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Abstract

Gesture-based interfaces, in which the user specifies commands by simple freehand drawings,
offer an alternative to traditional keyboard, menu, and direct manipulation interfaces. The ability
to specify objects, an operation, and additional parameters with a single intuitive gesture makes
gesture-based systems appealing to both novice and experienced users.

Unfortunately, the difficulty in building gesture-based systems has prevented such systems from
being adequately explored. This dissertation presents work that attempts to alleviate two of the
major difficulties: the construction of gesture classifiers and the integration of gestures into direct-
manipulation interfaces. Three example gesture-based applications were built to demonstrate this
work.

Gesture-based systems require classifiers to distinguish between the possible gestures a user
may enter. In the past, classifiers have often been hand-coded for each new application, making
them difficult to build, change, and maintain. This dissertation applies elementary statistical pattern
recognition techniques to produce gesture classifiers that are trained by example, greatly simplifying
their creation and maintenance. Both single-path gestures (drawn with a mouse or stylus) and
multiple-path gestures (consisting of the simultaneous paths of multiple fingers) may be classified.
On a 1 MIPS workstation, a 30-class single-path recognizer takes 175 milliseconds to train (once
the examples have been entered), and classification takes 9 milliseconds, typically achieving 97%
accuracy. A method for classifying a gesture as soon as it is unambiguous is also presented.

This dissertation also describes GRANDMA, a toolkit for building gesture-based applications
based on Smalltalk’s Model/View/Controller paradigm. Using GRANDMA, one associates sets of
gesture classes with individual views or entire view classes. A gesture class can be specified at
runtime by entering a few examples of the class, typically 15. The semantics of a gesture class can be
specified at runtime via a simple programming interface. Besides allowing for easy experimentation
with gesture-based interfaces, GRANDMA sports a novel input architecture, capable of supporting
multiple input devices and multi-threaded dialogues. The notion of virtual tools and semantic
feedback are shown to arise naturally from GRANDMA’s approach.
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Chapter 1

Introduction

People naturally use hand motions to communicate with other people. This dissertation explores the
use of human gestures to communicate with computers.

Random House [122] defines “gesture” as “the movement of the body, head, arms, hands, or
face that is expressive of an idea, opinion, emotion, etc.” This is a rather general definition, which
characterizes well what is generally thought of as gesture. It might eventually be possible through
computer vision for machines to interpret gestures, as defined above, in real time. Currently such
an approach is well beyond the state of the art in computer science.

Because of this, the term “gesture” usually has a restricted connotation when used in the context
of human-computer interaction. There, gesture refers to hand markings, entered with a stylus or
mouse, which function to indicate scope and commands [109]. Buxton [14] gives a fine example,
reproduced here as figure 1.1. In this dissertation, such gestures are referred to as single-path
gestures.

Recently, input devices able to track the paths of multiple fingers have come into use. The
Sensor Frame [84] and the DataGlove [32, 130] are two examples. The human-computer interaction
community has naturally extended the use of the term “gesture” to refer to hand motions used to
indicate commands and scope, entered via such multiple finger input devices. These are referred to
here as multi-path gestures.

Rather than defining gesture more precisely at this point, the following section describes an

Figure 1.1: Proofreader’s Gesture (from Buxton [15])

1
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(a)

(h)(e)

(b) (c)

(g)

(d)

(f)

Figure 1.2: GDP, a gesture-based drawing program

example application with a gestural interface. A more technical definition of gesture will be
presented in section 1.6.

1.1 An Example Gesture-based Application

GRANDMA is a toolkit used to create gesture-based systems. It was built by the author and is
described in detail in the pages that follow. GRANDMA was used to create GDP, a gesture-based
drawing editor loosely based on DP [42]. GDP provides for the creation and manipulation of lines,
rectangles, ellipses, and text. In this section, GDP is used as an example gesture-based system.
GDP’s operation is presented first, followed by a description of how GRANDMA was used to create
GDP’s gestural interface.

1.1.1 GDP from the user’s perspective

GDP’s operation from a user’s point of view will now be described. (GDP’s design and implemen-
tation is presented in detail in Section 8.1.) The intent is to give the reader a concrete example of
a gesture-based system before embarking on a general discussion of such systems. Furthermore,
the description of GDP serves to illustrates many of GRANDMA’s capabilities. A new interaction
technique, which combines gesture and direct manipulation in a single interaction, is also introduced
in the description.
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Figure 1.2 shows some snapshots of GDP in action. When first started, GDP presents the user
with a blank window. Panel (a) shows the rectangle gesture being entered. This gesture is drawn
like an “L.”1 The user begins the gesture by positioning the mouse cursor and pressing a mouse
button. The user then draws the gesture by moving the mouse.

The gesture is shown on the screen as is being entered. This technique is called inking [109],
and provides valuable feedback to the user. In the figure, inking is shown with dotted lines so that
the gesture may be distinguished from the objects in the drawing. In GDP, the inking is done with
solid lines, and disappears as soon as the gesture has been recognized.

The end of the rectangle gesture is indicated in one of two ways. If the user simply releases
the mouse button immediately after drawing “L” a rectangle is created, one corner of which is at
the start of the gesture (where the button was first pressed), with the opposite corner at the end of
the gesture (where the button was released). Another way to end the gesture is to stop moving the
mouse for a given amount of time (0.2 seconds works well), while still pressing the mouse button.
In this case, a rectangle is created with one corner at the start of the gesture, and the opposite corner
at the current mouse location. As long as the button is held, that corner is dragged by the mouse,
enabling the size and shape of the rectangle to be determined interactively.

Panel (b) of figure 1.2 shows the rectangle that has been created and the ellipse gesture. This
gesture creates an ellipse with its center at the start of the gesture. A point on the ellipse tracks the
mouse after the gesture has been recognized; this gives the user interactive control over the size and
eccentricity of the ellipse.

Panel (c) shows the created ellipse, and a line gesture. Similar to the rectangle and the ellipse, the
start of the gesture determines one endpoint of the newly created line, and the mouse position after
the gesture has been recognized determines the other endpoint, allowing the line to be rubberbanded.

Panel (d) shows all three shapes being encircled by a pack gesture. This gesture packs (groups)
all the objects which it encloses into a single composite object, which can then be manipulated as
a unit. Panel (e) shows a copy gesture being made; the composite object is copied and the copy is
dragged by the mouse.

Panel (f) shows the rotate-and-scale gesture. The object is made to rotate around the starting
point of the gesture; a point on the object is dragged by the mouse, allowing the user to interactively
determine the size and orientation of the object.

Panel (g) shows the delete gesture, essentially an “X” drawn with a single stroke. The object at
the gesture start is deleted, as shown in panel (h).

This brief description of GDP illustrates a number of features of gesture-based systems. Perhaps
the most striking feature is that each gesture corresponds to a high-level operation. The class of the
gesture determines the operation; attributes of the gesture determine its scope (the operands) and
any additional parameters. For example, the delete gesture specifies the object to be deleted, the
pack gesture specifies the objects to be combined, and the line gesture specifies the endpoints of
the line.

1It is often convenient to describe single-path gestures as if they were handwritten letters. This is not meant to imply
that gesture-based systems can only recognize alphabetic symbols, or even that they usually recognize alphabetic symbols.
The many ways in which gesture-based systems are distinct from handwriting-recognition systems will be enumerated in
section 1.8.
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Figure 1.3: GDP’s View class hierarchy and associated gestures
A period indicates the first point of each gesture.

It is possible to control more than positional parameters with gestural attributes. For example,
one version of GDP uses the length (in pixels) of the line gesture to control the thickness of the new
line.

Note how gesturing and direct manipulation are combined in a new two-phase interaction
technique. The first phase, the collection of the gesture, ends when the user stops moving the mouse
while holding the button. At that time, the gesture is recognized and a number of parameters to
the application command are determined. After recognition, a manipulation phase is entered during
which the user can control additional parameters interactively.

In addition to its gestural interface, GDP provides a more traditional click-and-drag interface.
This is mainly used to compare the two styles of interface, and is further discussed in Section 8.1.
The gestural interface is grafted on top of the click-and-drag interface, as will be explained next.

1.1.2 Using GRANDMA to Design GDP’s Gestures

In the current work, the gesture designer creates a gestural interface to an application out of an
existing click-and-drag interface to the application. Both the click-and-drag interface and the
application are built using the object-oriented toolkit GRANDMA. The gesture designer only
modifies the way input is handled, leaving the output mechanisms untouched.

A system built using GRANDMA utilizes the object-oriented programming paradigm to rep-
resent windows and the graphics objects displayed in windows. For example, figure 1.3a shows
GDP’s View class hierarchy.2 This hierarchy shows the relationship of the classes concerned with
output. The task of the gesture designer is to determine which of these classes are to have associated
gestures, and for each such view class, to design a set of gestures that intuitively expresses the
allowable operations on the view. Figure 1.2b shows the sets of gestures associated with GDP’s
GraphicObjectView and GdpTopView classes. The GraphicObjectView collectively

2For expositional purposes, the hierarchy shown is a simplified version of the actual hierarchy. Some of the details
that follow have also been simplified. Section 8.1 tells the truth in gory detail.
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Figure 1.5: Adding examples of the
delete gesture

refers to the line, rectangle, and ellipse shapes, while GdpTopView represents the window in
which GDP runs.

GRANDMA is a Model/View/Controller-like system [70]. In GRANDMA, an input event
handler (a “controller” in MVC terms) may be associated with a view class, and thus shared between
all instances of the class (including instances of subclasses). This adds flexibility while eliminating
a major overhead of Smalltalk MVC, where one or more controller objects are associated with each
view object that expects input.

The gesture designer adds gestures to GDP’s initial click-and-drag interface at runtime. The
first step is to create a new gesture handler and associate it the GraphicObjectView class,
easily done using GRANDMA. Figure 1.4 shows the gesture handler window after a number of
gestures have been created (using the “new class” button), and figure 1.5 shows the window in which
examples of the delete gesture have been entered. Fifteen examples of each gesture class typically
suffice. If a gesture is to vary in size and/or orientation, the examples should reflect that.

Clicking on the “Semantics” button brings up a window that the designer uses to specify the
semantics of each gesture in the handler’s set. The window is a structured editing and browsing
interface to a simple Objective-C [28] interpreter, and the designer enters three expressions: recog,
evaluated when the gesture is first recognized; manip, evaluated on subsequent mouse points; and
done, evaluated when the mouse button is released. In this case, the delete semantics simply
change the mouse cursor to a delete cursor, providing feedback to the user, and then delete the view
at which the gesture was aimed. The expressions entered are3

3Objective C syntax is used throughout. [view delete] sends the delete message to the object referred to
by the variable view. [handler mousetool:DeleteCursor] sends the mousetool: message to the object
referred to by the variable handler passing the value of the variable DeleteCursor as an argument. See Section 6.3
for more information on Objective C notation.
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recog = [_Seq :[handler mousetool:DeleteCursor]
:[view delete]];

manip = nil;

done = nil;
The designer may now immediately try out the delete gesture, as in figure 1.2g.
The designer repeats the process to create a gesture handler for the set of gestures associated

with class GdpTopView, the view that refers to the window in which GDP runs. This handler
deals with the gestures that create graphic objects, the pack gesture (which creates a set out of
the enclosed graphic objects), the dot gesture (which repeats the last command), and the gestures
also handled by GraphicObjectView’s gesture handler (which when made at a GdpTopView
change the cursor without operating directly on a graphic object).

The attributes of the gesture are directly available for use in the gesture semantics. For example,
the semantics of the line gesture are:

recog = [Seq :[handler mousetool:LineCursor]
:[[view createLine]

setEndpoint:0 x:<startX> y:<startY>]];

manip = [recog setEndpoint:1 x:<currentX> y:<currentY>];
done = nil;

The semantic expressions execute in a rich environment in which, for example, view is bound
to the view at which the gesture was directed (in this case a GdpTopView) and handler is bound
to the current gesture handler. Note that Seq executes its arguments sequentially, returning the
value of the last, in this case the newly created line. This is bound to recog for later use in the
manip expression.

The example shows how the gesture attributes, shown in angle brackets, are useful in the semantic
expressions. The attributes <startX> and <startY>, the coordinates of the first point in the
gesture, are used to determine one endpoint of the line, while <currentX> and <currentY>,
the mouse coordinates, determine the other endpoint.

Many other gesture attributes are useful in semantics. The line semantics could be augmented
to control the thickness of the line from the maximum speed or total path length of the gesture.
The rectangle semantics could use the initial angle of the rectangle gesture to determine the
orientation of the rectangle. The attribute <enclosed> is especially noteworthy: it contains a
list of views enclosed by the gesture and is used, for example, by the pack gesture (figure 1.2d).
When convenient, the semantics can simulate input to the click-and-drag interface, rather than
communicating directly with application objects or their views, as shown above.

When the first point of a gesture is over more than one gesture-handling view, the union
of the set of gestures recognized by each handler is used, with priority given to the foremost
views. For example, any gesture made at a GDP GraphicObjectView is necessarily made
over the GdpTopView. A delete gesture made at a graphic object would be handled by
the GraphicObjectView while a line gesture at the same place would be handled by the
GdpTopView. Set union also occurs when gestures are (conceptually) inherited via the view
class hierarchy. For example, the gesture designer might create a new gesture handler for the
GobjSetView class containing an unpack gesture. The set of gestures recognized by
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GobjSetViews would then consist of the unpack gesture as well as the five gestures handled by
GraphicObjectView.

1.2 Glossary

This section defines and clarifies some terms that will be used throughout the dissertation. It may
safely be skipped and referred back to as needed. Some of the terms (click, drag) have their common
usage in the human-computer interaction community, while others (pick, move, drop) are given
technical definitions solely for use here.

class In this dissertation, “class” is used in two ways. “Gesture class” refers to a set of gestures all
of which are intended to be treated the same, for example, the class of delete gestures. (In this
dissertation, the names of gesture classes will be shown in sans serif typeface.) The job of
a gesture recognizer is, given an example gesture, to determine its class (see also “gesture”).
“Class” is also used in the object-oriented sense, referring to the type (loosely speaking) of a
software object. It should be clear from context which of these meanings is intended.

click A click consists of positioning the mouse cursor and then pressing and releasing a mouse
button, with no intervening mouse motion. In the Macintosh, a click is generally used to
select an object on the screen.

click-and-drag A click-and-drag interface is a direct-manipulation interface in which objects on
the screen are operated upon using mouse clicks, drags, and sometimes double-clicks.

direct manipulation A direct-manipulation interface is one in which the user manipulates a graphic
representation of the underlying data by pointing at and/or moving them with an appropriate
device, such as a mouse with buttons.

double-click A double-click is two clicks in rapid succession.

drag A drag consists of locating the mouse cursor and pressing the mouse button, moving the
mouse cursor while holding the mouse button, and then releasing the mouse button. Drag
interactions are used in click-and-drag interfaces to, for example, move objects around on the
screen.

drop The final part of a drag (or click) interaction in which the mouse button is released.

eager recognition A kind of gesture recognition in which gestures are often recognized without the
end of the gesture having to be explicitly signaled. Ideally, an eager recognizer will recognize
a gesture as soon as enough of it has been seen to determine its class unambiguously.

gesture Essentially a freehand drawing used to indicate a command and all its parameters. De-
pending on context, the term maybe used to refer to an example gesture or a class of gestures,
e.g. “a delete gesture” means an example gesture belonging to the class of delete gestures.
Usually “gesture” refers to the part of the interaction up until the input is recognized as one
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of a number of possible gesture classes, but sometimes the entire interaction (which includes
a manipulation phase after recognition) is referred to as a gesture.

move The component of drag interaction during which the mouse is moved while a mouse button
is held down. It is the presence of a move that distinguishes a click from a drag.

multi-path A multi-path gesture is one made with an input device that allows more than one position
to be indicated simultaneously (multiple pointers). One may make multi-path gestures with a
Sensor Frame, a multiple-finger touch pad, or a DataGlove, to name a few such devices.

off-line Considering an algorithm to be a sequence of operations, an off-line algorithm is one which
examines subsequent operations before producing output for the current operation.

on-line An on-line algorithm is one in which the output of an operation is produced before any
subsequent operations are read.

pick The initial part of a drag (or click) interaction consisting of positioning the mouse cursor at
the desired location and pressing a mouse button.

press refers to the pressing of a mouse button.

real-time A real-time algorithm is an on-line algorithm in which each operation is processed in
time bounded by a constant.

release refers to the releasing of a mouse button.

segment A segment is an approximately linear portion of a stroke. For example, the letter “L” is
two segments, one vertical and one horizontal.

single-path A single-path gesture is one drawn by an input device, such as a mouse or stylus,
capable of specifying only a single point over time. A single-path gesture may consist of
multiple strokes (like the character “X”).

single-stroke A single-stroke gesture is a single-path gesture that is one stroke. Thus drawing “L”
is a single-stroke gesture, while “X” is not. In this dissertation the only single-path gestures
considered are single-stroke gestures.

stroke A stroke is an unbroken curve made by a single movement of a pen, stylus, mouse, or other
instrument. Generally, strokes begin and end with explicit user actions (e.g. , pen down/pen
up, mouse button down/mouse button up).

1.3 Summary of Contributions

This dissertation makes contributions in four areas: new interaction techniques, new algorithms for
gesture recognition, a new way of integrating gestures into user interfaces, and a new architecture
for input in object-oriented toolkits.
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The first new interaction technique is the two-phase combination of single-stroke gesture collec-
tion followed by direct manipulation, mentioned previously. In the GDP example discussed above,
the boundary between the two phases is an interval of motionlessness. Eager recognition, the sec-
ond new interaction technique, eliminates this interval by recognizing the single-stroke gesture and
entering the manipulation phase as soon as enough of the gesture has been seen to do so unambigu-
ously, making the entire interaction very smooth. A third new interaction technique is the two-phase
interaction applied to multi-path gestures: after a multi-path gesture has been recognized, individ-
ual paths (i.e. fingers, possibly including additional fingers not involved in making the recognized
gesture) may be assigned to manipulate independent application parameters simultaneously.

The second contribution is a new trainable, single-stroke recognition algorithm tailored for
recognizing gestures. The classification is based on meaningful features, which in addition to
being useful for recognition are also suitable for passing to application routines. The particular
set of features used has been shown to be suitable for many different gesture sets, and is easily
extensible. When restricted to features that can be updated incrementally in constant time per
input point, arbitrarily large gestures may be handled. The single-stroke recognition algorithm has
been extended to do eager recognition (eager recognizers are automatically generated from example
gestures), and also to multi-path gesture recognition.

Third, a new paradigm for creating gestural interfaces is also propounded. As seen in the
example, starting from a click-and-drag implementation of an interface, gestures are associated
with classes of views (display objects), with the set of gestures recognized at a particular screen
location dynamically determined by the set of overlapping views at the location, and by inheritance
up the class hierarchy of each such view. The classification and attributes of gestures map directly to
application operations and parameters. The creation, deletion, and manipulation of gesture handlers,
gesture classes, gesture examples, and gesture semantics all occur at runtime, enabling quick and
easy experimentation with gestural interfaces.

Fourth, GRANDMA, as an object-oriented user interface toolkit, makes some contributions to
the area of input handling. Event handler objects are associated with particular views or entire view
classes. A single event handler may be shared between many different objects, eliminating a major
overhead of MVC systems. Multiple event handlers may be associated with a single object, enabling
the object to support multiple interaction techniques simultaneously, including the use of multiple
input devices. Furthermore, a single mechanism handles both mouse tools (e.g. a delete cursor that
deletes clicked-upon objects) and virtual tools (e.g. a delete icon that is dragged around and dropped
upon objects to delete them). Additionally, GRANDMA provides support for semantic feedback,
and enables the runtime creation and manipulation of event handlers.

1.4 Motivation for Gestures

At this point, the reader should have a good idea of the scope of the work to be presented in this
dissertation. Stepping back, this section begins a general discussion of gestures by examining the
motivation for using and studying gesture-based interfaces. Much of the discussion is based on that
of Buxton [14].

Computers get faster, bitmapped displays produce ever increasing information rates, speech and
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Figure 1.6: Macintosh Finder, MacDraw, and MacWrite (from Apple [2])

music can be generated in real-time, yet input just seems to plod along with little or no improvement.
This is regrettable because, in Paul McAvinney’s words [84], most of the useful information in the
world resides in humans, not computers. Most people who interact with computers spend most
of their time entering information [22]. Due to this input bottleneck, the total time to do many
tasks would hardly improve even if computers became infinitely fast. Thus, improvements in input
technology are a major factor in improving the productivity of computer users in general.

Of course, progress has been made. Input has progressed from batch data entry, to interactive
line editors, to two-dimensional screen editors, to mouse-based systems with bitmapped displays.
Pointing with a mouse has proved a useful interaction technique in many applications. “Click
and drag” interfaces, where the user directly manipulates graphic objects on the screen with a
mouse, are often very intuitive to use. Because of this, direct manipulation interfaces have become
commonplace, despite being rather difficult to build.

Consider the Macintosh [2], generally regarded as having a good direct-manipulation interface.
As shown in figure 1.6, the screen has on it a number of graphic objects, including file icons, folder
icons, sliders, buttons, and pull-down menu names. Each one is generally a rectangular region,
which may be clicked, sometimes double-clicked, and sometimes dragged. The Macintosh Finder,
which may be used to access all Macintosh applications and documents, is almost entirely controlled
via these three interaction techniques.4

The click and double-click interactions have a single object (or location) as parameter. The drag
4Obviously this discussion ignores keyboard entry of text and commands.
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interaction has two parameters: an object or location where the mouse button is first pressed, and
another object or location at the release point. Having only these three interaction techniques is one
reason the Macintosh is simple to operate. There is, however, a cost: both the application and the
user must express all operations in terms of these three interaction techniques.

An application that provides more than three operations on any given object (as many do) has
several design alternatives. The first, exemplified by the Finder, relies heavily on selection. In
the Finder, a click interaction selects an object, a double-click opens an object (the meaning of
which depends upon the object’s type), and a drag moves an object (the meaning of which is also
object-type specific). Opening an object by a double-click is a means for invoking the most common
operation on the object, e.g. opening a MacWrite document starts the MacWrite application on the
document. Dragging is used for adjusting sliders (such as those which scroll windows), changing
window size or position, moving files between folders, and selecting menu items.

All other operations are done in at least two steps: first the object to be operated upon is selected,
and then the desired operation is chosen from a menu. For example, to print an object, one selects
it (click) then chooses “Print” from the appropriate menu (drag); to move some text, one selects it
(drag), chooses “Cut” (drag), selects an insertion point (click), and chooses “Paste” (drag). The cost
of only having three interaction techniques is that some operations are necessarily performed via a
sequence of interactions. The user must adjust her mental model so that she thinks in terms of the
component operations.

An alternative to the selection-based click-and-drag approach is one based on modes. Consider
MacDraw [2], a drawing program. The user is presented with a palette offering choices such as line,
text, rectangles, circles, and so on. Clicking on the “line” icon puts the program into line-drawing
mode. The next drag operation in the drawing window cause lines to be drawn. In MacDraw, after
the drag operation the program reverts back to selection mode. DP, the program upon which GDP
is based, is similar except that it remains in its current mode until it is explicitly changed. Mistakes
occur when the user believes he is in one mode but is actually in another. The claim that direct
manipulation interfaces derive their power from being modeless is not really true. Good direct
manipulation interfaces simply make the modes very visible, which helps to alleviate the problems
of modal interfaces.

By mandating the sole use of click, double-click, and drag interactions, the Macintosh interface
paradigm necessarily causes conceptually primitive tasks to be divided into a sequence of primitive
interactions. The intent of gestural interfaces is to avoid this division, by packing the basic interaction
with all the parameters necessary to complete the entire transaction. Ideally, each primitive task in
the user’s model of the application is executed with a single gesture. Such interfaces would have
less modeness than the current so-called modeless interfaces.

The Macintosh discussionin the previous section is somewhat oversimplified. Many applications
allow variations on the basic interaction techniques; for example “shift-click” (holding the shift key
while clicking the mouse) adds an object to the current set of selected objects. Other computer
systems allow different mouse buttons to indicated different operations. There is a tradeoff between
having a small number and a large number of (consistently applied) interaction techniques. The
former results in a system whose primitive operations are easy to learn, perform, and recall, but a
single natural chunk may be divided into a sequence of operations. In the latter case, the primitive



12 CHAPTER 1. INTRODUCTION

operations are harder to learn (because there are more of them), but each one can potentially
implement an entire natural chunk.

The motivation for gestural interfaces may also apply to interfaces which combine modalities
(e.g. speech and pointing). As with gestures, one potential benefit of multi-modal interfaces is that
different modalities allow many parameters to be specified simultaneously, thus eliminating the need
for modes. The “Put-That-There” system is one example [12].

1.5 Primitive Interactions

The discussionthus far has been vague as to what exactly may be considered a “primitive” interaction
technique. The Macintosh has three: click, double-click, and drag. It is interesting to ask what
criteria can be used for judging the “primitiveness” of proposed interaction techniques.

Buxton [14] suggests physical tension as a criterion. The user, starting from a relaxed state,
begins a primitive interaction by tensing some muscles. The interaction is over when the user again
relaxes those muscles. Buxton cites evidence that “such periods of tension are accompanied by
a heightened state of attentiveness and improved performance.” The three Macintosh interaction
techniques all satisfy this concept of primitive interaction. (Presumably the user remains tense
during a double-click because the time between clicks is short.)

Buxton likens the primitive interaction to a musical phrase. Each consists of a period of
tension followed by a return to a state where a new phrase may be introduced. In human-computer
interaction, such a phrase is used to accomplish a chunk of a task. The goal is to make each of these
chunks a primitive task in the user’s model of the application domain. This is what a gesture-based
interface attempts to do.

1.6 The Anatomy of a Gesture

In this section a technical definition of gesture is developed, and the syntactic and semantic properties
of gestures are then discussed. The dictionary definition of gesture, “expressive motion,” has already
been seen. How can the notion of gesture in a form suitable for sensing and processing by machine
be captured?

1.6.1 Gestural motion

The motion aspect of gesture is formalized as follows: a gesture consists of the paths of multiple
points over time. The points in question are (conceptually) affixed to the parts of the body which
perform the gesture. For hand gestures, the points tracked might include the fingertips, knuckles,
palm, and wrist of each hand. Over the course of a gesture, each point traces a path in space.
Assuming enough points (attached to the body in appropriate places), these paths contain the
essence of the gestural motion. A computer with appropriate hardware can rapidly sample positions
along the paths, thus conveniently capturing the gesture.

The idea of gesture as the motion of multiple points over time is a generalization of pointing.
Pointing may be considered the simplest gesture: it specifies a single position at an instance of
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time. This is generalized to allow for the movement of the point over time, i.e. a path. A further
generalization admits multiple paths, i.e. the movement of multiple points over time.5

Current gesture-sensing hardware limits both the number of points which may be tracked
simultaneously and the dimensionality of the space in which the points travel. Gestures limited to
the motion of a single point are referred to here as single-path gestures. Most previous gestural
research has focused upon gestures made with a stylus and tablet, mouse, or single-finger touch pad.
The gestures which may be made with such devices are two-dimensional, single-path gestures.

