures using the same x86-32 ISA in order to

illuminate the effect of the interaction between the microarchitecture and the quality of register

allocation on performance. Resource constraints prevented us from evaluating the x86-64 ISA

on the Atom processor. Also because of resource constraints, we do not evaluate performance

on the ARM or Thumb architectures.

74 CHAPTER 4. EVALUATION METHODOLOGY

75

Chapter 5

Heuristic Register Allocation

In this chapter we consider heuristic solution techniques for solving the NP-complete global

MCNF model of register allocation described in Chapter 3. The heuristic solvers described in

this chapter are used both to find an initial solution and as a component of the progressive solver

described in Chapter 6.

We describe two heuristic solvers for the global MCNF problem that are capable of quickly

finding an allocation competitive with existing allocators. The iterative heuristic allocator greed-

ily builds up a solution by iterating over all the variables and adding the best possible path for

each variable to the solution. Each path corresponds to a program-point specific allocation of a

variable. This allocator behaves similarly to a single-pass graph coloring allocator. In contrast,

the simultaneous heuristic allocator traverses the network a layer at a time simultaneously main-

taining an allocation of all live variables. This allocator behaves similarly to a second-chance

binpacking linear-scan allocator.

5.1 Iterative Heuristic Allocator

The iterative heuristic allocator allocates variables one at a time using shortest path computations.

For each variable, a flow through the global MCNF model is found that corresponds to a complete

allocation for that variable. As proven in Section 3.7, the minimum optimal path problem is NP-

76 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

1: procedure CONSTRUCTFEASIBLESOLUTIONITERATIVE(GlobalMCNF f)
2: for v ∈ allocSort(variables(f)) do . iterate over variables
3: for BB ∈ blockOrder(basicBlocks(f)) do
4: for source ∈ definingNodes(BB , v) do . entry nodes and source nodes
5: path ← shortestFeasiblePath(source, v ,BB)
6: markFeasiblePath(path, v)

Listing 5.1: CONSTRUCTFEASIBLESOLUTIONITERATIVE Greedily construct a feasible solu-
tion for the global MCNF problem, f , one variable at a time.

1: procedure MARKFEASIBLEPATH(path path, variable v)
2: for n ∈ path do
3: n.flow++
4: n.flowVars .insert(v)
5: if type(n) = Entry ∨ type(n) = Exit then
6: setBoundaryConstraints(n, v)

Listing 5.2: MARKFEASIBLEPATH Given the shortest path for variable v, reserve the flow along
the path. Constrains the entry and exit nodes of connected blocks as necessary.

complete in the global MCNF model. Due to the complexity of the problem, a sub-optimal

algorithm is used to construct the flow for each variable.

5.1.1 Algorithm

The high-level pseudocode for the iterative heuristic allocator is shown in Listing 5.1. Variables

are allocated in an order determined by the heuristic allocSort function in line 2. To allocate

a variable, basic blocks are traversed in some heuristic order (line 3), and a shortest path com-

putation is performed starting at every defining node of the block (line 5). Nodes that define a

variable are either source nodes or, if a variable is live into the block, an entry node. The short-

estFeasiblePath function finds and returns the shortest cost feasible path for the variable through

the local network of the block. A feasible path respects the flows of already allocated variables,

obeys the boundary constraints,1 and does not prevent the allocation of unallocated variables.

Given a path, the procedure markFeasiblePath records the found path as allocated.

1If the entry and exit constraints of a block must match, e.g., if the block is a loop, and a variable is live into and

out of the block, then the path must have matching allocations at the entry and exit of the block. If this does not hold

for the shortest path, an alternative legal path is chosen. This detail is not shown in the pseudocode.

5.1. ITERATIVE HEURISTIC ALLOCATOR 77

1: function SHORTESTFEASIBLEPATH(node source, variable v, BasicBlock BB)
2: for n ∈ nodes(BB) do
3: n.cost ←∞
4: n.prev ← ∅
5: last .cost ←∞
6: Q .push(n)
7: while ¬Q .empty() do
8: n = Q .pop()
9: for d ∈ successors(n) do

10: cost ← n.cost + feasibleEdgeCost(n, d , v)
11: if cost < d .cost ∨ (cost = d .cost ∧ tieBreak(n, d)) then
12: d .prev ← n
13: d .cost ← cost
14: if type(d) = Exit ∨ type(d) = Sink then
15: if d .cost< last .cost ∨ (d .cost = last .cost∧tieBreakLast(d , last)) then
16: last ← d
17: else if ¬Q .contains(d) then
18: Q .push(d)

19: return last

Listing 5.3: SHORTESTFEASIBLEPATH Find the shortest feasible path for variable v from node
source in basic block BB and return the last node of the path.

As it traverses the shortest path, the procedure markFeasiblePath, shown in Listing 5.2, pro-

cesses each node by: incrementing the amount of flow through the node (line 3), recording that

the variable v is flowing through the node (line 4), and, if the node is an exit or entry node,

constraining the connected exit and entry nodes to respect the allocation (line 6). The procedure

setBoundaryConstraints fixes the boundary allocation of the variable v in connected, still-to-be-

allocated blocks and also prevents infeasible boundary allocations of still-to-be-allocated vari-

ables. The subtleties of the implementation of setBoundaryConstraints, which is also used by

the simultaneous heuristic allocator, are discussed in Section 5.3.

Once a path is marked in a block, the corresponding allocation of the variable is fixed and

does not change. Therefore, it is essential that the function shortestFeasiblePath, shown in List-

ing 5.3, is always able to find a path. This function is a standard shortest path algorithm [6]

with two modifications. First, due to the layered and acyclic structure of the network, a simple

queue, as opposed to a priority queue, can be used to store the nodes on the frontier of the search.

Second, the costs of edges are computed using the function feasibleEdgeCost of Listing 5.4.

78 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

r0 r1

r0 r1 mem

r0 r1 mem

r0 r1 mem

LOAD (c)!d

d

c

a

memr1r0

(a)

r0 r1

r0 r1 mem

r0 r1 mem

r0 r1 mem

LOAD (c)!d

d

c

a

memr1r0

b

(b)

r0 r1

r0 r1 mem

r0 r1 mem

r0 r1 mem

LOAD (c)!d

d

c

a

memr1r0

b c

(c)

r0 r1

r0 r1 mem

r0 r1 mem

r0 r1 mem

LOAD (c)!d

d

c

a

memr1r0

b c

(d)

Figure 5.1: An example of the behavior of the iterative heuristic allocator. Antionly allocation
class nodes are omitted for clarity. The operands of the LOAD instruction, c and d, must be
allocated to a register.

This function will return a cost of ∞ if an edge is blocked by a prior allocation (lines 2–9) or

if allocating the variable v to the edge prevents the allocation of yet-to-be-allocated variables

(lines 10–28).

The feasibleEdgeCost function must guarantee that the unallocated operands of an instruction

remain allocable. If an edge enters (line 10), exits (line 11), or crosses an instruction–from the

5.1. ITERATIVE HEURISTIC ALLOCATOR 79

1: function FEASIBLEEDGECOST(node s, node d, variable v)
2: if (s .flow = s .capacity) ∨ (d .flow = d .capacity) then
3: return∞ . already allocated
4: if (anti(v) ∈ s .flowVars) ∨ (anti(v) ∈ d .flowVars) then
5: return∞ . a variable and its anti-variable cannot flow through the same node
6: if (type(s) = Entry) ∧ violatesBoundaryConstraint(s , v) then
7: return∞ . boundary constraints require v be allocated elsewhere at block entry
8: if (type(d) = Exit) ∧ violatesBoundaryConstraint(d , v) then
9: return∞ . boundary constraints require v be allocated elsewhere at block exit

. a variable flowing into, out of or around an instruction, can not block future allocations
10: if (type(d) = Insn) ∨
11: (type(s) = Insn) ∨
12: (isBottomXBar(s) ∧ isTopXBar(d)) then
13: ac ← allocClass(s) . assert: allocClass(s) = allocClass(d)
14: i ← crossedInsn(s , d)
15: for n ∈ instructionGroupNodes(i) do
16: nin ← xbarPredecessor(n)
17: nout ← xbarSuccessor(n)
18: availIn[n.allocClass]← nin .capacity − nin .flow
19: availOut [n.allocClass]← nout .capacity − nout .flow

20: if v ∈ liveIn(i) then availIn[ac]−−
21: if v ∈ liveOut(i) then availOut [ac]−−
22: for u ∈ (unallocedVarsofInsn(i)− {v}) do
23: if hasAvailableClass(u, i , availIn, availOut) then
24: ac = chooseAvailableClass(u, i , availIn, availOut)
25: if u ∈ liveIn(i) then availIn[ac]−−
26: if u ∈ liveOut(i) then availOut [ac]−−
27: else
28: return∞ . potentially inhibits future allocations
29: return edgeCost(s , d)

Listing 5.4: FEASIBLEEDGECOST Return the cost of variable v traversing the edge from node s
to node d. Returns∞ if allocating v to this edge would conflict with already allocated variables
or would prevent the allocation of currently unallocated variables.

bottom of the crossbar before the instruction group to the top of the crossbar after the instruction

group–(line 12) allocating the flow of variable v to the edge may potentially render the operands

of the instruction unallocable. For instance, if an unallocated operand of an instruction must be

allocated to a register and an edge crossing the instruction represents the last unallocated register

at that point, then no other variable should be allowed to use that edge. This is exactly the case

80 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

shown in Figure 5.1 where the variable a has been allocated to r0 around the LOAD instruction

in Figure 5.1(a). When the shortest path for the variable b is computed, the shortestFeasiblePath

function will call feasibleEdgeCost on the edge that spans the LOAD instruction and connects

the r1 crossbar nodes. This edge does not conflict with existing allocations (lines 2–9) and does

interfere with an instruction (line 10). The function then considers the impact of allocating b to

r1 on the allocability of the LOAD instruction.

The impact of allocating a class to a variable is assessed in lines 10–28 of feasibleEdgeCost

(Listing 5.4). First the availability of all allocation classes potentially used by the instruction is

computed. An allocation class is available if the amount of already allocated flow is less than the

capacity of the class. Availability is computed both immediately prior to the instruction (line 18)

and immediately after the instruction (line 19). The variable a fully occupies the allocation class

r0 both before and after the LOAD instruction so availIn[r0] = availOut [r0] = 0. In contrast,

there is no flow allocated to the r1 crossbar nodes and the capacity of the r1 class is one, so

availIn[r1] = availOut [r1] = 1. Next, the availability is modified to represent the impact of

allocating b to r1 (lines 20–21) resulting in availIn[r1] = availOut [r1] = 0. An attempt is then

made to allocate the unallocated operands of the instruction, c and d. However, since no register

class is available (line 23),∞ is returned (line 28) indicating that b cannot flow across this edge

in a feasible solution. Instead, as shown in Figure 5.1(b), the variable b is allocated to memory

across the LOAD instruction.

The importance of distinguishing between the availability of allocation classes both before

and after an instruction is demonstrated in the allocation of c and d, shown in Figures 5.1(c)

and 5.1(d). During the shortest path computation for variable c, the edge into the r1 instruction

group node is considered by feasibleEdgeCost. Since c is not live out of the instruction, only

the incoming availability of r1 is reduced (line 20). It is then still possible to choose the r1

allocation class for d (line 24) since d, which is not live into the instruction, only needs its

allocation class to be available out of the instruction. Note that after r1 is chosen for d the

availability of r1 is decremented in line 26 preventing any other unallocated operands of the

instruction from being allocated to the same class.

5.1. ITERATIVE HEURISTIC ALLOCATOR 81

x ←

← x

z ←
← x
← z

y ←
← x
← y

(a)

x

zy

(b)

Figure 5.2: A (a) simple example of global variable usage and (b) its interference graph.

5.1.2 Improvements

The iterative heuristic allocator performs no back-tracking. Once a variable is allocated, the

allocation is fixed. During the allocation of a variable, once an allocation within a basic block

is selected, that local allocation is fixed and determines the initial allocation of all successor

blocks. The lack of back-tracking means the choices made by the allocator can have a significant

effect on the quality of allocation. In particular, we consider the allocation order of the variables,

the block order used in the traversal of the control flow graph, and the tie breaking method for

choosing between equal cost shortest paths. We discuss how each effects the resulting allocation

and describe the approach taken in our implementation.

ALLOCATION ORDER

The order in which variables are allocated is determined by the allocSort function on line 2

of Listing 5.1. The earlier a variable is allocated, the more likely it is to receive a favorable

allocation. Variables that are allocated later must work around the allocations of already allocated

variables. For example, consider Figure 5.2 and an architecture with only two registers, r0 and

r1. If y is allocated to r0 and z is allocated to r1, then x will be spilled to memory to work

around these allocations.

Both the iterative heuristic allocator and a single-pass “top-down” graph coloring allocator

(Section 2.1.1) greedily allocate variables. Just as with a single-pass graph coloring allocator,

our iterative allocator uses a priority function that calculates a score for each variable. Variables

82 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

with larger scores are allocated first. The priority function provides larger scores for frequently

accessed variables, but also reduces the score for variables with long live ranges. A variable with

a long live range will conflict with many other variables; allocating such a variable early will

potentially adversely effect the allocations of all the conflicting variables. The priority function

we use for regular variables is:

priorityv =

∑
u∈uses(v)

10loopdepth(u) +
∑

d∈defs(v)

10loopdepth(d)

#instructions spanned by live ranges of v

This is the same priority function used within the default register allocator of the LLVM compiler

infrastructure [87]. Anti-variables are always allocated after the corresponding regular variable

so that the regular variable will have the full use of the memory network when performing its

shortest path computations.

BLOCK ORDER

When allocating a variable, the iterative allocator traverses the control flow graph and, for each

block, computes a shortest feasible path for the variable. The order in which blocks are processed

is determined by the blockOrder function in line 3 of Listing5.1. We consider to orderings: depth

first order and loop ordering. When blocks are processed in depth first order, the connectedness

of the ordering means that if a variable is live into a block, the entry condition will always

be set. In loop ordering, blocks with innermost loops are processed first. Blocks at the same

loop depth in the same loop are processed in depth first order. Since loop blocks are processed

before the blocks connecting the loops, a variable may be allocated differently in different loops

and data movement instructions may have to be inserted in between the blocks. If optimizing

performance, a loop ordering will process the most important regions of the control flow graph

first.

The effect of these two block ordering strategies on code size is shown in Figure 5.3(a).

Somewhat surprisingly, the results are mixed. The disconnectedness of the loop ordering only

results in worse average code size for the x86-64 architecture and results in slight improvements

for the other three architectures. Since the degradation for x86-64 is significantly greater than

5.1. ITERATIVE HEURISTIC ALLOCATOR 83

the improvements exhibited by the other architectures, when optimizing for code size, we use

the depth first block ordering within the default implementation of our iterative allocator.

We consider the effect of the two block ordering strategies when optimizing for performance

in Figure 5.3(b). We evaluate the reduction in memory operations executed at run-time as a

measurable proxy for the weighted execution metric we explicitly optimize for. As expected,

the loop ordering strategy significantly outperforms the depth first ordering strategy. We use the

loop block ordering with the default implementation of the iterative allocator when optimizing

for performance.

TIE BREAKING

When there is more than one shortest path to a node, the tieBreak function in line 11 of List-

ing 5.3 chooses which path is used. The tieBreakLast function in line 15 chooses between equal

cost shortest paths at the end of the block. There are frequently several possible paths from which

to choose. For example, in most cases, variables do not have strong preferences for particular

registers and there is a minimum cost shortest path coinciding with each available register. In

this case, the tie breaking functions determine what register is assigned to the variable.

We use tie breaking functions to inject a global view of variable interactions into the shortest

path decision. For instance, consider Figure 5.2 and an architecture with only two registers, r0

and r1. Imagine that variable y has been allocated to r0 and the iterative allocator is processing

the first block with the definition of x. Since y is not live anywhere within this block to interfere

with the flow of x, there are three shortest paths, each with value zero at the end of the block: a

path ending in r0, a path ending in r1, and a path ending in a memory node (recall that regular

variables transition to memory for zero cost; the store cost is paid by the anti-variable). A simple

rule in the tie breaking function prefers register classes to memory classes, since register classes

will not incur an anti-variable cost. In order to break the tie between the register classes, global

information about the current allocation state and the interference graph, shown in Figure 5.2(b),

are used. When a variable, such as y, is allocated, we record what allocation classes are used.

When the tie breaking function chooses between two allocation classes, it seeks to minimize the

number of conflicts with already allocated variables. For example, if y is allocated to r0, then

84 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

C
o
d
e

S
iz

e
Im

p
ro

v
em

en
t

Depth First Order
Loop Order

-10.26% -10.06%

-17.12%
-16.69%

-4.45%
-4.07%

-10.94%

-12.30%

x86-64x86-32ARMThumb

(a)

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

R
ed

u
ct

io
n
 i

n
 M

em
o
ry

 O
p
er

at
io

n
s

Depth First Order
Loop Order

-28.17%

-2.11%

-65.73%

-38.99%

x86-64x86-32

(b)

Figure 5.3: The effect on code quality of two different block orderings in the iterative allocator.

5.1. ITERATIVE HEURISTIC ALLOCATOR 85

-18%

-16%

-14%

-12%

-10%

-8%

-6%

-4%

-2%

0%

2%

C
o
d
e

S
iz

e
Im

p
ro

v
em

en
t

No Precoloring, No Conflict Avoidance
No Precoloring, Conflict Avoidance
Precoloring, No Conflict Avoidance
Precoloring, Conflict Avoidance

-10.06%

-4.21%

-0.68% -0.63%

-16.69%

-6.68%

-1.86% -1.85%

-4.07%

-1.36%

0.24% 0.33%

-12.30%

-8.72%

-4.56%
-4.13%

x86-64x86-32ARMThumb

(a)

-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

10%

R
ed

u
ct

io
n
 i

n
 M

em
o
ry

 O
p
er

at
io

n
s

No Precoloring, No Conflict Avoidance
No Precoloring, Conflict Avoidance
Precoloring, No Conflict Avoidance
Precoloring, Conflict Avoidance

-2.11%

1.32%

5.79% 5.88%

-38.99%

-9.82%

-1.71% -1.72%

x86-64x86-32

(b)

Figure 5.4: The effect on code quality of tie breaking strategies in the iterative allocator.

86 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

there would be one conflict with choosing the r0 class for x and zero conflicts with choosing the

r1 class. This is only an approximation of potential conflicts since variables may be allocated to

different allocation classes at different locations.

Using the interference graph and current allocation information is effective at avoiding un-

necessary conflicts with already allocated variables, but does not bias the tie breaking choices

against allocation decisions that adversely effect currently unallocated variables. We address this

issue to some extent by pre-coloring the interference graph using a single pass of the “bottom-

up” graph simplification coloring algorithm (Section 2.1.1). The pre-coloring provides a partial

allocation (or a full allocation if the graph is colorable). If a variable is successfully pre-colored,

the tie breaking functions will prefer allocating the variable to the corresponding allocation class.

Effective tie breaking heuristics with a global view of the allocation are essential in order

for the iterative allocator to produce quality code. The effects of the two heuristics, conflict

avoidance and pre-coloring, are shown in Figure 5.4. Without these tie breaking strategies, the

iterative allocator produces code that is substantially larger than the default LLVM allocator for

all architectures (Figure 5.4(a)). Conflict avoidance substantially improves the code size but

pre-coloring has an even more dramatic impact. The same trends are apparent when optimizing

for performance (Figure 5.4(b)). The improvements due to pre-coloring appear to essentially

subsume any improvements derived from conflict avoidance. The code quality improvements

achieved when combining the two tie breaking strategies are nearly identical to that of using

only pre-coloring.

We use the pre-coloring tie breaking heuristic within the default implementation of the it-

erative allocator. With the inclusion of this tie breaking strategy, the iterative allocator is very

similar to a single-pass graph coloring allocator where the assignment heuristic uses the results

of a graph simplification coloring algorithm. However, the iterative allocator is more flexible.

In a single-pass graph coloring allocator, a variable is either allocated to a single register or is

spilled everywhere and a scratch register must be reserved to load and store spilled values. In

contrast, the iterative allocator only spills as needed and supports allocating a variable to multiple

register classes. The iterative allocator also benefits from the expressive global MCNF model.

Allocation class preferences and costs are modeled in the flow costs.

5.1. ITERATIVE HEURISTIC ALLOCATOR 87

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06 1e+07 1e+08

Ti
m

e
(s

)

nl-

m = 0.995391 +/- 0.001313

Figure 5.5: Running time of iterative allocator for all benchmarked functions related to nl̄ on a
log-log scale.

5.1.3 Asymptotic Analysis

Let n be the number of instructions and v the number of variables in a program. The number of

allocation classes, c, is a constant determined by the target architecture. We assume that v < n

since typically at most one variable is defined per instruction. The number of nodes in the global

MCNF model is O(nc) since there are a fixed number of layers of c nodes for each instruction.

The number of edges is O(nc2) since each node connects with at most O(c) other nodes.

The iterative heuristic allocator performs a shortest path computation for every variable v in

every block. This shortest path computation is linear in the number of nodes and edges because

the network of a block is a directed acyclic graph. Since c is a constant, the worst-case asymptotic

running time of the iterative heuristic allocator is O(nv). However, the cost of computing the

shortest path is not O(n) for every variable. It is equal to the length of the path. That is, it is

proportional to the number of instructions where the variable is live. Therefore, a tighter bound

on the worst case complexity of the iterative allocator is O(nl̄) where l̄ is the average number of

variables live at any point.

The empirical running times of all benchmarked functions are shown in a log-log plot relative

to to nl̄ in Figure 5.5. The slope of a line in a log-log plot equals the exponent k of a function

88 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

1: variableAlloc: variable→ allocClass . map from variable to allocation class
2: classAlloc: allocClass→ set of variables . map from allocation class to variables
3: procedure CONSTRUCTFEASIBLESOLUTIONITERATIVE(GlobalMCNF f)
4: for BB ∈ blockOrder(basicBlocks(f)) do
5: computeAllShortestPaths(BB) . respects boundary constraints
6: insnLayer ← ∅ . a layer is an array of nodes indexed by allocation class
7: currLayer ← entryNodes(BB) . get entry nodes of block
8: for v ∈ liveIn(BB) do
9: allocateVarAtLayer(v , insnLayer , currLayer)

10: while ¬isExitLayer(currLayer) do
.currLayer is a fully allocated crossbar layer
.nextLayer is the next crossbar layer and needs to be allocated
.insnLayer is either ∅ or is the currently unallocated instruction group between these layers

11: (insnLayer , nextLayer)← getNextLayer(currLayer)
12: propagateAllocs(currLayer , insnLayer , nextLayer)
13: for v ∈ definedVars(insnLayer) do
14: allocateVarAtLayer(v , insnLayer , nextLayer)

15: currLayer ← nextLayer

16: for v ∈ liveOut(BB) do
17: setBoundaryConstraints(currLayer [variableAlloc[v]], v)

Listing 5.5: CONSTRUCTFEASIBLESOLUTIONSIMULTANEOUS Construct a feasible solution
for the global MCNF problem f layer by layer.

xk. The tight clustering of running times around a best-fit line with a slope of .995 empirically

confirms the O(nl̄) asymptotic complexity of the iterative allocator.

5.2 Simultaneous Heuristic Allocator

As an alternative to the iterative allocator, we describe a simultaneous allocator which functions

similarly to a second-chance binpacking linear scan allocator (Section 2.1.3) but uses the explicit

prices of the global MCNF model to guide allocation decisions.

5.2.1 Algorithm

The high-level pseudocode for the simultaneous allocator is shown in Listing 5.5. The algorithm

traverses the control flow graph in some heuristic order (line 4) and allocates a block at a time. In

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 89

each block, the allocator traverses the MCNF model a layer at a time, maintaining an allocation

of the live variables, evicting and modifying variable flows as necessary.

The computeAllShortestPaths function, called in line 5 of Listing 5.5, computes the shortest

path through the local MCNF model for every variable in the block. Shortest paths originate

either at a source node or at an entry node and terminate either at a sink node or at an exit node.