An additional feature of existing hardware is that the points are not tracked at all times. For
example, a touch pad can only determine finger position when the finger is touching the pad. Thus,
the path of the point will have a beginning (when the finger first makes contact) and an end (when
the finger is lifted). This apparent limitation of certain gesture-sensing hardware may be used
to delineate the start and possibly the end of each gesture, a necessary function in gesture-based
systems. Mouse buttons may be used to similar effect.6

In all the work reported here, a gesture (including the manipulation phase after recognition) is
always a primitive interaction. A gesture begins with the user going from a relaxed state to one
of muscular tension, and ends when the user again relaxes. It is further assumed that the tension
or relaxation of the user is directly indicated by some aspect of the sensing hardware. For mouse
gestures, the user is considered in a state of tension if and only if a mouse button is pressed. Thus,
in the current work a double-click is not considered a gesture. This is certainly a limitation, but one
that could be removed, for example by having a minimum time that the button needs to be released
before the user is considered to have relaxed. This added complication has not been explored here.

The space in which the points of the gesture move is typically physical space, and thus a path
is represented by a set of points (x � y � z � t) consisting of three spatial Cartesian coordinates and
time. However, there are devices which measure non-spatial gestural parameters; hence, gestures
consisting of paths through a space where at least some of the coordinates are not lengths are
possible. For example, some touch pads can sense force, and for this hardware a gesture path might
consist of a set of points (x � y � f� t), f being the force measurement at time t.

The formalization of gesture as multiple paths is just one among many possible representations.
It is a good representation because it coincides nicely with most of the existing gesture-sensing
hardware, and it is a useful form for efficient processing. The multiple-snapshot representation, in
which each snapshot gives the position of multiple points at a single instant, is another possibility,
and in some sense may be considered the dual of multiple paths. Such a representation might
be more suitable for gestural data derived from hardware (such as video cameras) which are not
considered in this dissertation.

1.6.2 Gestural meaning

In addition to the physical aspect of a gesture, there is the content or meaning of the gesture
to consider. Generally speaking, a gesture contains two kinds of information: categorical and

5A configuration of multiple points at a single instance of time may be termed posture. Posture recognition is
commonly used with the DataGlove.

6Buxton [17] presents a model of the discrete signaling capabilities of various pointing devices and a list of the
signaling requirements for common interaction techniques.
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parametric. Consider the different motions between people meaning “come here” (beckoning
gestures), “stop” (prohibiting gestures), and “keep going” (encouragement gestures). These are
different categories, or classes, of gestures. Within each class, a gesture also can indicate parametric
data. For example, a parameter of the beckoning gesture is the urgency of the request: “hurry up” or
“take your time.” In general, the category of the gesture must be determined before the parameters
can be interpreted.

Parametric information itself comes in two forms. The first is the kind of information that can
be culled at the time the gesture is classified. For example, the position, size and orientation of the
gesture fall into this category. The second kind of parametric gestural information is manipulation
information. After the gesture is recognized, the user can use this kind of parametric information to
continuously communicate information. An example would be the directional information commu-
nicated by the gestures of a person helping a driver to back up a truck. An example from GDP (see
Section 1.1) is the rubberbanding of a line after it is created, where the user continuouslymanipulates
one endpoint.

The term “gesture” as used here does not exactly correspond to what is normally thought
of as gesture. Many gestures cannot currently be processed by machine due to limitations of
existing gesture-sensing hardware. Also, consider what might be referred to as “direct-manipulation
gestures.” A person turning a knob would not normally be considered to be gesturing. However,
a similar motion used to manipulate the graphic image of a knob drawn on a computer display is
considered to be a gesture. Actually, the difference here is more illusory than real: a person might
make the knob-turning gesture at another person, in effect asking the latter to turn the knob. The
intent here is simply to point out the very broad class of motions considered herein to be gesture.

While the notion of gesture developed here is very general (multiple paths), in practice, machine
gestures have hitherto almost always been limited to finger and/or hand motions. Furthermore, the
paths have largely been restricted to two dimensions. The concentration on two-dimensional hand
gesturing is a result of the available gesture-sensing hardware. Of course, such hardware was built
because it was believed that hand and fingers are capable of accurate and diverse gesturing, yet more
amenable to practical detection than facial or other body motions. With the appearance of new input
devices, three (or more) dimensional gesturing, as well as the use of parts of the body other than the
hand, are becoming possible. Nonetheless, this dissertation concentrates largely on two-dimensional
hand gestures, assuming that by viewing gesture simply as multiple paths, the work described may
be applied to non-hand gestures, or generalized to apply to gestures in three or more dimensions.

1.7 Gesture-based systems

A gesture-based interface, as the term is used here, is one in which the user specifies commands
by gesturing. Typically, gesturing consists of drawing or other freehand motions. Excluded from
the class of gesture-based interfaces are those in which input is done solely via keyboard, menu,
or click-and-drag interactions. In other words, while pointing is in some sense the most basic
gesture, those interfaces in which pointing is the only form of gesture are not considered here to be
gesture-based interfaces. A gesture-based system is a program (or set of programs) with which the
user interacts via a gesture-based interface.
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In all but the simplest gesture-based systems, the user may enter a gesture belonging to one of
several different gesture categories or classes; the different classes refer to different commands to the
system. An important component of gesture-based systems is the gesture recognizer or classifier,
the module whose job is to classify the user’s gesture as the first step toward inferring its meaning.
This dissertation addresses the implementation of gesture recognizers, and their incorporation into
gesture-based systems.

1.7.1 The four states of interaction

User interaction with the gesture-based systems considered in this dissertation may be described
using the following four state model. The states–WAIT, COLLECT, MANIPULATE, EXECUTE–usually
occur in sequence for each interaction.

� The WAIT state is the quiescent state of the system. The system is waiting for the user to
initiate a gesture.

� The COLLECT state is entered when the user begins to gesture. While in this state, the system
collects gestural data from the input hardware in anticipation of classifying the gesture. For
most gesturing hardware, an explicit start action (such as pressing a mouse button) indicates
the beginning of each gesture, and thus causes the system to enter this state.

� The MANIPULATE state is entered once the gesture is classified. This occurs in one of three
ways:

1. The end of the gesture is indicated explicitly, e.g. by releasing the mouse button;
2. the end of the gesture is indicated implicitly, e.g. by a timeout which indicates the user

has not moved the mouse for, say, 200 milliseconds; or
3. the system initiates classification because it believes it has now seen enough of the

gesture to classify it unambiguously (eager recognition).

When the MANIPULATE state is entered, the system should provide feedback to the user as to
the classification of the gesture and update any screen objects accordingly. While in this state,
the user can further manipulate the screen objects with his motions.

� The EXECUTE state is entered when the user has completed his role in the interaction, and has
indicated such (e.g. by releasing the mouse button). At this point the system performs any
final actions as implied by the user’s gesture. Ideally, this state lasts only a very short time,
after which the display is updated to reflect the current state of the system, and the system
reverts back to the WAIT state.

This model is sufficient to describe most current systems which use pointing devices. (For
simplicity, keyboard input is ignored.) Depending on the system, the COLLECT or MANIPULATE
state may be omitted from the cycle. A handwriting interface will usually omit the MANIPULATE
state, classifying the collected characters and executing the resulting command. Conversely, a
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direct-manipulation system will omit the COLLECT state (and the attendant classification). The
GDP example described above has both COLLECT and MANIPULATE phases. The result is the new
two-phase interaction technique mentioned earlier.

1.8 A Comparison with Handwriting Systems

In this section, the frequently asked question, “how do gesture-based systems differ from handwriting
systems?” is addressed.

Handwriting systems may broadly be grouped into two classes: on-line and off-line. On-line
handwriting recognition simply means characters are recognized as they are drawn. Usually, the
characters are drawn with a stylus on a tablet, thus the recognition process takes as input a list
of successive points or line segments. The problem is thus considerably different than off-line
handwriting recognition, in which the characters are first drawn on paper, and then optically scanned
and represented as two-dimensional rasters. Suen, Berthod, and Mori review the literature of both
on-line and off-line handwriting systems [125], while Tappert, Suen, and Wakaha [129] give a recent
review of on-line handwriting systems. The intention here is to contrast gesture-based systems with
on-line handwriting recognition systems, as these are the most closely related.

Gesture-based systems have much in common with systems which employ on-line handwriting
recognition for input. Both use freehand drawing as the primary means of user input, and both depend
on recognizers to interpret that input. However, there are some important differences between the
two classes of systems, differences that illustrate the merits of gesture-based systems:

� Gestures may be motions in two, three, or more dimensions, whereas handwriting systems
are necessarily two-dimensional. Similarly, single-path and multiple-path gestures are both
possible, whereas handwriting is always a single path.

� The alphabet used in a handwriting system is generally well-known and fixed, and users will
generally have lifelong experience writing that alphabet. With gestures, it is less likely that
users will have preconceptions or extensive experience.

� In addition to the command itself, a single gesture can specify parameters to the command.
The proofreader’s gesture (figure 1.1) discussed above, is an excellent example. Another
example, also due to Buxton [21], and used in GSCORE (Section 8.2), is a musical score
editor, in which a single stroke indicates the location, pitch, and duration of a note to be added
to the score.

� As stated, a command and all its parameters may be specified with a single gesture. The phys-
ical relaxation of the user when she completes a gesture reinforces the conceptual completion
of a command [14].

� Gestures of a given class may vary in both size and orientation. Typical handwriting recog-
nizers expect the characters to be of a particular size and oriented in the usual manner (though
successful systems will necessarily be able to cope with at least small variations in size and
orientation). However, some gesture commands may use the size and orientation to specify
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parameters; gesture recognizers must be able to recognize such gestures in whatever size and
orientation they occur. Kim [67] discusses augmenting a handwriting recognition system so
as to allow it to recognize some gestures independently of their size and orientation. Chapter
3 discusses the approach taken here toward the same end.

� Gestures can have a dynamic component. Handwriting systems usually view the input
character as a static picture. In a gesture-based system, the same stroke may have different
meanings if drawn left-to-right, right-to-left, quickly, or slowly. Gesture recognizers may use
such directional and temporal information in the recognition process.

In summary, gestures may potentially deal in dimensions other than the two commonly used in
handwriting, be drawn from unusual alphabets, specify entire commands, vary in size and orientation,
and have a dynamic component. Thus, while ideas from on-line handwriting recognition algorithms
may be used for gesture recognition, handwriting recognizers generally rely on assumptions that
make them inadequate for gesture recognition. The ideal gesture recognition algorithm should be
adaptable to new gestures, dimensions, additional features, and variations in size and orientation,
and should produce parametric information in addition to a classification. Unfortunately, the price
for this generality is the likelyhood that a gesture recognizer, when used for handwriting recognition,
will be less accurate than a recognizer built and tuned specifically for handwriting recognition.

1.9 Motivation for this Research

In spite of the potential advantages of gesture-based systems, only a handful have been built.
Examples include Button Box [86], editing using proofreader’s symbols [25], the Char-rec note-
input tool [21], and a spreadsheet application built at IBM [109]. These and other gesture-based
systems are discussed in section 2.2. Gesture recognition in most existing systems has been done
by writing code to recognize the particular set of gestures used by the system. This code is usually
complicated, making the systems (and the set of gestures accepted) difficult to create, maintain, and
modify. These difficulties are the reasons more gesture-based systems have not been built.

One goal of the present work is to eliminate hand-coding as the way to create gesture recognizers.
Instead, gesture classes are specified by giving examples of gestures in the class. From these
examples, recognizers are automatically constructed. If a particular gesture class is to be recognized
in any size or orientation, its examples of the class should reflect that. Similarly, by making all of
the examples of a given class the same size or orientation, the system learns that gestures in this
class must appear in the same size or orientation as the examples. The first half of this dissertation
is concerned with the automatic construction of gesture recognizers.

Even given gesture recognition, it is still difficult to build direct-manipulation systems which
incorporate gestures. This is the motivation for the second half of this dissertation, which describes
GRANDMA–Gesture Recognizers Automated in a Novel Direct Manipulation Architecture.
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1.10 Criteria for Gesture-based Systems

The goal of this research was to produce tools which aid in the construction of gesture-based systems.
The efficacy of the tools may be judged by how well the tools and resulting gesture-based systems
satisfy the following criteria.

1.10.1 Meaningful gestures must be specifiable

A meaningful gesture may be rather complex, involving simultaneous motions of a number of
points. These complex gestures must be easily specifiable. Two methods of specification are
possible: specification by example, and specification by description. In the former, each application
has a training session in which examples of the different gestures are submitted to the system. The
result of the training is a representation for all gestures that the system must recognize, and this
representation is used to drive the actual gesture recognizer that will run as part of the application.
In the latter method of specification, a description of each gesture is written in a gesture description
language, which is a formal language in which the “syntax” of each gesture is specified. For
example, a set of gestures may be specified by a context-free grammar, in which the terminals
represent primitive motions (e.g. “straight line segment”) and gestures are non-terminals composed
of terminals and other non-terminals.

All else being equal, the author considers specification by example to be superior to specification
by description. In order to specify gestures by description, it will be necessary for the specifier to
learn a description language. Conversely, in order to specify by example, the specifier need only be
able to gesture. Given a system in which gestures are specified by example, the possibility arises
for end users to train the system directly, either to replace the existing gestures with ones more to
their liking, or to have the system improve its recognition accuracy by adapting to the particular
idiosyncrasies of a given user’s gestures.

One potential drawback of specification by example is the difficulty in specifying the allowable
variationsbetween gestures of a given class. In a descriptionlanguage, it can be made straightforward
to declare that gestures of a given class may be of any size or of any orientation. The same information
might be conveyed to a specify-by-example system by having multiple examples of a single class
vary in size or orientation. The system would then have to infer that the size or orientation of a
given gesture class was irrelevant to the classification of the gesture. Also, training classifiers may
take longer, and recognition may be less accurate, when using examples as specifications, though
this is by no means necessarily so. Similar issues arise in demonstrational interfaces [97].

1.10.2 Accurate recognition

An important characterization of a gesture recognition system will be the frequency with which
gestures fail to be recognized or are recognized incorrectly. Obviously it is desirable that these
numbers be made as small as possible. Questions pertaining to the amount of inaccuracy acceptable
to people are difficult to answer objectively. There will likely be tradeoffs between the complexity
of gestures, the number of different gestures to be disambiguated, the time needed for recognition,
and the accuracy of recognition.
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In speech recognition there is the problem that the accuracy of recognition decreases as the
user population grows. However the analogous problem in gesture recognition is not as easy to
gauge. Different people speak the same words differently due to inevitable differences in anatomy
and upbringing. The way a person says a word is largely determined before she encounters a
speech recognition system. By contrast, most people have few preconceptions of the way to
gesture at a machine. People will most likely be able to adapt themselves to gesturing in ways
the machine understands. The recognition system may similarly adapt to each user’s gestures. It
would be interesting, though outside the scope of this dissertation, to study the fraction of incorrectly
recognized gestures as a function of a person’s experience with the system.

1.10.3 Evaluation of accuracy

It should be possible for a gesture-based system to monitor its own performance with respect to
accuracy of recognition. This is not necessarily easy, since in general it is impossible to know
which gesture the user had intended to make. A good gesture-based system should incorporate
some method by which the user can easily inform the system when a gesture has been classified
incorrectly. Ideally, this method should be integrated with the undo or abort features of the systems.
(Lerner [78] gives an alternative in which subsequent user actions are monitored to determine when
the user is satisfied with the results of system heuristics.)

1.10.4 Efficient recognition

The goal of this work is to enable the construction of applications that use gestures as input, the
idea being that gesture input will enhance human/computer interaction. Speed of recognition is very
important–a slow system would be frustrating to use and hinder rather than enhance interaction

Speed is a very important factor in the success or failure of user interfaces in general. Baecker
and Buxton [5] state that one of the chief determinants of user satisfaction with interactive computer
systems is response time. Poor performance in a direct-manipulation system is particularly bad, as
any noticeable delay destroys the feeling of directness. Rapid recognition is essential to the success
of gesture as a medium for human-computer interaction, even if achieving it means sacrificing
certain features or, perhaps, a limited amount of recognition accuracy.

1.10.5 On-line/real-time recognition

When possible, the recognition system should attempt to match partial inputs with possible gestures.
It may also be desirable to inform the user as soon as possible when the input does not seem to match
any possible gesture. An on-line/real-time matching algorithm has these desirable properties. The
gesture recognition algorithms discussed in Chapters 3, 4, and 5 all do a small, bounded amount of
work given each new input point, and are thus all on-line/real-time algorithms.

1.10.6 General quantitative application interface

An application must specify what happens when a gesture is recognized. This will often take the
form of a callback to an application-specific routine. There is an opportunity here to relay the
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parametric data contained in the gesture to the application. This includes the parametric data which
can be derived when the gesture is first recognized, as well as any manipulation data which follows.

1.10.7 Immediate feedback

In certain applications, it is desirable that the application be informed immediately once a gesture
is recognized but before it is completed. An example is the turning of a knob: once the system
recognizes that the user is gesturing to turn a knob it can monitor the exact details of a gesture,
relaying quantitative data to the application. The application can respond by immediately and
continuously varying the parameter which the knob controls (for example the volume of a musical
instrument).

1.10.8 Context restrictions

A gesture sensing system should be able, within a single application, to sense different sets of gestures
in different contexts. An example of a context is a particular area of the display screen. Different
areas could respond to different sets of gestures. The set of gestures to which the application
responds should also be variable over time–the application program entering a new mode could
potentially cause a different set of gestures to be sensed.

The idea of contexts is closely related to the idea of using gestures to manipulate graphic objects.
Associated with each picture of an object on the screen will be an area of the screen within which
gestures refer to the object. A good gesture recognition system should allow the application program
to make this association explicit.

1.10.9 Efficient training

An ideal system would allow the user to experiment with different gesture classes, and also adapt to
the user’s gestures to improve recognition accuracy. It would be desirable if the system responded
immediately to any changes in the gesture specifications; a system that took several hours to retrain
itself would not be a good platform for experimentation.

1.10.10 Good handling of misclassifications

Misclassifications of gestures are a fact of life in gesture-based systems. A typical system might have
a recognition rate of 95% or 99%. This means one out of twenty or one out of one hundred gestures
will be misunderstood. A gesture-based system should be prepared to deal with the possibility of
misclassification, typically by providing easy access to abort and undo facilities.

1.10.11 Device independence

Certain assumptions about the form of the input data are necessary if gesture systems are to be built.
As previously stated, the assumption made here is that the input device will supply position as a
function of time for each input “path” (or supply data from which it is convenient to calculate such
positions). (A path may be thought of as a continuous curve drawn by a single finger.) This form of
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data is supplied by the Sensor Frame, and (at least for the single finger case) a mouse and a clock
can be made to supply similar data. The recognition systems should do their recognition based on
the position versus time data; in this way other input devices may also benefit from this research.

1.10.12 Device utilization

Each particular brand of input hardware used for gesture sensing will have characteristics that
other brands of hardware will not have. It would be unfortunate not to take advantage of all the
special features of the hardware. For example, the Sensor Frame can compute finger angle and
finger velocity.7 While for device independence it may be desirable that the gesture matching not
depend on the value of these inputs, there should be some facility for passing these parameters to
the application specific code, if the application so desires. Baecker [4] states the case strongly:
“Although portability is facilitated by device-independence, interactivity and usability are enhanced
by device dependence.”

1.11 Outline

The following chapter describes previous related work in gesture-based systems. This is divided into
four sections: Section 2.1 discusses various hardware devices suitable for gestural input. Section
2.2 discusses existing gesture-based systems. Section 2.3 reviews the various approaches to pattern
recognition in order to determine their potential for gesture recognition. Section 2.4 examines
existing software systems and toolkits that are used to build direct-manipulation interfaces. Ideas
from such systems will be generalized in order to incorporate gesture recognition into such systems.

Everything after Chapter 2 focuses on various aspects of the gesture-based interface creation
tool built by the author. Such a tool makes it easy to 1) specify and create classifiers, and 2) associate
gestures classes and their meanings with graphic objects. The former goal is addressed in Chapters
3, 4, and 5, the latter in 6 and 7.

The discussion of the implementation of gesture recognition begins in Chapter 3. Here the
problem of classifying single-path, two-dimensional gestures is tackled. This chapter assumes that
the start and end of the gesture are known, and uses statistical pattern recognition to derive efficient
gesture classifiers. The training of such classifiers from example gestures is also covered.

Chapter 3 shows how to classify single-path gestures; Chapter 4 shows when. This chapter
addresses the problem of recognizing gestures while they are being made, without any explicit
indication of the end of the gesture. The approach taken is to define and construct another classifier.
This classifier is intended solely to discriminate between ambiguous and unambiguous subgestures.

Chapter 5 extends the statistical approach to the recognition of multiple-path gestures. This
is useful for utilizing devices that can sense the positions of multiple fingers simultaneously, in
particular the Sensor Frame.

Chapter 6 presents the architecture of an object-oriented toolkit for the construction of direct-
manipulation systems. Like many other systems, this architecture is based on the Model-View-

7This describes the Sensor Frame as originally envisioned. The hardware is capable of producing a few bits of finger
velocity and angle information, although to date this has not been attempted.
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Controller paradigm. Compared to previous toolkits, the input model is considerably generalized
in preparation for the incorporation of gesture recognition into a direct-manipulation system. The
notion of virtual tools, through which input may be generated by software objects in the same manner
as by hardware input devices, is introduced. Semantic feedback will be shown to arise naturally
from this approach.

Chapter 7 shows how gesture recognizers are incorporated into the direct-manipulation archi-
tecture presented in Chapter 6. A gesture handler may be associated with a particular view of an
object on the screen, or at any level in the view hierarchy. In this manner, different objects will
respond to different sets of gestures. The communication of parametric data from gesture handler
to application is also examined.

Chapter 8 discusses three gesture-based systems built using these techniques: GDP, GSCORE,
and MDP. The first two, GDP and GSCORE, use mouse gestures. GDP, as already mentioned,
is the drawing editor based on DP. GSCORE is a musical score editor, based on Buxton’s SSSP
work [21]. MDP is also a drawing editor, but it operates using multi-path gestures made with a
Sensor Frame. The design and implementation of each system is discussed, and the gestures for
each shown.

Chapter 9 evaluates a number of aspects of this work. The particular recognition algorithms are
tested for recognition accuracy. Measurements of the performance of the gesture classifiers used
in the applications is presented. Then, an informal user study assessing the utility of gesture-based
systems is discussed.

Finally, Chapter 10 concludes this dissertation. The contributions of this dissertation are dis-
cussed, as are the directions for future work.

1.12 What Is Not Covered

This dissertation attempts to cover many topics relevant to gesture-based systems, though by no
means all of them. In particular, the issues involved in the ergonomics and suitability of gesture-
based systems applied to various task domains have not been studied. It is the opinion of the author
that such issues can only be studied after the tools have been made available which allow easy
creation of and experimentation with such systems. The intent of the current work is to provide
such tools. Future research is needed to determine how to use the tools to create the most usable
gesture-based systems possible.

Of course, choices have had to be made in the implementation of such tools. By avoiding
the problem of determining which kind of gesture-based systems are best, the work opens itself to
charges of possibly“throwing the baby out with the bath-water.” The claim is that the general system
produced is capable of implementing systems comparable to many existing gesture-based systems;
the example applications implemented (see Chapter 8) support this claim. Furthermore, the places
where restrictive choices have been made (e.g. two-dimensional gestures) have been indicated, and
extensible and scalable methods (e.g. linear discrimination) have been used wherever possible.

There are two major limitations of the current work. The first is that single-path multi-stroke
gestures (e.g. handwritten characters) are not handled. Most existing gesture-based systems use
single-path multi-stroke gestures. The second limitation is that the start of a gesture must be
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explicitly indicated. This rules out (at least at first glance) using devices such as the DataGlove
which lack buttons or other explicit signaling hardware. However, one result of the current work is
that these apparent limitations give rise to certain advantages in gestural interfaces. For example,
the limitations enforce Buxton’s notion of tension and release mentioned above.

Gestural output, i.e. generating a gesture in response to a query, is also not covered. For an
example of gestural output, ask the author why he has taken so long to complete this dissertation.
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Chapter 2

Related Work

This chapter discusses previous work relevant to gesture recognition. This includes hardware
devices suitable for gestural input, existing gesture-based systems, pattern recognition techniques,
and software systems for building user interfaces.

Before delving into details, it is worth mentioning some general work that attempts to define
gesture as a technique for interacting with computers. Morrel-Samuels [87] examines the distinction
between gestural and lexical commands, and then further discusses problems and advantages of
gestural commands. Wolf and Rhyne [140] integrate gesture into a general taxonomy of direct
manipulation interactions. Rhyne and Wolf [109] discuss in general terms human-factors concerns
of gestural interfaces, as well as hardware and software issues.

The use of gesture as an interaction technique is justified in a number of studies. Wolf [139] per-
formed two experiments that showed gestural interfaces compare favorably to keyboard interfaces.
Wolf [141] showed that many different people naturally use the same gestures in a text-editing
context. Hauptmann [49] demonstrated a similar result for an image manipulation task, further
showing that people prefer to combine gesture and speech rather than use either modality alone.

2.1 Input Devices

A number of input devices are suitable for providing input to a gesture recognizer. This section
concentrates on those devices which provide the position of one or more points over time, or whose
data is easily converted into that representation. The intention is to list the types of devices which
can potentially be used for gesturing. The techniques developed in this dissertation can be applied,
directly or with some generalization, to the devices mentioned.

A large variety of devices may be used as two-dimensional, single-path gesturing devices. Some
graphical input devices, such as mice [33], tablets and styli, light pens, joysticks, trackballs, touch
tablets, thumb-wheels, and single-finger touch screens [107, 124], have been in common use for
years. Less common are foot controllers, knee controllers, eye trackers [12], and tongue-activated
joysticks. Each may potentially be used for gestural input, though ergonomically some are better
suited for gesturing than others. Baecker and Buxton [5], Buxton [14], and Buxton, Hill and Rowley
[18] discuss the suitability of many of the above devices for various tasks. Buxton further points out

25
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that two different joysticks, for example, may have very different properties that must be considered
with respect to the task.

For gesturing, as with pointing, it is useful for a device to have some signaling capability in
addition to the pointer. For example, a mouse usually has one or more buttons, the pressing of
which can be used to indicate the start of a gesture. Similarly, tablets usually indicate when the
stylus makes or breaks contact with the tablet (though with a tablet it is not possible to carefully
position the screen cursor before contact). If a device does not have this signaling capacity, it will
be necessary to simulate it somehow. Exactly how this is done can have a large impact on whether
or not the device will be suitable for gesturing.

The 3SPACE Isotrack system, developed by Polhemus Navigation Sciences Division of Mc-
Donnel Douglas Electronics Company [32], is a device which measures the position and orientation
of a stylus or a one-inch cube using magnetic fields. The Polhemus sensor, as it is often called, is a
full six-degree-of-freedom sensor, returning x, y, and z rectangular coordinates, as well as azimuth,
altitude, and roll angles. It is potentially useful for single path gesturing in three positional dimen-
sions. By considering the angular dimensions, 4, 5, or 6 dimensional gestures may be entered. It is
also possible to use one of the angular dimensions for signaling purposes.

Bell Laboratories has produced prototypes of a clear plate capable of detecting the position and
pressure of many fingers [10, 99]. The position information is two-dimensional, and there is a
third dimension as well: finger pressure. The author has seen the device reliably track 10 fingers
simultaneously. The pressure detection may be used for signaling purposes, or as a third dimension
for gesturing. The inventor of the multi-finger touch plate has invented another device, the Radio
Drum [11], which can sense the position of multiple antennae in three dimensions. To date, the
antennae have been embedded in the tips of drum sticks (thus the name), but it would also be possible
to make a glove containing the antenna which would make the device more suitable for detecting
hand gestures.

The Sensor Frame [84] is a frame mounted on a workstation screen (figure 2.1). It consists of
a light source (which frames the screen) and four optical sensors (one in each corner). The Sensor
Frame computes the two-dimensional positions of up to three fingertips in a plane parallel to, and
slightly above the screen. The net result is similar to a multi-finger touch screen. The author has
used the Sensor Frame to verify the multi-finger recognition algorithm described in Chapter 5. The
Sensor Cube [85] is a device similar to the Sensor Frame but capable of sensing finger positions
in three dimensions. It is currently under construction. The VideoHarp [112, 111] is a musical
instrument based on the same sensing technology, and is designed to capture parametric gestural
data.

The DataGlove [32, 130] is a glove worn on the hand able to produce the positions of multiple
fingers as well as other points on the hand in three dimensions. By itself it can only output relative
positions. However, in combination with the Polhemus sensor, absolute finger positions can be
computed. Such a device can translate gestures as complex as American Sign Language [123] into
a multi-path form suitable for processing. The DataGlove, the similar Dexterous Hand Master from
Exos, and the Power Glove from Mattel, are shown in figure 2.2.

The DataGlove comes with hardware which may be trained to recognize certain static config-
urations of the glove. For example, the DataGlove hardware might be trained to recognize a fist,
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Figure 2.1: The Sensor Frame
The Sensor Frame is a frame mounted on a computer display consisting of a rectangular light source and
four sensors, one in each corner. It is capable of detecting up to three fingers its field of view. (Drawing by
Paul McAvinney.)

Figure 2.2: The DataGlove, Dexterous Hand Master, and PowerGlove (from Eglowstein [32])
The DataGlove, Dexterous Hand Master, and PowerGlove are three glove-like input devices capable of
measuring the angles of various hand and finger joints.



28 CHAPTER 2. RELATED WORK

Figure 2.3: Proofreading symbols (from Coleman [25])
The operations intended by each are as follows: a) delete text (from a single line), b) insert text, c) swap text,
d) move text, e) join (delete space), f) insert space, g) scroll up, h) scroll down, and i) delete multiple lines of
text. Many of the marks convey additional parameters to the operation, e.g. the text to be moved or deleted.

signaling the host computer whenever a fist is made. These static hand positions are not considered
to be gestures, since they do not involve motion. The glove hardware recognizes “posture” rather
than gesture, the distinction being that posture is a static snapshot (a pose), while gesture involves
motion over time. Nonetheless, it is a rather elegant way to add signaling capability to a device
without buttons or switches.

The Videodesk [71, 72] is an input device based on a constrained form of video input. The
Videodesk consists of a translucent tablecloth over a glass top. Under the desk is a light source,
over the desk a video camera. The user’s hands are placed over the desk. The tablecloth diffuses the
light, the net effect being that the camera receives an image of the silhouette of the hands. Additional
hardware is used to detect and track the user’s fingertips.

Some researchers have investigated the attachment of point light sources to various points on
the body or hand to get position information as a function of time. The output of a camera (or pair
of cameras for three dimensional input) can be used as input to a gesture sensor.

2.2 Example Gesture-based Systems

This section describes a number of existing gesture-based systems that have been described in the
literature. A system must both classify its gestural input and use information other than the class
(i.e. parametric information) to be included in this survey. The order is roughly chronological.
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Figure 2.4: Note gestures (from Buxton [21])
A single gesture indicates note duration (from the shape of the stroke as shown) as well as pitch and starting
time, both of which are determined from the position of the start of the gesture.

Coleman [25] has created a text editor which used hand-drawn proofreader’s symbols to specify
editing commands (figure 2.3). For example, a sideways “S” indicated that two sets of characters
should be interchanged, the characters themselves being delimited by the two halves of the “S.”
The input device was a touch tablet, and the gesture classification was done by a hand-coded
discrimination net (i.e. a loop-free flowchart).1

Buxton [21] has built a musical score editor with a small amount of gesture input using a mouse
(figure 2.4). His system used simple gestures to indicate note durations and scoping operations.
Buxton considered this system to be more a character recognitionsystem than a gesture-based system,
the characters being taken from an alphabet of musical symbols. Since information was derived not
only from the classification of the characters, but their positionsas well, the author considers this to be
a gesture-based system in the true sense. Buxton’s technique was later incorporated into Notewriter
II, a commercial music scoring program. Lamb and Buckley [76] describe a gesture-based music
editor usable by children.

Margaret Minsky [86] implemented a system called Button Box, which uses gestures for se-
lection, movement, and path specification to provide a complete Logo programming environment
(figure 2.5). Her input device was a clear plate mounted in front of a display. The device sensed the
position and shear forces of a single finger touching the plate. Minksy proposed the use of multiple
fingers for gesture input, but never experimented with an actual multiple-finger input device.

In Minsky’s system, buttons for each Logo operation were displayed on the screen. Tapping
a button caused it to execute; touching a button and dragging it caused it to be moved. The
classification needed to distinguish between a touch and a tap was programmed by hand. There
were buttons used for copying other buttons and for grouping sets of buttons together. A path could
be drawn through a series of buttons–touching the end of a path caused its constituent buttons to
execute sequentially.

VIDEOPLACE [72] is a system based on the Videodesk. As stated above, the silhouette of the
user’s hands are monitored. When a hand is placed in a pointing posture, the tip of the index finger

1Curiously, this research was done while Coleman was a graduate student at Carnegie Mellon. Coleman apparently
never received a Ph.D. from CMU, and it would be twenty years before another CMU graduate student (me) would go
near the topic of gesture recognition.
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Figure 2.5: Button Box (from Minksy [86])
Tapping a displayed button causes it to execute its assigned function while touching a button and dragging it
causes it to be moved.

Figure 2.6: A gesture-based spreadsheet (from Rhyne and Wolf [109])
The Paper-Like Interface project produces systems which combine gesture and handwriting. The input shown
here selects a group of cells and requests they be moved to the cell beginning at location “G5.”
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Figure 2.7: Recognizing flowchart symbols
Recognizing flowchart symbols (from Murase and Wakahara [89]). The system takes an entire freehand
drawing of a flowchart (left) and recognizes the individual flowchart symbols (right), producing an internal
representation of the flowchart (as nodes and edges) and a flowchart picture in which the freehand symbols
are replaced by machine generated line-drawings drawn from the alphabet of symbols. This system shows a
style of interface in which pattern recognition is used for something other than the detection of gestures or
characters.

may be used for menu selection. After selection, the fingertips may be used to manipulated graphic
objects, such as the controlling points of a spline curve.

A group at IBM doing research into gestural human-computer systems has produced a gesture-
based spreadsheet application [109]. Somewhat similar to Coleman’s editor, the user manipulates
the spreadsheet by gesturing with a stylus on a tablet (figure 2.6). For example, deletion is done by
drawing an “X” over a cell, selection by an “0”, and moving selected cells by an arrow, the tip of which
indicates the destination of the move. The application is interesting in that it combines handwriting
recognition (isolated letters and numbers) with gesturing. For example, by using handwriting the
user can enter numbers or text into a cell without using a keyboard. The portion of the recognizer
which classifies letters, numbers, and gestures of a fixed size and orientation has (presumably) been
trained by example using standard handwriting recognition techniques. However, the recognition
of gestures which vary in size or orientation requires hand coding [67].

Murase and Wakahara [89] describe a system in which freehand-drawn flowcharts symbols are
recognized by machine (figure 2.7). Tamura and Kawasaki [128] have a system which recognizes
sign-language gestures from video input (figure 2.8).

HITS from MCC [55] and Artkit from the University of Arizona [52] are both systems that may
be used to construct gesture-based interfaces. The author has seen a system built with HITS similar
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Figure 2.8: Sign language recognition (from Tamura [128])
This system processes an image from a video camera in order to recognize a form of Japanese sign language.

to that of Murase; in it an entire control panel is drawn freehand, and then the freehand symbols are
segmented, classified and replaced by icons. (Similar work is discussed by Martin, et. al [82], also
from MCC.) Artkit has much in common with the GRANDMA system described in this dissertation,
and will be mentioned again later (Sections 4.1 and 6.8). Artkit systems tend to be similar to those
created using GRANDMA, in that gesture commands are executed as soon as they are entered.

Kurtenbach and Buxton [75] have implemented a drawing program based on single-stroke
gestures (figure 2.9). They have used the program to study, among other things, issues of scope in
gestural systems. To the present author, GEdit’s most interesting attribute is the use of compound
gestures, as shown in the figure. GEdit’s gesture recognizer is hand-coded.

The Glove-talk system [34] uses a DataGlove to control a speech synthesizer (figure 2.10). Like
Artkit and the work described in Chapter 4, Glove-talk performs eager recognition: a gesture is
recognized and acted upon without its end being indicated explicitly. Weimer and Ganapathy [136]
describe a system combining DataGlove gesture and speech recognition.

The use of the circling gesture as an alternative means of selection is considered in Jackson and
Roske-Hofstrand [61]. In their system, the start of the circling gesture is detected automatically, i.e.
the mouse buttons are not used. Circling is also used for selection in the JUNO system from Xerox
Corporation [142].

A number of computer products offer a stylus and tablet as their sole or primary input device.
These systems include GRID Systems Corp.’s GRIDPad [50], Active Book Company’s new portable
[43], Pencept Inc.’s computer [59], Scenario’s DynaWriter, Toshiba’s PenPC, Sony’s Palmtop,
Mometa’s laptop, MicroSlate’s Datalite, DFM System’s TraveLite, Agilis Corp.’s system, and Go
Corp.’s PenPoint system [81, 24]. While details of the interface of many of these systems are hard to
find (many of these systems have not yet been released), the author suspects that many use gestures.
For further reading, please see [16, 106, 31].



2.2. EXAMPLE GESTURE-BASED SYSTEMS 33

Figure 2.9: Copying a group of objects in GEdit (from Kurtenbach and Buxton [75])
Note the compound gesture: the initial closed curve does selection, and the final “C” indicates the data
should be copied rather than moved.

Figure 2.10: GloveTalk (from Fels and Hinton [34])
GloveTalk connects a DataGlove to a speech synthesizer through several neural networks. Gestures indicate
root words (shown) and modifiers. Reversing the direction of the hand motion causes a word to be emitted
from the synthesizer as well as indicating the start of the next gesture.
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Figure 2.11: Basic PenPoint gestures (from Carr [24])

Recently, prototypes of Go Corporation’s PenPoint system have been demonstrated. Each
consists of a notebook-sized computer with a flat display. The sole input device is a stylus, which
is used for gestures and handwriting on the display itself. Figure 2.11 shows the basic gestures
recognized; depending on the context, additional gestures and handwriting can also be recognized.
As can be seen, PenPoint gestures may consist of multiple strokes. Although it seems that trainable
recognition algorithms are used internally, at the present time the user cannot add any new gestures
to the existing set. The hardware is able to sense pen proximity (how near the stylus is to the tablet),
which is used to help detect the end of multi-stroke gestures and characters. PenPoint applications
include a drawing program, a word processor, and a form-based data entry system.

Many of the above systems combine gesture and direct manipulationin the same interface. GEdit,
for example, appears to treat mouse input as gestural when begun on the background window, but
drags objects when mouse input begins on the object. Almost none combine gesture and direct
manipulation in the same interaction. One exception, PenPoint, uses the dot gesture (touching the
stylus to the tablet and then not moving until recognition has been indicated) to drag graphic objects.
Button Box does something similar for dragging objects. Artkit [52] uses eager recognition, more
or less crediting the idea to me.

2.3 Approaches for Gesture Classification

Fu [40] states that “the problem of pattern recognition usually denotes a discrimination or classifica-
tion of a set of processes or events.” Clearly gesture recognition, in which the input is considered to
be an event to be classified as one of a particular set of gestures, is a problem of pattern recognition.
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In this dissertation, known techniques of pattern recognition are applied to the problem of sensing
gestures.

The general pattern recognition problem consists of two subproblems: pattern representation
and decision making [40]. This implies that the architecture of the general pattern recognition
consists of two main parts. First, the representer takes the raw pattern as input and outputs the
internal representation of the pattern. Then, the decider takes as input the output of the representer,
and outputs a classification (and/or a description) of the pattern.

This section reviews the pattern recognition work relevant to gesture recognition. In particular,
the on-line recognition of handwritten characters is discussed whenever possible, since that is the
closest solved problem to gesture recognition. For a good overview of handwriting systems in
general, see Suen et. al. [125] or Tappert et. al. [129].

The review is divided into two parts: alternatives for representers and alternatives for deciders.
Each alternative is briefly explained, usually by reference to an existing system which uses the
approach. The advantages and disadvantages of the alternative are then discussed, particularly as
they apply to single-path gesture recognition.

2.3.1 Alternatives for Representers

The representer module takes the raw data from the input device and transforms it into a form suitable
for classification by the decider. In the case of single-path gestures, as with on-line handprint, the
raw data consists of a sequence of points. The representer outputs features of the input pattern.

Representers may be grouped in terms of the kinds of features which they output. The major
kinds of features are: templates, global transformations, zones, and geometric features. While a
single representer may combine different kinds of features, representers are discussed here as if
each only outputs one kind of feature. This will make clearer the differences between the kinds of
features. Also, in practice most representers do depend largely on a single kind of feature.

Templates.

Templates are the simplest features to compute: they are simply the input data in its raw form.
For a path, a template would simply consist of the sequence of points which make up the path.
Recognition systems based on templates require the decider to do the difficult work; namely,
matching the template of the input pattern to stored example templates for each class.

Templates have the obvious advantage that the features are simple to compute. One disadvantage
is that the size of the feature data grows with the size of the input, making the features unsuitable as
input to certain kinds of deciders. Also, template features are very sensitive to changes in the size,
location, or orientation of the input, complicating classifiers which attempt to allow for variations
of these within a given class. Examples of template systems are mentioned in the discussion of
template matching below.
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Global Transformations.

Some of the problems of template features are addressed by global transformations of the input
data. The transformations are often mathematically defined so as to be invariant under e.g. rotation,
translation, or scaling of the input data. For example, the Fourier transform will result in features
invariant with respect to rotation of the input pattern [46]. Global transformations generally output
a fixed number of features, often smaller than the input data.

A set of fixed features allows for a greater variety in the choice of deciders, and obviously the
invariance properties allow for variations within a class. Unfortunately, there is no way to “turn
off” these invariances in order to disallow intra-class variation. Also, the global transformations
generally take as input a two-dimensional raster, making the technique awkward to use for path
data (it would have to first be transformed into raster data). Furthermore, the computation of the
transformation may be expensive, and the resulting features do not usually have a useful parametric
interpretations (in the sense of Section 1.6.2), requiring a separate pass over the data to gather
parametric information.

Zones.

Zoning is a simple way of deriving features from a path. Space is divided into a number of zones,
and an input path is transformed into the sequence of zones which the path traverses [57]. One
variation on this scheme incorporates the direction each zone is entered into the encoding [101]. As
with templates, the number of features are not fixed; thus only certain deciders may be used. The
major advantage of zoning schemes are their simplicity and efficiency.

If the recognition is to be size invariant, zoning schemes generally require the input to be
normalized ahead of time. Making a zoning scheme rotationally invariant is more difficult. Such
normalizationsmake it impossible to compute zones incrementally as the input data is received. Also,
small changes to a pattern might cause zones to be missed entirely, resulting in misclassification.
And again, the features do not usually hold any useful parametric information.

Geometric Features.

Geometric features are the most commonly used in handwriting recognition [125]. Some geometric
features of a path (such as its total length, total angle, number of times it crosses itself, etc.) represent
global properties of the path. Local properties, such as the sequence of basic strokes, may also be
represented.

It is possible to use combinations of geometric features, each invariant under some transforma-
tions of the input pattern but not others. For example, the initial angle of a path may be a feature, and
all other features might be invariant with respect to rotation of the input. In this fashion, classifiers
may potentially be created which allow different variations on a per-class basis.

Geometric features often carry useful parametric information, e.g. the total path length, a
geometric feature, is potentially a useful parameter. Also, geometric features can be fed to deciders
which expect a fixed number of features (if only global geometric features are used), or to deciders
which expect a sequence of features (if local features are used).
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Geometric features tend to be more complex to compute than the other types of features listed.
With care, however, the computation can be made efficient and incremental. For all these reasons,
the current work concentrates on the use of global geometric features for the single-path gesture
recognition in this dissertation (see Chapter 3).

2.3.2 Alternatives for Deciders

Given a vector or sequence of features output by a representer, it is the job of the decider to
determine the class of the input pattern with those features. Seven general methods for deciders may
be enumerated: template-matching, dictionary lookup, a discrimination net, statistical matching,
linguistic matching, connectionism, and ad hoc. Some of the methods are suitable to only one kind
of representer, while others are more generally applicable.

Template-matching.

A template-matching decider compares a given input template to one or more prototypical templates
of each expected class. Typically, the decider is based on a function which measures the similarity
(or dissimilarity) between pairs of templates. The input is classified as being a member of the same
class as the prototype to which it is most similar. Usually there is a similarity threshold, below
which the input will be rejected as belonging to none of the possible classes.

The similarity metric may be computed as a correlation function between the input and the
prototype [69]. Dynamic programming techniques may be used to efficiently warp the input in order
to better match up points in the input template to those in the prototype [133, 60, 9].

Template systems have the advantage that the prototypes are simply example templates, making
the system easy to train. In order to accommodate large variations, for example in the orientation
of a given gesture, a number of different prototypes of various orientation must be specified.
Unfortunately, a large number of prototypes can make the use of template matching prohibitively
expensive, since the input pattern must be compared to every template.

Lipscomb [80] presents a variation on template matching used for recognizing gestures. In his
scheme, each training example is considered at different resolutions, giving rise to multiple templates
per example. (The algorithm is thus similar to multiscale algorithms used in image processing
[138].) Lipscomb has applied the multiscale technique to stroke data by using an angle filter, in
which different resolutions correspond to different thresholds applied to the angles in the gestures.
To represent a gesture at a given resolution, points are discarded so that the remaining angles are
all below the threshold. To classify an input gesture, first its highest resolution representation is
(conceptually) compared to each template (at every resolution). Successively lower resolutions of
the input are tried in turn, until an exact match is found. Multiple matches are decided in favor of
the template whose resolution is closest to the current resolution of the input.

Dictionary lookup.

When the input features are a sequence of tokens taken from a small alphabet, lookup techniques
may be used. This is often how zoning features are classified [101]. The advantage is efficient
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recognition, since binary search (or similar algorithms) may be used to lookup patterns in the
dictionary. Often some allowance is made for non-exact matches, since otherwise classification is
sensitive to small changes in the input. Even with such allowances, dictionary systems are often
brittle, due to the features employed (e.g. sequences of zones). Of course, a dictionary is initially
created from example training input. It is also a simple matter to add new entries for rejected
patterns; thus the dictionary system can adapt to a given user.

Discrimination nets.

A discrimination net (also called a decision tree) is basically a flowchart without loops. Each
interior node contains a boolean condition on the features, and is connected to two other nodes (a
“true” branch and a “false” branch). Each leaf node is labeled with a class name. A given feature
set is classified by starting at the root note, evaluating each condition encountered and taking the
appropriate branch, stopping and outputting the classification when a leaf node is reached.

Discrimination nets may be created by hand [25], or derived from example inputs [8]. They
are more appropriate to classifying fixed-length feature vectors, rather than sequences of arbitrary
length, and often result in accurate and efficient classifiers. However, discrimination nets trained by
example tend to become unwieldy as the number of examples grows.

Statistical matching.

In statistical matching, the statistics of example feature vectors are used to derive classifiers. Typi-
cally, statistical matchers operate only on feature vectors, not sequences. Some typical statistics used
are: average feature vector per class, per-class variances of the individual features, and per-class
correlations within features. One method of statistical matching is to compute the distance of the
input feature vector to the average feature vector of each class, choosing the class which is the clos-
est. Another method uses the statistics to derive per-class discrimination functions over the features.
Discrimination functions are like evaluation functions: each discrimination function is applied to
the input feature vector, the class being determined by the largest result. Fisher [35] showed how to
create discrimination functions which are simply linear combinations of the input features, and thus
particularly efficient. Arakawa et. al.[3] used statistical classification of Fourier features for on-line
handwriting recognition; Chapter 3 of the present work uses statistical classification of geometric
features.

Some statisticalclassifiers, such as the Fisher classifier, make assumptions about the distributions
of features within a class (such as multivariate normality); those tend to perform poorly when the
assumptions are violated. Other classifiers [48] make no such assumptions, but instead attempt to
estimate the form of the distributionfrom the training examples. Such classifiers tend to require many
training examples before they function adequately. The former approach is adopted in the current
work, with the feature set carefully chosen so as to not violate assumptions about the underlying
distribution too drastically.
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((u + r) @ (r + u))

(r + u)

PDL operations

Figure 2.12: Shaw’s Picture Description Language
PDL enables line drawings to be coded in string form, making it possible to apply textual parsing algorithms
to the recognition of line drawings. The component line segments and combining operations are shown on
the left; the right shows how the letter “A” can be described using these primitives.

Linguistic matching.

The linguistic approach attempts to apply automata and formal language theory to the problem of
pattern recognition [37]. The representer outputs a sequence of tokens which is composed of a set of
pattern primitives and composition operators representing the relation between the primitives. The
decider has a grammar for each possible pattern class. It takes as input the sentence and attempts to
parse it with respect to each pattern class grammar. Ideally, exactly one of the parses is successful
and the pattern is classified thus. A useful side effect of the syntax analysis is the parse tree (or other
parse trace) which reveals the internal structure of the pattern.

Linguistic recognizers may be classified based on the form of the representer output. If the
output is a string then standard language recognition technology, such as regular expressions and
context-free grammars, may be used to parse the input. An error-correcting parser may be used in
order to robustly deal with errors in the input. Alternatively, the output of the representer may be a
tree or graph, in which case the decider could use graph matching algorithms to do the parse.

The token sequence could come from a zoning representer, a representer based on local geometric
properties, or from the output of a lower-level classifier. The latter is a hybrid approach–where, for
example, statistical recognition is used to classify paths (or path segments), and linguistic recognition
is used to classify based on the relationships between paths. This approach is similar to that taken
by Fu in a number of applications [40, 39, 38].

Shaw’s picture descriptionlanguage (PDL, see figure 2.12) has been used successfully to describe
and classify line drawings [116, 40]. In another system, Stallings [120, 37] uses the composition
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operators left-of, above, and surrounds to describe the relationships between strokes of Chinese
characters.

A major problem with linguistic recognizers is the necessity of supplying a grammar for each
pattern class. This usually represents considerably more effort than simply supplying examples for
each class. While some research has been done on automatically deriving grammars from examples,
this research appears not to be sufficiently advanced to be of use in a gesture recognition system.
Also, linguistic systems are best for patterns with substantial internal structure, while gestures tend
to be atomic (but not always [75]).

Connectionism.

Pattern recognition based on neural nets has received much research attention recently [65, 104,
132, 134]. A neural net is a configuration of simple processing elements, each of which is a super-
simplified version of a neuron. A number of methods exist for training a neural network pattern
recognizer from examples. Almost any of the different kinds of features listed above could serve
as input to a neural net, though best results would likely be achieved with vectors of quantitative
features. Also, some statistical discrimination functions may be implemented as simple neural
networks.

Neural nets have been applied successfully to the recognition of line drawings [55, 82], characters
[47], and DataGlove gestures [34]. Unfortunately, they tend to require a large amount of processing
power, especially to train. It now appears likely that neural networks will, in the future, be a
popular method for gesture recognition. The chief advantage is that neural nets, like template-based
approaches, are able to take the raw sensor data as input. A neural network can learn to extract
interesting features for use in classification. The disadvantage is that many labeled examples (often
thousands) are needed in training.

The statistical classification method discussed in this dissertation may be considered a one-level
neural network. It has the advantage over multilayer neural networks, in that it may be trained
quickly using relatively few examples per class (typically 15). Rapid training time is important in
a system that is used for prototyping gesture-based systems, since it allows the system designer to
easily experiment with different sets of gestures for a given application.

Ad hoc methods.

If the set of patterns to be recognized is simple enough, a classifier may be programmed by hand.
Indeed, this was the case in many of the gesture-based systems mentioned in Section 2.2. Even
so, having to program a recognizer by hand can be difficult and makes the gesture set difficult to
modify. The author believes that the difficulty of creating recognizers is one major reason why more
gesture-based systems have not been built, and why there is a dearth of experiments which study
the effect of varying the gestures in those systems which have been built. The major goal of this
dissertation is to make the building of gesture-based systems easy by making recognizers specifiable
by example, and incorporating them into an easy-to-use direct manipulation framework.
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2.4 Direct Manipulation Architectures

A direct manipulation system is one in which the user manipulates graphical representations of
objects in the task domain directly, usually with a mouse or other pointing device. In the words of
Shneiderman [117],

the central ideas seemed to be visibility of the object of interest; rapid, reversible,
incremental actions; and replacement of complex command language syntax by direct
manipulation of the object of interest–hence the term “direct manipulation.”

As examples, he mentions displayeditors, Visicalc, video games, computer-aided design, and driving
an automobile, among others.

For many application domains, the direct manipulation paradigm results in programs which are
easy to learn and use. Of course there are tasks for which direct manipulation is not appropriate, due
to the fact that the abstract nature of the task domain is not easily mapped onto concrete graphical
objects [58]. For example, direct manipulation systems for the abstract task of programming have
been rather difficult to design, though much progress has been made [98].

It is not intended here to debate the merits and drawbacks of direct manipulation systems.
Instead, it is merely noted that direct manipulation has become an increasingly important and
popular style of user interface. Furthermore, all existing gesture-based systems may be considered
direct-manipulation systems. The reason is that graphical objects on the screen are natural targets
of gesture commands, and updating those objects is an intuitive way of feeding back to the user
the effect of his gesturing. In this section, existing approaches for constructing direct manipulation
systems are reviewed. In Chapters 6 and 7 it is shown how some of these approaches may be
extended to incorporate gestural input.

While direct manipulation systems are easy to use, they are among the most difficult kinds of
interface to construct. Thus, there is a great interest in software tools for creating such interfaces.
Myers [96] gives an excellent overview of the various tools which have been proposed for this
purpose. Here, it is sufficient to divide user-interface software tools into three levels.

The lowest software level potentially seen by the direct manipulation system programmer is
usually the window manager. Example window managers include X [113], News [127], Sun
Windows [126], and Display Postscript [102]; see Myers [94] for an overview. For current purposes,
it is sufficient to consider the window manager as providing a set of routines (i.e. a programming
interface) for both output (textual and graphical) and input (keyboard and mouse or other device).
Programming direct manipulation interfaces at the window manager level is a usually avoided, since
a large amount of work will likely need to be redone for each application (e.g. menus will have
to be implemented for each). Building from scratch this way will probably result in different and
inconsistent interfaces for each application, making the total system difficult to recall and use.

The next software level is the user interface toolkit. Toolkits come in two forms: non-object-
oriented and object-oriented. A toolkit provides a set of procedures or objects for constructing
menus, scroll bars, and other standard interaction techniques. Most of the toolkits come totally
disassembled, and it is up to the programmer to decide how to use the components. Some toolkits,
notably MacApp [115] and GWUIMS [118], come partially assembled, making it easier for the
programmer to customize the structure to fit the application. For this reason, some authors have
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referred to these systems as User Interface Management Systems, though here they are grouped with
the other toolkits.