If a variable is live into a block, it may be constrained by the allocation of previous blocks to use

a specific entry node. Each node records the value and direction of the shortest paths to and from

the node for each variable. The sum of the costs of the incoming and outgoing shortest paths of

a variable at a node is a lower bound on the cost of allocating a variable to the corresponding

allocation class at the program point represented by the node.

After computing the shortest paths, the algorithm iterates over the layers of the MCNF net-

work, updating the flows of variables, and maintaining the current allocation of every live vari-

able in two maps: variableAlloc (line 1) and classAlloc (line 2). variableAlloc stores the current

allocation class for each variable. classAlloc stores the set of variables that are allocated to a

specific allocation class at the current point. The allocation maps are initialized by allocating all

the variables live into the block using the function allocateVarAtLayer in line 9 of Listing 5.5.

The function allocateVarAtLayer , shown in Listing 5.6, allocates variables that are being

defined into the network at the program points represented by the passed layers. At the entry of

the block, nextLayer corresponds to the entry group layer and insnLayer is empty. The function

assignVarToNode, shown in Listing 5.7, performs the actual allocation of flow (lines 2–3) and

updates the allocation maps (lines 4–5).

An example of the execution of the simultaneous allocator on a basic block is shown in

Figure 5.6. The allocator state as it enters the main loop (line 10 of Listing 5.5) is shown in

Figure 5.6(a). The two variables live into the block, a and b, and their anti-variables, a′ and b′,

have been allocated to the entry nodes of the block based on existing boundary constraints. The

results of the shortest path computation are shown as the thin lines.

The function propagateAllocs , shown in Listing 5.8, is called as the allocator iterates over

the layers of the network to propagate the current allocations from one layer to the next using

shortest path information (line 6 of Listing 5.8). Instruction group nodes are allocated at the

90 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

r0 r1 mem anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

load (b)→c

r0 r1 mem

r0 r1 mem

anti

anti

load (b+4)→d

c

b b'

a
b

d

a'boundary
constraints:
a: r0
b: mem

nextLayer

c'

d'

b'

(a)

r0 r1 mem anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

load (b)→c

r0 r1 mem

r0 r1 mem

anti

anti

load (b+4)→d

c

b b'

a
b

d

a'

nextLayer

c'

d'

b'

(b)

r0 r1 mem anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

load (b)→c

r0 r1 mem

r0 r1 mem

anti

anti

load (b+4)→d

c

b b'

a
b

d

a'

nextLayer

c'

d'

b'

(c)

r0 r1 mem anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

load (b)→c

r0 r1 mem

r0 r1 mem

anti

anti

load (b+4)→d

c

b b'

a
b

d

a'

nextLayer

c'

d'

b'

(d)

Figure 5.6: An example of the execution of the simultaneous heuristic allocator.

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 91

1: procedure ALLOCATEVARATLAYER(variable v, nodes insnLayer , nodes nextLayer)
2: (ac, evictInfo)← selectAllocClass(v , insnLayer , nextLayer)
3: if evictInfo 6= ∅ then
4: evictVar(evictInfo, nextLayer)

5: if v ∈ insnLayer [ac].variables then . v used in instruction
6: assignVarToNode(v , insnLayer [ac])

7: assignVarToNode(v , nextLayer [ac])

Listing 5.6: ALLOCATEVARATLAYER Given a variable v that is being defined, allocate v into
the current layer. Other variables may already be allocated to insnLayer/nextLayer . Potentially
evicts allocated variables into different allocation classes. Updates variableAlloc and classAlloc.

1: procedure ASSIGNVARTONODE(variable v , node n)
2: n.flow++
3: n.flowVars .insert(v)
4: variableAlloc[v]← node.allocClass
5: classAlloc[node.allocClass].add(v)

Listing 5.7: ASSIGNVARTONODE Adds a unit of flow for v to node. Updates variableAlloc and
classAlloc to reflect the allocation of v to c.

same time as the successor layer (lines 8–10) since only a subset of variables may be used by

the instruction. In order to ensure that the allocation of a variable within an instruction is valid,

it must be propagated to the next layer (the top of a crossbar) where all variables live out of

the instruction are represented. If propagating an allocation along the shortest path results in

a valid allocation, the variable is allocated to the next node in the shortest path (line 12–14);

otherwise, it is saved as a problem variable (line 16). Problem variables are allocated using

allocateVarAtLayer after all the non-problematic variables have been allocated (line 18).

In the most common case, allocations of variables do not change, as is the case from Fig-

ure 5.6(a) to Figure 5.6(b). However, since allocations are propagated along shortest paths, it

is possible for allocations to change. In Figure 5.6(b) the shortest path for variable b transi-

tions from memory to r0. This is because b must be accessed as a register in the upcoming load

instruction. However, the shortest path for a also flows into r0, resulting in a conflict. If the vari-

able a is allocated first in propagateAllocs , then b will be considered problematic and allocated

using allocateVarAtLayer . This function, shown in Listing 5.6, selects a new allocation class

for b using selectAllocClass (line 2), performs any necessary eviction to support this allocation

(line 4), and then allocates the variable to the correct node (line 6).

92 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

1: procedure PROPAGATEALLOCS(nodes currLayer , nodes insnLayer , nodes nextLayer)
2: classAlloc.clear() . will regenerate this map
3: for v ∈ liveAtLayer(currLayer) do . propagate the allocation of every live variable
4: currAC ← variableAlloc[v]
5: node ← currLayer [currAC]
6: next ← nextNodeInShortestPath(node, v)
7: inode ← ∅
8: if next .type = Insn then
9: inode ← next

10: next ← nextNodeInShortestPath(node, v) . allocate through instruction group

11: if nodeValidForAllocation(next , v) then . allocate v
12: if inode 6= ∅ then
13: assignVarToNode(v , inode)

14: assignVarToNode(v , next)
15: else . could not allocate along shortest path
16: problems .add(v)

17: for v ∈ problems do
18: allocateVarAtLayer(v , insnLayer , nextLayer) . will evict if necessary

Listing 5.8: PROPAGATEALLOCS Finds a flow for all live and currently allocated variables from
currLayer to insnLayer/nextLayer . Potentially evicts allocated variables into different alloca-
tion classes. Updates variableAlloc and classAlloc.

1: function NODEVALIDFORALLOCATION(node node, variable v)
2: if node.flow = node.capacity then
3: return false

4: if anti(v) ∈ s .flowVars ∨ anti(v) ∈ d .flowVars then
5: return false . a variable and its anti-variable cannot flow through the same node
6: if nodeBlockedByInsn(node, v) then . check successor capacitated instruction nodes
7: return false

8: return true

Listing 5.9: NODEVALIDFORALLOCATION Return true if v can be allocated to node without
requiring an eviction.

The nodeValidForAllocation function, shown in Listing 5.9, determines if it is safe to propa-

gate a variable’s allocation to a node, or if such an allocation would be problematic. This function

checks to make sure a node isn’t fully allocated (line 2–5). It also checks to make sure that the

allocation class is available for use by the variable in the next instruction (line 6). This check

is necessary to support capacitated nodes within instructions. For example, if an instruction can

only access a single memory operand and a variable used by the instruction is already allocated to

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 93

1: function SELECTALLOCCLASS(variable v , nodes insnLayer , nodes nextLayer)
2: for c ∈ allocClasses do . compute cost of allocating v to each allocation class
3: node ← nextLayer [c]
4: cost ← costOfAlloc(v , node) . sum of current path to and shortest path from node
5: if classAlloc[c].isFull then . eviction required
6: minEvictcost ←∞
7: for u ∈ classAlloc[c] do
8: (evictCost , evictInfo)← evictionCost(u, node)
9: if evictCost < minEvictCost then

10: minEvictCost ← evictCost
11: evictInfos [c]← evictInfo

12: cost ← cost + minEvictCost

13: costs [c]← cost

14: minc ← 0
15: for c ∈ allocClasses do
16: if (costs [c] < costs [minc]) ∨ (costs [c]=costs [minc] ∧ tieBreak(v , c,minc)) then
17: minc ← c

return (minc, evictInfos [minc])

Listing 5.10: SELECTALLOCCLASS Find the best allocation class for variable v in nextLayer .
Returns the allocation class and, if it is necessary to evict an already allocated variable, the
eviction information.

memory, no other variables used by the instruction can be allocated to memory; they are blocked

by the current allocation.

The selectAllocClass function, shown in Listing 5.10, finds the best allocation class for a

variable at a layer. It is called when a variable is defined into a layer and when, as with the

variable b in our example, there is a problem propagating the allocation of a variable along its

shortest path. Every allocation class is considered (line 2) and the cost of allocating the variable

to that class is computed. This cost has two components: the independent cost of allocating the

variable (line 4) to the allocation class and the cost of evicting any variable that is preventing

this variable from using the allocation class (lines 5–11). The independent cost of allocating the

variable is the sum of the current cost of allocation, any cost incurred when transitioning from

the current allocation to the new allocation class, and the value of the shortest path out of the

node. For example, in Figure 5.6(b), the variable b must incur the cost of a load to transition to

either class r0 or class r1, but can transition to the memory class for no cost. However, there

is no shortest path for b from the memory node in the bottom of the first crossbar since b must

94 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

1: function EVICTIONCOST(variable v , nodes layer)
2: minCost ←∞
3: for c ∈ allocClasses do
4: node ← layer [c]
5: if nodeValidForAllocation(node, v) then
6: info ← shortestAvailablePathToMarkedNode(node, v)
7: cost ← info.cost + shortPathFromNodeCost(node, v)
8: if cost < minCost ∨ (cost = minCost ∧ tieBreak2 (bestInfo, info)) then
9: minCost ← cost

10: bestInfo ← info

Listing 5.11: EVICTIONCOST Return the cost of evicting v from its current allocation in layer .
Also provides the information necessary to perform the eviction.

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

load (b)→c

c

a b a'

X

b'

(a)

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

r0 r1 mem anti

r0 r1 mem

r0 r1 mem

anti

anti

load (b)→c

c

X

a b a' b'

(b)

Figure 5.7: Example eviction decisions in the simultaneous heuristic allocator.

be accessed in a register in the LOAD instruction. Hence, the cost of the shortest path from

the memory node is infinite. The cost of any eviction is added to the independent cost (line 12)

and the lowest cost class is chosen. If multiple classes have the same cost, a tieBreak heuristic

function is used. In our example, the r0 class is already fully allocated to the variable a and so

an eviction is necessary in order to allocate b to r0. Since this would result in an additional cost,

the r1 class is selected for b, as shown in Figure 5.6(c).

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 95

The evictionCost function, shown in Listing 5.11, determines the cost of evicting a variable

from its current allocation. It also returns the information necessary to implement the eviction.

Consider the example in Figure 5.6(c). The allocations of a and b are successfully propagated to

remain in their current allocation classes, r0 and r1, and then, at line 14 of Listing 5.5, the vari-

able c, which is defined into the instruction group prior to nextLayer , is allocated. There are only

two valid allocation classes for c, r0 and r1, that are considered by the selectAllocClass func-

tion. In order to allocate c to r0, the variable a must be evicted. To compute the cost of evicting

a from r0, the evictionCost function considers every possible allocation class (line 3) that a

can be validly allocated to (line 5) given the current allocation state. Evictions are not recursive;

the eviction of one variable will not result in the eviction of another unrelated variable. In this

case, the only valid allocation class for a is the memory allocation class. The shortest cost path

from this memory node to the currently allocated flow of a is then computed (line 6) as shown

in Figure 5.7(a). Only nodes with available flow are used by the shortest path computation. This

path corresponds to the rerouting of the flow of a needed to evict it from its current allocation in

r0 to an allocation in memory. If an anti-variable prevents the computation of this eviction path,

as is this case in Figure 5.7(a), then a second eviction path for the anti-variable is simultaneously

computed and its cost is incorporated into the cost of the eviction. In the example, the cost of

evicting a is the cost of a store, which is paid by the eviction of the anti-variable.

When selecting an allocation class for a variable being defined, as with c in Figure 5.6(c),

every possible allocation class is considered. In this case, in addition to r0, which requires the

eviction of a, the class r1 is considered as shown in Figure 5.7(b). The r1 node is fully allocated

to b, so the eviction cost of b is computed. The only class that b can be evicted to is the memory

class. The shortest cost path through available nodes is the single edge shown in Figure 5.7(b).

The anti-variable of b, b′, is already in the antionly class and so no anti-variable eviction path

is necessary. The found eviction path has zero cost. However, since the second load instruction

of the example requires that b reside in a register, if it is allocated to memory at this point, the

cost of a load would be incurred later. This is reflected in the cost of the shortest path from the

memory node and so the total cost of the eviction will be equal to the cost of a load (line 7). When

selecting the allocation class for c, both possible allocation classes, r0 and r1, have an eviction

96 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

cost. In our example, the class chosen by selectAllocClass for the variable c is r0 resulting in

the allocation shown in Figure 5.6(d).

The simultaneous allocator continues to traverse the MCNF model a layer at a time until the

exit layer is reached. The boundary constraints for all the variables live out of the block are then

set and allocation continues in another block.

5.2.2 Improvements

Unlike the iterative allocator, the simultaneous allocator can undo allocation decisions through

the eviction mechanism. This ability to back-track on allocation decisions is limited since evic-

tions are constrained by the current allocation (variables are not recursively evicted) and alloca-

tions are fixed a basic block boundaries. We consider two improvements that seek to moderate

these limitations: tie breaking heuristics and trace formation.

TIE BREAKING

The simultaneous allocator is guided by the explicit costs of the global MCNF model when

making allocation decisions. Frequently, the cost of two potential allocations are equal. In this

case some method for breaking the tie is necessary. Tie breaking is performed when selecting

an allocation class for a variable (line 16 of Listing 5.10) and when choosing what allocation

class to evict a variable to (line 8 of Listing 5.11). Just as with the iterative allocator, these

heuristic decisions can be guided by pre-calculated global interference information. Allocation

decisions that increase the number of conflicts in the interference graph are biased against, while

allocations that match a pre-coloring of the interference graph are preferred in the tie breaking

decisions.

Interestingly, the tie breaking strategies have very little impact on code quality, as shown in

Figure 5.8. There is a minor improvement in code size (Figure 5.8(a)) when pre-coloring is used

for most architecture. Similarly, when optimizing for performance, the use of pre-coloring re-

sults in a slight reduction in memory operations (Figure 5.8(b)). This demonstrates the flexibility

of the simultaneous allocator. Allocation decisions can be revisited through the eviction mecha-

nism, making the allocator less sensitive to the quality of the heuristics used to make the initial

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 97

-3.5%

-3%

-2.5%

-2%

-1.5%

-1%

-0.5%

0%

C
o
d
e

S
iz

e
Im

p
ro

v
em

en
t

No Precoloring, No Conflict Avoidance
No Precoloring, Conflict Avoidance
Precoloring, No Conflict Avoidance
Precoloring, Conflict Avoidance

-1.77%
-1.86%

-1.68%

-1.82%

-3.23% -3.22%

-3.06% -3.07%

-0.47% -0.44% -0.46% -0.50%

-3.11% -3.09%
-2.98%

-3.03%

x86-64x86-32ARMThumb

(a)

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

R
ed

u
ct

io
n
 i

n
 M

em
o
ry

 O
p
er

at
io

n
s

No Precoloring, No Conflict Avoidance
No Precoloring, Conflict Avoidance
Precoloring, No Conflict Avoidance
Precoloring, Conflict Avoidance

-25.03% -24.64% -24.71% -24.59%

-32.38% -31.93% -31.99% -31.69%

x86-64x86-32

(b)

Figure 5.8: Effect of tie breaking heuristics on code quality in the simultaneous allocator

98 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

1

6

7

5

2

3

4

(a)

1

6

7

5

2

3

4

(b)

1

6

7

5

2

3

4

(c)

1

6

7

5

2

3

4

(d)

Figure 5.9: (a) A control flow graph and several possible trace decompositions: (b) a longest
trace decomposition, (c) a loop trace decomposition, and (d) a loop avoiding trace decomposition.

allocation decisions. Since the interference graph tie breaking strategies do not significantly in-

fluence code quality and introduce more overhead into the allocator, our default implementation

of the simultaneous allocator does not use them.

TRACE FORMATION

The flexibility of the simultaneous allocator is limited by the fixing of allocation decisions at

basic block boundaries. A more flexible approach is to group blocks into traces, sequences

of connected basic blocks, and allocate each trace similarly to how a single block is allocated.

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 99

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

C
o
d
e

S
iz

e
Im

p
ro

v
em

en
t

No Traces
Loop Avoiding Traces
Long Traces
Loop Traces

-1.77%

-1.14% -1.11%

-2.72%

-3.23%

-2.62%

-2.34%

-5.38%

-0.47%

0.07%

-0.65%

-1.58%

-3.11%

-2.28%
-2.55%

-6.43%

x86-64x86-32ARMThumb

(a)

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

R
ed

u
ct

io
n
 i

n
 M

em
o
ry

 O
p
er

at
io

n
s

No Traces
Loop Avoiding Traces
Long Traces
Loop Traces

-25.03%

-20.22%

-6.85%

-4.45%

-32.38%

-28.69%

-15.09%

-9.63%

x86-64x86-32

(b)

Figure 5.10: Effect of trace decomposition strategy on code quality in the simultaneous allocator

100 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

Shortest paths are computed across the length of the entire trace and, in the absence of intra-trace

constraints, eviction paths can cross basic block boundaries.

We decompose the control flow graph into linear traces of basic blocks, where the predecessor

of a block in a trace is also a predecessor of the block in the control flow graph. Traces may

contain both internal and external control flow. We consider three possible trace decompositions:

LONG TRACES Loopless depth first search is used to compute the trace with the most blocks.

This trace is selected as the first trace for allocation. The computation is then repeated on

the remaining control flow graph until all blocks have been added to a trace. An example

of a long traces decomposition is shown in Figure 5.9(b).

LOOP TRACES Traces are computed within each loop nesting level. Each trace contains blocks

with the same loop nesting level and more deeply nested blocks are allocated first. An

example of loop traces is shown in Figure 5.9(c).

LOOP AVOIDING TRACES Similar to long traces, but basic blocks at the head of a loop always

start a new trace. An example of a loop avoiding trace is shown in Figure 5.9(d).

The impact on code quality of each trace decomposition strategy is shown in Figure 5.10.

Both long traces and loop avoiding traces result in code size improvements (Figure 5.10(a)).

Loop traces result in an increase in code size. This is because loop traces, unlike the other cases,

are disconnected, and each inner loop is allocated before the surrounding code. This discon-

nectedness may require the insertion of shuffle code to resolve differences in allocation between

traces representing inner loops. The loop avoiding trace decomposition results in slightly better

code size improvements than the long trace strategy. Loop avoiding traces only contain a loop if

the loop begins the traces. This means the loop entry and exit allocations are already set before

the trace is allocated resulting in fewer complications with intra-trace control flow. We use the

loop avoiding trace decomposition strategy within our default implementation of the simultane-

ous allocator when optimizing for code size. When optimizing for performance, the long trace

and loop trace decomposition strategies have the best improvements (Figure 5.10(b)) with the

loop trace strategy demonstrating the greatest reduction in memory operations. The long trace

strategy allows for some evictions across loop boundaries, resulting in fewer memory accesses

inside loops. The loop strategy allocates inner loops first and so reduces memory operations

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 101

inside loops at the expense of additional shuffle code in between loops. We use the loop trace

decomposition strategy within our default implementation of the simultaneous allocator when

optimizing for performance.

The presence of control flow within each trace creates complications. When an allocation

decision is made at a block boundary, that decision must be propagated to all connected blocks

within the trace. For example, the exit allocation of block 1 in Figure 5.9(b) fixes the starting

allocation of block 5 and the exit allocation of block 4 in the same trace. This is due to the control

flow edges between blocks 1, 6, 7, and 5. Similarly, the exit allocation of block 2 fixes the exit

allocation of block 3 within the trace.

Intra-trace control flow inhibits the ability of the allocator to revise allocation decisions at ba-

sic block boundaries when implementing variable evictions. An allocation is allowed to change

at a basic block boundary within a trace only if the change in allocation will only affect unal-

located blocks. Unallocated blocks may be in other traces or be internal to the current trace.

For example, in Figure 5.9(b), when allocating a layer in block 2, it is legal to evict a variable

across the exit of block 1 (change the exit allocation of this variable in block 1). However, it is

not legal to evict a variable across the exit of block 1 when allocating a layer in block 4 since

modifying the exit allocations of block 1 will change the exit allocations of block 4 while it is

being allocated.

An additional complication of intra-trace control flow is the effect it has on the values of

the shortest cost paths through the trace. In the initial computation of shortest paths, variables

are not constrained to specific allocations at basic block boundaries within the trace (unless the

allocation of a previous trace has imposed such constraints). As blocks in the trace are allocated,

the allocation of variables within later blocks in the trace may be constrained. For example,

in Figure 5.9(b), after block 1 is allocated, the flow of variables between blocks 4 and 5 is

constrained to match the current exit allocation of block 1. These additional constraints may

change the value and direction of the shortest paths through the trace.

We consider two methods for updating shortest path information within a trace as blocks

are allocated. The first, easy-update, does the minimal amount of recomputation necessary for

correctness. Only blocks directly effected by the boundary allocation have their shortest paths

102 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

C
o
d
e

S
iz

e
Im

p
ro

v
em

en
t

Loop Avoiding Traces (Easy-Update)
Loop Avoiding Traces (Full-Update)
Long Traces (Easy-Update)
Long Traces (Full-Update)
Loop Traces (Easy-Update)
Loop Traces (Full-Update)

-1.14%-1.12%-1.11%-1.13%

-2.72%-2.70% -2.62%-2.62%

-2.34%-2.40%

-5.38%-5.37%

0.07% 0.07%

-0.65%-0.67%

-1.58%-1.57%

-2.28%-2.28%

-2.55%-2.48%

-6.43%-6.42%

x86-64x86-32ARMThumb

(a)

-30%

-25%

-20%

-15%

-10%

-5%

0%

R
ed

u
ct

io
n
 i

n
 M

em
o
ry

 O
p
er

at
io

n
s

Loop Avoiding Traces (Easy-Update)
Loop Avoiding Traces (Full-Update)
Long Traces (Easy-Update)
Long Traces (Full-Update)
Loop Traces (Easy-Update)
Loop Traces (Full-Update)

-20.22% -20.33%

-6.85%
-5.92%

-4.45%
-3.58%

-28.69% -28.67%

-15.09%

-13.53%

-9.63% -9.66%

x86-64x86-32

(b)

Figure 5.11: Effect of trace update policy on code quality in the simultaneous allocator

5.2. SIMULTANEOUS HEURISTIC ALLOCATOR 103

recomputed, and only when the recomputation is needed. For example, in Figure 5.9(b), after

allocating block 1, block 4 has to be recomputed as its exit allocations have changed. However,

this recomputation can be postponed until the allocator starts allocating layers within block 4.

Although these recomputations result in extra work compared to the original simultaneous allo-

cator, they are necessary to ensure that the shortest paths within the block end in the appropriate

allocation class. With easy-update, shortest paths will only be computed in a block at most twice.

Once during the first computation over the entire trace and possibly a second time immediately

prior to the allocation of the block.

The second method, full-update, recomputes shortest paths in all blocks of the trace whenever

a boundary allocation is constrained in the trace. The full-update technique is computationally

more expensive (potentially quadratically more updates) but provides more up-to-date informa-

tion for the simultaneous allocator in blocks not immediately affected by the boundary allocation.

For example, in Figure 5.9(b), if a variable were to spill to memory and then be loaded back into

a register in block 2, it is likely best for the variable to be loaded into the same register it was

allocated to at the exit of block 1 (to avoid a move into that register before the exit of block 4).

With full-update the allocator is aware of this cost since block 2, 3, and 4 are recomputed after

the allocation of block 1.

The effect of the two trace update policies on code quality is shown in Figure 5.11. Surpris-

ingly, the full-update policy results in little or negative code size improvement (Figure 5.11(a)).

When optimizing for performance, the full-update policy does have some effect (Figure 5.11(b)),

but only significantly for the long trace decomposition strategy. Since the minor impact on code

quality does not justify the increased algorithmic complexity of the full-update policy, we use

the easy-update policy within the default implementation of the simultaneous allocator.