A non-object-oriented toolkit is simply a set of procedures for creating and manipulating the
interaction techniques. This saves the programmer the effort involved in programming these inter-
action techniques directly, and has the added benefit that all systems created using a single toolkit
will look and act similarly. One problem with non-object-oriented toolkits is that they usually do
not give much support for the programmer who wishes to create new interaction techniques. Such
a programmer typically cannot reuse any existing code and thus finds himself bogged down with
many low-level details of input and screen management.

Instead of procedures, object-oriented toolkits provide a class (an object type) for each of
the standard interaction techniques. To use one of the interaction techniques in an interface, the
programmer creates an instance of the appropriate class. By using the inheritance mechanism of
the object-oriented programming language, the programmer can create new classes which behave
like existing classes except for modifications specified by the programmer. This subclassing gives
the programmer a method of customizing each interaction technique for the particular application.
It also provides assistance to the programmer wishing to create new interaction techniques–he can
almost always subclass an existing class, which is usually much easier than programming the new
technique from scratch. One problem with object-oriented toolkits is their complexity; often the
programmer needs to be familiar with a large part of the class hierarchy before he can understand
the functionality of a single class.

User Interface Management Systems (UIMSs) form the software level above toolkits [96].
UIMSs are systems which provide a method for specifying some aspect of the user interface that is
at a higher level than simply using the base programming language. For example, the RAPID/USE
system [135] uses state transition diagrams to specify the structure of user input, the Syngraph system
[64] uses context-free grammers similarly, and the Cousin system [51] uses a declarative language.
Such systems encourage or enforce a strict separation between the user interface specification and
the application code. While having modularity advantages, it is becoming increasingly apparent
that such a separation may not be appropriate for direct manipulation interfaces [110].

UIMSs which employ direct graphical specification of interface components are becoming in-
creasingly popular. In these systems, the UIMS is itself a direct manipulation system. The user
interface designer thus uses direct manipulation to specify the components of the direct manipulation
interface he himself desires to build. The NeXT Interface Builder [102] and the Andrew Devel-
opment Environment Workbench (ADEW) [100] allow the placement and properties of existing
interface components to be specified via direct manipulation. However, new interface components
must be programmed in the object-oriented toolkit provided. In addition to the direct manipulation
of existing interface components, Lapidary [93] and Peridot [90] enable new interface components
to be created by direct graphical specification.

UIMSs are generally built on top of user interface toolkits. The UIMSs that support the con-
struction of direct manipulation interfaces, such as the ones which use direct graphical specification,
tend to be built upon object-oriented toolkits. Since object-oriented toolkits are currently the pre-
ferred vehicle for the creation of direct manipulation systems, this dissertation concentrates upon
the problem of integrating gesture into such toolkits. In preparation for this, the architectures of
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several existing object-oriented toolkits are now reviewed.

2.4.1 Object-oriented Toolkits

The object-oriented approach is often used for the construction of direct manipulation systems.
Using object-oriented programming techniques, graphical objects on the screen can be made to
correspond quite naturally with software objects internal to the system. The ways in which a graphic
object can be manipulated correspond to the messages to which the corresponding software object
responds. It is assumed that the reader of this dissertation is familiar with the concepts of object-
oriented programming. Cox [27, 28], Stefik and Bobrow [121], Horn [56], Goldberg and Robson
[44], and Schmucker [115] all present excellent overviews of the topic.

The Smalltalk-80 system [44] was the first object-oriented system that ran on a personal computer
with a mouse and bitmapped display. From this system emerged the Model-View-Controller (MVC)
paradigm for developing direct manipulation interfaces. Though MVC literature is only now
beginning to appear in print [70, 63, 68], the MVC paradigm has directly influenced every object-
oriented user interface architecture since its creation. For this reason, the review of object-oriented
architectures for direct manipulation systems begins with a discussion of the use of the MVC
paradigm in the Smalltalk-80 system.

The terms “model,” “view,” and “controller” refer to three different kinds of objects which play
a role in the representation of single graphic object in a direct manipulation interface. A model is an
object containing application specific data. Model objects encapsulate the data and computation of
the task domain, and generally make no reference to the user interface.

A view object is responsible for displaying application data. Usually, a view is associated with a
single model, and communicates with the model in order to acquire the application data that it will
render on the screen. A single model may have multiple views, each potentially displaying different
aspects of the model. Views implement the “look” of a user interface.

A controller object handles user interaction (i.e. input). Depending on the input, the controller
may communicate directly with a model, a view, or both. A controller object is generally paired with
a view object, where the controller handles input to a model and the view handles output. Internally,
the controller and view objects typically contain pointers to each other and the associated model,
and thus may directly send messages to each other and the model. Controllers implement the “feel”
of a user interface.

When the application programmer codes a model object, for modularity purposes he does not
generally include references to any particular view(s). The result is a separation between the
application (the models) and the user interface (the views and controllers). There does however
need to be some connection from a model to a view–otherwise how can the view be notified when
the state of the model changes? This connection is accomplished in a modular fashion through the
use of dependencies.

Dependencies work as follows: Any object may register itself as a dependent of any other object.
Typically, a view object, when first created, registers as a dependent of a model object. Generally,
there is a list of dependents associated with an object; in this way multiple views may be dependent
on a single model. When an object that potentially has dependents changes its state, it sends itself
the message [self changed]. Each dependentd of the object will then get sent the message [d
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update], informing it that an object upon which it is dependent has changed. Thus, dependencies
allow a model to communicate to its views the fact that it has changed, without referring to the views
explicitly.

Many views display rectangular regions on the screen. A view may have subviews, each of
which typically results in an object displayed within the rectangular region of the parent view. The
subviews may themselves have subviews, and so on recursively, giving rise to the view hierarchy.
Typically, a subview’s display is clipped so as to wholly appear within the rectangular region of its
parent. A subview generally occludes part of its parent’s view.

A common criticism of the MVC paradigm is that two objects (the view and controller) are
needed to implement the user interface for a model where one would suffice. This, the argument
goes, is not only inefficient, but also not modular. Why implement the look and feel separately when
in practice they always go together?

The reply to this criticism states that it is useful (often or occasionally) to control look and feel
separately [68]. Knolle discusses the usefulness of a single view having several interchangeable
controllers; implementing different user abilities (i.e. beginning, intermediate, and advanced) with
different controllers, and having the system adapt to the user’s ability at runtime is one example.
While Knolle’s examples may not be very persuasive, there is an important application of separating
views from controllers, namely, the ability to handle multiple input devices. Chapters 6 and 7
explore further the benefits accrued from the separation of views and controllers.

Nonetheless, there is a simplicity to be had by combining views and controllers into a single
object, giving rise to object-oriented toolkits based on the Data-View (DV) paradigm. Though
the terminology varies, MacApp [115, 114], the Andrew Toolkit [105], the NeWS Development
environment [108], and InterViews [79] all use the DV paradigm. In this paradigm, data objects
contain application specific data (and thus are identical to MVC models) while view objects combine
the functionality of MVC view and controller objects. In DV systems, the look and feel of an object
are very tightly coupled, and detailed assumptions about the input hardware (e.g. a three button
mouse) get built into every view.

Object-oriented toolkits also vary in the method by which they determine which controller
objects get informed of a particular input event, and also in the details of that communication.
Typically, input events (such as mouse clicks) are passed down the view hierarchy, with a view
querying its subviews (and so on recursively) to see if one of them wishes to handle the event before
deciding to handle the event itself. Many variations on this scheme are possible.

Controllers may be written to have methods for messages such as leftButtonDown. This
style, while convenient for the programmer, has the effect of wiring in details of the input hardware
all throughout the system [115, 68]. The NeXT AppKit [102], passes input events to the controller
object in a more general form. This is generalized even further in Chapters 6 and 7.

Controllers are a very general mechanism for handling input. Garnet [92], a modern MVC-based
system, takes a different approach, called interactors [95, 91]. The key insight behind interactors is
that there are only several different kinds of interactive behavior, and a (parameterizable) interactor
can be built for each. The user-interface designer then needs only to choose the appropriate interactor
for each interaction technique he creates.

Gestural input is not currently handled by the existing interactors. It would be interesting to see
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if the interactor concept in Garnet is general enough to handle a gesture interactor. Unfortunately,
the author was largely unaware of the Garnet project at the time he began the research described in
Chapters 6 and 7. Had it been otherwise, a rather different method for incorporating gestures into
direct manipulation systems than the one described here might have been created.

The Artkit system [52] has a considerably more general input mechanism than the MVC systems
discussed thus far. Like the GRANDMA system discussed in this dissertation, Artkit integrates
gesture into an object-oriented toolkit. Though developed simultaneously and independently, Artkit
and GRANDMA have startlingly similar input architectures. The two systems will be compared in
more detail in chapter 6.
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Chapter 3

Statistical Single-Path Gesture
Recognition

3.1 Overview

This chapter address the problem of recognizing single-path gestures. A single-path gesture is one
that can be input with a single pointer, such as a mouse, stylus, or single-finger touch pad. It is
further assumed that the start and end of the input gesture are clearly delineated. When gesturing
with a mouse, the start of a gesture might be indicated by the pressing of a mouse button, and the
end by the release of the button. Similarly, contact of the stylus with the tablet or of a finger with
the touch screen could be used to delineate the endpoints of a gesture.

Baecker and Buxton[5] warn against using a mouse as a gestural input device for ergonomic
reasons. For the research described in this chapter, the author has chosen to ignore that warning.
The mouse was the only pointing device readily available when the work began. Furthermore, it was
the only pointing device that is widely available–an important consideration as it allows others to
utilize the present work. In addition, it is probably the case that any trainable recognizer that works
well given mouse input could be made to work even better on devices more suitable for gesturing,
such as a stylus and tablet.

The particular mouse used is labeled DEC Model VS10X-EA, revision A3. It has three buttons
on top, and a metal trackball coming out of the bottom. Moving the mouse on a flat surface causes
its trackball to roll. Inside the mouse, the trackball motion is mechanically divided into x and y
components, and the mouse sends a pulse to the computer each time one of its components changes
by a certain amount. The windowing software on the host implements mouse acceleration, meaning
that the faster the mouse is moved a given distance, the farther the mouse cursor will travel on the
screen. The metal mouseball was rolled on a Formica table, resulting it what might be termed a
“hostile” system for studying gestural input.

All the work described in this chapter was developed on a Digital Equipment Corporation
MicroVAX II.1 The software was written in C [66] and runs on top of the MACH operating system

1MicroVAX is trademark of Digital Equipment Corporation.
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Figure 3.1: Some example gestures
The period indicates the start of the gesture. The actual mouse points that make up the gestures are indicated
as well.

[131], which is UNIX2 4.3 BSD compatible. X10 [113] was the window system used, though there
is a layer of software designed to make the code easy to port to other window systems.

3.2 Single-path Gestures

The gestures considered in this chapter consist of the two-dimensional path of a single point over
time. Each gesture is represented as an array g of P time-stamped sample points:

gp = (xp � yp � tp) 0 �
p � P �

The points are time stamped (the tp) since the typical interface to many gestural input devices,
particularly mice, does not deliver input points at regular intervals. In this dissertation, only
two-dimensional gestures are considered, but the methods described may be generalized to the
three-dimensional case.

When an input point is very close to the previous input point, it is ignored. This simple
preprocessing of the input results in features that are much more reliable, since much of the jiggle,
especially at the end of a gesture, is eliminated. The result is a large increase in recognition accuracy.

For the particular mouse used for the majority of this work, “very close” meant within three
pixels. This threshold was empirically determined to produce an optimal recognition rate on a
number of gesture sets.

Similar, but more complicated preprocessing was done by Leedham, et. al., in their Pittman’s
shorthand recognition system[77]. The difference in preprocessing in Leedham’s system and the
current work stems largely from the difference in input devices (Leedham used an instrumented
pen), indicating that preprocessing should be done on a per-input-device basis.

Figure 3.1 shows some example gestures used in the GDP drawing editor. The first point (g0) in
each gesture is indicated by a period. Each subsequent point (gp) is connected by a line segment to
the previous point (gp � 1). The time stamps are not shown in the figure.

The gesture recognition problem is stated as follows: There is a set of C gesture classes,
numbered 0 through C � 1. The classes may be specified by description, or, as is done in the present

2UNIX is a trademark of Bell Laboratories.



3.3. FEATURES 49

work, by example gestures for each class. Given an input gesture g, the problem is to determine the
class to which g belongs (i.e. the class whose members are most like g). Some classifiers have a
reject option: if g is sufficiently different so as not to belong to any of the gesture classes, it should
be rejected.

3.3 Features

Statistical gesture recognition is done in two steps. First, a set of features is extracted from the input
gesture. This set is represented as a feature vector, f = [ f1 � . . . � fF] � . (Here and throughout, the
prime denotes vector transpose.) The feature vector is then classified as one of the possible gesture
classes.

The set of features used was chosen according to the following criteria:

The number of features should be small. In the present scheme, the amount of time it takes to
classify a gesture given the feature vector is proportional to the product of the size of the
feature vector (i.e. the number of features) and the number of different gesture classes. Thus,
for efficiency reasons, the number of features should be kept as small as possible while still
being able to distinctly represent the different classes.

Each feature should be calculated efficiently. It is essential that the calculation of the feature
vector itself not be too expensive: the amount of time to update the value of a feature when an
input point gp is received should be bounded by a constant. In particular, features that require
all previous points to be examined for each new input point are disallowed. In this manner,
very large gestures (those consisting of many points) are recognized as efficiently as smaller
gestures.

In practice, this incremental calculation of features is often achieved by computing auxiliary
features not used in classification. For example, if one feature is the average x value of the
input points, an auxiliary feature consisting of the sum of the x values might be computed.
This would require constant time (one addition) per input point. When the feature vector is
needed (for classification) the average x value feature is computed in constant time by dividing
the above sum by the number of input points.

Each feature should have a meaningful interpretation. Unlike simple handwriting systems, the
gesture-based systems built here use the features not only for classification, but also for
parametric information. For example, a drawing program might use the initial angle of a
gesture to orient a newly created rectangle. While it is possible to extract such gestural
attributes independent of classification, it is potentially less efficient to do so.

Meaningful features also provide useful information to the designer of a set of gesture classes
for a particular application. By understanding the set of features, the designer has a better
idea of what kind of gestures the system can and cannot distinguish; she is thus more likely
to design gestures that can be classified accurately.
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Individual features should have Gaussian-like distributions. The classifier described in this chap-
ter is optimal when, among other things, within a given class each feature has a Gaussian
distribution. This is because a class is essentially represented by its mean feature vector, and
classification of an example takes place, to a first approximation, by determining the class
whose mean feature vector is closest to the example’s. Classification may suffer if a given
feature in a given class has, for example, a bimodal distribution, whereby it tends toward one
of two different values.
This requirement is satisfied when the feature is stable, meaning a small change in the input
gesture results in a small change in the value of the feature. In general, this rules out features
that are small integers, since presumably some small change in a gesture will cause a discrete
unit step in the feature. When possible, features that depend on thresholds should also be
avoided for similar reasons. Ideally, a feature is a real-valued continuous function of the input
points.
Note that the input preprocessing is essentially a thresholding operation, and does have the
effect that a seemingly small change in the gesture can cause big changes in the feature vector.
However, eliminating this preprocessing would allow the noise inherent in the input device
to seriously affect certain features. Thus, thresholding should not be ruled out per-se, but
the tradeoffs must be considered. Another alternative is to use multiple thresholds to achieve
a kind of multiscale representation of the input, thus avoiding problems inherent in using a
single threshold [80].

The particular set of features used here evolved over the creation of two classifiers, the first being
for a subset of GDP gestures, the second being a recognizer of upper-case letters, as handwritten by
the author. In the current version of the recognition program, thirteen features are employed. Figure
3.2 depicts graphically the values used in the feature calculation.

The features are:

Cosine and sine of initial angle with respect to the X axis:

f1 = cos � = (x2 � x0)
�
d

f2 = sin � = (y2 � y0)
�
d

where d = � (x2 � x0)2 + (y2 � y0)2 �

Length of the bounding box diagonal:

f3 = � (xmax � xmin)2 + (ymax � ymin)2

where xmax � xmin � ymax � ymin are the maximum and minimum values
for xp and yp respectively.

Angle of the bounding box:
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�
�

�
p

(x0 � y0)

(x2 � y2)

(xp � 1 � yp � 1)

(xp � yp)
(xp+1 � yp+1)

(xP � 1 � yP � 1)

(xmin � ymin)

(xmax � ymax)

f3

f4

f5

Figure 3.2: Feature calculation
Gesture 6 of figure 3.1 is shown with its relevant lengths and angles labeled with the intermediate variables
used to compute features or the features themselves where possible.

f4 = arctan
ymax � ymin

xmax � xmin

Distance between first and last point:

f5 = � (xP � 1 � x0)2 + (yP � 1 � y0)2

Cosine and sine of angle between first and last point:

f6 = cos
�

= (xP � 1 � x0)
�

f5
f7 = sin

�
= (yP � 1 � y0)

�
f5

Total gesture length:

Let � xp = xp+1 � xp

� yp = yp+1 � yp
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f8 =
P � 2�

p=0
� � x2

p + � y2
p

Total angle traversed (derived from the dot and cross product definitions[73]):

�
p = arctan

� xp � yp � 1 � � xp � 1 � yp

� xp � xp � 1 + � yp � yp � 1

f9 =
P � 2�

p=1

�
p

f10 =
P � 2�

p=1

� �
p
�

f11 =
P � 2�

p=1

� 2
p

Maximum speed (squared):

� tp = tp+1 � tp

f12 = P � 2max
p=0

� x2
p + � y2

p

� t2p

Path duration:

f13 = tP � 1 � t0

Features f12 and f13 allow the gesture recognition to be based on temporal factors; thus gestures
have a dynamic component and are not simply static pictures.

Some features ( f1, f2, f6, and f7) are sines or cosines of angles, while others ( f5, f10, f11, f12)
depend on angles directly and thus require inverse trigonometric functions to compute. A four-
quadrant arctangent is needed to compute

�
p; the arctangent function must take the numerator and

denominator as separate parameters, returning an angle between ��� and � . For efficient recognition,
it would be desirable to use just a single feature to represent an angle, rather than both the sine and
cosine. However, the recognitionalgorithm requires that each feature have approximately a Gaussian
distribution; this poses a problem when a small change in a gesture causes a large change in angle
measurement due to the discontinuity when near ��� . This mattered for initial angle, and the angle
between the start and end point of the gesture, so each of these angles is represented by its sine and
cosine. The bounding box angle is always between 0 and �

�
2 so there was no discontinuity problem

for it.
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For features dependent on
�

i, the angle between three successive input points, the discontinuity
only occurs when the gesture stroke turns back upon itself. In practice, likely due to the few gestures
used which have such changes, the recognition process has not been significantly hampered by
the potential discontinuity (but see Section 9.1.1). The feature f9 is a measure of the total angle
traversed; in a gesture consisting of two clockwise loops, this feature might have a value near 4 � .
If the gesture was a clockwise loop followed by a counterclockwise loop, f9 would be close to zero.
The feature f10 accumulates the absolute value of instantaneous angle; in both loop gestures, its
value would be near 4 � . The feature f11 is a measure of the “sharpness” of gesture.

Figure 3.3 shows the value of some features as a function of p, the input point, for gestures 1 and
2 of figure 3.1. Note in particular how the value for f11 (the sharpness) increases at the angles of the
gesture. The feature values at the last (rightmost) input point are the ones that are used to classify
the gesture. The intent of the graph is to show how the features change with each new input point.

All the features can be computed incrementally, with a constant amount of work being done for
each new input point. By utilizing table lookup for the square root and inverse trig functions, the
amount of computation per input point can be made quite small.

A number of features were tried and found not to be as good as the features used. For example,
instead of the sharpness metric f11, initially a count of the number of times

�
p exceeded a certain

threshold was used. The idea was to count sharp angles. While this worked fairly well, the more
continuous measure of sharpness was found to give much better results. In general, features that
are discrete counts do not work as well as continuous features that attempt to quantify the same
phenomena. The reason for this is probably that continuous features more closely satisfy the
normality criterion. In other words, an error or deviation in a discrete count tends to be much more
significant than an error or deviation in continuous metric.

Appendix A shows the C code for incrementally calculating the feature vector of a gesture.

3.4 Gesture Classification

Given the feature vector x computed for an input gesture g, the classification algorithm is quite
simple and efficient. Associated with each gesture class is a linear evaluation function over the
features. Gesture class c has weights w �ci for 0 �

i
�

F, where F is the number of features, currently
13. (Per-class variables will be written using superscripts with hats to indicate the class. These are
not and should not to be confused with exponentiation.) The evaluation functions are calculated as
follows:

v �c = w �c0 +
F�

i=1
w �ci xi 0 �

c � C (3 � 1)

The value v �c is the evaluation of class c. The classifier simply determines the c for which v �c is a
maximum; this c is the classification of the gesture g. The possibility of rejecting g is discussed in
Section 3.6.

Practitioners of pattern recognition will recognize this classifier as the classic linear discriminator
[35, 30, 62, 74]. With the correct choice of weights w �ci , the linear discriminator is known to be
optimal when (1) within a class the feature vectors have a multivariate normal distribution, and (2)
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Figure 3.3: Feature vector computation
These graphs show how feature vectors change with each new input point. The left graphs refer to features of
gesture 1 of 3.1 (an “M”), the right graphs to gesture 2 (an “L”). The final values of the features (p = 21 for
gesture 1, p = 12 for gesture 2) are the ones used for classification. The instantaneous angle

�
p and velocity

vp have been included in the figure, although they are not part of the feature vector.
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the per class feature covariance matrices are equal. (Exactly what this means is discussed in the
next section. Other continuous distributions for which linear discriminant functions are optimal are
investigated by Cooper [26].) These conditions do not hold for most sets of gesture classes given
the feature set described; thus weights calculated assuming these conditions will not be optimal,
even among linear classifiers (and even the optimal linear classifier can be outperformed by some
non-linear classifiers if the above conditions are not satisfied). However, given the above set of
features, linear discriminators computed as if the conditions are valid have been found to perform
quite acceptably in practice.

3.5 Classifier Training

Once the decision has been made to use linear discriminators, the only problem that remains is the
determination of the weights from example gestures of each class. This is known as the training
problem.

Two methods for computing the weights were tried. The first was the multiclass perceptron
training procedure described in Sklansky and Wassel[119]. The hope was that this method, which
does not depend on the aforementioned conditions to choose weights, might perform better than
methods that did. In this method, an initial guess of the weights was made, which are then used
to classify the first example. For each class whose evaluation function scored higher than the
correct class, each weight is reduced by an amount proportional to the corresponding feature of the
example, while the correct class has its weights increased by the same amount. This is similar to
back-propagation learning procedures in neural nets [34]. In this manner, all the examples are tried,
multiple times if desired.

This method has the advantage of being simple, as well as needing very few example gestures
to achieve reasonable results. However, the behavior of the classifier depends on the order in which
the examples are presented for training, and good values for the initial weights and the constant
of proportionality are difficult to determine in advance but have a large effect on the success and
training efficiency of the method. The number of iterations of the examples is another variable
whose optimum value is difficult to determine. Perhaps the most serious problem is that a single
bad example might seriously corrupt the classifier.

Eventually, the perceptron training method was abandoned in favor of the plug-in estima-
tion method. The plug-in estimation method usually performs approximately equally to the best
perceptron-trained classifiers, and has none of the vagueness associated with perceptron training. In
this method, the means of the features for each class are estimated from the example gestures, as is
the common feature covariance matrix (all classes are assumed to have the same one). The estimates
are then used to approximate the linear weights that would be optimal assuming the aforementioned
conditions were true.

3.5.1 Deriving the linear classifier

The derivation of the plug-in classifier is given in detail in James [62]. James’ explanation of the
derivation is particularly good, though unfortunately the derivation itself is riddled with typos and
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other errors. Krzanowski [74] gives a similar derivation (with no errors), as well as a good general
description of multivariate analysis. The derivation is summarized here for convenience.

Consider the class of “L” gestures, drawn starting from the top-left. One example of this class
is gesture 2 in figure 3.1. It is easy to generate many more examples of this class. Each one gives
rise to a feature vector, considered to be a column vector of F real numbers ( f0 � . . . � fF � 1)

�
.

Let f be the random vector (i.e. a vector of random variables) representing the feature vectors
of a given class of gestures, say “L” gestures. Assume (for now) that f has a multivariate normal
distribution. The multivariate normal distribution is a generalization to vectors of the normal
distribution for a single variable. A single variable (univariate) normal distribution is specified by
its mean value and variance. Analogously, a multivariable normal distribution is specified by its
mean vector, � , and covariance matrix, � . In a multivariate normal distribution, each vector element
(feature) has a univariate normal distribution, and the mean vector is simply a vector consisting of
the means of the individual features. The variance of the features form the diagonal of the covariance
matrix; the off-diagonal elements represent correlations between features.

The univariate normal distributionhas a density function which is the familiar bell-shaped curve.
The analog in the two variable (bivariate) case is a three-dimensional bell shape. In this case, the
lines of equal probability (cross sections of the bell) are concentric ellipses. The axes of the ellipses
are parallel to the feature axes if and only if the variables are uncorrelated. By analogy, in the higher
dimensional cases, the distribution has a hyper-bell shape, and the equiprobability hypersurfaces are
ellipsoids.

A more in-depth discussion of the properties of the multivariate normal distribution would take
us too far afield here. The reader unfamiliar with the subject is asked to rely on the analogy with the
univariate case, or to refer to a good text, such as Krzanowski [74].

The multivariate normal probability density function is the multivariate analog to the bell-shaped
curve. It is written here as a conditional probability density, i.e. the density of the probability of
getting vector x given x comes from multivariate distribution L with F variables, mean � , and
covariance matrix � .

p(x � L) = (2 � ) � F � 2 ���	� � 1 � 2e � 1
2 (x � 
 ) ���� 1(x � 
 ) (3 � 2)

Note that this expression involves both the determinant and the inverse of the covariance matrix.
The interested reader should verify that it reduces to the standard bell-shaped curve in the univariate
case (F = 1 � � = [ � 2]).

In the univariate case, to determine the probability that the value of a random variable will
lie within a given interval, simply integrate the probability density function over that interval.
Analogously in the multivariate case, given an interval for each of the variables (i.e. a hypervolume)
perform a multiple integral, integrating each variable over its interval to determine the probability a
random vector is within the hypervolume.

All this is preparation of the derivation of the linear classifier. Assume an example feature
vector x to be classified is given. Let C �c denote the event that a random feature vector X is in class
c, and x, when used as an event, denote the event that the random feature vector X has value x.
We are interested in P(C �c � x), the probability that the particular feature vector x is in group C �c. A
reasonable classification rule is to assign x to the class i whose probability P(C �� � x) is greater than
that of the other classes, i.e. P(C �� � x) � P(C �� � x) for all j �= i. This rule, which assigns the example
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to the class with the highest conditional probability, is known as Bayes’ rule.
The problem is thus to determine P(C �c � x) for all classes c. Bayes’ theorem tells us

P(C �c � x) =
P(x

�
C �c)P(C �c)�

all k

P(x
�
C �k)P(C �k)

(3 � 3)

Substituting, the assignment rule now becomes: assign x to class i if P(x
�
C �� )P(C �� ) � P(x

�
C �� )P(C �� )

for all j �= i.
The terms of the form P(C �c) are the a priori probabilities that a random example vector is in class

c. In a gesture recognition system, these prior probabilities would depend on the frequency that each
gesture command is likely to be used in an application. Lacking any better information, let us assume
that all gestures are equally likely, resulting in the rule: assign x to class i if P(x

�
C �� ) � P(x

�
C �� )

for all j �= i.
A conditional probability of the form P(x

�
C �c) is known as the likelihood of C �c with respect

to x [30]; assuming equal priors essentially replaces Bayes’ rule with one that gives the maximum
likelihood.

Assume now that each C �c is multivariate normal, with mean vector �	�c, and covariance matrix

�c. Substituting the multivariate normal density functions (equation 3.2) for the probabilities gives

the assignment rule: assign x to class i if, for all j �= i,

(2 � ) � F  2 � 

��
� � 1  2e � 1

2 (x � ���
�
) ����� 1

�
� (x � ���

�
) � (2 � ) � F  2 � 


��
� � 1  2e � 1

2 (x � � �
�
) � ��� 1

�
� (x � � �

�
)

Taking the natural log of both sides, canceling, and multiplying through by � 1 (thus reversing the
inequality) gives the rule: assign x to class i if, for all j �= i,

d �� (x) � d �� (x) � where d �c(x) = ln
� 

�c
�
+ (x � ���c) � 
 � 1

�c (x � �	�c) (3 � 4)

d �c(x) is the discrimination function for class c applied to x. This is quadratic discrimination,
since d �c(x) is quadratic in elements of x (the features). The discriminant computation involves the
weighted sum of the pairwise products of features, as well as terms linear in the features, and a
constant term.

Making the further assumption that all the per-class covariances matrices are equal, i.e.


�� =


�� =



, the assignment rule takes the form: assign x to class i if, for all j �= i,

ln
� 
 �

+ (x � � �� ) � 
 � 1(x � � �� ) � ln
� 
 �

+ (x � � �� ) � 
 � 1(x � � �� ) �

Distributing the subtractions and multiplying through by � 1
2 gives the rule: assign x to class i if, for

all j �= i,

� �� (x) � � �� (x) � where � �c(x) = ( � �c) � 
 � 1x � 1
2 ( � �c) � 
 � 1 � �c (3 � 5)

Note that the discrimination functions � �c(x) are linear in the features (i.e. the elements of x), the
weights being ( �	�c) � 
 � 1 and the constant term being � 1

2( ���� ) � 
 � 1 � �� .
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Comparing equations 3.5 and 3.1 it is seen that to have the optimum classifier (given the
assumptions) we take

w �cj =
F�

i=1


 � 1
ij � �ci 1 � j � F

and

w �c0 = � 1
2

F�
i=1

w �ci � �ci

for all classes c. It is not possible to know the � �c and



; these must be estimated from the examples
as described in the next section. The result will be that the w �ci will be estimates of the optimal
weights.

The possibility of a tie for the largest discriminant has thus far neglected. If � �� (x) = � �k(x) �� �� (x) for all j �= i and j �= k, it is clear that the classifier may arbitrarily choose i or k as the class of
x. However, this is a prime case for rejecting the gesture x altogether, since it is ambiguous. This
kind of rejection is generalized in Section 3.6.

3.5.2 Estimating the parameters

The linear classifier just derived is optimal (given all the assumptions) in the sense that it maximizes
the probability of correct classification. However, the parameters needed to operate the classifier,
namely the per-class mean vectors � �c and the common covariance matrix



, are not known a priori.

They must be estimated from the training examples. The simplest approach is to use the plug-in
estimates for these statistics. Since the equations that follow actually need to be programmed, the
matrix notation is discarded in favor of writing the sums out explicitly in terms of the components.

Let f�cei be the ith feature of the eth example of gesture class c, 0 � e � E �c, where E �c is the
number of training examples of class c. The plug-in estimate of � �c, the mean feature vector per
class, is denoted f�ci . It is simply the average of the features in the class:

f�ci = 1
E �c

E �c � 1�
e=0

f �cei

s �cij is the plug-in estimate of


�c, the feature covariance matrix for class c:

s �cij =
E �c � 1�
e=0

(f �cei � f�ci )(f �cej � f�cj )

(For convenience in the next step, the usual 1 � (E �c � 1) factor has not been included in s �cij .) The s �cij
are averaged to give sij, an estimate of the common covariance matrix



.

sij =
� C � 1

c=0 s �cij
� C +

� C � 1
c=0 E �c

(3 � 6)
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The plug-in estimate of the common covariance matrix sij is then inverted, the result of which is
denoted (s � 1)ij.

The v �c are estimates of the optimal evaluation functions � �c(x). The weights w �cj are computed
from the estimates as follows:

w �cj =
F�

i=1
(s � 1)ij f�ci 1 � j � F

and

w �c0 = � 1
2

F�
i=1

w �ci f�ci

As mentioned before, it is assumed that all gesture classes are equally likely to occur. The
constant terms w �c0 may be adjusted if the a priori probabilities of each gesture class are known in
advance, though the author has not found this to be necessary for good results. If the derivation of
the classifier is carried out without assuming equal probabilities, the net result is, for each class, to
add ln P(C �c) to w �c0 . A similar correction may be made to the constant terms if differing per-class
costs for misclassification must be taken into account [74].

Estimating the covariance matrix involves estimating its F(F+1) � 2 elements. The matrix will be
singular if, for example, less than approximately F examples are used in its computation. Or, a given
feature may have zero variance in every class. In these cases, the classifier is underconstrained.
Rather then give up (which seems an inappropriate response when underconstrained) an attempt is
made to fix a singular covariance matrix. First, any zero diagonal element is replaced by a small
positive number. If the matrix is still singular, then a search is made to eliminate unnecessary
features.

The search starts with an empty set of features. At each iteration, a feature i is added to the set,
and a covariance matrix based only on the features in the set is constructed (by taking the singular
F � F covariance matrix and using only the rows and columns of those features in the set). If the
constructed matrix is singular, feature i is removed from the set, otherwise i is kept. Each feature
is tried in turn. The result is a covariance matrix (and its inverse) of dimensionality smaller than
F � F. The inverse covariance matrix is expanded to size F � F by adding rows and columns of
zeros for each feature not used. The resulting matrix is used to compute the weights.

Appendix A shows C code for training classifiers and classifying feature vectors.

3.6 Rejection

Given an input gesture g, the classification algorithm calculates the evaluation v �c, for each class c.
The class k whose evaluation v �k is larger than all other v �c is presumed to be the class of g. However,
there are two cases that might cause us to doubt the correctness of the classifier. The gesture g may
be ambiguous, in that it is similar to the gestures of more than one class. Also, g may be an outlier,
different from any of the expected gesture classes.

It would be desirable to get an estimate of how sure the classifier is that the input gesture is
unambiguously in class i. Intuitively, one might expect that if some v �m, m �= i, is close to v �� , then
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the classifier is unsure of its classification, since it almost picked m instead of i. This intuition is
borne out in the expression for the probability that the feature vector x is in class

�� . Again assuming
normal features, equal covariances, and equal prior probabilities, substitute the multivariate normal
density function (equation 3.2) into Bayes’ Theorem (equation 3.3).

P(
�� � x) = e � 1

2 (x � � �
�
) � � � 1(x � � �

�
)

C � 1�
j=0

e � 1
2 (x � � �

�
) � � � 1(x � � �

�
)

The common factor (2 � ) � F  2 � 
 � � 1  2 has been canceled from the numerator and denominator. We
may further factor out and cancel e � 1

2 x � � � 1x and substitute equation 3.5, yielding

P(
�� � x) =

e
� �
�
(x)

C � 1�
j=0

e
� �
�
(x)

Substituting the estimates v �c for the � �c(x) and incorporating the numerator into the denominator
yields an estimate for the probability that i is the correct class for x:

�
P(

�� � x) = 1
C � 1�
j=0

e(v �
�
� v �
�
)

This value is computed after recognition and compared to a threshold TP. If below the threshold,
instead of accepting g as being in class i, g is rejected. The effect of varying TP will be evaluated
in Chapter 9. There is a tradeoff between wanting to reject as many ambiguous gestures as possible
and not wanting to reject unambiguous gestures. Empirically, TP = 0 � 95 has been found to be a
reasonable value for a number of gesture sets (see Section 9.1.2).

The expression for
�
P(

�� � x) bears out the intuition that if two or more classes evaluate to near
the same result the gesture is ambiguous. In such cases the denominator will be significantly larger
than unity. Note that the denominator is always at least unity due to the j = i term in the sum. Also
note that all the other terms the exponents (v �� � v �� ) for j �= i will always be negative, because x has
been classified as class i by virtue of the fact that v �� � v �� for j �= i.�

P(
�� � x) may be computed efficiently by using table-lookup for the exponentiation. The table

need not be very extensive, since any time v �� � v �� is sufficiently negative (less than � 6, say) the
term is negligible. In practice this will be the case for almost all j.

A linear classifier will give no indication if g is an outlier. Indeed, most outliers will be
considered unambiguous by the above measure of

�
P. To test if g is an outlier, a separate metric is

needed to compare g to the typical gesture of class k. An approximation to the Mahalanobis distance
[74] works well for this purpose.

Given a gesture with feature vector x, the Mahalanobis distance between x and class i is defined
as �

2 = (x � � �� ) � 
 � 1(x � � �� )
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Note that
�

2 is used in the exponent of the multivariate normal probability density function (equation
3.2). It plays the role that ((x � � ) ��� )2 plays in the univariate normal distribution: the Mahalanobis
distance

�
2 essentially measures the (square of the) number of standard deviations that x is away

from the mean � �� .
If

 � 1 happens to be the identity matrix, the Mahalanobis distance is equivalent to the Euclidean

distance. In general, the Mahalanobis distance normalizes the effects of different scales for the
different features, since these presumably show up as different magnitudes for the variances sii, the
diagonal elements of the common covariance matrix. The Mahalanobis distance also normalizes
away the effect of correlations between pairs of features, the off-diagonal elements of the covariance
matrix.

As always, it is only possible to approximate the Mahalanobis distance between a feature vector
x and a class i. Substituting the plug-in estimators for the population statistics and writing out the
matrix multiplications explicitly gives

d2 =
F�

j=1

F�
k=1

s � 1
jk (xj � f�

�
j )(xk � f�

�
k ) �

In order to reject outliers, compute d2, an approximation of the Mahalanobis distance from
the feature vector x to its computed class i. If the distance is greater than a certain threshold Td2

the gesture is rejected. Section 9.1.2 evaluates various settings of Td2 ; here it is noted that setting
Td2 = 1

2F2 is a good compromise between accepting obvious outliers and rejecting reasonable
gestures.

Now that the underlying mechanism of rejection has been explained, the question arises as
to whether it is desirable to do rejections at all. The answer depends upon the application. In
applications with easy to use undo and abort facilities, the reject option should probably be turned
off completely. This is because in either failure mode (rejection or misclassification) the user will
have to redo the gesture (probably about the same amount of work in both cases) and turning on
rejection merely increases the number of gestures that will have to be redone.

In applications in which it is deemed desirable to do rejection, the question arises as to how the
interface should behave when a gesture is rejected. The system may prompt the user with an error
message, possibly listing the top possibilities for the class (judging from the discriminant functions)
and asking the user to pick. Or, the system may choose to ignore the gesture and any subsequent
input until the user indicates the end of the interaction. The proper response presumably depends
on the application.

3.7 Discussion

One goal of the present research was to enable the implementor of a gesture-based system to produce
gesture recognizers without the need to resort to hand-coding. The original plan was to try a number
of pattern recognition techniques of increasing complexity until one powerful enough to recognize
gestures was found. The author was pleasantly surprised when the first technique he tried, linear
discrimination, produced accurate and efficient classifiers.
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..

Figure 3.4: Two different gestures with identical feature vectors

The efficiency of linear recognition is a great asset: gestures are recognized virtually instanta-
neously, and the system scales well. The incremental feature calculation, with each new input point
resulting in a bounded (and small) amount of computation, is also essential for efficiency, enabling
the system to handle large gestures as efficiently as small ones.

3.7.1 The features

The particular feature set reported on here has worked fine discriminating between the gestures used
in three sample applications: a simple drawing program, the uppercase letters in the alphabet, and a
simple score editor. Tests using the gesture set of the score editor application are the most significant,
since the recognizer was developed and tested on the other two. Chapter 9 studies the effect of
training set size and number of classes on the performance of the recognizer. A classifier which
recognizes thirty gestures classes had a recognition rate of 96.8% when trained with 100 examples
per class, and a rate of 95.6% when trained with 10 examples per class. The misclassifications were
largely beyond the control of the recognizer: there were problems using the mouse as a gesturing
device and problems using a user process in a non-real-time system (UNIX) to collect the data.

It would be desirable to somehow show that the feature set was adequate for representing
differences between all gestures likely to be encountered in practice. The measurements in Chapter
9 show good results on a number of different gestures sets, but are by no means a proof of the
adequacy of the features. However, the mapping from gestures (sequences of points) to feature
vectors is not one-to-one. In fact, it can easily be demonstrated that there are apparently different
gestures that give rise to the same feature vector. Figure 3.4 shows one such pair of gestures.
Since none of the features in the feature set depend on the order in which the angles in the gesture
are encountered, and the two gestures are alike in every other respect, they have identical feature
vectors. Obviously, any classifier based on the current feature set will find it impossible to distinguish
between these gestures.

Of course, this particular deficiency of the feature set can be fixed by adding a feature that does
depend on the order of the angles. Even then, it would be possible to generate two gestures which
have the same angles in the same order, which differ, say, in the segment lengths between the angles,
but nontheless give rise to the same feature vector. A new feature could then be added to handle this
case, but it seems that there is still no way of being sure that there do not exist two different gestures
giving rise to the same feature vector.

Nonetheless, adding features is a good way to deal with gesture sets containing ambiguous
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classes. Eventually, the number of features might grow to the point such that the recognizer
performs inefficiently; if this happens, one of the algorithms that chooses a good subset of features
could be applied [62, 103]. (Though not done in the present work, the contribution of individual
features for a given classifier can be found using the statistical techniques of principle components
analysis and analysis of variance [74].) However, given the good coverage that can be had with 13
features, 20 features would make it extremely unlikely that grossly different gestures with similar
feature vectors would be encountered in practice. Since recognition time is proportional to the
number of features, it is clear that a 20 feature recognizer does not entail a significant processing
burden on modern hardware, even for large (40 class) gesture sets. There still may be good reason
to employ fewer features when possible; for example, to reduce the number of training examples
required.

The problem of detecting when a classifier has been trained on ambiguous classes is of great
practical significance, since it determines if the classifier will perform poorly. One method is
to run the training examples through the classifier, noting how many are classified incorrectly.
Unfortunately, this may fail to find ambiguous classes since the classifier is naturally biased toward
recognizing its training examples correctly. An alternative is to compute the pairwise Mahalanobis
distance between the class means; potentially ambiguous classes will be near each other.

3.7.2 Training considerations

There is a potential problem in the training of classifiers, even when the intended classes are
unambiguous. The problem arises when, within a class, the training examples do not have sufficient
variability in the features that are irrelevant to the recognition of that class.

For example, consider distinguishing between two classes: (1) a rightward horizontal segment
and (2) an upward vertical segment. Suppose all the training examples of the rightward segment
class are short, and all those of the upward segment class are long. If the resulting classifier is asked
to classify a long rightward segment, there is a significant probability of misclassification.

This is not surprising. Given the training examples, there was no way for classifier to know that
being a rightward segment was the important feature of class (1), but that the length of the segment
was irrelevant. The same training examples could just as well have been used to indicate that all
elements of class (1) are short segments.

The problem is that, by not varying the length of the training examples, the trainer does not give
the system significant information to produce the desired classifier. It is not clear what can be done
about this problem, except perhaps to impress upon the people doing the training that they need to
vary the irrelevant features of a class.

3.7.3 The covariance matrix

An important problem of linear recognition comes from the assumption that the covariance matrices
for each class are identical. Consider a classifier meant to distinguish between three gestures classes
named C, U, and I (figure 3.5). Examples of class C all look like the letter “C”, and examples
of class U all look like the letter “U.” Assume that example C and U gestures are drawn similarly
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Figure 3.5: A potentially troublesome gesture set
This figure contains examples of three classes: C, U, and I. I varies in orientation while C and U depend
upon orientation to be distinguished. Theoretically, there should be a problem recognizing gestures in this
set with the current algorithm, but in practice this has been shown not to be the case.

except for the initial orientation. Examples of class I, however, are strokes which may occur in any
initial orientation.

The point of this set of gesture classes is that initial orientation is essential for distinguishing
between C and U gestures, but must be ignored in the case of I gestures. This information is
contained in the per-class covariance matrices sC

ij , sU
ij , and sI

ij. In particular, consider the variance
of the feature f1, which, for each class c, is proportional to s

�

c
11. Since the initial angle is almost

the same for each example C gesture, sC
11 will be close to zero. Similarly, sU

11 will also be close to
zero. However, since the examples of class I have different orientations, sI

11 will be significantly
non-zero.

Unfortunately, the information on the variance of f1 is lost when the per-class covariance
matrix estimates s

�

c
ij are averaged to give an estimate of the common covariance matrix sij (equation

3.6). Initially, it was suspected this would cause a problem resulting in significantly lowered
recognition rates, but in practice the effect has not been too noticeable. The classifier has no
problem distinguishing between the above gestures correctly.

A more extensive test where some gestures vary in size and orientation while others depend on
size and orientation to be recognized is presented in Section 9.1.4. The recognition rates achieved
show the classifier has no special difficulty handling such gesture sets. Had there been a real
problem, the plan was to experiment with improving the linear classifier, say by a few iterations
of the perceptron training method [119]. Had this not worked, using a quadratic discriminator
(equation 3.4) was another possible area of exploration.



3.8. CONCLUSION 65

3.8 Conclusion

This chapter discussed how linear statistical pattern recognition techniques can be successfully
applied to the problem of classifying single-path gestures. By using these techniques, implementors
of gesture-based systems no longer have to write application-specific gesture-recognition code. It
is hoped that by making gesture recognizers easier to create and maintain, the promising field of
gesture-based systems will be more widely explored in the future.
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Chapter 4

Eager Recognition

4.1 Introduction

In Chapter 3, an algorithm for classifying single-path gestures was presented. The algorithm assumes
that the entire input gesture is known, i.e. that the start and end of the gesture are clearly delineated.
For some applications, this restriction is not a problem. For others, however, the need to indicate
the end of the gesture makes the user interface more awkward than it need be.

Consider the use of mouse gestures in the GDP drawing editor (Section 1.1). To create a
rectangle, the user presses a mouse button at one corner of the rectangle, enters the “L” gesture,
stops (while still holding the button), waits for the rectangle to appear, and then positions the other
corner. It would be much more natural if the user did not have to stop; i.e. if the system recognized
the rectangle gesture while the user was making it, and then created the rectangle, allowing the user
to drag the corner. What began as a gesture changes to a rubberbanding interaction with no explicit
signal or timeout.

Another example, mentioned previously, is the manipulation of the image of a knob on the
screen. Let us suppose that the knob responds to two gestures: it may be turned or it may be tapped.
It would be awkward if the user, in order to turn the knob, needed to first begin to turn the knob
(entering the turn gesture), then stop turning it (asking the system to recognize the turn gesture),
and then continue turning the knob, now getting feedback from the system (the image of the knob
now rotates). It would be better if the system, as soon as enough of the user’s gesture has been seen
so as to unambiguously indicate her intention of turning the knob, begins to turn the knob.

The author has coined the term eager recognition for the recognition of gestures as soon as they
are unambiguous. Henry et. al. [52] mention that Artkit, a system similar to GRANDMA, can
be used to build applications that perform eager recognition of mouse gestures. There is currently
no information published as to how gesture recognition or eager recognition is implemented using
Artkit. GloveTalk [34] does something similar in the recognition of DataGlove gestures. GloveTalk
attempts to use the deceleration of the hand to indicate that the gesture in progress should be
recognized. It utilizes four neural networks: the first recognizes the deceleration, the last three
classify the gesture when indicated to do so by the first.

Eager recognition is the automatic recognition of the end of a gesture. For many applications, it

67
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Figure 4.1: Eager recognition overview
Eager recognition works by collecting points until the gesture is unambiguous, at which point the gesture is
classified by the techniques of the previous chapter and the manipulation phase is entered. The determination
as to whether the gesture seen so far is ambiguous is done by the AUC, i.e. the ambiguous/unambiguous
classifier.

is not a problem to indicate the start of a gesture explicitly, by pressing a mouse button for example.
In the present work, no attempt is made to solve the problem of determining the start of a gesture.
Recognizing the start of a gesture automatically is especially important for gesture-based systems
that use input devices without any explicit signaling capability (e.g. the Polhemus sensor or the
DataGlove). For such a device, sudden changes in speed or direction might be used to indicate the
start of a gesture. More complex techniques for determining the start of a gesture are outside the
scope of this dissertation.

There has been some work on the automatic recognition of the start of gestures. Jackson
and Roske-Hofstrand’s system [61] recognizes the start of a circling gesture without an explicit
indication. In GloveTalk, the user is always gesturing; thus the end of one gesture indicates the
start of another. Also related is the automatic segmentation of characters in handwriting systems
[125, 13], especially the online recognition of cursive writing [53].

4.2 An Overview of the Algorithm

In order to implement eager recognition, a module is needed that can answer the question “has
enough of the gesture being entered been seen so that it may be unambiguously classified?” (figure
4.1). The insight here is to view this as a classification problem: classify a given gesture in progress
(called a subgesture below) as an ambiguous or unambiguous gesture prefix. This is essentially
the approach taken independently in GloveTalk. Here, the recognition techniques developed in the
previous chapter are used to build the ambiguous/unambiguous classifier (AUC).

Two main problems need to be solved with this approach. First, training data is needed to train
the AUC. Second, the AUC must be powerful enough to accurately discriminate between ambiguous
and unambiguous subgestures.
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In GloveTalk, the training data problem was solved by explicitly labeling snapshots of a gesture
in progress. Each gesture was made up of an average of 47 snapshots (samples of the DataGlove and
Polhemus sensors). For each of 638 gestures, the snapshot indicating the time at which the system
should recognize the gesture had to be indicated. This is clearly a significant amount of work for
the trainer of the system.

In order to avoid such tedious tasks, the present system constructs training examples for the AUC
from the gestures used to train the main gesture recognizer. The system considers each subgesture of
each example gesture, labels it either ambiguous or not, and uses the labeled subgestures as training
data. It seems there is a chicken-and-egg problem here: in order to create the training data, the
system needs to perform the very task for which it is trying to create a classifier. However, during
the creation of the training data, the system has access to a crucial piece of information that makes
the problem tractable: to determine if a given subgesture is ambiguous the system can examine the
entire gesture from which the subgesture came.

Once the training data has been created, a classifier must be constructed. In GloveTalk this
presented no particular difficulty, for two reasons. There, the classifier was trained to recognize
decelerations that, as indicated by the sensor data, were similar between different gesture classes.
Also, neural networks with hidden layers are better suited for recognizing classes with non-Gaussian
distributions.

In the present system, the training data for the AUC consists of two sets: unambiguous
subgestures and ambiguous subgestures. The distribution of feature vectors within the set of
unambiguous subgestures will likely be wildly non-Gaussian, since the member subgestures are
drawn from many different gesture classes. For example, in GDP the unambiguous delete subges-
tures are very different from the unambiguous pack gestures, etc., so there will be a multimodal
distribution of feature vectors in the unambiguous set. Similarly, the distribution of feature vectors
in the ambiguous set will also likely be non-Gaussian. Thus, a linear discriminator of the form
developed in the previous chapter will surely not be adequate to discriminate between two classes
ambiguous and unambiguous subgestures. What must be done is to turn this two-class problem
(ambiguous or unambiguous) into a multi-class problem. This is done by breaking up the am-
biguous subgestures into multiple classes, each of which has an approximately normal distribution.
The unambiguous subgestures must be similarly partitioned.

The details of the creation of the training data and the construction of the classifier are now
presented. First a failed attempt at the algorithm is considered, during which the aforementioned
problems were uncovered. Then a working version of the algorithm is presented.

4.3 Incomplete Subgestures

As in the last chapter, we are given a set of C gesture classes, and a number of examples of each
class, g

�

c
e , 0 �

c � C, 0 �
e � E

�

c, where E
�

c is the number of examples of class c. The algorithm
described in this chapter produces a function � which when given a subgesture returns a boolean
indicating whether the subgesture is unambiguous with respect to the C gesture classes. When the
function indicates that the subgesture is unambiguous, the recognition algorithm described in the
previous chapter is used to classify the gesture.
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Figure 4.2: Incomplete and complete subgestures of U and D
The character indicates the classification (by the full classifier) of each subgesture. Uppercase characters
indicate complete subgestures, meaning that the subgesture and all larger subgestures are correctly classified.
Note that along the horizontal segment (where the subgestures are ambiguous) some subgestures are complete
while others are not.

The classification algorithm of the previous chapter showed how, given a gesture g, to calculate
a feature vector x. A linear discriminator was then used to classify x as a class c. For much of this
chapter, the classifier can be considered to be a function � : c = � (g). In other words, � (g) is the
class of g as computed by the classifier of Chapter 3.

The function � was produced from the statistics of the example gestures of each class c, g
�

c
e . The

algorithms described in this chapter work best if only the example gestures that are in fact classified
correctly by the computed classifier are used. Thus, in this chapter it is assumed that � (g

�

c
e ) = c for

all example gestures g
�

c
e . In practice this is achieved by ignoring those very few training examples

that are incorrectly classified by � .
Denote the number of input points in a gesture g as � g � , and the particular pointsas gp = (xp � yp � tp),

0 �
p ��� g � . The ith subgesture of g, denoted g[i], is defined as a gesture consisting of the first

i points of g. Thus, g[i]p = gp and � g[i] � = i. The subgesture g[i] is simply a prefix of g, and is
undefined when i ��� g � . The term “full gesture” will be used when it is necessary to distinguish the
full gesture g from its proper subgestures g[i] for i ��� g � . The term “full classifier” will be used to
refer to � , the classifier for full gestures.

For each example gesture of class c, g = g
�

c
e , some subgestures g[i] will be classified correctly

by the full classifier � , while others likely will not. A subgesture g[i] is termed complete with
respect to gesture g, if, for all j � i �

j ��� g � � � (g[j]) = � (g). The remaining subgestures of g are
incomplete. A complete subgesture is one which is classified correctly by the full classifier, and all
larger subgestures (of the same gesture) are also classified correctly.

Figure 4.2 shows examples of two gestures classes, U and D. Both start with a horizontal segment,
but U gestures end with an upward segment, while D gestures end with a downward segment. In
this simple example, it is clear that the subgestures which include only the horizontal segment
are ambiguous, but subgestures which include the corner are unambiguous. In the figure, each
point in the gesture is labeled with a character indicating the classification of the subgesture which
ends at the point. An upper case label indicates a complete subgesture, lower case an incomplete
subgesture. Notice that incomplete subgestures are all ambiguous, all unambiguous subgestures are
complete, but there are complete subgestures that are ambiguous (along the horizontal segment of
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Figure 4.3: A first attempt at determining the ambiguity of subgestures
A two-class classifier was built to distinguish incomplete and complete subgestures, with the hope that those
classified as complete are unambiguous and those classified as incomplete are ambiguous. The characters
indicate where the resultant classifier differed from its training examples. The horizontal segment of the D
gestures were classified as incomplete (a fortuitous error), but the horizontal segment of the first U gesture
was classified as complete. The latter is a grave mistake as the gestures are ambiguous along the horizontal
segment and it would be premature for the full classifier to attempt to recognize the gesture at such points.

the D examples).