5.2.3 Asymptotic Analysis

The simultaneous heuristic allocator, like the iterative algorithm, must compute shortest paths

for every variable v in every block. Unlike the iterative algorithm, the simultaneous allocator

does not need to compute each path successively and instead can compute all paths in the same

pass. However, the asymptotic running time of the shortest path computation remains O(nl̄),

104 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000 1e+06 1e+07 1e+08

Ti
m

e
(s

)

nl-

m = 0.933874 +/- 0.00136

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

Ti
m

e
(s

)

n2

m = 0.647704 +/- 0.001467

(b)

Figure 5.12: Running time of simultaneous allocator for all benchmarked functions related to (a)
nl̄ and (b) n2 on a log-log scale.

where n is the number of instructions and l̄ the average number of variables live at any point. In

the worst case, the allocator has to compute the eviction cost of O(v) variables at every layer.

Computing the eviction cost involves performing an O(n) shortest path computation. Since

there are O(n) layers in the network, this results in a worst case asymptotic running time of

O(n2v). This analysis assumes an unrealistic number of evictions. In actuality, since the number

of variables defined and used by an instruction is bound by a constant, the number of expected

evictions at each layer is similarly bound since only those variables accessed by an instruction

should necessitate an eviction. In this case there will be only O(n) evictions and the worst case

asymptotic running time of the simultaneous allocator is O(n2).

The empirical running times of all benchmarked functions are shown in Figure 5.12. The

running times are plotted on a log-log scale both relative to nl̄ and n2. There is a tighter relation

to nl̄. The slope of the best-fit line relative to nl̄ is .93 compared to .65 relative to n2. This

implies that although the worst-case asymptotic behavior of the simultaneous allocator is O(n2),

in practice evictions do not dominate the performance of the allocator and the expected behavior

is O(nl̄).

5.3. BOUNDARY CONSTRAINTS 105

a.←

.← b

.← c

b.←

a.←

.← a
b.←

c.←

1

2

3

4

5

8 6

7

Figure 5.13: A control flow graph that illustrates the subtleties of setting boundary constraints.

5.3 Boundary Constraints

Both the iterative and simultaneous allocators must fix allocations at basic block boundaries to

ensure consistency across control flow edges. This is in contrast to second-chance binpacking

which runs a separate resolution phase after allocation. By fixing basic blocks as they are allo-

cated, the allocators can make better allocation decisions within the affected blocks and avoid

generating needless shuffle code.

The function setBoundaryConstraints , shown in Listing 5.12, is responsible for fixing al-

locations at basic block boundaries and ensuring that no cross-block conflicts arise. When a

variable is allocated at a block boundary, the allocation is recorded and propagated to any con-

nected blocks where the variable is live. For example, consider the case where blocks 1 and 2

in Figure 5.13 have been allocated, and the variable a is allocated to r0 at the exit of block 2.

The exit allocation of a in block 2 is recorded by setBoundaryConstraints in lines 24–26. The

function is then called recursively on the successor block, block 3 (lines 27–28). The entry allo-

cation of a in block 3 is set to r0 (lines 13–15) and, since this is the entry of block 3, a recursive

call is made on all the predecessors of block 3 resulting in the setting of the exit allocation of

block 8. Since these three blocks are the only blocks where a is live, every location where amust

106 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

. store allocation maps for each block entry and exit
1: blockEntryVarsSet: block→ set of variables
2: blockEntryVarAlloc: block→ variable→ allocClass
3: blockEntryClassAlloc: block→ allocClass→ set of variables
4: blockExitVarsSet: block→ set of variables
5: blockExitVarAlloc: block→ variable→ allocClass
6: blockExitClassAlloc: block→ allocClass→ set of variables
7: visited: set of nodes

8: procedure SETBOUNDARYCONSTRAINTS(node n, variable v)
9: ac ← n.allocClass

10: if (n.type = Entry) ∧ (v ∈ n.variables) then . v live into this block
11: if v ∈ blockEntryVarsSet [n.block] then . already processed, halt recursion
12: return
13: blockEntryVarsSet [n.block].add(v)
14: blockEntryVarAlloc[n.block][v]← ac
15: blockEntryClassAlloc[n.block][ac].add(v)
16: for p ∈ n.predecessors do
17: setBoundaryConstraints(p, v) . process exit nodes of predecessor blocks
18: if blockEntryClassAlloc[n.block][ac].isFull then
19: invalidVars ← n.variables − blockEntryClassAlloc[n.block][ac]
20: setUnusable(n, v , invalidVars)

21: else if (n.type = Exit) ∧ (v ∈ n.variables) then . v live out of this block
22: if v ∈ blockExitVarsSet [n.block] then . already processed, halt recursion
23: return
24: blockExitVarsSet [n.block].add(v)
25: blockExitVarAlloc[n.block][v]← ac
26: blockExitClassAlloc[n.block][ac].add(v)
27: for s ∈ n.successors do
28: setBoundaryConstraints(s , v) . process entry nodes of successor blocks
29: if blockExitClassAlloc[n.block][ac].isFull then
30: invalidVars ← n.variables − blockExitClassAlloc[n.block][ac]
31: setUnusable(n, invalidVars)

Listing 5.12: SETBOUNDARYCONSTRAINTS Given an exit or entry node n and variable v, set
the boundary constraints of the connected basic blocks appropriately.

be allocated to r0 has been properly constrained. However, this is not sufficient to preventing

cross-block conflicts with the allocation of a.

Consider the allocation of variable b at the exit of block 8. Since a is allocated to r0, b

cannot be allocated to r0 at the exit of block 8. The allocation of b at the exit of block 8

5.3. BOUNDARY CONSTRAINTS 107

1: procedure SETUNUSABLE(node n, set of variables invalid)
2: invalid = invalid ∩ n.variables . consider only variables live at n
3: if invalid ⊂ n.unusableVars then return . halt recursion
4: n.unusableVars = n.unusableVars ∪ invalid
5: if node.type = Entry then
6: for p ∈ n.predecessors do
7: setUnusable(p, invalid)

8: else if node.type = Exit then
9: for s ∈ n.successors do

10: setUnusable(s , invalid)

Listing 5.13: SETUNUSABLE Marks the variables in the set invalid as unusable in a boundary
node n. Any connected nodes where a variable in invalid is still live is recursively marked.

1: function VIOLATESBOUNDARYCONSTRAINT(node n, variable v)
2: if n.type = Entry then
3: if v ∈ blockEntryVarsSet [n.block] then
4: if blockEntryVarAlloc[n.block][v] = n.allocClass then
5: return false . correct allocation, does not violate constraint
6: else
7: return true
8: else if n.type = Exit then
9: if v ∈ blockExitVarsSet [n.block] then

10: if blockExitVarAlloc[n.block][v] = n.allocClass then
11: return false . correct allocation, does not violate constraint
12: else
13: return true
14: return v ∈ n.unusableVars

Listing 5.14: VIOLATESBOUNDARYCONSTRAINT Return true if allocating variable v to exit or
entry node n would violate the existing boundary constraints.

must equal its allocation at the entry of blocks 4 and 7 and the exits of blocks 3, 6, and 7.

Therefore, if a is allocated to r0 at the exit of block 2, b cannot be allocated to r0 at any of these

points. One approach that prevents this conflict is to block the allocation of any variable to r0

at all the block boundaries that are connected to the exit of block 2. However, this approach is

needlessly conservative and would prevent the allocation of c to r0 in blocks 6 and 7. Instead, it

is more precise to only block the allocation to r0 of variables that conflict with a at some point.

This is exactly what is accomplished by the calls to setUnusable in lines 18–20 and 29–31 in

Listing 5.12.

108 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

The setUnusable function, shown in Listing 5.13, is called on a node with a set of variables

that cannot be allocated to that node. Initially, this is all the variables that are live at the node,

but not allocated to the already fully allocated node. These variables are marked as unusable

by the node (line 4) and then setUnusable is called recursively on all connected nodes. At each

node, the set of invalid variables is reduced to contain only variables live at the node (line 2).

The invalid set will therefore only contain variables that at one point conflicted with the original

variable. In our example, the invalid set will consist of only b at the exit of block 8. The entry

r0 nodes of blocks 4 and 7 and exit r0 nodes of blocks 3, 6, 7, and 8 will be marked as invalid

for b. However, at no point will the variable c be added to the invalid set.

The function violatesBoundaryConstraint , shown in Listing 5.14, checks if it is legal to

allocate a variable to a boundary node. If the variable has been set to a particular allocation class

(lines 3,9), then the allocation class of the node must match the set allocation class (lines 4,10).

Otherwise, the allocation is valid as long as the variable is not marked as unusable for this node

(line 14).

5.3.1 Asymptotic Analysis

Let b be the number of blocks and v the number of variables in a program. Since entry and

exit allocations are only set once for each variable, setBoundaryConstraints will only process

a node O(bv) times. Similarly, setUnusable will only process a node if the invalid set contains

previously unprocessed variables so at mostO(bv) nodes are processed. The additional overhead

of setting boundary constraints does not affect the asymptotic running time of either allocator.

5.4 Hybrid Allocator

We have described two allocators that heuristically solve the global MCNF model to quickly find

a good solution. The two allocators function differently and when evaluated on each benchmark

show clear distinctions as shown in the mixed results of Figures 5.14, 5.15, and 5.16. Our alloca-

tors do best when optimizing for the register-limited x86-32 architectures. This is likely because

the majority of the development effort designing and tweaking these heuristics was spent target-

5.4. HYBRID ALLOCATOR 109

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

x86-32

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%

1%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

Iterative Allocator
Simultaneous Allocator
Hybrid Allocator

x86-64

Figure 5.14: Code size improvement of heuristic allocators.

110 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

-4%

-3%

-2%

-1%

0%

1%

2%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

Thumb

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

Iterative Allocator
Simultaneous Allocator
Hybrid Allocator

ARM

Figure 5.15: Code size improvement of heuristic allocators.

5.4. HYBRID ALLOCATOR 111

-30%

-20%

-10%

0%

10%

20%

30%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

R
ed

u
ct

io
n

 i
n

 M
em

o
ry

 O
p

er
at

io
n

s

x86-32

-50%

-40%

-30%

-20%

-10%

0%

10%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

R
ed

u
ct

io
n

 i
n

 M
em

o
ry

 O
p

er
at

io
n

s

Iterative Allocator
Simultaneous Allocator
Hybrid Allocator

x86-64

Figure 5.16: Memory operation reduction of heuristic allocators.

112 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

C
o
d
e

S
iz

e
Im

p
ro

v
em

en
t

Iterative Allocator
Simultaneous Allocator
Hybrid Allocator

-0.68%

-1.14%

0.76%

-1.86%

-2.62%

-0.74%

0.24%
0.07%

1.64%

-4.56%

-2.28%

-1.13%

x86-64x86-32ARMThumb

(a)

-10%

-8%

-6%

-4%

-2%

0%

2%

4%

6%

8%

R
ed

u
ct

io
n
 i

n
 M

em
o
ry

 O
p
er

at
io

n
s

Iterative Allocator
Simultaneous Allocator
Hybrid Allocator

5.79%

-4.45%

7.30%

-1.71%

-9.63%

-0.14%

x86-64x86-32

(b)

Figure 5.17: Average code quality improvement of heuristic allocators

5.5. COMPILE TIME 113

0

20

40

60

80

100

120

x86-32 x86-64

C
o
m

p
il

e
T

im
e

S
lo

w
d
o
w

n

LLVM
Graph Coloring
Iterative Allocator
Simultaneous Allocator

Figure 5.18: Average slowdown of various allocators relative to the extended linear scan allocator
used in the LLVM compiler.

ing x86-32. However, the allocators also do well when optimizing for the Thumb architecture,

suggesting that there may be innate value in our expressive model approach when optimizing for

resource constrained architectures.

The explicit code model of the global MCNF model can be used to create a hybrid allocator.

The hybrid allocator runs both the simultaneous allocator and the iterative allocator on the model

and chooses the result with the better cost. The hybrid allocator substantially improves upon the

iterative and simultaneous allocators both when optimizing for code size (Figure 5.17(a)) and

when optimizing for performance (Figure 5.17(b)).

5.5 Compile Time

The iterative, simultaneous, and hybrid allocators generate code competitive with the default

extended linear scan allocator, but are also asymptotically more complex. The slowdowns of the

allocators are shown in Figure 5.18. We compare only allocation times. Our heuristic allocators

are close to two orders of magnitude slower than the extended linear scan allocator. There are

three reasons for this significant disparity:

114 CHAPTER 5. HEURISTIC REGISTER ALLOCATION

• The extended linear scan algorithm is designed to be fast. It is on average 25 times faster

than traditional graph coloring [115]. Relative to graph coloring allocation, our algorithms

are within an order of magnitude.

• Our algorithms are implemented in a research framework where performance is sacrificed

for flexibility.

• Our allocation algorithms are asymptotically slower.

Although our allocation algorithms are substantially slower than the default LLVM algorithm,

the overall compile time is still tractable for real-world use. For instance, although the iterative

heuristic allocator is ~40x slower on average than the extended linear scan algorithm, the average

total compile time of the benchmarks is only ~4x slower.

5.6 Summary

The register allocation algorithms developed in this chapter use an expressive model to find de-

cent solutions. We have seen that by improving the heuristics guiding these algorithms, the

resulting code quality can be improved. The guiding heuristics of these algorithms can be further

tweaked and additional incremental code quality improvements can be achieved. In particular

very little development time has been spent on tuning the heuristics to optimize well for per-

formance. In a principled compiler, code quality is not dependent solely on the ability of the

compiler developer to cleverly tune heuristic algorithms. Instead, an expressive model is cou-

pled with progressive solution techniques that approach the optimal solution. We describe a

progressive register allocator in the next chapter that uses the heuristic allocators described in

this chapter as building blocks.

115

Chapter 6

Progressive Register Allocation

In this chapter we describe progressive solution techniques for solving the expressive global

MCNF model. Progressive solution techniques quickly find a good solution and then progres-

sively improve upon this solution as more time is allotted for compilation. Our progressive

allocator has the additional advantage that it provides a meaningful upper bound on the optimal-

ity of the solution. These features enable a new form of interaction between the programmer and

compiler as the programmer can now explicitly manage the trade-off between compile-time and

code quality.

First, we describe the relaxation techniques we use to derive optimality bounds and the sub-

gradient optimization algorithm we use to find progressively better lower bounds. We then com-

bine the subgradient optimization algorithm with the heuristic solvers of the previous chapter to

create a progressive register allocator. Our progressive allocator generates substantial reductions

in code size and increases in performance compared to the default LLVM allocator.

6.1 Relaxation Techniques

In the context of mathematical optimization, a relaxation technique is a method for relaxing a

problem constraint, either by substitution or elimination, in order to derive an approximation of

the original problem. Recall the definition of the global MCNF problem from Chapter 3:

116 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

min
∑
i,j,q

cqijx
q
ij cost function (6.1)

subject to the constraints:

0 ≤ xq
ij ≤ vq

ij individual capacity constraints (6.2)∑
q

xq
ij ≤ uij bundle constraints (6.3)

Nxq = bq network constraints (6.4)

xq
predext ,ext

= xq
ext ,ent exit boundary constraints (6.5)

xq
ext ,ent = xq

ent ,succent
entry boundary constraints (6.6)

xq
i,j ∈ {0, 1} integrality constraints (6.7)

xq
ij represents the flow of a commodity q over an edge (i, j) and (ext , ent) represents a pair

of connected exit and entry nodes.

We utilize two relaxation techniques: linear programming relaxation and Lagrangian relax-

ation.

6.1.1 Linear Programming Relaxation

The linear programming relaxation of the global MCNF problem replaces the integrality con-

straints (6.7) with a pair of linear constraints:

xq
i,j ≥ 0 xq

i,j ≤ 1

The resulting relaxation is a linear program. The solution space of the original global MCNF

problem is a subset of the solution space of the linear program; every solution of the global

MCNF problem is a solution of the linear programming relaxation, but not vice versa. As a

result, the optimal solution of the linear programming relaxation is a lower bound on the optimal

solution of the global MCNF problem. The optimal solution of a linear program can be found

in polynomial time [6, 126], but there are three fundamental limitations that prevent us from

directly using the relaxation to find an optimal solution of the global MCNF problem: integrality

gaps, fractional solutions, and impractical solution times.

6.1. RELAXATION TECHNIQUES 117

!"#$

%#$

%#$

&'$()*+,-./0*1$2.3$ ()*+,-./0*1$2.3$ 4)5)'6)$

(a)

!"#$

%#$

&'$()*+,-./0*1$2.3$ ()*+,-./0*1$2.3$ 4)5)'6)$

(b)

Figure 6.1: The percentage of functions within a reduced benchmark set that demonstrate an
integrality gap when optimizing for (a) code size and for (b) performance targeting the x86-32
architecture.

An integrality gap exists if the optimal value of the linear relaxation is smaller than that

of the global MCNF problem. When this is the case, the solution of the linear relaxation is

guaranteed to violate the integrality constraints of the global MCNF problem. However, linear

relaxations of real-world global MCNF problems rarely have an integrality gap. We demonstrate

this empirically by compiling a subset of the MediaBench [79] benchmark suite consisting of the

benchmarks dijkstra, g721, mpeg2, patricia, qsort, sha, and stringsearch. We use ILOG CPLEX

10.0 [64] to compute the optimal solutions to both the linear relaxation and full global MCNF

model when optimizing both for code size and performance. As shown in Figure 6.1, at least

97% of the functions compiled demonstrate no integrality gap. The remaining functions either

have a definite integrality gap or an optimal solution is not found within the solver time limit of

600 seconds and the existence of an integrality gap is unknown.

Even in the absence of an integrality gap, the linear relaxation cannot be used directly to

solve the global MCNF problem since most of the optimal solutions of the linear relaxation are

fractional. Fractional solutions violate the integrality constraints of the global MCNF problem.

Standard linear programming solution techniques [6, 126] are not designed to prefer integer

valued solutions and empirically almost always generate fractional solutions.

118 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07

S
ol

ut
io

n
T

im
e

(s
)

Size of LP

Hybrid Allocator
Simplex Method

Dual Simplex Method
Interior Point Method

Figure 6.2: Linear programming solution times of the global MCNF problem when optimizing
the functions of the 401.bzip2 benchmark for size targeting the x86-32 architecture. Times are
displayed on a log-log scale relative to the number of nonzeroes in the linear program.

Although linear programs can be solved in polynomial time, solution times do not scale well

with problem size. It is not practical for a full linear programming solver to be a standard part

of a compiler tool flow. We illustrate this in Figure 6.2 where we graph the solution times of

the linear programming relaxation of all the functions of the 401.bzip2 benchmark on a log-log

scale. This benchmark can be compiled to optimality and has a good range of function sizes.

We evaluate three popular linear programming solution algorithms as implemented by ILOG

CPLEX [64]. The slopes of the lines fit to the data in Figure 6.2 range from 1.3 to 1.8 for the

linear programming solution techniques, indicating super-linear asymptotic running times, while

the hybrid allocator of Section 5.4 has a slope of 0.8, indicating a sub-linear running time relative

to the size of the linear program. In addition, the hybrid allocator is several orders of magnitude

faster.

It is not practical to use conventional, unmodified, linear programming techniques to solve

the global MCNF problem. However, due to the rarity of integrality gaps, the linear programming

relaxation is very useful in establishing an optimality bound. The value of the linear relaxation

is a lower bound on the value of the original global MCNF problem. A lower bound, valLB, can

be used to compute an upper bound on the optimality of a solution:

optimality bound =
val − valLB

valLB

6.1. RELAXATION TECHNIQUES 119

6.1.2 Lagrangian Relaxation

Lagrangian relaxation [6, 80] is a general relaxation technique that removes one or more con-

straints from a problem and integrates them into the objective function using Lagrangian multi-

pliers. Given an optimization problem:

min f(x)

subject to:

g(x) ≤ 0

g′(x) ≤ 0

h(x) = 0

h′(x) = 0

where g′(x) and h′(x) are complicating constraints (i.e., the problem is easy to solve in their

absence) the Lagrangian relaxation, L, is:

minL(x,w, v) = f(x) + wg′(x) + vh′(x)

subject to:

g(x) ≤ 0

h(x) = 0

w ≥ 0

where w and v are Lagrangian multipliers.

In the Lagrangian relaxation of the global MCNF problem, we relax the bundle constraints

(6.3) and boundary constraints (6.5 and 6.6).

The bundle constraints are removed by incorporating the term

∑
i,j

wij

(∑
q

xq
ij − uij

)

into the objective function. The wij term is the Lagrangian multiplier, or price, and must be

greater than or equal to zero.

120 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

To remove the boundary constraints we first simplify the redundant exit (6.5) and entry (6.6)

constraints into a single boundary constraint and put it into standard form:

xq
predext ,ext

= xq
ent ,succent

xq
predext ,ext

− xq
ent ,succent

= 0

We then include the term

vext ,ent

(
xq

predext ,ext
− xq

ent ,succent

)
where vext ,ent is the Lagrangian multiplier and is unrestricted in sign, into the objective function.

The result is the Lagrangian relaxation:

L(x,w, v) = min
∑
i,j,q

cqijx
q
ij +

∑
i,j

wij

(∑
q

xq
ij − uij

)

+
∑

(ext,ent)

vext ,ent

(
xq

predext ,ext
− xq

ent ,succent

)
subject to:

0 ≤ xq
ij ≤ vq

ij

Nxq = bq

If we define

vij =


vent ,ext j = ext ,

−vent ,ext i = ent ,

0 otherwise

then the relaxation can be simplified to:

L(w) = min
∑
i,j,q

(
cqij + wij + vij

)
xq

ij −
∑
i,j

wijuij

subject to:

0 ≤xq
ij ≤ vq

ij

Nxq = bq

The relaxation has decomposed the original global MCNF problem into a set of independent

shortest flow problems where the cost of an edge, xq
ij , is the sum of the original cost, cqij , the

6.2. SUBGRADIENT OPTIMIZATION 121

Lagrangian multiplier wij , and vij which is equal to the Lagrangian multiplier vent ,ext if node j

is an exit node and is equal to −vent ,ext if node i is an entry node.

A Lagrangian relaxation has the property that for any values of w and v, L(x,w, v) ≤

z∗, where z∗ is the optimal value of the original unrelaxed problem. An optimal solution of

L(x,w, v) is a lower bound on the optimal solution of the original problem. The best lower

bound of L(x,w, v) for z∗ is therefore:

L∗ = max
w,v

min
x
L(x,w, v)

In fact, when the original problem is a linear program, the lower bound L∗ is exact; it equals

the optimum value of the original problem [6]. Furthermore, if a solution, x, to L∗ is feasible in

the original problem and it satisfies the complementary slackness condition, it is optimal. The

complementary slackness condition simply requires that any edge with a non-zero price is used

to its full capacity in the solution: wij

(∑
q

xq
ij − uij

)
= 0. The solution of L∗ is not only

useful in establishing a tight lower bound on the value of the optimal solution, but may also

yield an optimal solution if a flow vector x can be found that obeys the complementary slackness

condition.

6.2 Subgradient Optimization

Solving for L∗, that is finding values of w and v that maximize L(x,w, v), is known as the

Lagrangian dual problem and is solved using an iterative subgradient optimization algorithm

[6, 61, 121]. The subgradient optimization algorithm is a generalization of gradient descent

algorithms. The algorithm converges to optimal values of w and v by taking successively smaller

steps in the direction of the subgradient, an approximation of the gradient. In general terms,

subgradient optimization computes a sequence of Lagrangian prices, λk, k ≥ 1 using:

λk+1 = λk + θkgk

where θk is the step size and gk is the subgradient.

When applied to our Lagrangian relaxation of global MCNF, an iteration of the subgradient

optimization algorithm starts with price vectors, (wk, vk), and finds a flow vector, yk, that min-

122 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-700000

-600000

-500000

-400000

-300000

-200000

-100000

 0

 100000

 0 10 20 30 40 50 60 70 80 90

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v)

(a)

-3.5e+06

-3.4e+06

-3.3e+06

-3.2e+06

-3.1e+06

-3e+06

-2.9e+06

-2.8e+06

-2.7e+06

 0 10 20 30 40 50 60 70 80 90

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

L(w,v)

(b)

Figure 6.3: Convergence behavior of the basic subgradient optimization algorithm when opti-
mizing for (a) code size and (b) performance.

imizes L(yk, wk, vk). This is done in linear time by computing all shortest paths in each block.