4.4 A First Attempt

For eager recognition, subgestures that are unambiguous must be recognized as the gesture is
being made. As stated above, the approach is to build an AUC, i.e. a classifier which distinguishes
between ambiguous and unambiguous subgestures. Notice that the set of incomplete and complete
subgestures approximate the set of ambiguous and unambiguous subgestures, respectively. The
author’s first, rather naive attempt at eager recognition was to partition the subgestures of all the
example gestures into two classes, incomplete and complete. A linear classifier was then produced
using the method described in Chapter 3. This classifier attempts to discriminate between complete
and incomplete subgestures. The function � (g) then simply returns false whenever the above
classifier reports that g is incomplete, and true whenever the classifier claims g is complete.

Figure 4.3 shows the output of the computed classifier for examples of U and D. Points corre-
sponding to subgestures are labeled only when the classifier has made an error, in the sense that the
classification does not agree with the training data (shown in figure 4.2). The worst possible error is
for the classifier to indicate a complete gesture which happens to still be incomplete, which occurred
along the right stroke of the first U gesture.

This approach to eager recognition was not very successful. That it is inadequate was indicated
even more strongly by its numerous errors when tried on an example containing six gesture classes.
It does however contain the germ of a good idea: that statistical classification may be used to
determine if a gesture is ambiguous. A detailed examination of the problems of this attempt is
instructive, and leads to a working eager recognition algorithm.
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This first attempt at eager recognition has a number of problems:

� The distinction between incomplete and complete subgestures does not exactly correspond
with the distinction between ambiguous and unambiguous subgestures. In the U and D
example, subgestures consisting only of points along the right stroke are complete for gestures
which eventually turn out to be D, and incomplete for gestures that turn out to be U. Yet, these
subgestures have essentially identical features. Training a classifier on such conflicting data
is bound to give poor results. In the example, as long as the right stroke is in progress the
gesture is ambiguous. That it happens to be a complete D gesture is an artifact of the classifier�

(it happens to choose D given only a right stroke).

� All the subgestures of examples were placed in one of only two categories: complete or
incomplete. In the case of multiple gesture classes, within each of the two categories the
subgestures are likely to form further clusters. For example, the complete U subgestures will
cluster together, and be apart from the complete D subgestures. When more gesture classes are
used, even more clustering will occur. Thus, the distributionof the complete subgestures is not
likely to be normal. Furthermore, it is likely that incomplete subgestures will be more similar
to complete gestures of the same class than to incomplete subgestures of other classes. (A
similar remark holds for complete subgestures.) It is thus not likely that a linear discriminator
will give good results separating complete and incomplete subgestures.

� The classifier, once computed, may make errors. The most severe error is reporting that a
gesture is complete when it is in fact still ambiguous. The final classifier must be tuned
to avoid such errors, even at the cost of making the recognition process less eager than it
otherwise might be.

4.5 Constructing the Recognizer

Based on consideration of the above problems, a four step approach was adopted for the construction
of classifiers able to distinguish unambiguous from ambiguous gestures.

Compute complete and incomplete sets.

Partition the example subgestures into 2C sets. These sets are named I-c and C-c for each
gesture class c. A complete subgesture g[i] is placed in the class C-c, where c =

�
(g[i]) =

�
(g).

An incomplete subgesture g[i] is placed in the class I-c, where c =
�

(g[i]) (and it is likely that
c �= �

(g)). The sets I-c are termed incomplete sets, and the sets C-c, complete sets. Note that
the class in each set’s name refers to the full classifier’s classification of the set’s elements. In
the case of incomplete subgestures, this is likely not the class of the example gesture of which
the subgesture is a prefix.

Figure 4.4 shows pseudocode to perform this step. Figure 4.2, already seen, shows the result
of this step, with the subgestures in class I-D labeled d, class I-U labeled u, class C-D labeled
D, and class C-U labeled u. The practice of labeling incomplete subgestures with lowercase
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for c := 0 to C � 1
�

/* initialize the 2C sets */
incompletec := � /* This is the set I-c */
completec := � /* This is the set C-c */�

for c := 0 to C � 1
�

/* every class c */
for e := 0 to E �c � 1

�
/* every training example in c */

p := � g �ce � /* subgestures, largest to smallest */
while p � 0 � �

(g �ce [p]) =
�

(g �ce )
�

complete�
(g �ce [p]) := complete�

(g �ce [p]) �
�
g �ce [p]

�

p := p � 1�
/* Once a subgesture is misrecognized by the full classifier, */
/* it and its subgestures are all incomplete. */
while p � 0

�
incomplete�

(g �ce [p]) := incomplete�
(g �ce [p]) �

�
g �ce [p]

�

p := p � 1�
�

�

Figure 4.4: Step 1: Computing complete and incomplete sets

letters and complete subgestures with uppercase letters will be continued throughout the
chapter.

Move accidentally complete elements.

Measure the distance of each subgesture g[i] in each complete set to the mean of each
incomplete set. If g[i] is sufficiently close to one of the incomplete sets, it is removed from its
complete set, and placed in the close incomplete set. In this manner, an example subgesture
that was accidentally considered complete (such as a right stroke of a D gesture) is grouped
together with the other incomplete right strokes (class I-D in this case). Figure 4.5 shows
pseudocode to perform this operation.

Quantifying exactly what is meant by “sufficiently close” turned out to be rather difficult.
Using the Mahalanobis distance as a metric turns out not to work well if applied naively.
The problem is that it depends on the estimated average covariance matrix, which in turn
depends upon the covariance matrix of the individual classes. However, some of the classes
are malformed, which is why this step of moving accidentally complete elements is necessary
in the first place. For example, the C-D class has accidentally complete subgestures in it, so its
covariance matrix will indicate large standard deviations in a number of features (total angle,
in this case). The effect of using the inverse of this covariance matrix to measure distance is
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that large differences between such features will map to small distances. Unfortunately, it is
these very features that are needed to decide which subgestures are accidentally complete.

Alternatives exist. The average covariance matrix of the full gesture set (which does not
include any subgestures) might be used. It would also be possible to use only the average
covariance matrix of the incomplete classes. Or an attempt might be made to scale away
the effect of different sized units of the features, and then apply a Euclidean metric. Or,
the entire regrouping problem might be approached from a different direction, for example
by applying a clustering algorithm to the training data [74]. The first alternative, using the
average covariance matrix of the full gesture set (the same one used in the creation of the
gesture classifier of Chapter 3) was chosen, since that matrix was easily available, and seems
to work.

Once the metric has been chosen (Mahalanobis distance using the covariance matrix of the
full gesture set), deciding when to move a subgesture from a complete class to an incomplete
class is still difficult. The first method tried was to measure the distance of the subgesture to
its current (complete) class, i.e. its distance from the mean of its class. The subgesture was
moved to the closest incomplete class if that distance was less than the distance to its current
class. This resulted in too few moves, as the mean of the complete class was biased since it
was computed using some accidentally complete subgestures.

Instead, a threshold is computed, and if the distance of the complete subgesture to an in-
complete class is below that threshold, the subgesture is moved. A fixed threshold does not
work well, so the threshold is computed as follows: The distance of the mean of each full
gesture class to the mean of each incomplete subgesture class is computed, and the minimum
found. However, distances less than another threshold, F2, are not included in the minimum
calculation to avoid trouble when an incomplete subgesture looked like a full gesture of a
different class. (This is the case if, in addition to U and D, there is a third gesture class
consisting simply of a right stroke.) The threshold used is 90% of that minimum.

The complete subgestures of a full gesture were tested for accidental completeness from
largest (the full gesture) to smallest. Once a subgesture was determined to be accidentally
complete, it, and the remaining (smaller) complete subgestures are moved to the appropriate
incomplete classes.

Figure 4.6 shows the classes of the subgestures in the example after the accidentally complete
subgestures have been moved. Note that now the incomplete subgestures (lowercase labels)
are all ambiguous.

Build the AUC, a classifier which attempts to discriminate between the partition sets.

Now that there is training data containing C complete classes, indicating unambiguous sub-
gestures, and C incomplete classes, indicating ambiguous subgestures, it is a simple matter to
run the algorithm in the previous chapter to create a classifier to discriminate between these
2C classes. This classifier will be used to compute the function � as follows: if this classifier
places a subgesture s in any incomplete class, � (s) = false, otherwise the s is judged to be
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for c := 0 to C � 1
�

�
g � completec /* each complete subgesture */

�
m := 0 /* m is the class of the incomplete set closest to g */
for i := 1 to C � 1

�
if distance(g � incompletei) � distance(g � incompletem)

m := i�
if distance(g � incompletem) � threshold

�
completec := completec � �

g
�

incompletec := incompletec �
�
g

�
�

�
�

Figure 4.5: Step 2: Moving accidentally complete subgestures
The distance function and threshold value are described in the text. Though not apparent from the above
code, the distance function to an incomplete set does not change when elements are added to the set.

in one of the complete classes, in which case � (s) = true. Figure 4.7 shows pseudocode for
building this classifier.

Evaluate and tweak the classifier.

It is very important that subgestures not be judged unambiguous wrongly. This is a case where
the cost of misclassification is unequal between classes: a subgesture erroneously classified
ambiguous will merely cause the recognition not to be as eager as it could be, whereas a
subgesture erroneously classified unambiguous will very likely result in the gesture recognizer
misclassifying the gesture (since it has not seen enough of it to classify it unambiguously).
To avoid this, the constant terms of the evaluation function of the incomplete classes i, wi0,
are incremented by a small amount, ln(M), where M is the relative cost of two kinds of
misclassification. A reasonable value is M = 5, i.e. misclassifications as unambiguous are five
times more costly than misclassifications as ambiguous. The effect is to bias the classifier so
that it believes that ambiguous gestures are five times more likely than unambiguous gestures,
so it is much more likely to choose an ambiguous class when unsure.

Each incomplete subgesture is then tested on the new classifier. Any time such a subgesture is
classified as belongingto a complete set (a serious mistake), the constant term of the evaluation
function corresponding to the complete set is adjusted automatically (by just enough plus a
little more) to keep this from happening.

Figure 4.9 shows the classification by the final classifier of the subgestures in the example. A
larger example of eager recognizers is presented in section 9.2.



76 CHAPTER 4. EAGER RECOGNITION

U:

..
.

UUU
U
U
U
UUddduu

UUU
U

U
U
dddduu

UU
U
U
U
ddddduu

d

.

UU
U

ddddduu

D:

.
.

.

DDD
D
D
D

duu

DD
Dd
ddddduu

DD
D

d
dddddduu

.

DD
D

d
dduu

Figure 4.6: Accidentally complete subgestures have been moved
Comparing this to figure 4.2 it can be seen that the subgestures along the horizontal segment of the D gestures
have been made incomplete. Unlike before, after this step all ambiguous subgestures are incomplete.

s := sNewClassifier()
for c := 0 to C � 1

�
�

g � completec

sAddExample(s � g � "C � "c)�
g � incompletec

sAddExample(s � g � "I � "c)�
sDoneAdding(s)

Figure 4.7: Step 3: Building the AUC
The functions called to build a classifier are sNewClassifier(), which returns a new classifier object,
sAddExample, which adds an example of a class, and sDoneAdding. called to generate the per-class
evaluation functions after all examples have been added. These functions are described in detail in appendix
A. The notation "C-"c indicates the generation a class name by concatenating the string "C-" with the
value of c.

4.6 Discussion

The algorithm just described will determine whether a given subgesture is ambiguous with respect
to a set of full gestures. Presumably, as soon as it is decided that the subgesture is unambiguous it
will be passed to the full classifier, which will recognize it, and then up to the application level of
the system, which will react accordingly.

How well this eager recognition works depends on a number of things, the most critical being
the gesture set itself. It is very easy to design a gesture set that does not lend itself well to eager
recognition; for example, there would be no benefit trying to use eager recognition on Buxton’s
note gestures [21] (figure 2.4). This is because the note gestures for longer notes are subgestures of
the note gestures for shorter notes, and thus would always be considered ambiguous by the eager
recognizer. Designing a set of gestures for a given application that is both intuitive and amenable to
eager recognition is in general a hard problem.
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/* Add a small constant to the constant term of the evaluation function for */
/* each incomplete class in order to bias the classifier toward erring conservatively. */
for i := 0 to C � 1

sIncrementConstantTerm(s, "I-"i, ln(M))
/* Make sure that no ambiguous training example is ever classified as complete. */
for i := 0 to C � 1�

g � incompletei
while � c � sClassify(s � g) = "C � "c

sIncrementConstantTerm (s � "C � "c � ��� )

Figure 4.8: Step 4: Tweaking the classifier
First, a small constant is added to the constant term of every incomplete class (the ambiguous subgestures),
to bias the classifier toward being conservative, rather than eager. Then every ambiguous subgestures is
classified, and if any is accidentally classified as complete, the constant term of the evaluation function for
that complete class is adjusted to avoid this.
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Figure 4.9: Classification of subgestures of U and D
This shows the results of running the AUC on the training examples. As can been seen, the AUC performs
conservatively, never indicating that a subgesture is unambiguous when it is not, but sometimes indicating
ambiguity of an unambiguous subgesture.

The training of the eager recognizer is between one and two orders of magnitude more costly
than the training of the corresponding classifier for full gestures. This is largely due to the number of
training examples: each full gesture example typically gives rise to ten or twenty subgestures. The
amount of processing per training example is also large. In addition to computing the feature vector
of each training example, a number of passes must be made over the training data: first to classify
the subgestures as incomplete or complete, then to move the accidentally complete subgestures,
again to build the AUC, and again to ensure the AUC is not over-eager. While a full classifier takes
less than a second to train, the eager recognizer might take a substantial portion of a minute, making
it less satisfying to experiment with interactively. As will be seen (Chapter 7), a full classifier may
be trained the first time a user gestures at a display object. One possibility would be to use the full
classifier (with no eagerness) while training the AUC in the background, activating eager recognition
when ready.
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The running time for the eager recognizer is also more costly than the full classifier, though not
prohibitively so. A feature vector needs to be calculated for every input point; this eliminates any
benefit that using auxiliary features (Section 3.3) might have bought. Of course, the AUC needs
to be run at every data point; this takes about 2CF multiply-adds (since the AUC has 2C classes).
Since input points do not usually come faster than one every 30 milliseconds, and 2CF is typically
at most 1000, this computational load is not usually a problem for today’s typical workstation class
machine. In the current system, the multiply-adds are done in floating point, though this is probably
not necessary for the recognition to work well.

One slight defect of the algorithm used to construct the AUC is that it relies totally upon the full
classifier. In particular, a subgesture will never be considered unambiguous unless it is classified
correctly by the full classifier. To see where this might be suboptimal, consider a full classifier that
recognizes two classes, GDP’s single segment line gesture and three segment delete gesture. The
full classifier would likely classify any subgesture that is the initial segment of a delete as a line. It
may also classify some two segment subgestures of delete as line gestures, even though the presence
of two segments implies the gesture is unambiguously delete. The resulting eager recognizer will
then not be as eager as possible, in that it will not classify the input gesture as unambiguouslydelete
immediately after the second segment of the gesture is begun.

Two classifiers are used for eager recognition: the AUC, which decides when a subgesture is
unambiguous, and the full classifier, which classifies the unambiguous subgesture. It may seem
odd to use two classifiers given the implementation of the AUC, in which a subgesture is not only
classified as unambiguous, but unambiguously in a given class (i.e. classified as C-c for some c).
Why not just return a classification of c without bothering to query the full classifier? There are two
main reasons. First, the full classifier, having only C classes to discriminate between, will perform
better than the AUC and its 2C classes. Second, the final tweaking step of the AUC adjusts constant
terms to assure that ambiguous gestures are never classified as unambiguous, but makes no attempt
to assure that when classified as unambiguously c, c is the correct class. The adjustment of the
constant terms typically degrades the AUC in the sense that it makes it more likely that c will be
incorrect.

It is likely that within a decade it will be practical for neural networks to be used for gesture
recognition. When this occurs, the part of this chapter concerned with building a 2C class linear
classifier will be obsolete, since a two-class neural network could presumably do the same job.
However, the part of the chapter which shows how to construct training examples for the classifier
from the full gestures will still be useful, since it eliminates the hand labeling that otherwise might
be necessary.

4.7 Conclusion

An eager recognizer is able to classify a gesture as soon as enough of the gesture has been seen
to conclude that the gesture is unambiguous. This chapter presents an algorithm for the automatic
construction of eager recognizers for single-path gestures from examples of the full gestures. It is
hoped that such an algorithm will make gesture-based systems more natural to use.



Chapter 5

Multi-Path Gesture Recognition

Chapters 3 and 4 discussed the recognition of single-path gestures such as those made with a mouse
or stylus. This chapter addresses the problem of recognizing multi-path gestures, e.g. those made
using an input device, such as the DataGlove, capable of tracking the paths of multiple fingertips.
It is assumed that the start and end of the multi-path gesture are known. Eager recognition of
multi-path gestures has been left for future work.

The particular input device used to test the ideas in this chapter is the Sensor Frame. The Sensor
Frame, as discussed in Section 2.1, is a frame which is mounted on a CRT display. The particular
Sensor Frame used was mounted on the display of a Silicon Graphics IRIS Personal Workstation.
The Frame detects the XY positions of up to three fingertips in a plane approximately one half inch
in front of the display.

By defining the problem as “multiple-path gesture recognition”, it is quite natural to attempt to
apply algorithms for single-path gesture recognition (e.g. those developed in Chapter 3). Indeed,
the recognition algorithm described in this chapter combines information culled from a number of
single-path classifiers, and a “global feature” classifier in order to classify a multiple-path gesture.
Before the particular algorithm is discussed, the issue of mapping the raw data returned from the
particular input sensors into a form suitable for processing by the recognition algorithm must be
addressed. For the Sensor Frame, this processing consisted of two stages, path tracking and path
sorting.

5.1 Path Tracking

The Sensor Frame, as it currently operates, delivers the X and Y coordinates of all fingers in its plane
of view each time it is polled, at a maximum rate of 30 snapshots per second. No other information is
supplied; in particular the correspondence between fingers in the current and the previous snapshots
is not communicated. For example, when the previous snapshot indicated one finger and the current
snapshot two, it is left to the host program to determine which of the two fingers (if any) is the same
finger as the previously seen one, and which has just entered the field of view. Similarly, if both
the previous and current snapshots indicate two fingers, the host program must determine which
finger in the current snapshot is the same as the first finger in the previous snapshot, and so on. This
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Figure 5.1: Some multi-path gestures
Shown are some MDP gestures made with a Sensor Frame. The start of each path is labeled with a path
index, indicating the path’s position in a canonical ordering. Gesture (a) is MDP’s edit gesture, an “E” made
with a single finger. Gesture (b), parallel “L”s, is two finger parallelogram gesture, (c) is MDP’s two finger
pinch gesture (used for moving objects), and (d) is MDP’s three finger undo gesture, three parallel “Z”s.
The finger motions were smooth, and some noise due to the Sensor Frame’s position detection can be seen in
the examples.

problem is known as path tracking, since it groups the raw input data into a number of paths which
exist over time, each path having a definite beginning and end.

The path tracking algorithm used is quite straightforward. When a snapshot is first read, a
triangular distance matrix, containing the Euclidean distance squared between each finger in the
current snapshot and each in the previous, is computed. Then, for each possible mapping between
current and previous fingers, an error metric, consisting of the sum of the squared distances between
corresponding fingers, is calculated. The mapping with the smallest error metric is then chosen.

For efficiency, for each possible number of fingers in the previous snapshot and the current
snapshot, a list of all the possible mappings are precomputed. Since the Sensor Frame detects from
zero to three fingers, only 16 lists are needed. When the symmetry between the previous and current
snapshots is considered, only eight lists are needed.

The low level tracking software labels each finger position with a path identifier. When there
are no fingers in the Sensor Frame’s field of view, the next path identifier variable is set
to zero. A finger in the current snapshot which was not in the previous snapshot (as indicated by
the chosen mapping) has its path identifier set to the value of next path identifier which is
then incremented. It is thus possible for a single finger to generate multiple paths, since it will be
assigned a new path identifier each time it leaves and reenters the field of view of the Sensor Frame,
and those identifiers will increase as long as another finger remains in the field of view of the Frame.

The simple tracking algorithm described here was found to work very well. The anticipated
problem of mistracking when finger paths crossed did not arrive very often in practice. (This was
partly because all gestures were made with the fingers of a single hand, making it awkward for
finger paths to cross.) Enhancements, such as using the velocity and the acceleration of each finger
in the previous snapshot to predict where it is expected in the current snapshot, were not needed.
Examples of the tracking algorithm in operation are shown in figure 5.1. In the figure, the start of
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each path is labeled with its path index (as defined in the following section), and the points in the
path are connected by line segments. Figure 5.1d shows an uncommon case where the path tracking
algorithm failed, causing paths 1 and 2 to be switched.

5.2 Path Sorting

The multi-path recognition algorithm, to be described below, works by classifying the first path in
the gesture, then the second, and so on, then combining the results to classify the entire gesture.
It would be possible to use a single classifier to classify all the paths; this option is discussed in
Section 5.7. However, since classifiers tend to work better with fewer classes, it makes sense to
create multiple classifiers, one for the first path of the gesture, one for the second, and so on. This
however raises the question of which path in the gesture is the first path, which is the second, etc.
This is the path sorting problem, and the result of this sorting assigns a number to each path called
its path index.

The most important feature of a path sorting technique is consistency. Between similar multi-path
gestures, it is essential that corresponding paths have the same index. Note that the path identifiers,
discussed in the previous section, are not adequate for this purpose, since they are assigned in the
order that the paths first appear. Consider, for example, a “pinching” gesture, in which the thumb
and forefinger of the right hand are held apart horizontally and then brought together, the thumb
moving right while the forefinger moves left. Using the Sensor Frame, the thumb path might be
assigned path identifier zero in one pinching gesture, since it entered the view plane of the Frame
first, but assigned path identifier one in another pinching gesture since in this case it entered the
view plane a fraction of a second after the forefinger. In order for multi-path gesture recognition
using of multiple classifiers to give good results, it is necessary that the all thumb motions be sent
to the same classifier for training and recognition, thus using path identifiers as path indices would
not give good results.

For multi-path input devices which are actually attached to the hand or body, such as the
DataGlove, there is no problem determining which path corresponds to which finger. Thus, it
would be possible to build one classifier for thumb paths, another for forefinger paths, etc. The
characteristics of the device are such that the question of path sorting does not arise.

However, the Sensor Frame (and multifinger tablets) cannot tell which of the fingers is the
thumb, which is the forefinger, and so on. Thus there is no a priori solution to the path sorting. The
solution adopted here was to impose an ordering relation between paths. The consistency property
is required of this ordering relation: the ordering of corresponding paths in similar gestures must be
the same.

The primary ordering criterion used was the path starting time. However, to avoid the aforemen-
tioned timing problem, two paths which start within 200 milliseconds are considered simultaneous,
and the secondary ordering criteria is used. A path which starts more than 200 msec before another
path will be considered “less than” the other path, and show up before the other path in the sorting.

The secondary ordering criterion is the initial x coordinate. There is a window of 150 Sensor
Frame length units (about one inch) within which two paths will be considered to start at the same x
coordinate, causing the tertiary ordering criterion to be applied. Outside this window, the path with



82 CHAPTER 5. MULTI-PATH GESTURE RECOGNITION

0

1

1

0

1

0

0

1

(a) (b)
(c) (d)

Figure 5.2: Inconsistencies in path sorting
The intention of the path sorting is that corresponding paths in two similar gestures should have the same
path index. Here are four similar gestures for which this does not hold: between (b) and (c) the path sorting
has changed.

the smaller initial x coordinate will appear before the other path in the sorting (assuming apparent
simultaneity).

The tertiary ordering criterion is the initial y coordinate. Again, a window of 150 Sensor Frame
length units is applied. Outside this window, the path whose y coordinate is less will appear earlier
in the path ordering. Finally, if both the initial x and y coordinate differ by less than 150 units, the
coordinate whose difference is the largest is used for ordering, and the path whose coordinate is
smaller appears earlier in the path ordering.

Figure 5.2 shows the sorting for some multi-path gestures by labeling the start of each path with
its index. Note that the consistency criteria is not maintained between panels (b) and (c), since
the “corresponding” paths in the two gestures have different indices. The order of the paths in (b)
was determined by the secondary ordering criterion (since the paths began almost simultaneously),
while the ordering in (c) was determined by the tertiary ordering criterion (since the paths began
simultaneously and had close x coordinates). Generally, any set of ordering rules which depend
solely on the initial point of each path can be made to generate inconsistent sortings.

In practice, the possibilityof inconsistencies has not been much of a problem. The ordering rules
are set up so as to be stable for near-vertical and near horizontal finger configurations; they become
unstable when the angle between (the initial points of) two fingers causes the 150 unit threshold to
be crossed.1 Knowing this makes it easy to design gesture sets with consistent path orderings. A
more robust solution might be to compute a path ordering relation based on the actual gestures used
to train the system.

As stated above, some multiple finger sensing devices, such as the DataGlove, do not require any
path sorting. To use the DataGlove as input to the multi-path gesture recognizer described below,
one approach that could be taken is to compute the paths (in three-space over time) of each fingertip,
using the measured angles of the various hand joints. This will result in five sorted paths (one for
each finger) which would be suitable as input into the multi-path recognition algorithm. (Of course,
the lack of explicit signaling in the DataGlove still leaves the problem of determining the start and

1In retrospect, the 150 unit windows make the sorting more complicated then it need be. Using the coordinate whose
difference is the largest (for simultaneous paths) makes the algorithm more predictable: it will become inconsistent when
the initial points of two paths form an angle close to � 45

�

from the horizontal.
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end of the gesture.)

5.3 Multi-path Recognition

Like the single path recognizers described in Chapter 3, the multi-path recognizer is trained by
specifying a number of examples for each gesture class. The recognizer consists of a number
of single-path classifiers, and a global feature classifier. These classifiers all use the statistical
classification algorithm developed in Chapter 3. The differences are mainly in the sets of features
used, as described in Section 5.5.

Each single-path classifier discriminates between gestures of a particular sorting index. Thus,
there is a classifier for the first path of a gesture, another for the second path, and another for the
third path. (The current implementation ignores all paths beyond the third, although it takes the
actual number of paths into account.) When a multi-path gesture is presented to the system for
classification, the paths are sorted (as described above) and the first path is classified using the first
path classifier, and so on, resulting in a sequence of single-path classes.

The sequence of path classes which results is then submitted to a decision tree. The root node
of the tree has slots pointing to subnodes for each possible class returned by the first path classifier.
The subnode corresponding to the class of the first path is chosen. This node has slots pointing to
subnodes for each possible class returned by the second path classifier. Some of these slots may be
null, indicating that there is no expected gesture whose first and second path classes are the ones
computed. In this case the gesture is rejected. Otherwise, the subnode corresponding to the class of
the second path is chosen. The process is repeated for the third path class, if any.

Once the entire sequence of path classes is considered there are three possibilities. If the
sequence was unexpected, the multi-path gesture is rejected since no node corresponding to this
sequence exists in the decision tree. If the node does exist, the multi-path classification may be
unambiguous, meaning only one multi-class gesture corresponds to this particular sequence of
single-path classes. Or, there may be a number of multi-path gestures which correspond to this
sequence of path classes. In this case, a global feature vector (one which encompasses information
about all paths) is computed, and then classified by the global feature classifier. This class is used to
choose a further subnode in the decision tree, which will result in the multi-path gesture either being
classified individually or rejected. The intent is that, if needed, the global feature class is essentially
appended to a sequence of path classes; some care is thus necessary to insure that the global feature
classes are not confused with path classes.

Figure 5.3 shows an example of the use of a decision tree to classify multi-path gestures. The
multi-path classifier recognizes four classes. Each class is composed of two paths. There are only
two possible classes for the first path (path 0), since classes P, Q, and S all have similar first paths.
Similarly, Q and S have similar second paths, so there are only three distinct possibilities for path 1.
Since Q and S have identical path components, the global classifier is used to discriminate between
these two, adding another level in the decision tree. The classification of the example input is
indicated by dotted lines.
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Figure 5.3: Classifying multi-path gestures
At the top are examples of four two-path gestures expected by this classifier, and at the left a two-path gesture
to be classified. Path 0 of this gesture is classified (by the path 0 classifier) as path p0, and path 1 as q1.
These path classifications are used to traverse the decision tree, as shown by the dotted lines. The tree node
reached is ambiguous (having children Q and S) so global features are used to resolve the discrepancy, and
the gesture is recognized as class S.



5.4. TRAINING A MULTI-PATH CLASSIFIER 85

5.4 Training a Multi-path Classifier

The training algorithm for a multi-path classifier uses examples of each multi-path gesture class
(typically ten to twenty examples of each class) to create a classifier. The creation of a multi-path
classifier consists of the creation of a global classifier, a number of path classifiers, and a decision
tree.

5.4.1 Creating the statistical classifiers

The path classifiers and the global classifiers are created using the statistical algorithm described in
Chapter 3. The paths of each example are sorted, the paths for a given sorting index in each class
forming a class used to train the path classifier for that index.

For example, consider training a multi-path classifier to discriminate between two multi-path
gesture classes, A and B, each consisting of two paths. Gesture class A consists of two path classes,
A1 and A2, the subscript indicating the sorting indices of the paths. Similarly, class B consists of
path classes B1 and B2. The first path in all the A examples form the class A1, and so on. The
examples are used to train path classifier 1 to discriminate between A1 and B1, and path classifier
2 to discriminate between A2 and B2. The global features of A and B are used to create the global
classifier, nominally able to discriminate between two classes of global features, AG and BG.

Within a given sorting index, it is quite possible and legitimate for paths from different gesture
classes to be indistinguishable. For example, path classes A1 and B1 may both be straight right
strokes. (Presumably A and B are distinguishable by their second paths or global features.) In this
case it is likely that examples of class A1 will be misclassified as B1 or vice versa. It is desirable to
remove these ambiguities from the path classifier by combining all classes which could be mistaken
for each other into a single class.

A number of approaches could be taken for detecting and removing ambiguities from a statistical
classifier. One possible approach would be to compute the Mahalanobis distance between each pair
of classes, merging those below a given threshold. Another approach involves applying a clustering
algorithm [74] to all the examples, merging those classes whose members are just as likely to cluster
with examples from other classes as their own. A third approach is to actually evaluate the actual
performance of a classifier which attempts to distinguish between possibly ambiguous classes; the
misclassifications of the classifier then indicate which classes are to be merged. The latter approach
was the one pursued here.

A naive approach for evaluating the performance of a classifier would be to construct the
classifier using a set of examples, and then testing the performance of the classifier on those very
same examples. This approach obviously underestimates the ambiguities of the classes since the
classifier will be biased toward correctly classifying its training examples [62]. Instead, a classifier
is constructed using only a small number of the examples (typically five per class) and then uses
the remaining examples to evaluate the constructed classifiers. Misclassifications of the examples
then indicate classes which are ambiguous and should be merged. In practice, thresholds must be
established so that a single or very small percentage of misclassifications does not cause a merger.

Mathematically, combining classes is a simple operation. The mean vector of the combined
class is computed as the average of the mean vectors of the component classes, each weighted by
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the relative number of examples in the class. A similar operation computes a composite average
covariance matrix from the covariance matrices of the classes being combined.

The above algorithm, which removes ambiguities by combining classes, is applied to each path
classifier as well as the global classifier. It remains now only to construct the decision tree for the
multi-path classifier.

5.4.2 Creating the decision tree

A decision tree node has two fields: mclass, a pointer to a multi-path gesture class, and next,
a pointer to an array of pointers to its subnodes. To construct the decision tree, a root node is
allocated. Then, during the class phase, each multi-path gesture class is considered in turn. For
each, a sequence of path classes (in sort index order), with its global feature class appended, is
constructed. Nodes are created in the decision tree in such a way that by following the sequence
a leaf node whose mclass value is the current multi-path gesture class is reached. This creates a
decision tree which will correctly classify all multi-class gesture whose component paths and global
features are correctly classified.

Next, during the example phase, each example gesture is considered in turn. The paths are sorted
and classified, as are the global features. A sequence is constructed and the class of the gesture is
added to the decision tree at the location corresponding to this sequence as before. Normally, the
paths and global features of the gesture will have been classified correctly, so there would already be
a node in the tree corresponding to this sequence. However, if one of the paths or the global feature
vector of the gesture was classified incorrectly, a new node may be created in the decision tree, and
thus the same classification mistake in the future will still result in a correct classification for the
gesture.

When attempting to add a class using a sequence whose components are misclassifications,
it is possible that the decision tree node reached already has a non-null mclass field referring
to a different multi-path gesture class than the one whose example is currently being considered.
This is a conflict and is resolved by ignoring the current example (though a warning message is
printed). Ignoring all but the first instance of a sequence insures that the sequences generated during
the class phase will take precedence over those generated during the example phase. Of course,
a conflict occurring during the class phase indicates a serious problem, namely a pair of gesture
classes between which the multi-path classifier is unable to discriminate.

During decision tree construction, nodes that have only one global feature class entry with a
subnode have theirmclass value set to the same gesture class as themclass value of that subnode.
In other words, sequences that can be classified without referring to their global feature class are
marked as such. This avoids the extra work (and potential for error) of global feature classification.

5.5 Path Features and Global Features

The classification of the individual paths and of the global features of a multi-path gesture are
central to the multi-path gesture recognition algorithm discussed thus far. This section describes the
particular feature vectors used in more detail.
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The classification algorithm used to classify paths and global features is the statistical algorithm
discussed in Chapter 3, thus the criteria for feature selection discussed in section 3.3 must be
addressed. In particular, only features with Gaussian-like distributions that can be calculated
incrementally are considered.

The path features include all the features mentioned in Chapter 3. One additional feature was
added: the starting time of the path relative to the starting time of the gesture. Thus, for example,
a gesture consisting of two fingers, one above the other, which enter the field of view of the Sensor
Frame simultaneously and move right in parallel can be distinguished from a gesture in which a
single finger enters the field first, and while it is moving right a second finger is brought into the
viewfield and moves right. In particular, the classifier (for the second sorting index) would be able
to discriminate between a path which begins at the start of the gesture and one which begins later.
The path start time is also used for path sorting, as described in section 5.2.

The main purpose of the global feature vector is to discriminate between multi-path gesture
classes whose corresponding individual component paths are indistinguishable. For example, two
gestures both consisting of two fingers moving right, one having the fingers oriented vertically, the
other horizontally. Or, one having the fingers about one half inch apart, the other two inches apart.

The global features are the duration of the entire gesture, the length of the bounding box diagonal,
the bounding box diagonal angle (always between 0 and ��� 2 so there are no wrap-around problems),
the length, sine and cosine between the first point of the first path and the first point of the last path
(referring to the path sorting order), and the length, sine, and cosine between the first point of the
first path and the last point of the last path.

Another multi-path gesture attribute, which may be considered a global feature, is the actual
number of paths in the gesture. The number of paths was not included in the above list, since it is not
included in the vector input to the statistical classifier. Instead, it is required that all the gestures of a
given class have the same number of paths. The number of paths must match exactly for a gesture to
be classified as a given class. This restriction has an additional advantage, in that knowing exactly
the number of paths simplifies specifying the semantics of the gesture (see Section 8.3.2).

The global features, crude as they might appear, in most cases enable effective discrimination
between gesture classes which cannot be classified solely on the basis of their constituent paths.

5.6 A Further Improvement

As mentioned, the multi-path classifier has a path classifier for each sorting index. The path classifier
for the first path needs to distinguish between all the gestures consisting only of a single path, as
well as the first path in those gestures having two or more paths. Similarly, the second path classifier
must discriminate not only between the second path of the two-path gestures, but also the second
path of the three path gestures, and so on. This places an unnecessary burden on the path classifiers.
Since gesture classes with different numbers of paths will never be confused, there is no need to
have a path classifier able to discriminate between their constituent paths. This observation leads to
a further improvement in the multi-path recognizer.

The improvement is instead of having a single multi-path recognizer for discriminating between
multi-path gestures with differing numbers of paths, to have one multi-path gesture recognizer, as
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described above, for each possible number of paths. There is a multi-path recognizer for gestures
consisting of only one path, another for two-path gestures, and so on, up until the maximum number
of paths expected. Each path classifier now deals only with those paths with a given sorting index
from those gestures with a given number of paths. The result is that many of the path classifiers
have fewer paths to deal with, and improve their recognition ability accordingly.

Of course, for input devices in which the number of paths is fixed, such as the DataGlove, this
improvement does not apply.

5.7 An Alternate Approach: Path Clustering

The multi-path gesture recognition implementation for the Sensor Frame relies heavily on path
sorting. Path sorting is used to decide which paths are submitted to which classifiers, as well as in the
global feature calculation. Errors in the path sorting (i.e. similar gestures having their corresponding
paths end up in different places in the path ordering) are a potential source of misclassifications.
Thus, it was thought that a multi-path recognition method that avoided path sorting might potentially
be more accurate.

5.7.1 Global features without path sorting

The first step was to create a global feature set which did not rely on path sorting. As usual, a major
design criterion was that a small change in a gesture should result in a small change in its global
features. Thus, features which depend largely upon the precise order that paths begin cannot be
used, since two paths which start almost simultaneously may appear in either order. However, such
features can be weighted by the difference in starting times between successive paths, and thus vary
smoothly as paths change order. Another approach which avoids the problem is to create global
features which depend on, say, every pair of paths; these too would be immune to the problems of
path sorting.

The global features are based on the previous global features discussed. However, for each
feature which relied on path ordering there, two features were used here. The first was the previous
feature weighted by path start time differences. For example, one feature is the length from the first
point of the first path to the first point of the last path, multiplied by the difference between the start
times of the first and second path, and again multiplied by the difference between the start times of
the last and next to last path. The second was the sum of the feature between every pair path, such
as the sum of the length between the start points of every pair of paths. For the sine and cosine
features, the sum of the absolute values was used.

5.7.2 Multi-path recognition using one single-path classifier

Path sorting allows there to be a number of different path classifiers, one for the first path, one for the
second, and so on. To avoid path sorting, a single classifier is used to classify all paths. Referring
to the example in Section 5.4, a single classifier would be used to distinguish between A1, A2, B1,
and B2.
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Once all the paths in a gesture are classified, the class information needs to be combined to
produce a classification for the gesture as a whole. As before, a decision tree is used. However,
since path sorting has been eliminated, there is now no apparent order of the classes which will
make up the sequence submitted to the decision tree. To remedy this, each path class is assigned an
arbitrary distinct integer during training. The path class sequence is sorted according to this integer
ranking (the global feature classification remains last in the sequence) and then the decision tree is
examined. The net result is that each node in the decision tree corresponds to a set (rather than a
sequence) of path classifications. (Actually, as will be explained later, each node corresponds to a
multiset.)

In essence, the recognition algorithm is very simple: the lone path classifier determines the
classes of all the paths in the gesture; this set of path classes, together with the global feature class,
determines the class of the gesture. Unfortunately, this explanation glosses over a serious conceptual
difficulty: In order to train the path classifier, known instances of each path class are required. But,
without path sorting, how is it possible to know which of the two paths in an instance of gesture
class A is A1 and which is A2? One of the paths of the first A example can arbitrarily be called A1.
Once this is done, which of the paths in each of the other examples of class A are in A1?

Once asked, the answer to this question is straightforward. The path in the second instance of
A which is similar to the path previously called A1 should also be called A1. If a gesture class has
N paths, the goal is to divide the set of paths used in all the training examples of the class into N
groups, each group containing exactly one path from each example. Ideally, the paths forming a
group are similar to each other, or, in other words, they correspond to one another.

Note that path sorting produces exactly this set of groups. Within all the examples of a given
gesture class, all paths with the same sorting index form a group. However, if the purpose of the
endeavor is to build a multi-path recognizer which does not use path sorting, it seems inappropriate
to resort to it during the training phase. Errors in sorting the example paths would get built into the
path classifier, likely nullifying any beneficial effects of avoiding path sorting during recognition.

Another way to proceed is by analogy. Within a given gesture class, the paths in one example are
compared to those of another example, and the corresponding paths are identified. The comparisons
could conceivably be based on the feature of the path as well as the location and timing of the path.
This approach was not tried, though in retrospect it seems the simplest and most likely to work well.

5.7.3 Clustering

Instead, the grouping of similar paths was attempted. The definition of similarity here only refers
to the feature vector of the path. In particular, the relative location of the paths to one another was
ignored. To group similar paths together solely on the basis of their feature vectors, a statistical
procedure known as hierarchical cluster analysis [74] was applied.

The first step in cluster analysis is to create a triangular matrix containing the distance between
every pair of samples, in this case the samples being every path of every example of a given class.
The distance was computed by first normalizing each feature by dividing by the standard deviation.
(The typical normalization step of first subtracting out the feature mean was omitted since it has
no effect on the difference between two instances of a feature.) The distance between each pair of
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example path feature vectors was then calculated as the sum of the squared differences between the
normalized features.

From this matrix, the clustering algorithm produces a cluster tree, or dendrogram. A den-
drogram is a binary tree with an additional linear ordering on the interior nodes. The clustering
algorithm initially considers each individual sample to be in a group (cluster) of its own, the distance
matrix giving distances between every pair of groups. The two most similar groups, i.e. the pair
corresponding to the smallest entry in the matrix, are combined into a single group, and a node
representing the new group is created in the dendrogram, the subnodes of which refer to the two
constituent groups. The distance matrix is then updated, replacing the two rows and columns of the
constituent groups with a single row and column representing the composite group.

The distance of the composite group to each other group is calculated as a function of the
distances of the two constituents to the other group. Many such combining functions are possible;
the particular one used here is the group average method, which computes the distance of the newly
formed group to another group as the average (weighted by group size) of the two constituent groups
to the other group. After the matrix is updated, the process is repeated: the smallest matrix element
is found, the two corresponding groups combined, and the matrix updated. This continues until
there is only one group left, representing the entire sample set. The order of node creation gives the
linear order on the dendrogram nodes, nodes created early having subnodes whose groups are more
similar than nodes created later.

Figure 5.4 shows the dendrogram for the paths of 10 3-path clasp gestures, where the thumb
moves slightly right while the index and middle fingers move left. The leaves of the dendrogram
are labeled with the numbers of the paths of the examples. Notice how all the right strokes cluster
together (one per example), as do all the left strokes (two per example).

Using the dendrogram, the original samples can be broken into an arbitrary (between one and
the number of samples) number of groups. To get N groups, one simply discards the top N � 1 nodes
of the dendrogram. For example, to get two groups, the root node is discarded, and the two groups
are represented by the two branches of the root node.

Turning back now to the problem of finding corresponding paths in examples of the same multi-
path gesture class, the first step is to compute the dendrogram of all the paths in all examples of
the gesture. The dendrogram is then traversed in a bottom-up (post-order) fashion, and at each
node a histogram that indicates the count of the number of paths for each example is computed.
The computation is straightforward: for each leaf node (i.e. for each path) the count is zero for all
examples except the one the path came from; for each interior node, each element of the histogram
is the sum of the corresponding elements of the subnode’s histogram.

Ideally, there will be nodes in the tree whose histogram indicates that all the paths below this
node come from different examples, and that each example is represented exactly once. In practice,
however, things do not work out this nicely. First, errors in the clustering sometimes group two
paths from the same example together before grouping one path from every example. This case
is easily handled by setting a threshold, e.g. by accepting nodes in which paths from all but two
examples appear exactly once in the cluster.

The second difficulty is more fundamental. It is possible that two or more paths in a single
gesture are quite similar (remember that relative path location is being ignored). This is actually
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Figure 5.4: Path Clusters
This shows the result of clustering applied to the thirty paths of the ten three-path clasp gestures shown.
Each clasp gesture has a short, rightward moving path and two similar, long leftward moving paths. The
hierarchical clustering algorithm groups similar paths (or groups of paths) together. The height of an interior
node indicates the similarity of its groups, lower nodes being more similar. Note that the right subtree of
the root contains 10 paths, one from each multi-path gesture. It is thus termed a good cluster (indicated
by a circle on the graph), and its constituent paths correspond. The left subtree containing 20 paths, two
from each gesture, is also a good cluster. Had one of its descendants been another good cluster (containing
approximately 10 paths, one from each gesture), it would have been concluded that all three paths of the
clasp gesture are different, with the corresponding paths given by the good clusters. As it happened, no
descendant of the left subtree was a good cluster, so it is concluded that two of the paths within the clasp
gesture are similar, and will thus be treated as examples of one single-path class.
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common for Sensor Frame gestures that are performed by moving the elbow and shoulder while
keeping the wrist and fingers rigid. For these paths, it is just as likely that the two paths of the same
example be grouped together as it is that corresponding paths of different examples be grouped
together. Thus, instead of a histogram that shows one path from each example, ideally there will be
a node with a histogram containing two paths per example. This is the case in figure 5.4.

Call a node which has a histogram indicating an equal (or almost equal) number of paths from
each example a good cluster. The search for good clusters proceeds top down. The root node is
surely a good cluster; e.g. given examples from a three path gesture class, the root node histogram
will indicate three paths from each example gesture. If no descendants of the root node are good
clusters, that indicates that all the paths of the gesture are similar. However, if there are good clusters
below the root (with fewer examples per path than the root), that indicates that not all the paths of
the gesture are similar to each other. In the three path example, if, say, one subnode of the root node
was a good cluster with one path per example, those paths form a distinct path class, different than
the other path classes in the gesture class. The other subnode of the root will also be a good cluster,
with two paths per example. If there does not exist a descendant of that node which is a good cluster
with one path per example, that indicates that the two gesture paths classes are similar. Otherwise,
good clusters below that node (there will likely be two) indicate that each path class in the gesture
class is different. The cluster analysis, somewhat like the path sorting, indicates which paths in each
example of a given gesture class correspond. (Good clusters are indicated by circles in figure 5.4.)

Occasionally, there are stragglers, paths which are not in any of the good clusters identified
by the analysis. An attempt is made to put the stragglers in an appropriate group. If an example
contains a single straggler it can easily be placed in the group which is lacking an example from
this class. If an example contains more than one straggler, they are currently ignored. If desired, a
path classifier to discriminate between the good clusters could be created and then used to classify
the stragglers. This was not done in the current implementation since there was never a significant
number of stragglers.

Once the path classes in each gesture class have been identified using the clustering technique, a
path classifier is trained which can distinguish between every path class of every gesture class. Note
that it is possible for a path class to be formed from two or more paths from each example of a single
gesture class, if the cluster analysis indicated the two paths were similar. If analogy techniques were
used to separate such a class into multiple “one path per example” classes, the resulting classifier
would ambiguously classify such paths. In any case, ambiguities are still possible since different
gesture classes may have similar gesture paths. As in Section 5.4, the ambiguities are removed from
the classifier by combining ambiguous classes into a single class. Each (now unambiguous) class
which is recognized by the path classifier is numbered so as to establish a canonical order for sorting
path class sequences during training and recognition.

5.7.4 Creating the decision tree

After the single-path and global classifiers have been trained, the decision tree must be constructed.
As before, in the class phase, for each multi-path gesture class, the (now unambiguous) classes of
each constituent path are enumerated. Since two paths in a single gesture class may be similar,
this enumeration of classes may list a single class more than once, and thus may be considered a
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multiset. The list of classes is sequenced into canonical order, the global feature class appended, and
the resulting sequence is used to add the multi-path class to the decision tree. As before, a conflict,
due to the fact that two different gesture classes have the same multiset of path classes, is fatal.

Next comes the example phase. The paths of each example gesture are classified by the single
path classifier, and the resulting sequence (in canonical order with the global feature class appended)
is used to add the class of the example to the decision tree. Usually no work needs to be done, as
the same sequence has already been used to add this class (usually in the class phase). However, if
one of the paths in the sequence has been misclassified, adding it to the decision tree can improve
recognition, since this misclassification may occur again in the future. Conflicts here are not fatal,
but are simply ignored on the assumption that the sequences added in the class phase are more
important than those added in the example phase.

5.8 Discussion

Two multi-path gesture recognition algorithms have been described, which are referred to as the
“path sorting” and the “path clustering” methods. In situations where there is no uncertainty as to
the path index information (e.g. a DataGlove, since the sensors are attached to the hand) then the
path-sorting method is certainly superior. However, with input devices such as the Sensor Frame,
the path sorting has to be done heuristically, which increases the likelihood of recognition error.

The path-clustering method avoids path sorting and its associated errors. However, other sources
of misclassification are introduced. One single-path classifier is used to discriminate between all the
path classes in the system, so will have to recognize a large number of classes. Since the error rate
of a classifier increases with the number of classes, the path classifier in a path-clustering algorithm
will never perform as well as those in a path-sorting algorithm. A second source of error is in the
clustering itself; errors there cause errors in the classifier training data, which cause the performance
of the path classifier to degrade. One way around this is to cluster the paths by hand rather than
by having a computer perform it automatically. This needed to be done with some gesture classes
from the Sensor Frame, which, because of glitches in the tracking hardware, could not be clustered
reliably.

In practice, the path-sorting method always performed better. The poor performance of the
path-clustering method was generally due to the noisy Sensor Frame data. It is however difficult to
reach a general conclusion, as all the gesture sets upon which the methods were tested were designed
with the path sorting algorithm in mind. It it easy to design a set of gestures that would perform
poorly using sorted paths. One possibility for future work is to have a parameterizable algorithm
for sorting paths, and choose the parameters based on the gesture set.

The Sensor Frame itself was a significant source of classification errors. Sometimes, the knuckles
of fingers curled so as not to be sensed would inadvertently break the sensing plane, causing extra
paths in the gesture (which would typically then be rejected). Also, three fingers in the sensing
plane can easily occlude each other with respect to the sensors, making it difficult for the Sensor
Frame to determine each finger’s location. The Sensor Frame hardware usually knew from recent
history that there were indeed three fingers present, and did its best to estimate the positions of each.
However, the resulting data often had glitches that degraded classification, sometimes by confusing
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the tracking algorithm. It is likely that additional preprocessing of the paths before recognition
would improve accuracy. Also, the Sensor Frame itself is still under development, and it is possible
that such glitches will be eliminated by the hardware in the future.

Another area for future work is to apply the single-path eager recognition work described in
Chapter 4 to the eager recognition of multi-path gestures. Presumably this is simply a matter of
eagerly recognizing each path, and combining the results using the decision tree. How well this
works remains to be seen.

It would also be possible to apply the multi-path algorithm to the recognition of multi-stroke
gestures. The path sorting in this case would simply be the order that the strokes arrive. To date,
this has not been tried.

5.9 Conclusion

In this chapter, two methods for multi-path gesture recognition were discussed and compared. Each
classifies the paths of the gesture individually, uses a decision tree to combine the results, and uses
global features to resolve any lingering ambiguities. The first method, path sorting, builds a separate
classifier for each path in a multi-path gesture. In order to determine which path to submit to which
classifier, either the physical input device needs to be able to tell which finger corresponds to which
path, or a path sorting algorithm numbers the paths. The second method, path clustering, avoids
path sorting (which has an arbitrary component) by using one classifier to classify all the paths in a
gesture.

In general, the path sorting method proved superior. However, when the details of the path
sorting algorithm are known it is possible to design a set of gestures which will be poorly recognized
due to errors in the path sorting. That same knowledge can also be used to design gesture sets that
will not run into path sorting problems.



Chapter 6

An Architecture for Direct Manipulation

This chapter describes the GRANDMA system. GRANDMA stands for “Gesture Recognizers
Automated in a Novel Direct Manipulation Architecture.” This chapter concentrates solely on the
architecture of the system, without reference to gesture recognition. The design and implementation
of gesture recognizers in GRANDMA is the subject of the next chapter.

GRANDMA is an object-oriented toolkit similar to those discussed in Section 2.4.1. Like those
toolkits, is it based on the model-view-controller (MVC) paradigm. GRANDMA also borrows ideas
from event-based user-interface systems such as Squeak [23], ALGAE [36], and Sassafras [54].

GRANDMA is implemented in Objective C [28] on a DEC MicroVax-II running UNIX and the
X10 window system.

6.1 Motivation

Building an object-oriented user interface toolkit is a rather large task, not to be undertaken lightly.
Furthermore, such toolkits are only peripherally related to the topic at hand, namely gesture-based
systems. Thus, the decision to create GRANDMA requires some justification.

A single idea motivated the author to use object-oriented toolkits to construct gesture-based
systems: gestures should be associated with objects on the screen. Just as an object’s class
determines the messages it understands, the author believed the class could and should be used
to determine which gestures an object understands. The ideas of inheritance and overriding then
naturally apply to gestures. The analogy of gestures and messages is the central idea of the “systems”
portion of the current work.

It would have been desirable to integrate gestures into an existing object oriented toolkit,
rather than build one from scratch. However, at the time the work began, the only such toolkits
available were Smalltalk-80’s MVC [70] and the Pascal-based MacApp [115], neither of which ran
on the UNIX/C environment available to (and preferred by) the author. Thus, the author created
GRANDMA.

The existing object-oriented user interface systems tend to have very low-level input models,
with device dependencies spread throughout the system. For example, some systems require views
to respond to messages such as middleButtonDown [28]; others use event structures that can
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only represent input from a fixed small set of devices [102]. In general, the output models of existing
systems seem to have received much more attention than the input models. One goal of GRANDMA
was to investigate new architectures for input processing.

6.2 Architectural Overview

Figure 6.1 shows a general overview of the architecture of the GRANDMA system. In order to
introduce the architecture to the reader, the response to a typical input event is traced. But first, a
brief description of the system components is in order.

GRANDMA is based on the Model-View-Controller (MVC) paradigm. Models are application
objects. They are concerned only with the semantics of the application, and not with the user
interface. Views are concerned with displaying the state of models. When a model changes, it is the
responsibility of the model’s view(s) to relay that change to the user. Controllers are objects which
handle input. In GRANDMA, controllers take the form of event handlers.1 A single passive event
handler may be associated with many view objects; when input is first initiated toward a view, one
of the view’s passive event handlers may activate (a copy of) itself to handle further input.

6.2.1 An example: pressing a switch

Consider a display consisting of several toggle switches. Each toggle switch has a model, which is
likely to be an object containing a boolean variable. The model has messages to set and retrieve the
value of the variable, which are used by the view to display the state of the toggle switch, and by
the event handler to change the state of the toggle.

When the mouse cursor is moved over one of the switches and, say, the left mouse button is
pressed, the window manager informs GRANDMA, which raises an input Pick event. The event
is an object which groups together all the information about the event: the fact that it was a mouse
event, which button was pressed, and, most significantly, the coordinates of the mouse cursor.