Given the resulting flow vector, yk, the standard update rules for (w, v) are:

wk+1
ij = max

(
wk

ij + θk

(∑
q

yq
ij − uij

)
, 0

)

vq
ent ,ext

k+1 = vq
ent ,ext

k + θk

(
yq
predext ,ext

− yq
ent ,succent

) (6.8)

where θk is the current step size. Intuitively, these rules will increase the price of edges that are

over-allocated and decrease the price of edges that are under-utilized. The algorithm is guaran-

teed to converge if θk satisfies the conditions:

lim
k→∞

θk = 0

lim
k→∞

k∑
i=1

θi =∞

An example of a simple method for calculating a step size that satisfies these conditions is the

ratio method, θk = 1/k.

The convergence behavior of the standard subgradient optimization algorithm with a simple

ratio step update rule and zero initial prices is shown in Figure 6.3. When displaying convergence

results, unless stated otherwise, we target the x86-32 instruction set architecture. We consider

optimizing both for code size, which has a uniform cost metric, and for performance, where

6.2. SUBGRADIENT OPTIMIZATION 123

the cost metric is nonuniform and costs vary dramatically between blocks. At each iteration of

the algorithm, we compute L(w, v) = min
x
L(x,w, v) using a standard shortest paths algorithm.

Unless stated otherwise, we display an aggregrate L(w, v) value that is the sum at each iteration

of L(w, v) for every function in the benchmark set. The value of L(w, v) is not monotonic;

the best lower bound is given by the maximum value of all iterations. Since L(w, v) is a lower

bound, values can be negative even if negative values are nonsensical, such as with code size,

and the values increase as the prices converge. In displaying convergence results, we choose the

x-axis range that provides the clearest picture of the convergence behavior.

The unmodified subgradient optimization algorithm shown in Figure 6.3 requires substantial

improvement before it can provide a useful lower bound. The shown algorithm does not improve

upon the initial lower bound after 100 iterations. The convergence behavior of the subgradient

optimization algorithm can be improved by adjusting the flow calculation of yk, the step update

rule, the price update rule, and the initial prices.

6.2.1 Flow Calculation

Each iteration of the subgradient optimization algorithm must solveL(xk, wk, vk) for xk to obtain

a flow vector yk. In general, there is not a unique solution for yk. Since the values of yk are part

of the price update rule (6.8), the algorithm used to compute yk affects the convergence of the

optimization. We consider two algorithms for computing the flow vector yk: standard shortest

paths and balanced shortest paths.

The standard shortest path flow calculation calculates a single shortest path for each variable.

The contribution of the flow of a variable to the flow vector will be either zero or one. If there

are multiple possible shortest paths, a path is arbitrarily, but deterministically, chosen. In the

common case where variables have no preference for a particular register, this flow calculation

will result in an allocation that sends all variables through the exact same register class. In the

next iteration of the subgradient optimization algorithm, the prices along this over-allocated path

will increase. The subsequent shortest path calculation will then over-allocate the same set of

variables to a different register class. Eventually, as the prices converge, the flows of the different

124 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-700000

-600000

-500000

-400000

-300000

-200000

-100000

 0

 100000

 0 10 20 30 40 50 60 70 80 90

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v): balanced shortest paths

L(w,v): standard shortest paths

(a)

-3.5e+06

-3.4e+06

-3.3e+06

-3.2e+06

-3.1e+06

-3e+06

-2.9e+06

-2.8e+06

-2.7e+06

-2.6e+06

 0 10 20 30 40 50 60 70 80 90

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

L(w,v): balanced shortest paths

L(w,v): standard shortest paths

(b)

Figure 6.4: Convergence behavior of the subgradient optimization algorithm using different flow
calculations when optimizing for (a) code size and (b) performance.

variables will diverge, but several iterations are required to properly “warm-up” the prices of

register classes.

The balanced shortest path calculation allocates the flow of a variable equally among all pos-

sible shortest paths. If there are i shortest paths, the flow along each shortest path is incremented

by 1/i. Although in a network with n instruction groups there are O(2n) shortest paths, this

calculation can be done using two linear passes over the network. The first pass computes the

shortest paths. At each node, in addition to the value of the shortest path, the number of shortest

paths to that node and the set of previous nodes along these paths is recorded. Since the number

of incoming edges of a node in the network is O(1), this set can be efficiently implemented with

a bitmask. The second pass traverses the network backwards, against the flow, and allocates the

flow in proportion to the number of paths traversing each node. Unlike the standard shortest path

flow calculation, the resulting flow vector may include fractional flows.

The effect these two flow calculation algorithms have on the convergence of prices in the

subgradient optimization algorithm is shown in Figure 6.4. As expected, the balanced shortest

path approach substantially outperforms the standard shortest path calculation. We utilize this

method of flow calculation in our implementation of subgradient optimization.

6.2. SUBGRADIENT OPTIMIZATION 125

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90

θk

Iterations (k)

10/(k+9)
2/k
1/k

1/(k+10)
1/(k+100)

Figure 6.5: Graphical depiction of five ratio step update rules.

6.2.2 Step Update

The step update rule determines how large a step, θk, should be taken in the direction of the

gradient when updating the values of the prices, λ, at iteration k of the algorithm:

λk+1 = λk + θkgk

No definitive step update rule exists and the choice of step update rule depends heavily upon

the problem instance [99]. The two most common step update rule frameworks that guarantee

convergence are the ratio rule and an application of Newton’s method:

θk+1 =
a

k + b
(Ratio)

θk+1 =
βk [LUB − L(w, v)]

||gk||2
(“Newton’s Method”)

The value ||gk|| is the Euclidean norm of the subgradient:

||gk|| =

√√√√∑
ij

(∑
q

yq
ij − uij

)2

+
∑

ent ,ext ,q

(
yq
predext ,ext

− yq
ent ,succent

)2

The ratio rule is a simple yet effective step update rule. The rate that the step size decreases

and the initial step size value can be adjusted with a multiplicative factor a in the numerator and

126 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-300000

-250000

-200000

-150000

-100000

-50000

 0

 50000

 100000

 0 50 100 150 200 250

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v): θk+1 = 1/(k+100)

L(w,v): θk+1 = 1/(k+10)

L(w,v): θk+1 = 1/k

L(w,v): θk+1 = 2/k

L(w,v): θk+1 = 10/(k+9)

(a)

 43000

 44000

 45000

 46000

 47000

 48000

 49000

 50000

 51000

 52000

 250 300 350 400 450

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v): θk+1 = 1/(k+100)

L(w,v): θk+1 = 1/(k+10)

L(w,v): θk+1 = 1/k

L(w,v): θk+1 = 2/k

L(w,v): θk+1 = 10/(k+9)

(b)

-1.8e+08

-1.6e+08

-1.4e+08

-1.2e+08

-1e+08

-8e+07

-6e+07

-4e+07

-2e+07

 0

 2e+07

 0 50 100 150 200 250

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

L(w,v): θk+1 = 1/k

L(w,v): θk+1 = Bfreq/k

L(w,v): θk+1 = Bfreq/(k+10)

L(w,v): θk+1 = 2Bfreq/k

L(w,v): θk+1 = 10Bfreq/(k+9)

L(w,v): θk+1 = Bfreq/(k+100)

(c)

-3e+06

-2e+06

-1e+06

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 250 300 350 400 450

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

L(w,v): θk+1 = 1/k

L(w,v): θk+1 = Bfreq/k

L(w,v): θk+1 = Bfreq/(k+10)

L(w,v): θk+1 = 2Bfreq/k

L(w,v): θk+1 = 10Bfreq/(k+9)

L(w,v): θk+1 = Bfreq/(k+100)

(d)

Figure 6.6: Convergence behavior of the subgradient optimization algorithm using different step
update rules when optimizing for (a) (b) code size and (c) (d) performance. We show the initial
and successive behavior separately to magnify the behavior of the later.

an additive term b in the denominator. We consider five possible adjustments:

θk+1 =
1

k
θk+1 =

1

k + 10
θk+1 =

1

k + 100

θk+1 =
2

k
θk+1 =

10

k + 9

The first three rules decrease at the same rate but start with different initial step sizes. The last

two rules decrease at slower rates. The behavior of θk for each of these five rules is depicted in

Figure 6.5.

The effect of the various rules on the convergence of the subgradient optimization algorithm

when optimizing for size is shown in Figures 6.6(a) and 6.6(b). The larger the initial step size,

6.2. SUBGRADIENT OPTIMIZATION 127

the greater the initial drop in value. A large initial step size results in large price increases

and dramatic changes in the flow calculation results. Smaller step sizes have a more incremental

impact on the flow calculations. However, despite different initial behavior, the first three, 1/(k+

a), rules are all close to the same value after 100 iterations. The last two rules, which reduce the

step size at a slower rate, do not converge as quickly. Although the 1/(k + 100) rule has better

initial behavior, the slightly larger step sizes of the 1/(k+10) rule allow it to make more progress

towards convergence at later iterations. We consider the 1/(k + 10) rule to have the best overall

convergence behavior.

Unlike the code size metric, the speed metric is not uniform. Since costs are weighted by

execution frequencies, the cost of an operation varies substantially depending upon what block

the operation is executed in. Costs within innermost loops are large and flows within these

frequently executed blocks will not be affected by minor changes in prices. As a result, large

step sizes are necessary in order to achieve good convergence. We consider an alternative step

update rule

θk+1 =
Bfreqa

k + b

where Bfreq is the execution frequency of a block under consideration. With this rule, the price

modifications are proportional to the magnitude of the costs in the same block. As can be seen

from Figures 6.6(c) and 6.6(d), this modification is necessary to obtain reasonable lower bounds

when optimizing for performance. Just as with the code size case, a larger initial step size

results in a greater initial drop in value. However, step update rules with larger initial prices

perform better compared to the code size metric. Since the costs of the weighted execution costs

performance metric are larger than those of the code size metric, prices must be correspondingly

larger to have the same effect. We consider the Bfreq/k rule to have the best overall convergence

behavior.

Newton’s method for solving systems of nonlinear equations can be adapted to define a step

update rule:

θk+1 =
βk [LUB − L(w, v)]

||gk||2

where ||gk|| is the Euclidean norm of the gradient, LUB is an upper bound on the value of the

Lagrangian relaxation, and βk is a constant. If LUB is the optimal value, L∗, and βk is between 0

128 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-1000

-800

-600

-400

-200

 0

 200

 0 10 20 30 40 50 60 70 80 90

C
o

d
e

S
iz

e
(b

y
te

s)

Iterations (k)

Ratio

β = 0.125

β = 0.5

β = 1.0

β = 2.0

β = 4.0

(a)

-1e+06

-900000

-800000

-700000

-600000

-500000

-400000

-300000

-200000

-100000

 0

 0 10 20 30 40 50 60 70 80 90

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

Ratio

β = 0.125

β = 0.5

β = 1.0

β = 2.0

β = 2.0

β = 4.0

(b)

Figure 6.7: Convergence of the subgradient optimization with the Newton’s method step update
rule when optimizing for (a) code size and (b) performance. Results are shown for a single
function, quicksort. The optimal value is computed and used within the step update rule as the
upper bound.

and 2, then this step update rule is guaranteed to converge [94]. In practice, LUB does not equal

L∗ and the value of βk is reduced until the algorithm appears to be converging. As with the ratio

rule, when optimizing performance, we multiply the step size by the execution frequency of the

current basic block.

We explore the behavior of the Newton’s method step update rule applied to the Lagrangian

relaxation of the global MCNF problem in Figure 6.7. We consider a single function, quicksort,

for which we calculate the optimal values of the global MCNF problem when optimizing for

code size and performance. We use these optimal values within the step update rule in the place

of LUB. As expected, values of β greater than 2 result in divergent behavior. This means that if

βk >
2L∗

LUB
then the algorithm will fail to converge and generate exceedingly poor lower bounds.

However, if βk is too small, the algorithm will converge very slowly, as demonstrated by the

β = 0.125 case in Figure 6.7. In fact, the convergence behavior for all choices of β for the

Newton’s method rule is inferior to that of the simple ratio rule. For both step update methods

the step size can be improved by performing a line search in the direction of the subgradient to

find an optimal step size. However, line search techniques are computationally expensive, and

several search-less iterations can be performed in the same time it takes to perform one iteration

with a search. In practice, avoiding line search techniques has been shown to be the most effective

6.2. SUBGRADIENT OPTIMIZATION 129

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45 50

λ1
k

Iteration (k)

Standard price update
Average direction price update

Optimal price

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

λ2
k

Iteration (k)

Standard price update
Average direction price update

Optimal price

(b)

Figure 6.8: Example price behavior using different price update strategies. The average direction
strategy (a) accelerates price movement and (b) dampens oscillating price behavior.

strategy [90]. Given the generally better behavior of the ratio rule and the difficulty in selecting

appropriate values for β and LUB , we default to using the ratio rule when performing subgradient

optimization.

6.2.3 Price Update

The standard price update strategy functions similarly to gradient descent methods and modifies

the prices in the direction of the subgradient:

λk+1 = λk + θkgk

Alternative price update strategies [9, 29, 90, 119, 120] are inspired by conjugate gradient descent

methods [107] and use both the previous direction, dk−1 and current subgradient, gk, to update

the prices:

dk = gk + Ψkdk−1

λk+1 = λk + θkdk

The behavior of these strategies is determined by the deflection parameter, Ψk. We consider

the computationally simple and problem-instance independent average direction price update

strategy [120] where

Ψk =
||gk||
||dk−1||

130 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

Standard price update Average direction price update

k θk λ1
k λ2

k g1
k g2

k λ1
k λ2

k g1
k g2

k Ψk d1
k d2

k

1 1.000 0.000 0.000 1.0 1.0 0.000 0.000 1.0 1.0 0.000 1.000 1.000

2 0.500 1.000 1.000 1.0 -1.0 1.000 1.000 1.0 -1.0 1.000 2.000 0.000

3 0.333 1.500 0.500 1.0 1.0 2.000 1.000 1.0 -1.0 0.707 2.414 -1.000

4 0.250 1.833 0.833 1.0 -1.0 2.805 0.667 1.0 -1.0 0.541 2.307 -1.541

5 0.200 2.083 0.583 1.0 1.0 3.381 0.281 1.0 1.0 0.510 2.176 0.214

6 0.167 2.283 0.783 1.0 -1.0 3.817 0.324 1.0 1.0 0.647 2.407 1.139

7 0.143 2.450 0.617 1.0 -1.0 4.218 0.514 1.0 1.0 0.531 2.278 1.605

8 0.125 2.593 0.474 1.0 1.0 4.543 0.743 1.0 -1.0 0.507 2.156 -0.186

9 0.111 2.718 0.599 1.0 1.0 4.813 0.720 1.0 -1.0 0.653 2.409 -1.121

10 0.100 2.829 0.710 1.0 -1.0 5.080 0.595 1.0 1.0 0.532 2.282 0.403

Table 6.1: Example price behavior using different price update strategies.

With this choice of Ψk, the resulting direction, dk, bisects the current gradient, gk, and the previ-

ous direction dk−1, and so can be considered an “average” direction.

The average direction strategy has the dual advantages of accelerating movement in a con-

sistent direction and smoothing out oscillations in direction. These two properties are illustrated

in Table 6.1 where we consider a simplified problem with two prices, λ1 and λ2. In this exam-

ple, the gradient is taken to be 1 if the current price is less than the optimal value and -1 if it is

greater. The optimal values of λ1 and λ2 are set to 9 and 0.6, respectively. Both prices are initial-

ized to zero and the ratio rule is used to calculate the step size. Starting at zero, λ1 consistently

moves in a positive direction until it reaches its optimal value of 9. As shown in Table 6.1 and

Figure 6.8(a), the average direction strategy acts as an accelerator since the combination of the

previous direction and the current gradient is larger than the current gradient. In constrast, λ2 is

initialized close to its optimal value and the prices found by subgradient optimization oscillate

around the optimal value of 0.6. As shown in Table 6.1 and Figure 6.8(b), the average direction

strategy dampens these oscillations and generates values of λ2
k that are closer to the optimal value

on average.

6.2. SUBGRADIENT OPTIMIZATION 131

-20000

-10000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v): average direction price update, θk = 1/(k+100)

L(w,v): average direction price update, θk = 1/(k+10)

L(w,v): standard price update, θk = 1/(k+10)

(a)

 50000

 50200

 50400

 50600

 50800

 51000

 51200

 51400

 250 300 350 400 450

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v): average direction price update, θk = 1/(k+100)

L(w,v): average direction price update, θk = 1/(k+10)

L(w,v): standard price update, θk = 1/(k+10)

(b)

-1e+08

-9e+07

-8e+07

-7e+07

-6e+07

-5e+07

-4e+07

-3e+07

-2e+07

-1e+07

 0

 1e+07

 0 50 100 150 200 250

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

L(w,v): average direction price update, θk = Bfreq/(k+10)

L(w,v): average direction price update, θk = Bfreq/k

L(w,v): standard price update, θk = Bfreq/k

(c)

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 6e+06

 6.5e+06

 7e+06

 7.5e+06

 250 300 350 400 450

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

L(w,v): average direction price update, θk = Bfreq/(k+10)

L(w,v): average direction price update, θk = Bfreq/k

L(w,v): standard price update, θk = Bfreq/k

(d)

Figure 6.9: Convergence of subgradient optimization with different price update strategies when
optimizing for (a)(b) code size and (c)(d) performance. We show the initial and successive be-
havior separately to magnify the behavior of the later.

The behavior of the average direction price update strategy is compared with the standard

update strategy in Figure 6.9. The average direction strategy results in a significant initial price

drop. The accelerating effect of using the average direction is counter-productive when the prices

are first warming up. However, using a ratio rule that generates smaller initial step sizes counters

this negative effect. Using a smaller initial step size, the average direction strategy is competitive

initially with the standard update strategy (Figures 6.9(a) and 6.9(c)). Both small and large

initial step sizes eventually generate larger values as the algorithm converges (Figures 6.9(b)

and 6.9(d)). We use the average direction strategy with a smaller initial step size in our default

implementation of subgradient optimization.

132 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

1: function CALCULATENODEPRICEWEIGHT(nodes layer , node n)
2: allowedWeight ←∞ . largest price that won’t change flow currently allocated to node
3: neededWeight ← 0 . smallest price that will push shortest paths to current allocation
4: for v ∈ node.variables do
5: ncost ← costOfShortest(v , n) . sum of shortest path to and shortest path from n
6: mindiff ←∞ . min distance between ncost and next highest cost node
7: for m ∈ layer do
8: mcost ← costOfShortest(v ,m)
9: if v ∈ m.flowVars then . v is allocated to m in current allocation

10: allocCost ← mcost
11: else if mcost > ncost then
12: if mcost − ncost < mindiff then
13: mindiff ← mcost − ncost

14: if allocCost = ncost then . current allocation has this cost
15: if mindiff < allowedWeight then
16: allowedWeight ← mindiff . disallow price that would change allocation
17: else if allocCost > ncost then . shortest path for v is less than current allocation
18: if allocCost − ncost > neededWeight then
19: neededWeight ← allocCost − ncost . want to increase price on node for v
20: if neededWeight > allowedWeight then
21: return allowedWeight
22: else
23: return neededWeight

Listing 6.1: CALCULATENODEPRICEWEIGHT Given a node n within a given layer of an allo-
cated network, compute a price that will push flows towards the current solution.

6.2.4 Price Initialization

The initial lower bound found in the first iteration of subgradient optimization is determined

exclusively by the initial set of prices. We consider using an existing allocation to set the ini-

tial prices. Ideally, given a set of feasible flows, x, we would be able to find a set of prices,

(w, v), such that x is a set of shortest paths in the priced network. Since this property implies

that L(x,w, v) = L∗, it is not possible to generate such a set of prices for an arbitrary flow vec-

tor. However, given a flow vector, we can generate prices that bias flows in the priced network

towards the given flow vector.

The function calculateNodePriceWeight , shown in Listing 6.1, calculates a price for a node,

n, that biases shortest path calculations toward the current allocation. The algorithm computes

the cost of the flow of each variable through the node n (the sum of the shortest path to and

6.2. SUBGRADIENT OPTIMIZATION 133

1: procedure PRICEINITIALIZATION(GlobalMCNF f)
2: allocate(f) . heuristic initial prices
3: computeShortestPaths(f)
4: for BB ∈ basicBlocks(f) do
5: for layer ∈ BB do
6: allocateLayer(layer) . assignment initial prices
7: for n ∈ layer do
8: n.price ← n.price + calculateNodePriceWeight(layer , n)

9: updateNextLayerPaths(layer)

Listing 6.2: PRICEINITIALIZATION Initialize prices based on some heuristic allocation.

shortest path from the node). If this cost is less than the cost of flow through the node the

variable is currently allocated to, the current allocation of the variable is not along a shortest

path. If the price of node n is increased sufficiently, the shortest path of the variable will be

redirected to a different node. Ideally, this node is the node the variable is allocated to in the

current allocation. The amount that the price of node n has to be increased in order to redirect

shortest paths to the nodes of the current allocation is the neededWeight value calculated by

calculateNodePriceWeight (line 19).

If the neededWeight value is too large, variables allocated to node n in the current allocation

will be redirected. In order to prevent this, calculateNodePriceWeight also computes the value

allowedWeight (line 16). If a variable is allocated to node n, or to a node with the exact same

flow cost as node n, then the price of n should not be increased to the point that the flow of the

variable is redirected. The most the price can be incremented is the difference between the flow

cost of the variable through n and the next most expensive node. The final weight returned by

calculateNodePriceWeight is the minimum of the allowedWeight and neededWeight values.

The general price initialization algorithm, priceInitialization, is shown in Listing 6.2. The

algorithm iterates over each layer of the network. For every node in a layer, a price weight is

computed and applied (line 8). After each layer is processed, the shortest paths into the next layer

are updated using the newly computed prices. This algorithm only updates capacity constraint

prices, w. Boundary constraint prices, v, remain initialized to zero.

We consider two algorithms for generating initial prices. Heuristic initial prices are com-

puted using the result of the hybrid heuristic allocator (Section 5.4) as the allocation used by the

134 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

 25000

 30000

 35000

 40000

 45000

 50000

Code Size (bytes)

Zero initial prices
Assignment initial prices
Heuristic initial prices

(a)

-4e+07

-3.5e+07

-3e+07

-2.5e+07

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

Weighted Execution Cost

Zero initial prices
Assignment initial prices
Heuristic initial prices

(b)

Figure 6.10: Effect of price initialization on the initial lower bound when optimizing for (a) code
size and (b) performance. Larger lower bounds are better.

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 0 50 100 150 200

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v): zero initial prices
L(w,v): assignment initial prices

L(w,v): heuristic initial prices

(a)

-4.5e+07

-4e+07

-3.5e+07

-3e+07

-2.5e+07

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

 5e+06

 1e+07

 0 50 100 150 200 250 300 350 400 450

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

L(w,v): zero initial prices
L(w,v): assignment initial prices

L(w,v): heuristic initial prices

(b)

Figure 6.11: Convergence of subgradient optimization with different price initialization tech-
niques when optimizing for (a) code size and (b) performance.

priceInitialization algorithm (line 2). Assignment initial prices are generated from an alloca-

tion of variables to nodes that ignores network constraints. The assignment allocation algorithm

ignores the network constraints of the problem and treats each layer of the network as a clas-

sical assignment problem [6] which can be solved optimally in polynomial time. The classical

assignment problem finds the minimum cost matching between two sets. In our case, we match

variables to nodes and the cost of a match is determined by the cost of the flow of a variable

through a node. Since the costs of the assignment problem depend on the shortest path values,

6.2. SUBGRADIENT OPTIMIZATION 135

 30000

 35000

 40000

 45000

 50000

 55000

 0 50 100 150 200

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

L(w,v): 9.1% smaller initial solution

L(w,v): 6.7% smaller initial solution

L(w,v): heuristic initial prices

Figure 6.12: Convergence of heuristic price initialization with different initial allocations. The
lower bound for the 401.bzip2 benchmark is shown when optimizing for code size. A better
initial allocation results in substantially better convergence.

the allocation of each layer is computed as the priceInitialization algorithm iterates over the

layers (line 6) and the prices are updated (line 9).

The heuristic initial pricing algorithm biases the initial prices toward a specific valid register

allocation that may be far from optimal. The assignment initial pricing algorithm does not bias

the prices toward a legal allocation, but does initialize the prices to reflect the register pressure at

each program point and does not depend on the quality of a heuristic allocation.

As shown in Figure 6.10, assignment initial prices generate a significantly better initial lower

bound than both heuristic initial prices and zero initial prices. Heuristic initial prices gener-

ate poor lower bounds, especially when optimizing for performance. This is likely due to the

lower quality solutions found by the heuristic allocators when optimizing for performance. We

illustrate the dependence of the heuristic initial pricing algorithm on the quality of the initial allo-

cation in Figure 6.12. A high quality initial allocation results in substantially better convergence

behavior.

Interestingly, as shown in Figure 6.11, despite generating substantially better initial lower

bounds, price initialization does not eliminate the initial price warmup phase in the subgradient

optimization algorithm. However, since assignment initial prices generate significantly better

initial lower bounds we use this price initialization strategy by default.

136 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

6.2.5 Summary

We implement several improvements to the standard subgradient optimization algorithm. When

updating prices we use balanced shortest paths to calculate the flow vector. This algorithm sub-

stantially outperforms a standard shortest path algorithm. We find that the ratio rule for calcu-

lating the step size, θk, is more effective than the Newton’s method rule. When optimizing for

performance, we use a step size that is weighted by the execution frequency of the current ba-

sic block. We consider both the standard subgradient update strategy and the average direction

price update strategy with a reduced initial step size. We implement the average direction strat-

egy by default since it converges faster in the limit. We initialize prices by computing prices at

each layer in the network that bias the shortest path solutions towards a solution to the classical

assignment problem at each layer.

6.3 Progressive Register Allocation

We combine Lagrangian relaxation and subgradient optimization with our heuristic solution tech-

niques to create a progressive register allocator. Our progressive solver first finds an initial so-

lution in the unpriced network using a heuristic allocator. Then, in each iteration of the subgra-

dient optimization algorithm, the current prices are used to find another solution. We modify

the heuristic allocators to compute shortest paths using edge and boundary prices in addition to

edge costs. Global information, such as the interference graph, is only used to break ties between

identically priced paths. Otherwise, the heuristic allocators rely on the influence of the prices in

the network to account for the global effect of allocation decisions.

The heuristic allocators attempt to build a minimum cost feasible solution to the global

MCNF problem. If the algorithm finds a solution equal in cost to the relaxed solution and

this solution obeys the complementary slackness condition, then the solution is provably op-

timal. When selecting among similarly priced allocation decisions, we increase the likelihood

that the solution will satisfy the complementary slackness condition by favoring allocations with

the lowest unpriced cost.

6.3. PROGRESSIVE REGISTER ALLOCATION 137

 48000

 50000

 52000

 54000

 56000

 58000

 60000

 62000

 64000

 0 50 100 150 200 250 300 350 400 450

C
o
d
e

S
iz

e
(b

y
te

s)

Iterations (k)

Iterative Allocator
Simultaneous Allocator

Hybrid Allocator
Lower Bound

(a)

-5e+06

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 50 100 150 200 250 300 350 400 450

W
ei

g
h
te

d
 E

x
ec

u
ti

o
n
 C

o
st

Iterations (k)

Iterative Allocator
Simultaneous Allocator

Hybrid Allocator
Lower Bound

(b)

Figure 6.13: The behavior of three heuristic allocators when incorporated in a progressive reg-
ister allocation framework when optimizing for (a) code size and (b) performance. Both the
cumulative value of the current solutions found at an iteration (top line) and the cumulative value
of the best found solutions at an iteration (bottom, monotonic line) are shown.

The behavior of each of our three heuristic allocators when incorporated in this progressive

register allocation framework is shown in Figure 6.13. For each allocator both the aggregate cost

of the solutions found at an iteration is shown (top line) as well as the aggregate best known

solution (bottom monotonic decreasing line). The cost of the allocation is the post-regalloc

code size. All three allocators progressively improve upon the quality of allocation as the prices

converge.

The iterative allocator performs substantially worse than the simultaneous allocator. The it-

erative allocator greedily allocates with no backtracking and the quality of allocation it generates

is largely dependent upon the heuristics used by the allocator when making allocation decisions.

The introduction of prices into the network reduces the number of tie breaking decisions, less-

ening the importance of tie breaking heuristics. As a result, the quality of the allocation depends

mostly on the ability of the prices to push the shortest path computations towards potentially op-

timal allocations. Since the prices are not fully converged, in many cases the shortest paths will

not correspond to potentially optimal allocations. Since the iterative allocator greedily allocates,

it cannot undo a poor allocation decision caused by inexact prices. The lack of flexibility and

reliance on heuristics mean the iterative allocator does make effective use of the prices.

138 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-2%

-1%

0%

1%

2%

3%

4%

5%

6%

C
o
d
e

S
iz

e
Im

p
ro

v
em

en
t

Heuristic Allocation
1 Iteration
10 Iterations
100 Iterations
1000 Iterations

0.76%

1.22%

1.93%

4.24%

4.95%

-0.74%

-0.41%

0.09%

1.16%

2.12%

1.64% 1.73%

2.29%

3.84%

5.48%

-1.13%
-0.95%

-0.51%

0.47%

3.18%

x86-64x86-32ARMThumb

Figure 6.14: Average code size improvement of the progressive allocator.

In contrast, the simultaneous allocator is more flexible and can undo poor allocation deci-

sions by performing evictions. The simultaneous allocator is also less dependent on tie breaking

heuristics. As shown in Figure 6.13, the simultaneous allocator both finds better solutions than

the iterative allocator and progressively improves the quality of allocation at a faster rate than the

iterative allocator. In fact, as the prices converge, the behavior of the simultaneous allocator is

almost strictly better than that of the iterative allocator. This is seen by the lack of improvement

of the hybrid allocator compared to the simultaneous allocator. As a result, although we use the

hybrid allocator to find the initial solution, we only use the simultaneous allocator for subsequent

iterations of our progressive register allocation framework.

6.3.1 Code Quality: Size

Our expressive global MCNF model is well suited for the code size metric since it accurately

represents the complexities of the target ISA. The average improvement in code size is shown

in Figure 6.14, and the improvements for individual benchmarks are shown in Figures 6.15 (x86

6.3. PROGRESSIVE REGISTER ALLOCATION 139

0%

1%

2%

3%

4%

5%

6%

7%

8%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

x86-32

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

Heuristic Allocation
1 Iteration
10 Iterations

100 Iterations
1000 Iterations

x86-64

Figure 6.15: Code size improvement of the progressive allocator.

140 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

Thumb

-3%

-2%

-1%

0%

1%

2%

3%

4%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

C
o

d
e

S
iz

e
Im

p
ro

v
em

en
t

Heuristic Allocation
1 Iteration
10 Iterations

100 Iterations
1000 Iterations

ARM

Figure 6.16: Code size improvement of the progressive allocator.

6.3. PROGRESSIVE REGISTER ALLOCATION 141

family) and 6.16 (ARM family). In all cases, as more time is allotted for compilation, the aver-

age improvement in code size increases. Our progressive allocator performs best on the register-

limited x86-32 and Thumb instruction set architectures. For x86-32, we achieve an initial av-

erage code size improvement of 1.64% and, after 1000 iterations, an average improvement of

5.48%. The initial improvement for Thumb is 0.76% with an improvement of 4.95% after 1000

iterations. Individual benchmarks improve by as much as 7%.

The code size improvements are more moderate when targeting the x86-64 and ARM in-

struction set architectures. Architectures with more registers benefit less from the program point

precision of our detailed model. The presence of more registers reduces the need for spill code.

As less spill code is needed, the difference between a simple spill-everywhere approach and op-

timal spill code generation shrinks. As a result, traditional heuristic allocators are reasonably

effective. Our initial heuristic allocator does not produce an average code size improvement for

either x86-64 or ARM. A positive average code size improvement is not achieved for ARM until

10 iterations while a positive improvement is not achieved for x86-64 until 100 iterations. The

extra difficulty when optimizing for x86-64 likely stems from the complexity and imprecision of

our model of this architecture (Section 3.6). However, all benchmarks demonstrate a code size

improvement within 1000 iterations for both architectures. As expected, given the greater num-

ber of registers, the improvements are not as great as with the register-limited architectures. After

1000 iterations, there is an average improvement of 3.18% for x86-64 and 2.12% for ARM. It is

likely that our initial allocation would improve substantially if we used a heuristic designed for

an architecture with plentiful registers. For instance, simply by projecting the LLVM allocation

onto our model we could improve our initial result.

6.3.2 Code Quality: Performance

Our progressive allocator can substantially reduce the number of memory operations, as shown in

Figure 6.17. On the register-limited x86-32 architecture, we reduce the total number of executed

memory operations by 7.3% initially and by more than 20% after 1000 iterations. On individual

benchmarks, shown in Figure 6.19, a reduction of nearly 40% is achieved on one benchmark,

with all benchmarks exhibiting significant reductions and progressive improvement. In contrast,

142 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-5%

0%

5%

10%

15%

20%

25%

R
ed

u
ct

io
n
 i

n
 M

em
o
ry

 O
p
er

at
io

n
s

Heuristic Allocation
1 Iteration
10 Iterations
100 Iterations
1000 Iterations

7.30%

9.15%

13.90%

18.71%

20.86%

-0.16%

0.72% 1.11%
2.19%

5.31%

x86-64x86-32

Figure 6.17: Average memory operation reduction of the progressive allocator.

-1%

0%

1%

2%

3%

4%

5%

6%

7%

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Heuristic Allocation
1 Iteration
10 Iterations
100 Iterations
1000 Iterations

3.44%

4.29%

6.19%

5.05%

5.93%

3.74%

2.73%

4.56%

5.39%

6.78%

0.35%

1.03%

0.57%

0.09%

2.57%

Core2 x86-64Core2 x86-32Atom x86-32

Figure 6.18: Average performance improvement of the progressive allocator.

6.3. PROGRESSIVE REGISTER ALLOCATION 143

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

R
ed

u
ct

io
n

 i
n

 M
em

o
ry

 O
p

er
at

io
n

s

x86-32

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

R
ed

u
ct

io
n

 i
n

 M
em

o
ry

 O
p

er
at

io
n

s

Heuristic Allocation
1 Iteration
10 Iterations

100 Iterations
1000 Iterations

x86-64

Figure 6.19: Memory operation reduction of the progressive allocator.

144 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-10%

-5%

0%

5%

10%

15%

20%

25%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Atom x86-32

-15%

-10%

-5%

0%

5%

10%

15%

20%

25%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Heuristic Allocation
1 Iteration
10 Iterations

100 Iterations
1000 Iterations

Core2 x86-32

Figure 6.20: Code performance improvement of the progressive allocator for the x86-32 ISA on
the Atom and Core 2 microarchitectures.

6.3. PROGRESSIVE REGISTER ALLOCATION 145

-6%

-4%

-2%

0%

2%

4%

6%

8%

10%

12%

14%

401.bzip2

429.m
cf

433.m
ilc

456.hm
m

er

458.sjeng

462.libquantum

464.h264ref

470.lbm

482.sphinx3

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

Heuristic Allocation
1 Iteration
10 Iterations

100 Iterations
1000 Iterations

Core2 x86-64

Figure 6.21: Code performance improvement of the progressive allocator for the x86-64 ISA on
the Core 2 microarchitecture.

when targeting x86-64, our initial allocation results in an average reduction of -0.16% which

improves to 5.31% after 1000 iterations. The larger register set of the x86-64 instruction set

architecture reduces the benefit of spill code optimization. This effect is clear in the individ-

ual benchmark results (Figure 6.19), where several benchmarks exhibit little or no progressive

improvement.

The average performance improvements of three microarchitectures are shown in Figure 6.18.

The improvements are not strictly progressive, illustrating the lack of a tight correlation between

the reduction in memory operations and performance. This is made further illustrated by the

individual benchmark results shown in Figures 6.20 and 6.21. The benchmark with the great-

est reduction in memory operations for x86-32, 482.sphinx3, actually exhibits a performance

decrease both on the Atom and Core 2. However, in most cases, there is a positive correlation

between memory operation reduction and performance, although the strength of this correla-

tion varies across the benchmarks. Performance for the register-limited x86-32 instruction set

146 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

-2%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%
R

ed
u

ct
io

n
 i

n
 M

em
o

ry
 O

p
er

at
io

n
s

100 Iterations - Exact Frequencies
100 Iterations - Simple Static Frequencies

18.71%

12.83%

2.19%

-0.29%

x86-64x86-32

(a)

-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

P
er

fo
rm

an
ce

 I
m

p
ro

v
em

en
t

100 Iterations - Exact Frequencies
100 Iterations - Simple Static Frequencies

5.05%

5.45% 5.39%

7.22%

0.09%

0.90%

Core2 x86-64Core2 x86-32Atom x86-32

(b)

Figure 6.22: The effect on code quality of using exact block frequencies derived from profile
data versus a simple static estimation of block frequencies.

architecture improves on average from 3% to 7%, while some individual benchmarks improve

by as much as 20%. Although when targeting x86-64, many benchmarks exhibit no significant

change in performance and the average performance improvements range from 0% to 2.5%, one

benchmark does exhibit a 12% improvement.

Despite the in-order nature of the Atom, there is not a significant difference between the

average performance improvements on the Atom compared to the Core 2. The individual bench-

mark results, shown in Figure 6.20, demonstrate substantial differences, even though the same

executable is evaluated on each architecture. These differences underscore the importance of

microarchitectural features in determining performance. They also highlight the difficulty of

constructing a precise performance metric when only the instruction set architecture is fully ex-

posed to the compiler.

Execution Frequencies

The weighted execution costs metric used in our progressive allocator when targeting perfor-

mance relies on estimations of basic block frequencies. In order to generate a highly accurate

model, we use exact execution frequencies derived from profile data. An alternative, used by

most register allocators including the baseline LLVM allocator, is to use simple static execution

frequencies as described in Section 4.2.2. We show the effect of using these alternative execu-

6.3. PROGRESSIVE REGISTER ALLOCATION 147

tion frequencies in Figure 6.22 when executing 100 iterations of our progressive allocator. As

expected, when the less accurate simple static costs are used in the model, fewer memory oper-

ations are removed (Figure 6.22(a)). However, despite executing more memory operations, the

impact on performance is positive (Figure 6.22(b)) further illustrating the looseness of the cor-

relation between the number memory operations executed and actual performance. This result

strongly implies that exact execution frequencies and profile data are not necessary to achieve

high quality code.

6.3.3 Optimality

Our progressive allocator keeps track of both the value of the best solution, valbest, and the best

lower bound, maxL(w, v). These values are used to compute an upper bound on the optimality

of the allocation:

optimality bound =
valbest

valbeforeRA
+ max

k
L(w k , v k)

− 1

The optimality bound provides compile-time feedback to the programmer about the quality of

the allocation. For example, if the optimality bound is 1% when optimizing for code size, then

the current allocation is at most 1% larger than the best possible solution. This allows the pro-

grammer to better evaluate the trade-off between compile-time and code quality.

The optimality bound calculation requires some estimate of the code quality prior to alloca-

tion. A pre-allocation code size estimate is straightforward to compute. The size of each instruc-

tion is computed as if all operands of the instruction are inexpensive registers. When targeting

performance, the weighted execution cost metric is applied to the entire function. Every instruc-

tion is weighted by its execution frequency and all memory operations are further weighted by

an additional multiplicative factor.

The optimality bound is a useful measure of the performance of our progressive allocator.

As shown in Figure 6.23, when optimizing for code size and executing 1000 iterations of the

progressive allocator, the majority of functions in our benchmark set have a provably optimal

allocation and at least 95% are no more than 5% larger than the optimal solution. When optimiz-

ing for performance, Figure 6.24, the progressive allocator does not converge as quickly, but the

148 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

0%

20%

40%

60%

80%

100%

1
 Iteratio

n

1
0
 Iteratio

n
s

1
0
0
 Iteratio

n
s

1
0
0
0
 Iteratio

n
s

P
e
rc

e
n
t

o
f

F
u
n
c
ti

o
n
s

x86-32

0%

20%

40%

60%

80%

100%

1
 Iteratio

n

1
0
 Iteratio

n
s

1
0
0
 Iteratio

n
s

1
0
0
0
 Iteratio

n
s

P
e
rc

e
n
t

o
f

F
u
n
c
ti

o
n
s

x86-64

0%

20%

40%

60%

80%

100%

1
 Iteratio

n

1
0
 Iteratio

n
s

1
0
0
 Iteratio

n
s

1
0
0
0
 Iteratio

n
s

P
e
rc

e
n
t

o
f

F
u
n
c
ti

o
n
s

Thumb

0%

20%

40%

60%

80%

100%

1
 Iteratio

n

1
0
 Iteratio

n
s

1
0
0
 Iteratio

n
s

1
0
0
0
 Iteratio

n
s

P
e
rc

e
n
t

o
f

F
u
n
c
ti

o
n
s

Arm

0%

20%

40%

60%

80%

100%

1 Iteration

10 Iterations

100 Iterations

1000 Iterations

P
er

ce
n
t

o
f

F
u
n
ct

io
n
s

Optimal
Within 1% of optimal
Within 5% of optimal
Within 10% of optimal
Within 25% of optimal
>25% from optimal

Figure 6.23: Optimality bounds of progressive allocator when optimizing for code size.

majority of functions are provably within 1% of optimal after 1000 iterations. These optimality

measures demonstrate that our progressive allocator approaches the optimal solution as more

time is allowed for compilation.

6.3.4 Compile Time

The time spent in each component of the progressive allocator relative to the default LLVM

register allocator is shown in Figure 6.25. As with the heuristic allocators, we observe a substan-

tial orders-of-magnitude slow down relative to the extended linear scan algorithm used within

LLVM. Despite the orders of magnitude slowdown in register allocation, compiling with one

6.3. PROGRESSIVE REGISTER ALLOCATION 149

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
 Iteratio

n
s

1
0
 Iteratio

n
s

1
0
0
 Iteratio

n
s

1
0
0
0
 Iteratio

n
s

P
e
rc

e
n
t

o
f

F
u
n
c
ti

o
n
s

x86-32

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
 Iteratio

n
s

1
0
 Iteratio

n
s

1
0
0
 Iteratio

n
s

1
0
0
0
 Iteratio

n
s

P
e
rc

e
n
t

o
f

F
u
n
c
ti

o
n
s

x86-64

0%

20%

40%

60%

80%

100%

1 Iteration

10 Iterations

100 Iterations

1000 Iterations

P
er

ce
n
t

o
f

F
u
n
ct

io
n
s

Optimal
Within 1% of optimal
Within 5% of optimal
Within 10% of optimal
Within 25% of optimal
>25% from optimal

Figure 6.24: Optimality bounds of progressive allocator when optimizing for performance.

0

100

200

300

400

500

600

x86-32 x86-64

C
o

m
p

il
e

T
im

e
S

lo
w

d
o

w
n

Model Construction
Hybrid Allocator: Iterative
Hybrid Allocator: Simultaneous
Price Initialization
Price Update
Simultaneous Allocator

Figure 6.25: Break down of register allocation time slowdown of one iteration of the progressive
allocator. The geometric mean across all benchmarks of the slowdown is shown. The total
slowdown in compile time, not just register allocation, is 4x.

iteration of progressive allocation results in only a 4x slowdown in total compile time. The de-

fault LLVM allocator is designed for compile-time performance and is approximately 25 times

faster than traditional graph coloring. Our progressive register allocation research framework is

designed for flexibility, not for performance. Most importantly, our allocator is asymptotically

more complex because of the high precision of our model. Values are computed and stored for

every allocation class at every program point. Our detailed and expressive model is the key to

our substantial improvements in code quality, but it also is the major factor in our two orders of

magnitude slowdown relative to the LLVM allocator.

150 CHAPTER 6. PROGRESSIVE REGISTER ALLOCATION

There are several optimizations that will improve the compile time of our progressive allo-

cator. For example, we could replace our current graph data structure, which is implemented

with structures and pointers, with a more efficient, cache-conscious data structure that is opti-

mized for the global MCNF model. The shortest path algorithms, which contribute the most to

the compile-time overhead of our allocator, are embarrassingly parallel. An efficient paralleliza-

tion on modern many-core hardware would result in at least an order of magnitude improvement

in compile-time. Alternatively, we can consider simplifications of the model that change the

asymptotic behavior of our algorithms at the expense of models that do not map directly to an

optimal register allocation.

6.4 Summary

In this chapter we have combined the heuristic allocators of the previous chapter, relaxation tech-

niques, and subgradient optimization to create a progressive register allocator. Our progressive

register allocator allows the programmer to explicitly manage the trade-off between compile-

time and code quality. The initial allocation generated by our progressive allocator is competitive

with the state-of-the-art LLVM extended linear scan allocator and, as more time is allowed for

compilation, it generates allocations with substantially better code quality.

151

Chapter 7

Near-Optimal Linear-Time

Instruction Selection

In this chapter we consider the instruction selection problem. We model the problem using an

expressive directed acyclic graph representation and present a novel algorithm for finding a near-

optimal tiling in linear-time.

7.1 Problem Description and Hardness

The instruction selection problem is to find an efficient conversion from the compiler’s target-

independent intermediate representation (IR) of a program to a target-specific assembly listing.

An example of instruction selection, where a tree-based IR is converted to x86 assembly, is

shown in Figure 7.1. In this example, and in general, there are many possible correct instruction

sequences. The difficulty of the instruction selection problem is finding the best sequence, where

best may refer to code performance, code size, or some other statically determined metric.

Instruction selection is usually defined as finding an optimal tiling of the intermediate code

with a predefined set of tiles. Each tile is a mapping from IR code to assembly code and has

an associated cost. We consider the problem of tiling an expression DAG intermediate repre-

sentation. Expression DAGs are more expressive than expression tree and linear intermediate

representations since they explicitly model redundancies.

152 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

+

+ +

MEM

p

xy1

(a)

movl (p),t1
leal (x,t1),t2
leal 1(y),t3
leal (t2,t3),r

(b)

Figure 7.1: An example of instruction selection as a tiling problem. The shown tiling (a) corre-
sponds to the assembly listing (b).

Given an expression DAG that represents the computation of a basic block and a set of archi-

tecture specific instruction tiles, we wish to find an optimal tiling of the DAG that corresponds

to the minimum cost instruction sequence. The expression DAG consists of nodes representing

operations (such as an add or load) and operands (such as a constant or memory location). We

refer to a node with multiple parents as a shared node. The set of tiles consists of a collection

of expression trees each with an assigned cost. Since we allow nodes within a tile to map to the

same expression DAG node, essentially turning the expression tree tile into an expression DAG

tile, there is no benefit in explicitly encoding tiles as expression DAGs. If a leaf of an expression

tree tile is not an operand, it is assumed that the inputs for that leaf node will be available in a

register.1 Similarly, the output of the tree is assumed to be written to a register. A tile matches a

node in the DAG if the root of the tile is the same kind of node as the DAG node and the subtrees

of the tile recursively match the children of the DAG node. In order for a tiling to be legal the

inputs of each tile must be available as the outputs of other tiles in the tiling. In order for a tiling

to be complete all the root nodes of the DAG (those nodes with zero in-degree) must be matched

to tiles. The optimal tiling is the legal and complete tiling where the sum of the costs of the tiles

is minimized. More formally, we define an optimal instruction tiling as follows:

Definition Let K be a set of node kinds; G = (V,E) be a directed acyclic graph where each

node v ∈ V has a kind k(v) ∈ K, a set of children ch(v) ∈ 2V such that ∀c∈ch(v)(v → c) ∈ E,

and a unique ordering of its children nodes ov : ch(v) → {1, 2, ...|ch(v)|}; T be a set of tree

1These are unallocated temporaries, not actual hardware registers.

7.1. PROBLEM DESCRIPTION AND HARDNESS 153

tiles ti = (Vi, Ei) where similarly every node vi ∈ Vi has a kind k(vi) ∈ K
⋃
{◦} such that

k(vi) = ◦ implies outdegree(vi) = 0 (nodes with kind ◦ denote the boundary of a tile and,

instead of corresponding to an operation or operand, serve to link tiles together), children nodes

ch(vi) ∈ 2Vi , and an ordering ovi
; and cost : T → Z+ be a cost function that assigns a cost to

each tree tile.

We define the relation matches such that a node v ∈ V matches tree ti with root r ∈ Vi iff

k(v) = k(r), |ch(v)| = |ch(r)|, and, for all c ∈ ch(v) and ci ∈ ch(r), ov(c) = or(ci) implies

that either k(ci) = ◦ or c matches the tree rooted at ci. For a given matching of v and ti and a

tree tile node vi ∈ Vi, we define mv,ti : Vi → V to return the node in V that matches with the

subtree rooted at vi. A mapping f : V → 2T from each DAG node to a set of tree tiles is legal

iff ∀v ∈ V :

ti ∈ f(v) =⇒ v matches ti

indegree(v) = 0 =⇒ |f(v)| > 0

∀ti ∈ f(v),∀vi ∈ ti, k(vi) = ◦ =⇒ |f(mv,ti(vi))| > 0

An optimal instruction tiling is a legal mapping f which minimizes∑
v∈V

∑
ti∈f(v)

cost(ti)

In some versions of the instruction tiling problem the tiles are extended to include the notion

of labels. Each tile includes a label for every input and output. Adjacent tiles must have identical

labels. These labels represent the storage locations a tile writes or reads. For example, some tiles

might write to memory or read from a specific register class. In this case, there is an additional

constraint that a tile’s inputs must not only match with other tiles’ outputs, but the names of the

respective input and output must also match. In practice, if instruction selection is performed

independently of register allocation, the names of storage locations are irrelevant. Although

previous proofs of the hardness of instruction selection have relied on complications such as

storage location naming [108] or two-address instructions [2], we now show that even without

these restrictions the problem remains NP-complete.

Theorem 7.1.1. The optimal instruction tiling problem (is there an optimal instruction tiling of

cost less than kconst?) is NP-complete.

154 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

¬

∨

∧

R

(a ∧ b) ∨ (¬b)

va vb

(a)

R

satisfied

∨

T: T ∨ T

∨

T: T ∨ F

∨

T: F ∨ T

∨

F: F ∨ F

¬

F: ¬T

¬

T: ¬F

v

v: F

v

v: T

(b)

Figure 7.2: Expressing Boolean satisfiability as an instruction selection problem. (a) An example
of an expression DAG that represents a Boolean expression. (b) The tiles used to cover such an
expression DAG. Each tile has unit cost. The tiles representing ∧ are omitted, but are similar to
the ∨ tiles with the two middle tiles having an additional box node at the root.

Proof. Inspired by [108], we perform a reduction from Boolean satisfiability [50]. Given a

Boolean expression consisting of variables u ∈ U and Boolean connectives {∨,∧,¬}, we con-

struct an instance of the optimal instruction tiling problem as follows:

Let the set of node kinds K be {∨,∧,¬,�, R, v}. We refer to nodes with kind � as box

nodes. For every variable u ∈ U , create two nodes u1 and u2 and a directed edge (u1 → u2)

in G such that k(u1) = � and k(u2) = v. Similarly, for every Boolean operator op create two

nodes op1 and op2 and a directed edge (op1 → op2) such that k(op1) = � and k(op2) is the

corresponding operation. Next, for every operation a op b create edges (op2 → a1) and (op2 →

b1) where k(a1) = k(b1) = � (in the case of the unary ¬ operation a single edge is created). Note

the ordering of child nodes is irrelevant since the Boolean operators are commutative. Finally,

create a node r and edge (r → op) such that k(r) = R and op is the root operation of the

expression. An example of such a DAG is shown in Figure 7.2(a). Note that the only nodes with

potentially more than one parent in this DAG are the box nodes that correspond to variables.

7.2. NOLTIS 155

Now let the tree tile set T be as shown in Figure 7.2(b) where each tile contains a single

non-box node and has unit cost. These tiles are designed so that it can be shown that a truth

assignment of a Boolean expression corresponds directly with a legal tiling of a DAG constructed

as described above. If a variable is true, then its corresponding node is covered with the tile v : T ,

otherwise it is covered with v : F . The rest of the tiling is built up in the natural way suggested

from the tile names in Figure 7.2(b). This tiling is optimal since every leaf node of the DAG

will have exactly one tile covering it (corresponding to the truth assignment of that variable) and,

since the parents of leaf nodes are the only shared nodes in the DAG (they may have multiple

parents), no other non-box node in the DAG can be covered by more than one tile in this tiling.

Therefore, the cost of the tiling is equal to the number of non-box nodes and is optimal.

Given an optimal tiling of a DAG derived from a Boolean expression, if the cost of the tiling

is equal to the number of non-box nodes, then we can easily construct a truth assignment that

satisfies the expression by observing the tiles used to cover the leaves of the DAG. If the cost of

the tiling is greater than the number of non-box nodes then the expression is not satisfiable. If it

were, a cheaper tiling would have to exist..

We have shown the boolean satisfiability reduces to the optimal instruction tiling problem,

and, therefore, the optimal instruction tiling problem is NP-complete.

7.2 NOLTIS

The NP-completeness of the optimal instruction tiling problem necessitates that heuristics be

used to perform instruction selection. The textbook approach is to first decompose the DAG into

a forest of trees and then use an optimal tree tiling algorithm to tile each tree [5]. Every common

subexpression in the DAG is therefore at the root of a tree in the forest. However, as we will

show in Section 7.5, this approach is not as successful as algorithms which work directly on the

DAG. For example, if all the tiles in Figure 7.3 were assigned a unit cost, the tree decomposition

solution would be suboptimal.

In this section we present NOLTIS, a linear-time algorithm which obtains near-optimal tilings

of expression DAGs. The algorithm applies tree tiling directly to the DAG without first perform-

156 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

1: DAG : expression DAG
2: bestChoiceForNode : Node → (Tile × int)
3: fixedNodes : set of Node
4: matchedTiles : set of Tile
5: coveringTiles : Node → set of Tile

6: procedure SELECT

7: fixedNodes← {}
8: BOTTOMUPDP() . initializes bestChoiceForNode
9: TOPDOWNSELECT() . initializes coveringTiles

10: IMPROVECSEDECISIONS() . initializes fixedNodes
11: BOTTOMUPDP() . uses fixedNodes
12: TOPDOWNSELECT() . puts final tiling in matchedTiles

13: procedure BOTTOMUPDP
14: for n ∈ reverseTopologicalSort(DAG) do
15: bestChoiceForNode[n].cost ←∞
16: for tn ∈ matchingTiles(n) do
17: if ¬hasInteriorFixedNode(tn , fixedNodes) then
18: val ← cost(t)+∑

n ′∈boundaryNodes(tn) bestChoiceForNode[n ′].cost

19: if val < bestChoiceForNode[n].cost then
20: bestChoiceForNode[n].cost ← val
21: bestChoiceForNode[n].tile ← tn

22: procedure TOPDOWNSELECT

23: matchedTiles .clear()
24: coveringTiles .clear()
25: q .push(roots(DAG))
26: while ¬q .empty() do
27: n ← q .pop()
28: bestTile ← bestChoiceForNode[n].tile
29: matchedTiles .add(bestTile)
30: for every node nt covered by bestTile do
31: coveringTiles [nt].add(bestTile)

32: for n ′ ∈ boundaryNodes(bestTile) do
33: q .push(n ′)

Listing 7.1: Dynamic programming instruction selection with modifications for near-optimal
DAG selection

7.2. NOLTIS 157

1: procedure IMPROVECSEDECISIONS

2: for n ∈ sharedNodes(DAG) do
3: if coveringTiles [n].size() > 1 then . has overlap
4: overlapCost ← getOverlapCost(n, coveringTiles)
5: cseCost ← bestChoiceForNode[n].cost
6: for tn ∈ coveringTiles [n] do
7: cseCost ← cseCost + getTileCutCost(tn , n)

8: if cseCost < overlapCost then
9: fixedNodes .add(n)

Listing 7.2: IMPROVECSEDECISIONS Given a DAG matching that ignored the effect of shared
nodes, decide if the solution would be improved by pulling shared nodes out into common subex-
pressions (eliminating tile overlap).

1: function GETOVERLAPCOST(n)
2: cost ← 0
3: seen ← {}
4: for t ∈ coveringTiles [n] do
5: q .push(t)
6: seen.add(t)

7: while ¬q .empty() do
8: t ← q .pop()
9: cost ← cost + cost(tile)

10: for n ′ ∈ boundaryNodes(t) do
11: if n′ is reachable from n then
12: t ′ ← bestChoiceForNode[t ′].tile
13: if coveringTiles [n ′].size() = 1 then
14: cost ← cost + bestChoiceForNode[n ′].cost
15: else if t ′ 6∈ seen then
16: seen.add(t ′)
17: q .push(t ′)

18: return cost

Listing 7.3: GETOVERLAPCOST Given a shared node n with overlapping tiles, compute the
cost of the tree of tiles rooted at the tiles overlapping n without double counting areas where the
tile trees do not overlap.

158 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

+

add in1, in2 → out
cost: 1

+

rc

add const, reg → out
cost: 5

c
move const → out
cost: 5

+

r

add in, reg → out
cost: 1

(a)

+
+ +

x8y

+
+ +

x8y

(b)

Figure 7.3: An example of instruction selection on a DAG. (a) The tile set used (commutative
tiles are omitted). (b) Two possible tilings. In a simple cost model where every tile has a unit
cost the top tiling would be optimal, but with the cost model shown the lower tiling is optimal.

ing tree decomposition, uses this tiling to decide which parts of the DAG can be productively

decomposed into trees, and then retiles the partially decomposed DAG.

First we apply dynamic programming on the DAG ignoring the presence of shared nodes

using the procedure BOTTOMUPDP of Listing 7.1. Conceptually, we are tiling the tree that

would be formed if every shared node (and its descendants) had been duplicated to convert the

DAG into a potentially exponentially larger tree. However, the algorithm remains linear since

each node is visited only once. Once dynamic programming has labeled each node with the best

tile for that node, a top down pass, TOPDOWNSELECT from Listing 7.1, creates a tiling of the

DAG. The existence of shared nodes may result in a tiling where nodes are covered by multiple

tiles (i.e., the tiles overlap). However, since no node will be at the root of two tiles (this would

imply that the exact same value would be computed twice), the number of tiles in a tiling is

proportional to the number of nodes. Consequently, the top down pass, which traverses tiles, has

linear time complexity.

7.2. NOLTIS 159

1: function GETTILECUTCOST(t,n)
2: bestCost ←∞
3: r ← root(tile)
4: for t ′ ∈ matchingTiles(r) do
5: if n ∈ boundaryNodes(t ′) then
6: cost ← cost(t ′)
7: for n ′ ∈ boundaryNodes(t ′) ∧ n ′ 6= n do
8: cost ← cost + bestChoiceForNode[n ′].cost

9: if cost < bestCost then
10: bestCost ← cost
11: for n ′ ∈ boundaryNodes(t) do . Subtract edge costs of original tile
12: if path r n ′ ∈ t does not contain n then
13: bestCost ← bestCost

−bestChoiceForNode[n ′].cost

14: return bestCost

Listing 7.4: GETTILECUTCOST Given a tile t and node n, determine the cost of cutting t at
node n so that the root of t remains the same but n becomes an boundary node.

The tiling found by the first tiling phase ignores the impact of shared nodes in the DAG and

therefore may have excessive amounts of overlap. In the next step of the algorithm, we identify

shared nodes where removing overlap locally improves the overall tiling. These nodes are added

to the fixedNodes set. We then perform another tiling pass. In this pass, tiles are prohibited from

spanning nodes in the fixedNodes set; these nodes must be matched to the root of a tile.

The procedure IMPROVECSEDECISIONS (Listing 7.2) is used to determine if a shared node

should be fixed. For each shared node n with overlap we compute the cost of the overlap at

n using the GETOVERLAPCOST function in Listing 7.3. This function computes the cost of

the local area of overlap at n. Note that, in the rare case that the area of overlap covers another

shared node, it is possible that IMPROVECSEDECISIONS will have super-linear time complexity;

however, this can be addressed through the use of memoization, a detail that is not shown in the

pseudocode.

The next step is to compute the cost that would be incurred if the tiles covering n were cut

so that only a single tile, rooted at n, covered n. A tile is cut at an edge by decomposing it into

smaller tiles such that the cut point is no longer internal to a tile. In this case, we seek to find the

minimum cost collection of such smaller tiles that cover the same nodes as the original overlap-

ping tile and have a tile rooted at n. The cost of the tile tree rooted at n can be determined from

160 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

+
+ +

x8y
(1; mov x → out)(5; mov 8 → out)(1; mov y → out)

(5; add 8, x → out)(5; add y, 8 → out)

(11; add in1, in2 → out)

(a)

+
+ +

x8y

{add in1, in2 → out}

{add 8, x → out}

{add 8, x → out}

{add 8, x → out,
 add y, 8 → out}

{add y, 8 → out}

{add y, 8 → out}

Total Cost = 11

(b)

+
+ +

xy 8

cseCost = 5 + 1 + 1 = 7
overlapCost = 5 + 5 = 10

(c)

+
+ +

xy 8
mov 8 → out

add in, x → outadd y, in → out

add in1, in2 → out

Total Cost = 8

(d)

Figure 7.4: The application of the NOLTIS algorithm to the example from Figure 7.3.
(a) BOTTOMPUPDP computes the dynamic programming solution for the DAG, initializing
bestChoiceForNode. (b) TOPDOWNSELECT determines a tiling from the dynamic programming
solution, initializing coveringTiles . (c) IMPROVECSEDECISIONS evaluates the shared node and
determines it should be fixed. (d) The dynamic programming solution is then recomputed with
the requirement that the fixed node not be overlapped and the optimal solution is found.

the results of dynamic programming. To this cost we add the costs of cutting the tiles currently

covering n, which are computed using the function GETTILECUTCOST shown in Listing 7.4. In

determining the cost of cutting a tile t with root r at node n, we consider every tile which also

matches at r and has n as a boundary node. We then compute the cost difference between using

this tile to match r and using t. We choose the minimum cost difference as the cost of cutting

the tile. If the cost of the current overlapping tiling is more than the cost of removing the overlap

and cutting the tiles, then we have found a local transformation that improves the existing tiling.

7.3. 0-1 PROGRAMMING SOLUTION 161

Instead of immediately applying this transformation, we choose to fix node n, disabling overlap

when we compute a new tiling. This results in a potentially better solution as the new tiling need

not be limited to tiles rooted at r. Figure 7.4 shows the execution of the NOLTIS algorithm on

the example from Figure 7.3.

The NOLTIS algorithm is not optimal as it depends upon several assumptions that do not

necessarily hold. We assume that it is always possible to cut tiles at a shared node without

affecting the tileability of the DAG. We assume that the best place to cut tiles to eliminate overlap

is at a shared node. We assume the decision to fix a shared node can be made independently of

other shared nodes. When deciding to fix a shared node we assume we can represent the impact

of fixing the node by examining simple tile cuts. Despite these assumptions, in practice the

NOLTIS algorithm achieves near-optimal results.

7.3 0-1 Programming Solution

In order to establish the near-optimality of our algorithm, we formulate the instruction tiling

problem as a 0-1 integer program and find solutions using a commercial solver. The formulation

of the problem is straightforward. For every node i and tile j we have binary variable Mi,j which

is one if tile j matches node i (the root of tile j is at node i) in the tiling, zero otherwise. Let

costj be the cost of tile j, roots be the root nodes of the DAG, and boundaryNodes(i, j) be the

nodes at the boundary of tile j when rooted at node i, then the optimal instruction tiling problem

is:

min
∑
i,j

costjMi,j

subject to

∀i∈roots

∑
j

Mi,j >= 1 (7.1)

∀i,j∀i′∈boundaryNodes(i,j)Mi,j −
∑

j′

Mi′,j′ ≤ 0 (7.2)

where (7.1) requires that the root nodes of the DAG be matched to tiles and (7.2) requires that if

a tile matches a node, then all of the inputs to that tile must be matched to tiles.

162 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

7.4 Implementation

We have implemented our algorithm in the LLVM 2.1 [87] compiler infrastructure targeting the

Intel x86 32-bit architecture. The default LLVM instruction selector constructs an expression

DAG of target independent nodes and then performs maximal munch [8]. Tiles are selected from

the top-down. The largest tile (the tile that covers the most nodes) is greedily selected. Tile

costs are only used to break ties. We have modified the LLVM algorithm to use code size when

breaking ties.

In addition to the default LLVM algorithm and the NOLTIS algorithm, we have implemented

three other algorithms that we believe to be representative of existing practice:

cse-all The expression DAG is completely decomposed into trees and dynamic programming

is performed on each tree. That is, every shared node is fixed. This is the conventional

method for applying tree tiling to a DAG [5].

cse-leaves The expression DAG is partially decomposed into trees and dynamic programming

is performed. If the subgraph rooted at a shared node can be fully covered by a single tile,

the shared node remain unaltered, otherwise shared nodes become roots of trees to be tiled.

That is, shared nodes are fixed unless they represent an expression that can be implemented

by a single tile whose only inputs are leaf expressions such as constants or variables.

cse-none The expression DAG is not decomposed into trees and dynamic programming is per-

formed. That is, no shared nodes are fixed (this is equivalent to the solution found before

the IMPROVECSEDECISIONS procedure is executed in the NOLTIS algorithm).

All algorithms use the same tile set. The cost of each tile is the size in bytes of the corre-

sponding x86-32 instruction(s). We do not allow tiles to overlap memory operations (i.e., a load

or store node in the expression DAG will only be executed once). Similarly, as an implementation

detail,2 overlap of function call addresses is not allowed. Valueless token edges enforce ordering

dependencies in the expression DAG. Despite the two-address nature of the x86 architecture, all

tiles represent three-address instructions. A pass after instruction selection converts the code to

2LLVM’s support for different relocation models requires that function call addresses be part of the call instruc-

tion.

7.5. RESULTS 163

two-address form. A scheduling pass, which converts the code from DAG form into an assembly

listing, attempts to minimize the register pressure of the schedule using Sethi-Ullman numbering

[118].

7.5 Results

We evaluate the various instruction selection algorithms by compiling the C and C++ bench-

marks of the SPEC CPU2006 [123], MediaBench [79], MiBench [57], and VersaBench [113]

benchmark suites and observing both the immediate, post-selection cost of the tiling and the

final code size of the benchmark. We evaluate the optimality of the NOLTIS algorithm, demon-

strate its superiority compared to existing heuristics, investigate its impact on the code size of

fully compiled code, and describe its compile-time behavior.

7.5.1 Optimality

In order to determine an optimal solution for an expression DAG, we create a 0-1 integer pro-

gramming problem as described in Section 7.3 and then solve it using ILOG CPLEX 10.0 [64].

We evaluated all the basic blocks of the SPEC CPU2006 benchmarks, resulting in nearly a half

million tiling problems. We utilized a cluster of Pentium 4 machines ranging in speed from

2.8Ghz to 3.0Ghz to solve the problems. CPLEX was able to find a provably optimal solution

within a 15 minute time limit for 99.8% of the tiling problems. Of the problems with provably

optimal solutions, the NOLTIS algorithm successfully found the optimal solution 99.7% of the

time. Furthermore, suboptimal solutions were typically very close to optimal (only a few bytes

larger). Of the 0.2% of problems where CPLEX did not find a provably optimal solution, the

NOLTIS algorithm found a solution as good as, and in some cases better than, the best solution

found by CPLEX 75% of the time implying our algorithm is effective even for very difficult

tiling problems.

The overall improvement obtained by using the best CPLEX solution versus using the NOLTIS

algorithm was a negligible 0.05%. We feel these results clearly demonstrate that the NOLTIS

algorithm is, in fact, near-optimal.

164 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

!"#$$%&

!'#$$%&

!(#$$%&

!)#$$%&

$#$$%&

)#$$%&

(#$$%&

'#$$%&

"#$$%&

*$#$$%&

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

ad
pc

m

ep
ic

g7
21

gh
os

ts
cr

ip
t

gs
m

jp
eg

m
es

a

m
pe

g2

pe
gw

it

pg
p

ra
st

a

SPEC2006 Mediabench

+,-!.//& +,-!/-.0-,& +,-!121-& 345678&

!"#$##%&

!'$##%&

!($##%&

!)$##%&

!*$##%&

#$##%&

*$##%&

)$##%&

($##%&

'$##%&

"#$##%&

au
to

m
ot

iv
e/

ba
si

cm
at

h

au
to

m
ot

iv
e/

bi
tc

ou
nt

au
to

m
ot

iv
e/

qs
or

t

au
to

m
ot

iv
e/

su
sa

n

co
ns

um
er

/jp
eg

co
ns

um
er

/la
m

e

co
ns

um
er

/m
ad

co
ns

um
er

/ti
ff-

v3
.5

.4

co
ns

um
er

/ty
pe

se
t

ne
tw

or
k/

di
jk

st
ra

ne
tw

or
k/

pa
tr

ic
ia

of
fic

e/
gh

os
ts

cr
ip

t

of
fic

e/
is

pe
ll

of
fic

e/
rs

yn
th

of
fic

e/
sp

hi
nx

of
fic

e/
st

rin
gs

ea
rc

h

se
cu

rit
y/

bl
ow

fis
h

se
cu

rit
y/

pg
p

se
cu

rit
y/

rij
nd

ae
l

se
cu

rit
y/

sh
a

B
IT

/8
02

.1
1a

B
IT

/8
b1

0b

B
IT

/e
cb

de
s

F
LO

A
T

/1
01

.to
m

ca
tv

F
LO

A
T

/b
m

m

F
LO

A
T

/v
pe

nt
a

IN
T

/1
81

.m
cf

IN
T

/1
97

.p
ar

se
r

IN
T

/3
00

.tw
ol

f

S
E

R
V

E
R

/1
72

.m
gr

id

S
E

R
V

E
R

/1
77

.m
es

a

S
E

R
V

E
R

/d
bm

s

S
T

R
E

A
M

/b
ea

m
fo

rm
er

S
T

R
E

A
M

/c
or

ne
r_

tu
rn

S
T

R
E

A
M

/fm
ra

di
o

Mibench Versabench

+,-!.//& +,-!/-.0-,& +,-!121-& 345678&

"9%& ":%& 9"%& "*%&

!"(%&

Figure 7.5: Improvement in tiling cost relative to the default maximal munch algorithm for
individual benchmarks. In all cases the NOLTIS algorithm yields the greatest improvement. Very
small benchmarks can exhibit large relative changes in code size as a result of a small absolute
difference. The geometric means across all benchmarks for the cse-all, cse-leaves, cse-none, and
NOLTIS algorithms are -1.04% , 1.05%, 1.39%, and, 3.89% respectively.

7.5. RESULTS 165

!"#$##%&

!'$##%&

!($##%&

!)$##%&

!*$##%&

#$##%&

*$##%&

)$##%&

($##%&

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

43
3.

m
ilc

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
2.

sp
hi

nx
3

48
3.

xa
la

nc
bm

k

ad
pc

m

ep
ic

g7
21

gh
os

ts
cr

ip
t

gs
m

jp
eg

m
es

a

m
pe

g2

pe
gw

it

pg
p

ra
st

a

SPEC2006 Mediabench

+,-!.//& +,-!/-.0-,& +,-!121-& 345678&

!"#$%%&'

!($%%&'

!)$%%&'

%$%%&'

)$%%&'

($%%&'

"#$%%&'

au
to

m
ot

iv
e/

ba
si

cm
at

h

au
to

m
ot

iv
e/

bi
tc

ou
nt

au
to

m
ot

iv
e/

qs
or

t

au
to

m
ot

iv
e/

su
sa

n

co
ns

um
er

/jp
eg

co
ns

um
er

/la
m

e

co
ns

um
er

/m
ad

co
ns

um
er

/ti
ff-

v3
.5

.4

co
ns

um
er

/ty
pe

se
t

ne
tw

or
k/

di
jk

st
ra

ne
tw

or
k/

pa
tr

ic
ia

of
fic

e/
gh

os
ts

cr
ip

t

of
fic

e/
is

pe
ll

of
fic

e/
rs

yn
th

of
fic

e/
sp

hi
nx

of
fic

e/
st

rin
gs

ea
rc

h

se
cu

rit
y/

bl
ow

fis
h

se
cu

rit
y/

pg
p

se
cu

rit
y/

rij
nd

ae
l

se
cu

rit
y/

sh
a

B
IT

/8
02

.1
1a

B
IT

/8
b1

0b

B
IT

/e
cb

de
s

F
LO

A
T

/1
01

.to
m

ca
tv

F
LO

A
T

/b
m

m

F
LO

A
T

/v
pe

nt
a

IN
T

/1
81

.m
cf

IN
T

/1
97

.p
ar

se
r

IN
T

/3
00

.tw
ol

f

S
E

R
V

E
R

/1
72

.m
gr

id

S
E

R
V

E
R

/1
77

.m
es

a

S
E

R
V

E
R

/d
bm

s

S
T

R
E

A
M

/b
ea

m
fo

rm
er

S
T

R
E

A
M

/c
or

ne
r_

tu
rn

S
T

R
E

A
M

/fm
ra

di
o

Mibench Versabench

*+,!-..' *+,!.,-/,+' *+,!010,' 234567'

!8)&' !)"&'

Figure 7.6: Final code size improvement relative to the default maximal munch algorithm for
individual benchmarks. In 54 of the 65 benchmarks the NOLTIS algorithm has the greatest
improvement. Very small benchmarks can exhibit large relative changes in code size as a result
of a small absolute differences. The geometric means across all benchmarks for the cse-all, cse-
leaves, cse-none, and NOLTIS algorithms are -3.98%, 0.61%, 1.24%, and 1.74% respectively.

166 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

Figure 7.7: The cumulative total improvement relative to maximal munch for the entire collec-
tion of benchmarks. Both the improvement in tiling cost and final code size improvement are
shown. The near-optimality of the NOLTIS algorithm results in excellent tiling solutions. How-
ever, interactions with successive passes of the compiler, such as register allocation, reduce the
advantage of using a near-optimal tiling.

7.5.2 Comparison of Algorithms

In addition to being near-optimal, the NOLTIS algorithm provides significantly better solutions

to the tiling problem than conventional heuristics. Detailed results for individual benchmarks

are shown in Figure 7.5 and overall improvements are shown in Figure 7.7. The cse-all algo-

rithm, despite finding an optimal tiling for each tree in the full tree decomposition of the DAG,

performs poorly relative to all other algorithms suggesting that DAG tiling algorithms are nec-

essary for maximum code quality. Both the cse-leaves and cse-none algorithms benefit from

using dynamic programming and outperform the greedy algorithm, although neither algorithm is

clearly superior to the other. The NOLTIS algorithm, as expected, significantly outperforms the

other algorithms and has the greatest improvement in every benchmark with a cumulative overall

improvement of 2.6% and an average improvement of 3.89%.

7.5. RESULTS 167

Figure 7.8: The average slowdown of each instruction selection algorithm relative to cse-all.

7.5.3 Impact on Code Size

Instruction tiling is only one component of code generation. The two-address conversion pass,

scheduling pass, and register allocation pass all further impact the final quality of the compiled

code. Final code size results for the individual benchmarks are shown in Figure 7.6 and overall

improvements are shown in Figure 7.7. The cumulative overall code size improvement across all

benchmarks for the NOLTIS algorithm is 1.741% and the average improvement is 1.736%.

Although the average code size improvements exhibited by the NOLTIS algorithm may seem

marginal, even such seemingly small code size reductions may be significant when targeting

highly constrained embedded architectures. Furthermore, it is important to note that these results

are relative to an algorithm that has already been adapted to work directly on expression DAGs.

Compared to the classical textbook approach of tree decomposition (the cse-all algorithm), the

NOLTIS algorithm exhibits an overall cumulative code size improvement of 3.9%.

7.5.4 Compile Time Performance

As shown in Figure 7.8, the two pass nature of the NOLTIS algorithm means that its running time

is slightly more than twice that of the other dynamic programming based algorithms. Despite

this doubling in instruction selection time, the full compilation time only slows down by 12%

168 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

!"#$$%&

!'#$$%&

!(#$$%&

$#$$%&

(#$$%&

'#$$%&

"#$$%&

)*+!,--&)*+!-+,.+*&)*+!/0/+& 123456&

!"
#
$%
&
'
"
'
(
)*
+
&
'
$*
,
'
-.
/
0)
*!
(
1)
$/
23
%
(
*4
'
0'
23
%
(
*

78/,-&90:+&68;+&<8=>&90/*=,/=&?+@,=+A-8,;,B0/&C8*,D-+:&

78/,-&90:+&68;+&

5@@+:8,=+-E&FG+A&5/*=AH)B0/&6+-+)B0/&

Figure 7.9: The influence of constant rematerialization on final code size. Constant rematerial-
ization during register allocation can eliminate register pressure caused by decomposing a con-
stant expression into its own tree by regenerating a constant directly within an instruction. Both
the cse-all and NOLTIS algorithms noticeably benefit from constant rematerialization, however
there remains a significant gap between the final code size improvement and the tiling cost im-
provement immediately after instruction selection.

relative to the single-pass cse-all algorithm. The single-pass dynamic programming algorithms

are approximately 30% slower than the greedy algorithm since they must perform a tile selection

operation at every node of the expression DAG. The greedy algorithm can ignore any nodes

which are completely covered by the greedily selected tile.

7.6 Limitations and Future Work

Instruction selection algorithms have been used successfully to solve the technology mapping

problem in the automated circuit design domain. It remains an open question whether the

NOLTIS algorithm can be successfully adapted to this domain where multiple optimization goals

(area, delay, routing resources) must be simultaneously addressed.

Although the NOLTIS algorithm is linear in the size of the program, its running time is

largely determined by how efficiently the matching of a single node to a set of tiles can be

performed. The algorithm, as we have presented it, uses a simple, but inefficient, matching

7.7. INTERACTION WITH REGISTER ALLOCATION 169

algorithm. More efficient algorithms, such as tree parsing, exist [4, 46, 104, 110] and should be

used in a production implementation. Additionally, the second pass of dynamic programming

could be made more efficient by intelligently recomputing only portions of the DAG.

The classical representation of instruction selection as a tiling problem relies on instructions

being represented by tree tiles. In some cases, such as with single instruction multiple data

(SIMD) instructions and instructions with side-effects, an instruction cannot be represented as a

tree of data dependences. Additional, non-tiling, techniques are required to handle such instruc-

tions.

7.7 Interaction with Register Allocation

Despite demonstrating near-optimal results, the NOLTIS algorithm does not always result in the

smallest code size. The mixed nature of the final code size results appears to be mostly caused

by the interaction with the register allocator, in particular the number of loads and stores the

allocator inserts. Decomposing the graph into trees results in the creation of temporaries with

multiple uses. These potentially long-lived temporaries result in more register pressure and more

values must be spilled to memory. Hence the cse-all algorithm performs particularly poorly.

In some cases the register allocator can intelligently reverse the bad effects of a tree decom-

position. For example, if the decomposed tree is a constant expression, constant rematerializa-

tion can decrease register pressure by regenerating the constant expression instead of storing

it in a temporary. The effect of constant rematerialization on the final code size is shown in

Figure 7.9. As expected, both the cse-all and NOLTIS algorithms, which perform tree decompo-

sition, demonstrate some improvement from constant rematerialization. In contrast, the cse-none

and cse-leaves algorithms are largely unaffected. Constant rematerialization provides a potential

model of improving the interaction between instruction selection and register allocation. The

instruction selector optimistically chooses a selection that potentially has a negative impact on

register pressure, and then the register allocator is capable of intelligently modifying the instruc-

tion selection within the full context of register allocation.

170 CHAPTER 7. NEAR-OPTIMAL LINEAR-TIME INSTRUCTION SELECTION

Allowing unlimited overlap can also have a negative effect on register allocation as the inputs

of overlapping tiles are also potentially long lived temporaries. Another factor influencing reg-

ister allocation is the number of tiles. If more, smaller, tiles are used, there are correspondingly

more temporaries to allocate. It is likely that architectures with complex instruction sets but

plentiful (e.g., more than eight) registers would see more benefit from the NOLTIS algorithm.

7.8 Summary

In this chapter we have described NOLTIS, an easy to implement, fast, and effective algorithm for

finding an instruction tiling of an expression DAG. We have shown empirically that the NOLTIS

algorithm achieves near-optimal results and significantly outperforms existing tiling heuristics.

171

Chapter 8

Conclusion

We have presented a principled approach for understanding, evaluating, and solving backend

optimization problems. In our principled approach we

• develop a comprehensive and expressive model of the backend optimization problem, and

• design model solution techniques that achieve or approach the optimal solution.

The foundation of our approach is the development of an expressive model that fully captures

the complexities of the problem. This is in contrast to conventional approaches where the focus

is on developing simplified, easy to solve, abstractions, such as graph coloring or tree tiling. The

conventional approach inevitably leads to greater complexity as compiler developers are forced

to develop ad hoc heuristic extensions in the pursuit of improved code quality.

In our approach, we develop a model that is as complex as it needs to be to fully represent

the problem. If an optimal solution to the model cannot be computed efficiently, we do not

reduce the complexity of the model, but instead develop solution techniques that are capable of

approaching an optimal solution. Given sufficiently advanced solution techniques, there is no

need for the compiler developer to develop ad hoc extensions. Code quality improvements come

from refining the model to more accurately reflect the target architecture and code quality metric.

We successfully apply our principled approach to the critical backend compiler optimizations

of register allocation and instruction selection. Our progressive register allocator utilizes a novel

network flow representation of the register allocation problem that is expressive enough to fully

model all the pertinent features of the problem. Our progressive solution technique, based on La-

172 CHAPTER 8. CONCLUSION

grangian relaxation and subgradient optimization, approaches the optimal solution as more time

is allowed for compilation. It also provides feedback about the quality of the allocation in the

form of an optimality bound. Compared to the state-of-the-art extended linear scan allocator of

LLVM when targeting the highly constrained x86-32 architecture, our progressive allocator ini-

tially improves code size by 1.6% on average and then, as more time is allowed for compilation,

improves code size by more than 5% on average with some benchmarks improving by more than

7%. When optimizing for performance, our allocator can reduce the number of memory opera-

tions executed by as much as 20% on average and for several benchmarks results in performance

improvements in excess of 15%.

We use the expressive, but computationally complex, directed acyclic graph representation of

the instruction selection problem as the foundation of our near-optimal linear-time instruction se-

lection algorithm (NOLTIS). The NOLTIS algorithm nearly always finds the optimal instruction

selection and achieves an average code size improvement of 1.7% relative to the LLVM instruc-

tion selection algorithm and 3.9% relative to the textbook approach to instruction selection.

Our principled approach could also be applied to other aspects of compiler optimization.

For example, existing expressive models of instruction scheduling [129] would benefit from

progressive solution techniques. We also believe that our expressive model of register allocation

would be a valuable starting point for developing a principled approach for balancing resource

usage and parallelism when compiling for GPUs [114].

The substantial improvement in code quality achieved with our approach validates our thesis:

our principled approach results in better code quality and a better compiler.

173

Bibliography

[1] A. V. Aho and S. C. Johnson. Optimal code generation for expression trees. J. ACM, 23
(3):488–501, 1976. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321958.321970.
1.1.2, 2.2

[2] A. V. Aho, S. C. Johnson, and J. D. Ullman. Code generation for expressions with common
subexpressions. J. ACM, 24(1):146–160, 1977. ISSN 0004-5411. doi: http://doi.acm.org/
10.1145/321992.322001. 2.2, 7.1

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princiles, Techniques, and
Tools. Addison-Wesley, 1986. ISBN 0-201-10088-6. 2.2

[4] Alfred V. Aho, Mahadevan Ganapathi, and Steven W. K. Tjiang. Code generation using
tree matching and dynamic programming. ACM Trans. Program. Lang. Syst., 11(4):491–
516, 1989. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/69558.75700. 2.2, 7.6

[5] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princiles,
Techniques, and Tools (2nd Edition). Addison-Wesley, 2006. ISBN 978-0321486813. 2.1,
2.2, 7.2, 7.4

[6] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows: theory,
algorithms, and applications. Prentice-Hall, Inc., 1993. ISBN 0-13-617549-X. 3.1, 5.1.1,
6.1.1, 6.1.1, 6.1.2, 6.2, 6.2.4

[7] Anonymous ARM Compiler Engineer. Personal Communication, 2005. 4.2.1

[8] Andrew W. Appel. Modern Compiler Implementation in Java: Basic Techniques. Cam-
bridge University Press, 1997. ISBN 0-521-58654-2. 2.1, 2.2, 7.4

[9] Barrie M. Baker and Janice Sheasby. Accelerating the convergence of subgradient op-
timisation. European Journal of Operational Research, 117(1):136–144, August 1999.
6.2.3

[10] Thomas Ball and James R. Larus. Branch prediction for free. In PLDI ’93: Proceedings
of the ACM SIGPLAN 1993 conference on Programming language design and implemen-
tation, pages 300–313, New York, NY, USA, 1993. ACM. ISBN 0-89791-598-4. doi:
http://doi.acm.org/10.1145/155090.155119. 3.5

[11] Peter Bergner, Peter Dahl, David Engebretsen, and Matthew O’Keefe. Spill code mini-
mization via interference region spilling. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, pages 287–295, New York,
NY, USA, 1997. ACM Press. ISBN 0-89791-907-6. doi: http://doi.acm.org/10.1145/

174 BIBLIOGRAPHY

258915.258941. 2.1.1

[12] D. Bernstein, M. Golumbic, Y. Mansour, R. Pinter, D. Goldin, H. Krawczyk, and
I. Nahshon. Spill code minimization techniques for optimizing compliers. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 258–263. ACM Press, 1989. ISBN 0-89791-306-X. doi: http:
//doi.acm.org/10.1145/73141.74841. 2.1.1

[13] M. Biró, M. Hujter, and Zs. Tuza. Precoloring extension. i: Interval graphs. Dis-
crete Math., 100(1-3):267–279, 1992. ISSN 0012-365X. doi: http://dx.doi.org/10.1016/
0012-365X(92)90646-W. 1.1.1

[14] Hans Bodlaender, Jens Gustedt, and Jan Arne Telle. Linear-time register allocation for
a fixed number of registers. In Proceedings of the ninth annual ACM-SIAM symposium
on Discrete algorithms, pages 574–583. Society for Industrial and Applied Mathematics,
1998. ISBN 0-89871-410-9. 1.1.1, 2.1.5

[15] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–21, 1993.
URL citeseer.nj.nec.com/bodlaender93tourist.html. 1.1.1

[16] Pradip Bose. Optimal code generation for expressions on super scalar machines. In
ACM ’86: Proceedings of 1986 ACM Fall joint computer conference, pages 372–379,
Los Alamitos, CA, USA, 1986. IEEE Computer Society Press. ISBN 0-8186-4743-4. 2.2

[17] Florent Bouchez. A Study of Spilling and Coalescing in Register Allocation as Two Sep-
arate Phases. PhD thesis, École Normale Supérieure de Lyon, France, December 2008.
2.1.2

[18] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of register coa-
lescing. Technical Report RR2006-15, LIP, ENS-Lyon, France, April 2006. 1.1.1

[19] Florent Bouchez, Alain Darte, and Fabrice Rastello. Register allocation: What does the
NP-completeness proof of Chaitin et al. really prove. In Workshop on Duplicating, De-
constructing, and Debunking, 2006. 1.1.1, 2.1.2

[20] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of spill ev-
erywhere under ssa form. In Acm sigplan/sigbed conference on languages, compil-
ers, and tools for embedded systems (lctes’07), San Diego, USA, jun 2007. URL
http://doi.acm.org/10.1145/1273444.1254782. 1.1.1

[21] Preston Briggs. Register allocation via graph coloring. PhD thesis, Rice University,
Houston, TX, USA, 1992. 2.1.1

[22] Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In PLDI ’92:
Proceedings of the ACM SIGPLAN 1992 conference on Programming language design
and implementation, pages 311–321, New York, NY, USA, 1992. ACM Press. ISBN
0-89791-475-9. doi: http://doi.acm.org/10.1145/143095.143143. 2.1.1

[23] Preston Briggs, Keith D. Cooper, and Linda Torczon. Coloring register pairs. ACM Lett.
Program. Lang. Syst., 1(1):3–13, 1992. ISSN 1057-4514. doi: http://doi.acm.org/10.1145/
130616.130617. 2.1.1

citeseer.nj.nec.com/bodlaender93tourist.html
http://doi.acm.org/10.1145/1273444.1254782

175

[24] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph coloring
register allocation. ACM Trans. Program. Lang. Syst., 16(3):428–455, 1994. ISSN 0164-
0925. doi: http://doi.acm.org/10.1145/177492.177575. 2.1.1

[25] Philip Brisk, Foad Dabiri, Jamie Macbeth, and Majid Sarrafzadeh. Polynomial time graph
coloring register allocation. In 14th International Workshop on Logic and Synthesis, June
2005. 1.1.1, 2.1.2

[26] John Bruno and Ravi Sethi. Code generation for a one-register machine. J. ACM, 23(3):
502–510, 1976. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321958.321971. 2.2

[27] Brad Calder, Dirk Grunwald, Donald Lindsay, James Martin, Michael Mozer, and Ben-
jamin Zorn. Corpus-based static branch prediction. SIGPLAN Not., 30(6):79–92, 1995.
ISSN 0362-1340. doi: http://doi.acm.org/10.1145/223428.207118. 3.5

[28] David Callahan and Brian Koblenz. Register allocation via hierarchical graph coloring.
In Proceedings of the ACM SIGPLAN 1991 conference on Programming language design
and implementation, pages 192–203. ACM Press, 1991. ISBN 0-89791-428-7. doi: http:
//doi.acm.org/10.1145/113445.113462. 2.1.4

[29] P.M. Camerini, L. Fratta, and F. Maffioli. On improving relaxation methods by modified
gradient techniques. Mathematical Programming Study, 3:26–34, 1975. 6.2.3

[30] R. G. Cattell. Automatic derivation of code generators from machine descriptions. ACM
Trans. Program. Lang. Syst., 2(2):173–190, 1980. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/357094.357097. 2.2

[31] G. J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings of the
SIGPLAN Symposium on Compiler Construction, pages 98–101. ACM Press, 1982. ISBN
0-89791-074-5. 2.1.1

[32] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hop-
kins, and Peter W. Markstein. Register allocation via coloring. Computer Languages, 6
(1):47–57, 1981. ISSN 0096-0551. 1.1.1

[33] Fred C. Chow and John L. Hennessy. The priority-based coloring approach to register
allocation. ACM Trans. Program. Lang. Syst., 12(4):501–536, 1990. ISSN 0164-0925.
doi: http://doi.acm.org/10.1145/88616.88621. 2.1.1

[34] Frederick Chow and John Hennessy. Register allocation by priority-based coloring. In
Proceedings of the SIGPLAN Symposium on Compiler Construction, pages 222–232, New
York, NY, USA, 1984. ACM Press. ISBN 0-89791-139-3. doi: http://doi.acm.org/10.
1145/502874.502896. 2.1.1

[35] Keith Cooper, Anshuman Dasgupta, and Jason Eckhardt. Revisiting graph coloring regis-
ter allocation: A study of the Chaitin-Briggs and Callahan-Koblenz algorithms. In Proc. of
the Workshop on Languages and Compilers for Parallel Computing (LCPC’05), October
2005. 2.1.4

[36] Keith D. Cooper and L. Taylor Simpson. Live range splitting in a graph coloring register
allocator. In Proceedings of the 7th International Conference on Compiler Construction,
pages 174–187, London, UK, 1998. Springer-Verlag. ISBN 3-540-64304-4. 2.1.1

176 BIBLIOGRAPHY

[37] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kaufmann Pub-
lishers, 2004. 2.1, 2.1.1, 2.2

[38] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently computing static single assignment form and the control dependence graph.
ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991. ISSN 0164-0925. doi: http:
//doi.acm.org/10.1145/115372.115320. 2.1.2

[39] Jack W. Davidson and Christopher W. Fraser. Code selection through object code opti-
mization. ACM Trans. Program. Lang. Syst., 6(4):505–526, 1984. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/1780.1783. 2.2

[40] H. Emmelmann, F.-W. Schröer, and L. Landwehr. Beg: a generation for efficient back
ends. In PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, pages 227–237, New York, NY, USA, 1989. ACM
Press. ISBN 0-89791-306-X. doi: http://doi.acm.org/10.1145/73141.74838. 2.2

[41] M. Anton Ertl. Optimal code selection in dags. In POPL ’99: Proceedings of the 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
242–249, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-095-3. doi: http:
//doi.acm.org/10.1145/292540.292562. 2.2

[42] Martin Farach and Vincenzo Liberatore. On local register allocation. In SODA ’98: Pro-
ceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, pages 564–
573, Philadelphia, PA, USA, 1998. Society for Industrial and Applied Mathematics. ISBN
0-89871-410-9. 1.1.1, 2.1.4

[43] C. W. Fraser and A. L. Wendt. Automatic generation of fast optimizing code generators.
In PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming Lan-
guage design and Implementation, pages 79–84, New York, NY, USA, 1988. ACM Press.
ISBN 0-89791-269-1. doi: http://doi.acm.org/10.1145/53990.53998. 2.2

[44] Christopher W. Fraser and Alan L. Wendt. Integrating code generation and optimization.
In SIGPLAN ’86: Proceedings of the 1986 SIGPLAN symposium on Compiler construc-
tion, pages 242–248, New York, NY, USA, 1986. ACM Press. ISBN 0-89791-197-0. doi:
http://doi.acm.org/10.1145/12276.13335. 2.2

[45] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting. Engineering a simple,
efficient code-generator generator. ACM Lett. Program. Lang. Syst., 1(3):213–226, 1992.
ISSN 1057-4514. doi: http://doi.acm.org/10.1145/151640.151642. 2.2

[46] Christopher W. Fraser, Robert R. Henry, and Todd A. Proebsting. Burg: fast optimal
instruction selection and tree parsing. SIGPLAN Not., 27(4):68–76, 1992. ISSN 0362-
1340. doi: http://doi.acm.org/10.1145/131080.131089. 2.2, 7.6

[47] GNU Compiler Collection (GCC) Internals. Free Software Foundation, Boston, MA,
2006. URL http://gcc.gnu.org/onlinedocs/gccint/. 2.1.4

[48] Changqing Fu and Kent Wilken. A faster optimal register allocator. In Proceedings of the
35th annual ACM/IEEE international symposium on Microarchitecture, pages 245–256.
IEEE Computer Society Press, 2002. ISBN 0-7695-1859-1. 2.1.5

http://gcc.gnu.org/onlinedocs/gccint/

177

[49] Changqing Fu, Kent Wilken, and David Goodwin. A faster optimal register allocator. The
Journal of Instruction-Level Parallelism, 7:1–31, January 2005. URL http://www.
jilp.org/vol7. 2.1.5

[50] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. ISBN
0716710447. 7.1

[51] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans. Program.
Lang. Syst., 18(3):300–324, 1996. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/
229542.229546. 2.1.1

[52] Lal George and Matthias Blume. Taming the ixp network processor. In PLDI ’03: Pro-
ceedings of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pages 26–37, New York, NY, USA, 2003. ACM Press. ISBN 1-58113-
662-5. doi: http://doi.acm.org/10.1145/781131.781135. 2.1.5

[53] R. Steven Glanville and Susan L. Graham. A new method for compiler code generation.
In POPL ’78: Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, pages 231–254, New York, NY, USA, 1978. ACM Press. doi:
http://doi.acm.org/10.1145/512760.512785. 2.2

[54] David W. Goodwin and Kent D. Wilken. Optimal and near-optimal global register alloca-
tion using 0-1 integer programming. Software: Practice and Experience, 26(8):929–965,
1996. 2.1.5

[55] Daniel Grund and Sebastian Hack. A Fast Cutting-Plane Algorithm for Optimal Coa-
lescing. In Shriram Krishnamurthi and Martin Odersky, editors, Compiler Construction,
Lecture Notes In Computer Science. Springer, March 2007. URL http://rw4.cs.
uni-sb.de/˜grund/papers/cc07-opt_coalescing.pdf. Braga, Portugal.
2.1.2

[56] Jens Gustedt, Ole A. Mæhle, and Jan Arne Telle. The treewidth of java programs. In
ALENEX ’02: Revised Papers from the 4th International Workshop on Algorithm Engi-
neering and Experiments, pages 86–97. Springer-Verlag, 2002. ISBN 3-540-43977-3.
1.1.1, 3.7

[57] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. IEEE Inter-
national Workshop on Workload Characterization, pages 3–14, December 2001. 3.5, 7.5

[58] Sebastian Hack. Interference graphs of programs in ssa-form. Technical Report ISSN
1432-7864, Universitat Karlsruhe, 2005. 1.1.1

[59] Sebastian Hack and Gerhard Goos. Optimal register allocation for ssa-form programs
in polynomial time. Information Processing Letters, 98(4):150–155, May 2006. URL
http://dx.doi.org/10.1016/j.ipl.2006.01.008. 1.1.1, 2.1.2

[60] Sebastian Hack and Gerhard Goos. Register Coalescing by Graph Recoloring. In
Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 227–237, New York, NY, USA, 2008. ACM. doi:

http://www.jilp.org/vol7
http://www.jilp.org/vol7
http://rw4.cs.uni-sb.de/~grund/papers/cc07-opt_coalescing.pdf
http://rw4.cs.uni-sb.de/~grund/papers/cc07-opt_coalescing.pdf
http://dx.doi.org/10.1016/j.ipl.2006.01.008

178 BIBLIOGRAPHY

10.1145/1375581.1375610. 2.1.2

[61] Michael Held, Philip Wolfe, and Harlan P. Crowder. Validation of subgradient optimiza-
tion. Mathematical Programming, 6:62–88, 1974. 6.2

[62] Ulrich Hirnschrott, Andreas Krall, and Bernhard Scholz. Graph coloring vs. optimal reg-
ister allocation for optimizing compilers. In JMLC, pages 202–213, 2003. 2.1.5

[63] Wei-Chung Hsu, Charles N. Fisher, and James R. Goodman. On the minimization of
loads/stores in local register allocation. IEEE Trans. Softw. Eng., 15(10):1252–1260, 1989.
ISSN 0098-5589. 2.1.4, 2.1.5

[64] ILOG. ILOG CPLEX. http://www.ilog.com/products/cplex. 6.1.1, 6.1.1,
7.5.1

[65] Intel. Intel 64 and ia-32 architectures software developer’s manual. http://www.
intel.com/products/processor/manuals/, 2009. 4.3.1, 4.3.2

[66] Sven-Olof Nyström Johan Runeson. Retargetable graph-coloring register allocation for
irregular architectures. Lecture Notes in Computer Science, 2826:240–254, October 2003.
2.1.1

[67] Mark S. Johnson and Terrence C. Miller. Effectiveness of a machine-level, global op-
timizer. In SIGPLAN ’86: Proceedings of the 1986 SIGPLAN symposium on Compiler
contruction, pages 99–108, New York, NY, USA, 1986. ACM Press. ISBN 0-89791-197-
0. doi: http://doi.acm.org/10.1145/12276.13321. 2.1.1

[68] Sampath Kannan and Todd Proebsting. Register allocation in structured programs. In
Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, pages
360–368. Society for Industrial and Applied Mathematics, 1995. ISBN 0-89871-349-8.
1.1.1

[69] A. B. Kempe. On the geographical problem of the four colours. American Journal of
Mathematics, 2(3):193–200, September 1879. 2.1.1

[70] Christoph Kessler and Andrzej Bednarski. A dynamic programming approach to optimal
integrated code generation. In LCTES ’01: Proceedings of the ACM SIGPLAN workshop
on Languages, compilers and tools for embedded systems, pages 165–174, New York, NY,
USA, 2001. ACM Press. ISBN 1-58113-425-8. doi: http://doi.acm.org/10.1145/384197.
384219. 2.2

[71] Robert R. Kessler. Peep: an architectural description driven peephole optimizer. In Pro-
ceedings of the 1984 SIGPLAN symposium on Compiler construction, pages 106–110,
New York, NY, USA, 1984. ACM Press. ISBN 0-89791-139-3. doi: http://doi.acm.org/
10.1145/502874.502884. 2.2

[72] David Koes and Seth Copen Goldstein. An analysis of graph coloring register al-
location. Technical Report CMU-CS-06-111, Carnegie Mellon University, March
2006. URL http://reports-archive.adm.cs.cmu.edu/anon/2006/
abstracts/06-111.html. 2.6, 2.1.6

[73] David Koes and Seth Copen Goldstein. Register allocation deconstructed. In SCOPES
’09: Proceedings of the 12th international workshop on Software & compilers for embed-

http://www.ilog.com/products/cplex
http://www.intel.com/products/processor/manuals/
http://www.intel.com/products/processor/manuals/
http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-111.html
http://reports-archive.adm.cs.cmu.edu/anon/2006/abstracts/06-111.html

179

ded systems, 2009. 2.7, 3.17, 3.19

[74] David J. Kolson, Alexandru Nicolau, Nikil Dutt, and Ken Kennedy. Optimal register
assignment to loops for embedded code generation. ACM Transactions on Design Au-
tomation of Electronic Systems., 1(2):251–279, 1996. URL citeseer.nj.nec.com/
kolson96optimal.html. 2.1.5

[75] Timothy Kong and Kent D. Wilken. Precise register allocation for irregular architectures.
In Proceedings of the 31st annual ACM/IEEE international symposium on Microarchitec-
ture, pages 297–307. IEEE Computer Society Press, 1998. ISBN 1-58113-016-3. 2.1.5

[76] Akira Koseki, Hideaki Komatsu, and Toshio Nakatani. Preference-directed graph color-
ing. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 33–44, New York, NY, USA, 2002. ACM
Press. ISBN 1-58113-463-0. doi: http://doi.acm.org/10.1145/512529.512535. 2.1.1

[77] Rick Kufrin. Perfsuite: an accessible, open source performance analysis tool for linux. In
Proceedings of the 6th international conference on Linux Clusters, April 2005. 4.2.2

[78] Steven M. Kurlander and Charles N. Fischer. Zero-cost range splitting. In PLDI ’94:
Proceedings of the ACM SIGPLAN 1994 conference on Programming language design
and implementation, pages 257–265, New York, NY, USA, 1994. ACM Press. ISBN
0-89791-662-X. doi: http://doi.acm.org/10.1145/178243.178420. 2.1.1

[79] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: a tool
for evaluating and synthesizing multimedia and communications systems. In ACM/IEEE
International Symposium on Microarchitecture, pages 330–335, 1997. URL http://
www.icsl.ucla.edu/˜billms/Publications/mediabench.ps. 3.5, 6.1.1,
7.5

[80] Claude Lemaréchal. Computational Combinatorial Optimization: Optimal or Provably
Near-Optimal Solutions, volume 2241 of Lecture Notes in Computer Science, chapter
Lagrangian Relaxation, pages 112–156. Springer-Verlag Heidelberg, 2001. 6.1.2

[81] Rainer Leupers. Code generation for embedded processors. In Proceedings of the 13th
international symposium on System synthesis, pages 173–178. ACM Press, 2000. ISBN
1080-1082. doi: http://doi.acm.org/10.1145/501790.501827. 2.2

[82] Rainer Leupers. Code selection for media processors with simd instructions. In DATE
’00: Proceedings of the conference on Design, automation and test in Europe, pages 4–8,
New York, NY, USA, 2000. ACM Press. ISBN 1-58113-244-1. doi: http://doi.acm.org/
10.1145/343647.343679. 2.2

[83] Rainer Leupers and Steven Bashford. Graph-based code selection techniques for embed-
ded processors. ACM Trans. Des. Autom. Electron. Syst., 5(4):794–814, 2000. ISSN
1084-4309. doi: http://doi.acm.org/10.1145/362652.362661. 2.2

[84] S. Liao, K. Keutzer, S. Tjiang, and S. Devadas. A new viewpoint on code generation for
directed acyclic graphs. ACM Trans. Des. Autom. Electron. Syst., 3(1):51–75, 1998. ISSN
1084-4309. doi: http://doi.acm.org/10.1145/270580.270583. 2.2

citeseer.nj.nec.com/kolson96optimal.html
citeseer.nj.nec.com/kolson96optimal.html
http://www.icsl.ucla.edu/~billms/Publications/mediabench.ps
http://www.icsl.ucla.edu/~billms/Publications/mediabench.ps

180 BIBLIOGRAPHY

[85] Stan Liao, Srinivas Devadas, Kurt Keutzer, and Steve Tjiang. Instruction selection us-
ing binate covering for code size optimization. In ICCAD ’95: Proceedings of the 1995
IEEE/ACM international conference on Computer-aided design, pages 393–399, Wash-
ington, DC, USA, 1995. IEEE Computer Society. ISBN 0-8186-7213-7. 2.2

[86] Vincenzo Liberatore, Martin Farach-Colton, and Ulrich Kremer. Evaluation of algorithms
for local register allocation. In CC’99: 8th International Conference on Compiler Con-
struction, volume 1575 of Lecture Notes in Computer Science. Springer, March 1999.
ISBN 3-540-65717-7. 2.1.4, 2.1.5

[87] LLVM. The LLVM compiler infrastructure. http://llvm.org. 2.1.3, 4, 5.1.2, 7.4

[88] Guei-Yuan Lueh and Thomas Gross. Call-cost directed register allocation. In PLDI ’97:
Proceedings of the ACM SIGPLAN 1997 conference on Programming language design
and implementation, pages 296–307. ACM Press, 1997. ISBN 0-89791-907-6. doi: http:
//doi.acm.org/10.1145/258915.258942. 2.1.1

[89] Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Fusion-based register al-
location. ACM Trans. Program. Lang. Syst., 22(3):431–470, 2000. ISSN 0164-0925. doi:
http://doi.acm.org/10.1145/353926.353929. 2.1.4

[90] Ananth R. Madabushi. Lagrangian relaxation / dual approaches for solving large-scale
linear programming problems. Master’s thesis, Virginia Polytechnic Institute and State
University, February 1997. 6.2.2, 6.2.3

[91] W. M. McKeeman. Peephole optimization. Commun. ACM, 8(7):443–444, 1965. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/364995.365000. 2.2

[92] Waleed M. Meleis and Edward S. Davidson. Optimal local register allocation for a
multiple-issue machine. In Proceedings of the 8th international conference on Su-
percomputing, pages 107–116. ACM Press, 1994. ISBN 0-89791-665-4. doi: http:
//doi.acm.org/10.1145/181181.181318. 2.1.5

[93] C. Robert Morgan. Building an Optimizing Compiler. Butterworth, 1998. ISBN 1-
55558179-X. 2.1, 2.1.4

[94] T. S. Motkin and I.J. Schoenberg. The relaxation method for linear inequalities. Canadian
Journal of Mathematics, 6:393–404, 1954. 6.2.2

[95] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997. ISBN 1-55860-320-4. 2.1, 2.2

[96] Mayur Naik and Jens Palsberg. Compiling with code-size constraints. In Proceedings of
the joint conference on Languages, compilers and tools for embedded systems, pages 120–
129. ACM Press, 2002. ISBN 1-58113-527-0. doi: http://doi.acm.org/10.1145/513829.
513851. 2.1.5

[97] Mayur Naik and Jens Palsberg. Compiling with code-size constraints. Trans. on Embed-
ded Computing Sys., 3(1):163–181, 2004. ISSN 1539-9087. doi: http://doi.acm.org/10.
1145/972627.972635. 2.1.5, 2.2

[98] Takuya Nakaike, Tatsushi Inagaki, Hideaki Komatsu, and Toshio Nakatani. Profile-based
global live-range splitting. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN confer-

http://llvm.org

181

ence on Programming language design and implementation, pages 216–227, New York,
NY, USA, 2006. ACM Press. ISBN 1-59593-320-4. doi: http://doi.acm.org/10.1145/
1133981.1134007. 2.1.1

[99] George Nemhauser and Laurence Wolsey. Integer and Combinatorial Optimization. John
Wiley and Sons, New York, NH, USA, 1999. ISBN 0-471-35943-2. 6.2.2

[100] Cindy Norris and Lori L. Pollock. Register allocation over the program dependence graph.
In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on Programming lan-
guage design and implementation, pages 266–277, New York, NY, USA, 1994. ACM
Press. ISBN 0-89791-662-X. doi: http://doi.acm.org/10.1145/178243.178427. 2.1.4

[101] Mizuhito Ogawa, Zhenjiang Hu, and Isao Sasano. Iterative-free program analysis. In ICFP
’03: Proceedings of the eighth ACM SIGPLAN international conference on Functional
programming, pages 111–123. ACM Press, 2003. ISBN 1-58113-756-7. doi: http://doi.
acm.org/10.1145/944705.944716. 1.1.1, 2.1.5

[102] Jens Palsberg. Register allocation via coloring of chordal graphs. In Proceedings of
the thirteenth Australasian symposium on Theory of Computing, pages 3–3, Darlinghurst,
Australia, Australia, 2007. Australian Computer Society, Inc. ISBN 1-920-68246-5. 1.1.1,
2.1.2

[103] Jinpyo Park and Soo-Mook Moon. Optimistic register coalescing. ACM Trans. Program.
Lang. Syst., 26(4):735–765, 2004. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/
1011508.1011512. 2.1.1

[104] E. Pelegrı́-Llopart and S. L. Graham. Optimal code generation for expression trees: an
application burs theory. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 294–308, New York, NY,
USA, 1988. ACM Press. ISBN 0-89791-252-7. doi: http://doi.acm.org/10.1145/73560.
73586. 2.2, 7.6

[105] Fernando Quintao Pereira and Jens Palsberg. Register allocation after classical ssa elimi-
nation is np-complete. In Proceedings of FOSSACS’06, Foundations of Software Science
and Computation Structures. Springer-Verlag (LNCS), March 2006. 1.1.1, 2.1.2

[106] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM Trans.
Program. Lang. Syst., 21(5):895–913, 1999. ISSN 0164-0925. doi: http://doi.acm.org/10.
1145/330249.330250. 2.1.3

[107] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numer-
ical recipes in C (2nd ed.): the art of scientific computing. Cambridge University Press,
New York, NY, USA, 1992. ISBN 0-521-43108-5. 6.2.3

[108] Todd Proebsting. Least-cost instruction selection in dags is NP-complete. http://
research.microsoft.com/˜toddpro/papers/proof.htm. 2.2, 7.1, 7.1

[109] Todd A. Proebsting. Simple and efficient burs table generation. In PLDI ’92: Proceedings
of the ACM SIGPLAN 1992 conference on Programming language design and implemen-
tation, pages 331–340, New York, NY, USA, 1992. ACM Press. ISBN 0-89791-475-9.
doi: http://doi.acm.org/10.1145/143095.143145. 2.2

http://research.microsoft.com/~toddpro/papers/proof.htm
http://research.microsoft.com/~toddpro/papers/proof.htm

182 BIBLIOGRAPHY

[110] Todd A. Proebsting. Burs automata generation. ACM Trans. Program. Lang. Syst., 17(3):
461–486, 1995. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/203095.203098. 2.2,
7.6

[111] Todd A. Proebsting and Charles N. Fischer. Probabilistic register allocation. In PLDI ’92:
Proceedings of the ACM SIGPLAN 1992 conference on Programming language design
and implementation, pages 300–310, New York, NY, USA, 1992. ACM Press. ISBN
0-89791-475-9. doi: http://doi.acm.org/10.1145/143095.143142. 2.1.4

[112] Todd A. Proebsting and Charles N. Fischer. Demand-driven register allocation. ACM
Trans. Program. Lang. Syst., 18(6):683–710, 1996. ISSN 0164-0925. doi: http://doi.acm.
org/10.1145/236114.236117. 2.1.4

[113] Rodric M. Rabbah, Ian Bratt, Krste Asanovic, and Anant Agarwal. Versatility and
versabench: A new metric and a benchmark suite for flexible architectures. Technical
Report MIT-LCS-TM-646, Massachusetts Institute of Technology, June 2004. 7.5

[114] Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B. Kirk,
and Wen-mei W. Hwu. Optimization principles and application performance evaluation
of a multithreaded gpu using cuda. In PPoPP ’08: Proceedings of the 13th ACM SIG-
PLAN Symposium on Principles and practice of parallel programming, pages 73–82, New
York, NY, USA, 2008. ACM. ISBN 978-1-59593-795-7. doi: http://doi.acm.org/10.1145/
1345206.1345220. 8

[115] Vivek Sarkar and Rajkishore Barik. Extended linear scan: an alternate foundation for
global register allocation. In Proceedings of the 2007 International Conference on Com-
piler Construction, March 2007. 2.1.3, 2.1.3, 4, 5.5

[116] Bernhard Scholz and Erik Eckstein. Register allocation for irregular architectures. In
Proceedings of the joint conference on Languages, compilers and tools for embedded
systems, pages 139–148. ACM Press, 2002. ISBN 1-58113-527-0. doi: http://doi.acm.
org/10.1145/513829.513854. 2.1.5

[117] David Seal. ARM Architecture Reference Manual. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2000. ISBN 0201737191. 4.3.3, 4.3.4

[118] Ravi Sethi and J. D. Ullman. The generation of optimal code for arithmetic expressions.
J. ACM, 17(4):715–728, 1970. ISSN 0004-5411. doi: http://doi.acm.org/10.1145/321607.
321620. 2.2, 7.4

[119] Hanif D. Sherali and Gyunghyun Choi. Recovery of primal solutions when using sub-
gradient optimization methods to solve lagrangian duals of linear programs. Operations
Research Letters, 19:105–113, September 1996. 6.2.3

[120] Hanif .D. Sherali and Osman Ulular. A primal-dual conjugate algorithm for specially
structured linear and convex programming problems. Applied Mathematics and Opti-
mization, 20:193–221, 1989. 6.2.3, 6.2.3

[121] N. Z. Shor, Krzysztof C. Kiwiel, and Andrzej Ruszcayǹski. Minimization methods for
non-differentiable functions. Springer-Verlag New York, Inc., New York, NY, USA, 1985.
ISBN 0-387-12763-1. 6.2

183

[122] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algorithm for
graph-coloring register allocation. SIGPLAN Not., 39(6):277–288, 2004. ISSN 0362-
1340. doi: http://doi.acm.org/10.1145/996893.996875. 2.1.1

[123] SPEC. SPEC CPU2006 benchmark suite. http://www.spec.org, 2006. 3.5, 4.1,
7.5

[124] Mikkel Thorup. All structured programs have small tree width and good register alloca-
tion. Inf. Comput., 142(2):159–181, 1998. ISSN 0890-5401. doi: http://dx.doi.org/10.
1006/inco.1997.2697. 1.1.1, 2.1.5, 3.7

[125] Omri Traub, Glenn Holloway, and Michael D. Smith. Quality and speed in linear-scan
register allocation. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 142–151, New York, NY, USA, 1998. ACM
Press. ISBN 0-89791-987-4. doi: http://doi.acm.org/10.1145/277650.277714. 2.1.3, 2.1.3

[126] Robert J. Vanderbei. Linear Programming: Foundations and Extensions. Department
of operations and research and financial engineering, Princeton university, 2001. URL
www.princeton.edu/˜rvdb/LPbook/onlinebook.pdf. 6.1.1, 6.1.1

[127] Steven R. Vegdahl. Using node merging to enhance graph coloring. In PLDI ’99: Pro-
ceedings of the ACM SIGPLAN 1999 conference on Programming language design and
implementation, pages 150–154, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-
094-5. doi: http://doi.acm.org/10.1145/301618.301657. 2.1.1

[128] Christian Wimmer and Hanspeter Mössenböck. Optimized interval splitting in a linear
scan register allocator. In Proceedings of the ACM/USENIX International Conference on
Virtual Execution Environments, pages 132–141, New York, NY, USA, 2005. ACM Press.
ISBN 1-59593-047-7. doi: http://doi.acm.org/10.1145/1064979.1064998. 2.1.3, 2.1.3

[129] Sebastian Winkel. Optimal versus heuristic global code scheduling. In MICRO ’07: Pro-
ceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 43–55, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3047-
8. doi: http://dx.doi.org/10.1109/MICRO.2007.10. 8

[130] Youfeng Wu and James R. Larus. Static branch frequency and program profile analy-
sis. In MICRO 27: Proceedings of the 27th annual international symposium on Microar-
chitecture, pages 1–11, New York, NY, USA, 1994. ACM. ISBN 0-89791-707-3. doi:
http://doi.acm.org/10.1145/192724.192725. 3.5

[131] T. Zeitlhofer and B. Wess. A comparison of graph coloring heuristics for register al-
location based on coalescing in interval graphs. Proceedings of the 2004 International
Symposium on Circuits and Systems, 4:IV–529–32 Vol.4, May 2004. 2.1.2

[132] Thomas Zeitlhofer and Bernhard Wess. Optimum register assignment for heterogeneous
register-set architectures. In Proceedings of the 2003 International Symposium on Circuits
and Systems, volume 3, pages III–252–III–244, May 2003. 1.1.1, 2.1.2

http://www.spec.org
www.princeton.edu/~rvdb/LPbook/onlinebook.pdf

	1 Introduction
	1.1 Problem Description
	1.1.1 Register Allocation
	1.1.2 Instruction Selection

	1.2 Contribution

	2 Related Work
	2.1 Register Allocation
	2.1.1 Graph Coloring Register Allocation
	2.1.2 SSA Register Allocators
	2.1.3 Linear Scan Allocators
	2.1.4 Alternative Heuristic Allocators
	2.1.5 Optimal Register Allocation
	2.1.6 Limitations
	2.1.7 Summary

	2.2 Instruction Selection

	3 Global MCNF Register Allocation Model
	3.1 Multi-commodity Network Flow
	3.2 Local Register Allocation Model
	3.2.1 Source Nodes
	3.2.2 Sink Nodes
	3.2.3 Allocation Class Nodes
	3.2.4 Crossbar Groups
	3.2.5 Instruction Groups
	3.2.6 Full Model

	3.3 Global Register Allocation Model
	3.4 Persistent Memory
	3.5 Modeling Costs
	3.6 Limitations
	3.7 Hardness of Single Global Flow
	3.8 Simplifications
	3.9 Summary

	4 Evaluation Methodology
	4.1 Benchmarks
	4.2 Code Quality Metrics
	4.2.1 Code Size
	4.2.2 Code Performance

	4.3 Instruction Set Architectures
	4.3.1 x86-32
	4.3.2 x86-64
	4.3.3 ARM
	4.3.4 Thumb

	4.4 Microarchitectures

	5 Heuristic Register Allocation
	5.1 Iterative Heuristic Allocator
	5.1.1 Algorithm
	5.1.2 Improvements
	5.1.3 Asymptotic Analysis

	5.2 Simultaneous Heuristic Allocator
	5.2.1 Algorithm
	5.2.2 Improvements
	5.2.3 Asymptotic Analysis

	5.3 Boundary Constraints
	5.3.1 Asymptotic Analysis

	5.4 Hybrid Allocator
	5.5 Compile Time
	5.6 Summary

	6 Progressive Register Allocation
	6.1 Relaxation Techniques
	6.1.1 Linear Programming Relaxation
	6.1.2 Lagrangian Relaxation

	6.2 Subgradient Optimization
	6.2.1 Flow Calculation
	6.2.2 Step Update
	6.2.3 Price Update
	6.2.4 Price Initialization
	6.2.5 Summary

	6.3 Progressive Register Allocation
	6.3.1 Code Quality: Size
	6.3.2 Code Quality: Performance
	6.3.3 Optimality
	6.3.4 Compile Time

	6.4 Summary

	7 Near-Optimal Linear-Time Instruction Selection
	7.1 Problem Description and Hardness
	7.2 NOLTIS
	7.3 0-1 Programming Solution
	7.4 Implementation
	7.5 Results
	7.5.1 Optimality
	7.5.2 Comparison of Algorithms
	7.5.3 Impact on Code Size
	7.5.4 Compile Time Performance

	7.6 Limitations and Future Work
	7.7 Interaction with Register Allocation
	7.8 Summary

	8 Conclusion
	Bibliography