Raising an event causes the active event handler list to be searched for a handler for this
event. In turn, each event handler on the list is asked if it wishes to handle the event. Assuming
none of the other handlers will be interested in the event, the last handler in the list, called the
XYEventHandler, handles the event. This is what happens in the case of pressing the toggle
switch.

The XYEventHandler is able to process any event at a location (i.e. events with X-Y coordi-
nates). The handler first searches the view database and constructs a list of views which are “under”
the event, in other words, views that are at the given event location. The search is simple: each view
has a rectangular region in which it is included; if the event location is in the rectangle, the view
is added to the list. In the switch example, the list of views consists of the indicated toggle switch
view followed by the view representing the window in which the toggle switch is drawn.

1The distinction between controllers and event handlers is in the way each interacts with the underlying layer that
generates input events. Once activated, controllers loop, continually calling the input layer for all input events until
the interaction completes. In other words, controllers take control, forcing the user to complete one interaction before
initiating the next. In contrast, event handlers are essentially called by the input layer whenever input occurs. It is thus
possible to interact simultaneously with multiple event handlers, for example via multiple devices.
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Figure 6.1: GRANDMA’s Architecture
In GRANDMA, user actions cause events to be raised (i.e. pressing a mouse button raises a Pick event).
Each handler on the active event handler list is asked, in order, if it wishes to handle the event. The
XYEventHandler, last on the list, is asked only if none of the previous active handlers have consumed
the event. For an event with a screen location (i.e. a mouse event), the XYEventHandler uses the view
database to determine the views at the given screen location, and asks each view (from front to back) if it
wishes to handle the event. To answer, a view consults its list of passive event handlers, some associated with
the view itself, others associated with the view’s class and superclasses, to see if one of those is interested
in the event. If so, that passive handler may activate itself, typically by placing a copy of itself at the front
of the active event handler list. This enables subsequent events to be handled efficiently, short-circuiting the
elaborate search for a handler initiated by the XYEventHandler. An event handler only consumes events
in which it is interested, allowing other events to propagate to other event handlers.
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The views are then queried starting with the foreground view. First, a view is asked if the event
location is indeed over the view; this gives an opportunity for a non-rectangular view to respond
only to events directly over it. If the event is indeed over the view, the view is then asked if it
wishes to handle the input event. The search proceeds until a view wishes to handle the event, or all
the views under the event have declined. In the example, the toggle switch view handles the event,
which would then not be propagated to the window view.

A view does not respond directly to a query as to whether it will handle an input event. Instead,
that request is passed to the view’s passive event handlers. Associated with each view is a list of
event handlers that handle input for the view; a single passive event handler is often shared among
many views in the system. The passive event handlers are each asked about the input in turn; the
search stops when one decides to handle the input. In the example, the toggle switch has a toggle
switch event handler first on its list of passive handlers that would handle the Pick event.

A passive event handler that has decided to handle an event may activate a copy or instance of
itself, i.e. place the copy or instance in the active event handler list. Or, it may not, choosing to do
all the work associated with the event when it gets the event. For example, a toggle switch may
either change state immediately when the mouse button is pressed over the switch, or it may simply
highlight itself, changing state only if the button is released over the switch. In the former case,
there is no need to activate an event handler; the passive handler itself can change the state of the
switch.

In the latter case, the passive handler activates a copy of itself which first highlights the switch,
and then monitors subsequent input to watch if the cursor remains over the view. If the cursor
moves away from the view, the active event handler will turn off the highlighting of the switch, and
may (depending on the kind of interaction wanted) deactivate itself. Finally, if the mouse button
is released over the switch, the active event handler will, through the view, toggle the state of the
switch (and associated model), and then deactivate itself.

As noted above, active handlers are asked about events before the view database is searched and
any passive handlers queried. Thus, in the switch example, subsequent mouse movements made
while the button is held down, or the release of the mouse button, will be handled very efficiently
since the active handler is at the head of the active event handler list.

6.2.2 Tools

The tool is one component of GRANDMA’s architecture not mentioned in the above example. A
tool is an object that raises events, and it is through such events that tools operate on views (and thus
models) in the system. An event handler may be considered the mechanism through which a tool
operates upon a view. The interaction is by no means unidirectional: some event handlers cause
views to operate upon tools as well. In addition to operating on views directly, event handlers may
themselves raise events, as will be seen.

Every event has an associated tool which typically refers to the device that generated the event.
For example, a system with two mice would have two MouseTool objects, and the appropriate
one would be used to identify which mouse caused a given Pick event. When asked to handle an
event, an active handler typically checks that the event’s tool is the same one that caused the handler
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to be activated in the first place. In this manner, the active event handler ignores events not intended
for it.

Tools are also involved when one device emulates another. For example, a Sensor Frame may
emulate a mouse by having an active handler that consumes events whose tool is a SensorFrame
object, raising events whose tool is a MouseTool in response. That MouseTool does not
correspond to a real mouse; rather, it allows the Sensor Frame to masquerade as a mouse.

Tools do not necessarily refer to hardware devices. Virtual tools are software objects (typically
views) that act like input hardware in that they may generate events. For example, file views (icons)
would be virtual tools when implementing a Macintosh-like Finder in GRANDMA. Dragging a
file view would cause events to be raised in which the tool was the file view. A passive handler
associated with folder (directory) views would be programmed to activate whenever an event whose
tool is a file view is dragged over a folder. Thus, in GRANDMA the same mechanism is used when
the mouse cursor is dragged over views as when the mouse is used to drag one view over other
views.

The typical case, in which a tool has a semantic action which operates upon views that the tool
is dropped upon, is handled gracefully in GRANDMA. Associated with every view is the passive
GenericToolOnViewEventHandler. When a tool is dragged over a view which responds to
the tool’s action, the GenericToolOnViewEventHandler associated with the view activates
itself, highlighting the view. Dropping the tool on the view causes the action to occur.2 Thus,
semantic feedback is easy to achieve using virtual tools (see section 6.7.7).

This concludes the brief overview of the GRANDMA architecture. A discussion of the details
of the GRANDMA system now follows. A reader wishing to avoid the details may proceed directly
to section 6.8, which summarizes the main points while comparing GRANDMA to some existing
systems.

6.3 Objective-C Notation

As mentioned, GRANDMA is written in Objective C [28], a language which augments C with
object-oriented programming constructs. In this part of the dissertation, program fragments will be
written in Objective C.

In Objective C, variables and functions whose values are objects are all declared type id, as in
id aSet;

Variables of type id are really pointers, and can refer to any Objective C object, or have the
value nil. Like all pointers, such variables need to be initialized before they refer to any object:

aSet = [Set new]; /� create a Set object � /
The expression[o messagename] is used to send the message messagename to the object

referred to by o. This object is termed the receiver, and messagename the selector. A message
send is similar to a function call, and returns a value whose type depends on the selector.

Objective C comes supplied with a number of factory objects, also known as classes. Set is
an example of a factory object, and like most factory objects, responds to the message new with a

2The related case, in which a tool is dragged over a view that acts upon the tool (e.g. the trash can), is handled by the
BucketEventHandler.
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newly allocated instance of itself.
Messages may also have parameters, as in

id aRect = [Rectangle origin:10:10 corner:20:30];
[aSet add:aRect];

The message selector is the concatenation of all the parameter labels (origin::corner::
in the first case, add: in the second). In all cases, there is one parameter after each colon.

A factory’s fields and methods are declared as in the following example:
= Rect:Object

�
int x1,y1,x2,y2; �

+ origin:(int)_x1 :(int):_y1 corner:(int)_x2 :(int)_y2
�

self = [self new];
x1 = _x1, y1 = _y1, x2 = _x2; y2 = _y2;
return self;� �

shiftby:(int)x :(int)y�
x1 += x; y1 += y; x2 += x; y2 += y; return self; �

This declares the factory Rect to be a subclass of the factory Object, the root of the class
hierarchy. Note that the factory declaration begins with the “=” token. A method declared with
“+” defines a message which is sent directly to a factory object; such methods often allocate and
return an instance of the factory. A method declared with “-” defines a message that is sent directly
to instances of the class. The variable self is accessible in all method declarations; it refers
to the object to which the message was sent (the receiver). When self is set to an instance of
the object class being defined, the fields in the object can be referenced directly. Thus, as in the
origin::corner:: method, the first step of a factory method is often to reassignself to be an
instance of the factory, then to initialize the fields of the instance. The usage [self new] rather
than [Rect new] allows the method to work even when applied to a subclass of Rect (since in
that case self would refer to the factory object of the subclass). When the types of methods and
arguments are left unspecified, they are assumed to be id, and typically methods return self when
they have nothing better to return (rather than void, i.e. not returning anything).

When describing a method of a class, the fields and other methods are often omitted, as in
= Rect ...�

(int)area
�
return abs( (x2

�
x1) � (y2

�
y1) ); �

In Objective C, messages selectors are first class objects, which can be assigned and passed as
parameters and then later sent to objects. The construct @selector(message-selector) returns
an object of type SEL, which is a runtime representation of the message selector:

id aRect = [Rect origin:10:5 corner:40:35];
SEL op = flag ? @selector(area) : @selector(height);
printf("%d\n", [aRect perform:op]);

The rectangle aRect will be sent the area or height message depending on the state of
flag. The perform: message sends the message indicated by the passed SEL to an object.
Variants of the form perform:with:with: allow additional parameters to be sent as well.

The first class nature of message selectors distinguishes Objective C from more static object-
oriented languages, notably C++. As they are analogous to pointers to functions in C, SEL values
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may be considered “pointers” to messages. Objective C includes functions for converting between
SEL values and strings, and a method for inquiring at runtime whether an object responds to
an arbitrary message selector. As will be seen, these Objective C features are often used in the
GRANDMA implementation.

In the interest of simplicity, debugging code and memory management code have been removed
from most of the code fragments shown below, though they are of course needed in practice. Also,
as the code is explained in the text, many of the comments have been removed for brevity.

6.4 The Two Hierarchies

Thus far, two important hierarchies in object-oriented user interface toolkits have been hinted at,
and it seems prudent to forestall confusion by further discussing them here. The first one is known
as the class hierarchy. The class hierarchy is the tree of subclass/superclass relationships that one
has in a single-inheritance system such as Objective C. In Objective C, the class Object is at the
root of the class hierarchy; in GRANDMA classes like Model, View, and EventHandler are
subclasses of Object; each of these has subclasses of its own (e.g. ButtonView is a subclass of
View), and so on. The entire tree is referred to as the class hierarchy, and particular subtrees are
referred to by qualifying this term with a class name. In particular, the View class hierarchy is the
tree with the class View at the root, with the subclasses of View subnodes of the root, and so on.

The second hierarchy is referred to as the view hierarchy or view tree. A View object typically
controls a rectangular region of the display window. The view may have subviews which control
subareas of the parent view’s rectangle. For example, a dialogue box view may have as subviews
some radio buttons. Subviews are usually more to the foreground than their parent views; in other
words, a subview usually obscures part of its parent’s view. Of course, subviews themselves might
have subviews, and so on, the entire structure being known as the view tree. In GRANDMA, the
root of the view tree is a view corresponding to a particular window on the display; a program with
multiple windows will have a view tree for each. It is important not to confuse the view hierarchy
with the View class hierarchy; the former refers to the superview/subview relation, the latter to the
superclass/subclass relation.

6.5 Models

Being a Model/View/Controller-based system, naturally the three most important classes in
GRANDMA are Model, View, and EventHandler (the latter being GRANDMA’s term for
controller). The discussion of GRANDMA is divided into three sections, one for each of these
classes. Class Model is considered first.

Models are objects which contain application-specific data. Model objects encapsulate the data
and computation of the task domain. The MVC paradigm specifies that the methods of models
should not contain any user-interface specific code. However, a model will typically respond to
messages inquiring about its state. In this manner, a view object may gain information about the
model in order to display a representation of the model.
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In a number of MVC-like systems, there is no specific class named “Model” [28]. Instead,
any object may act as a model. However, in GRANDMA, as in Smalltalk-80[70], there is a single
class named Model, which is subclassed to implement application objects. This has the obvious
disadvantage that already existing classes cannot directly serve as models. The advantage is the
ease of implementation, and the ability to easily distinguish models from other objects.

One of the tenets of the MVC paradigm is that Model objects are independent of their views.
The intent is that the user interface of the application should be able to be changed without modifying
the application semantics. The effect of this desire for modularity is that a Model subclass is written
without reference to its views.

However, when the state of a model changes, a mechanism is needed to inform the views of
the model to update the display accordingly. The way this is accomplished is for each model
to have a list of dependents. Objects, such as views, that wish to be informed when a model
changes state register themselves as dependents of the model. By convention, a Model object sends
itself the modified message when it changes; this results in all its dependents getting sent the
modelModified message, at which time they can act accordingly.

The heart of the implementation of the Model class in GRANDMA is simple and instructive:

= Model : Object
�
id dependents; ��

addDependent:d
�

if(dependents == nil) dependents = [OrdCltn new];
[dependents add:d];
return self;� �

removeDependent:d
�

if(dependents != nil) [dependents remove:d];
return self;� �

modified
�

if(dependents != nil) /� send all dependents modelModified � /
[dependents elementsPerform:@selector(modelModified)];

return self;�
Thus, a Model is a subclass of Object with one additional field, dependents. When

a Model is first created, its dependents field is automatically set to nil. The first time a
dependent is added (by sending the message addDependent:), the dependents field is set to
a new instance of OrdCltn, a class for representing lists of objects. The dependent is then added
to the list; it can later be removed by the removeDependent message.

Model is an abstract class; it is not intended to be instantiated directly, but instead only be
subclassed. A simple example of a Model might be boolean variable (whose view might be a toggle
switch):

= Boolean : Model
�
BOOL state; ��

(BOOL)getState
�
return state; �
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�
setState:(BOOL)_state�

state = _state; return [self modified]; ��
toggle

�
state = !state; return [self modified]; �

Notice that whenever a Boolean object’s state changes, it sends itself themodified message,
which results in all of its dependents getting sent the modelModified message.

6.6 Views

The abstract classView, as mentioned, handles the display ofModels. It is easily the most complex
class in the GRANDMA system; it is over 800 lines of code, and it currently implements 10 factory
methods and 67 instance methods (not including those inherited from Object). For brevity, most
of the methods will not be mentioned, or are only mentioned in passing.

Views have a number of instance variables (fields):
= View : Object

�
id model;
id parent, children;
id picture, highlight;
short xloc, yloc;
id box;
int state;�

Themodel variable is the view’s connection with its model. Some views have no model; in this
case model will be nil. The fields parent and children implement the view tree, parent
being the superview of the view, children being a list (OrdCltn) of the subviews of this view.
The fields picture and highlight refer to the graphics used to draw and highlight the view,
respectively. The graphics are drawn with respect to the origin specified by (xloc, yloc), and
are constrained to be within the Rectangle objectbox. The state field is a set of bits indicating
both the current state of the view (set by the GRANDMA system) and the desired state of the view
(controllable by the view user).

To illustrate some of View’s methods, here is a toggle switch view whose model is the class
Boolean described above.

= SwitchView: View
� �

To create a toggle switch view:
id aBoolean = [Boolean new];
id aSwitchView = [SwitchView createViewOf:aBoolean];

The createViewOf: method of class View allocates a new view object (in this case an
instance of SwitchView), sets the model instance variable, and, to add itself to the model’s
dependents, does [model addDependent:self].

The graphics for the switch are implemented as:
= SwitchView ...�

updatePicture
�

id p = [self VbeginPicture];
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[p rectangle 0:0 :10:10];

if([model getState])

[p rectangle 2:2 :8:8];

[self VendPicture];

return self;�
The intention is to draw an empty rectangle 10 by 10 pixels in size for a switch whose model’s

state is FALSE, but put a smaller rectangle within the switch when the model’s state is TRUE.
View’s VbeginPicture and VendPicture methods deal with the picture instance

variable. (The V prefix in the method names is a convention indicating that these messages are
intended only to be sent by subclasses of View.) VbeginPicture creates or initializes the
HangingPicture object which it returns. The graphics are then directed at the picture, which
is in essence a display list of graphics commands. Note how the model’s state is queried using the
model instance variable inherited from class View. This is done for efficiency purposes; a more
modular way to accomplish the same thing would be if([[self model] getState]).

The method updatePicture gets called indirectly from View’s modelModified method:
= View ...�

modelModified
�

[self update];

if(state & V_NOTIFY_CHILDREN) /� propagate modelModified to kids � /

[children elementsPerform:@selector(modelModified)];

return self;� �
update

�
return [self updatePicture]; �

The state bit V_NOTIFY_CHILDREN is settable by the creator of a view; it determines whether
modelModified messages will be propagated to subviews. Often when this bit is turned off,
the subclass of View overrides the update method in order to propagate modelModified only
to certain of its subviews. (For example, a view whose model is a list might have a subview for
each element in the list displayed left to right, and when one element is deleted from the list the
view could arrange that only the subviews to the right of the deleted one be redrawn.) In the more
typical case, the subclass only implements the updatePicture method which redraws the view
to reflect the state of the model.

For the switch to be displayed, it needs to be a subview (or a descendant) of a WallView. Class
WallView is the abstraction of a window on the display. An instance of WallView is created for
each window a program requires, as in:

id aWallView = [WallView name:"gdp"];

[aWallView addSubView:[aSwitchView at:50:30]];

This fragment creates a window named “gdp.” The string “gdp” is looked up in a database (in
this case, the .Xdefaults file as administered by the X window system) to determine the initial size
and location of the window. The switch is added as a subview to the wall view, and displayed at
coordinates (50,30) in the newly created window.
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This ends the discussion of the major methods of class View. As the need arises, additional
methods will be discussed. It is ironic how in this dissertation, largely concerned with input, so
much effort was expended on output. The initial intention was to keep the output code as simple as
possible while still being usable. Unfortunately, thousands of lines of code were required to get to
that point.

6.7 Event Handlers

In GRANDMA, the analogue of MVC controllers are event handlers. When input occurs, it is
represented as an event which is raised. Raising an event results in a search for an active event
handler that will handle the event. For many events, the last handler in the active list is a catch-all
handler whose function is to search for any views at the event’s location. Each such view is asked
if it wishes to handle the event; the view then asks each of its passive event handlers if it wants
to handle the event. As mentioned, a single passive event handler may be associated with many
different views. A passive event handler may activate a copy or instance of itself in response to
input.

Warning to readers: due to this dissertation’s focus on input, this is necessarily a very long
section.

6.7.1 Events

Before event handlers can be discussed in detail, it is helpful to make concrete exactly what is meant
by “event.” All events are instances of some subclass of Event:

= Event : Object
�
id instigator; ��

instigator
�
return instigator; ��

instigator:_instigator�
instigator = _instigator; return self; �

The instigator of an event is the object posting the event. All window manager events are
instigated by an instance of class Wall.3

Figure 6.2 shows the Event class hierarchy. (Like instigator in class Event, each
instance variable shown has a method to set and a method to retrieve its value.) The most important
subclass is WallEvent, which is an event associated with a window, and thus usually raised by
(the GRANDMA interface to) the window manager. A KeyEvent is generated when a character
is typed by the user. A RefreshEvent is generated when the window manager requests that a
particular window be redrawn.

The subclasses of the abstract class DragEvent, when raised by the window manager, indicate
a mouse event. In these cases, the tool field is an instance of GenericMouseTool or one of
its subclasses. When a mouse button is pressed, a PickEvent is generated. The field loc is a

3The instigator is mostly used for tracing and debugging. Occasionally, it is used for a quick check by an active event
handler that wishes to insure it is only handling events raised by the same object that raised the event which activated the
handler in the first place. Most active handlers do not bother with this check, being content to simply check that the tool
(rather than the instigator) is the same.
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WallEvent { id wall; }

KeyEvent { int character; }

GestureEvent { id event; id loc; id tool; } 

DragEvent { id tool; id loc; }

TimeoutEvent

RefreshEvent

Event

DropEventMoveEventPickEvent

Figure 6.2: The Event Hierarchy

Point object, indicating the location of the mouse cursor.4 The mouse object referred to by the
tool field indicates which button has been pressed. When the mouse is moved (currently only
when a mouse button is pressed), a MoveEvent is generated. When the mouse button is released,
a DropEvent is generated.

The classes GestureEvent and TimeoutEvent will be discussed in Chapter 7.

6.7.2 Raising an Event

A WallView object represents the root of the view tree of a given window. Associated with each
WallView object is a Wall object which actually implements the interface between GRANDMA
and the window manager. Also associated with each WallView object (i.e. each window) is an
EventHandlerList object.

= WallView : View
�
id handlers; id viewdatabase; id wall; �

+ name:(STR)name
�

self = [self createViewOf:nil];
wall = [Wall create:name wallview:self];
handlers = [EventHandlerList new];
viewdatabase = [Xydb new];
[handlers add:[XyEventHandler wallview:self]];
return self;� �

raise:event
�
return [handlers raise:event]; ��

viewdatabase
�
return viewdatabase; �

4In retrospect it probably would have been wiser either to always represent points and rectangles as C structures, or as
separate coordinates, instead of using Point and Rectangle objects and their associated overhead.
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= Wall : Object (GRANDMA,Geometry)�
Win win; id pictures; id wallview; ��

raise:event
�

if([event isKindOf:RefreshEvent])�
[self redraw]; return; �

return [wallview raise:event];�
Events are raised within a particular window using the raise message. Redraw events are

handled within the wall; since each wall maintains a list of Picture objects currently hung on it,
redraw is easily accomplished. The Redraw special case is really just old code; it would be simple
to replace this code with a redraw event handler. All other events are passed from the Wall to the
WallView to the EventHandlerList:

= EventHandlerList : OrdCltn
� ��

raise:e
�
int i;

for(i = [self lastOffset]; i >= 0; i
� �

)
if( [[self at:i] event:e] )

break;
return self;�

An EventHandlerList is just an OrdCltn, thus add: and remove: messages can be
sent to it to add or remove active event handlers. The add: message adds handlers to the end
of the list; raise iterates through the list backwards, asking each element of the list in order if it
wishes to handle the event. Thus, handlers activated most recently are asked about events before
those activated earlier. (It is possible to install an active event handler at an arbitrary position in
the EventHandlerList by using some of OrdCltn’s other methods, but this has never been
needed in GRANDMA.) Note that the first thing a WallView object does when created is activate
an XyEventHandler; this handler, since it is first in the list, will be tried only after the other
handlers have declined to process the event.

6.7.3 Active Event Handlers

Every active event handler must respond to the event: message, returning a boolean value
indicating whether it has handled the event.

= EventHandler : Object
� ��

(BOOL)event:e�
return (BOOL)[self subclassResponsibility]; �

The event: method here is a placeholder for the actual method, which would be implemented
differently in each subclass of EventHandler. The subclassResponsibility method is
inherited from Object. The method simply prints an error message stating that the subclass of the
receiver should have implemented the method.

Note that the event: message sent to the active event handlers has no reference to any views.
When the event handler is first activated, it generally stores the view and tool which caused its
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activation5; it can then refer to these to decide whether to handle an event. When handling an event,
the active event handler typically sends the view messages, if only to find out the model to which
the view refers.

As previously mentioned, the last active event handler tried is the XyEventHandler. This
event handler is rather atypical in that it never exists in a passive state.

= XyEventHandler : EventHandler
�
id wallview; �

+ wallview:_wallview
�
self = [self new];

wallview = _wallview; return self; ��
(BOOL)event:e

�
id views, seq, v, tool;

if(! [e respondsTo:@selector(loc) ]) return NO;
views = [[wallview viewdatabase] at:[e loc]];
tool = [e tool];
for(seq = [views eachElement]; v = [seq next]; )

if(v != tool && [v event:e]) return YES;
return NO;�

An XyEventHandler is instantiated and activated when a WallView is created (see Section
6.7.2). The WallView is recorded in the handler so that it can access the current database of views
(those views in the View subtree of the WallView). (In retrospect, it would have been more
efficient for the XyEventHandler to store a handle to the database directly, rather than always
asking the WallView for it.)

When an XyEventHandler is asked to handle an event (via the event: message) it
first checks to see if that event responds to the message loc. Currently, only (subclasses of)
DragEvents respond to loc, but that could conceivably change in the future so the handler is
written as generally as possible. This points to one of the major benefits of Objective C; one can
inquire as to whether an object responds to a message before attempting to send it the message.
Another example of this will be seen in Section 6.7.7. Since the XyEventHandler is going to
look up views at the location of an event, it obviously cannot deal with events without locations, so
returns NO (the Objective C term for FALSE or 0) in this case.

The view database is then consulted, returning all the views whose bounding box contains the
given point. The views returned are sorted from foremost to most background, i.e. according to
their depth in the view tree, deepest first. In this order, each view is queried as to whether it
wishes to handle the event, stopping when a view says YES. (The enigmatic test v != tool
will be explained in section 6.7.7; suffice it to say here that in the typical case, tool is a kind of
GenericMouseTool and thus can never be equal to a View.)

If no view is found that wishes to handle the event, the XyEventHandler returns NO. Since
this handler is the last active event handler to be tried, when it says NO, the event is ignored. If
desired, it is a simple matter to activate a catchall handler (to be tried after the XyEventHandler),
the purpose of which is to handle all events, printing a message to the effect that events are being
ignored.

5As shown in section 6.7.5, passive event handlers are asked to handle events via the event:view: message, one
parameter being the event (from which the handler gets the tool), and the other is the view.
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Another example event handler is given in Section 6.7.6; more will be said about active event
handlers then.

6.7.4 The View Database

The function of the view database is to determine the set of views at a given location in a window.
In many object-oriented UI toolkits, this function has been combined with event propagation, in
that events propagate down the view tree [105] (or a corresponding controller tree [70, 63]) directly.
The idea for a separate view database comes from GWUIMS[118]. By separating out the view
database into its own data structure, efficient algorithms for looking up views at a given point,
such as Bentley’s dual range trees [7], may be applied. Unfortunately, this optimization was never
completed, and in retrospect having to keep the view database synchronized with the view hierarchy
was more effort than it was worth.

= Xydb : Set
� ��

enter:object at:rectangle
�

return [self replace: [Xydbe object:object
at:rectangle

depth:[object depth]]];�
depthcmp(o1, o2) id � o1, � o2;�

return [ � o2 depth]
�

[ � o1 depth]; ��
at:aPoint

�
id seq, e, array[MAXAT], result = [OrdCltn new]; int n;
for(n = 0, seq = [self eachElement];
(e = [seq next]) != nil; )

if([e contains:aPoint]) array[n++] = e;
qsort(array, n, sizeof(id), depthcmp);
for(i = 0; i < n; i++) [result add:[array[i] object]];
return result;�

= Xydbe : Rectangle
�
id object; unsigned depth; �

+ object:o at:rect depth:(unsigned)d
�

self = [self new] object = o; depth = d;
return [[self origin:[rect origin]] corner:[rect corner]];� �

object
�
return object; ��

(unsigned)depth
�
return depth; ��

(unsigned) hash
�
return [object hash]; ��

(BOOL)isEqual:o
�
object == o

�
>object; �
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An Xydb is a set of Xydbe objects (“e” for “element”), each of which is a rectangle, an
associated object (always a kind of View in GRANDMA), and a depth. View objects which move
or grow must be sure to register their new locations in the view database for the wall on which they
lie. This is currently done automatically in the _sync method of class View which is responsible
for updating the display when a View changes. The hash and isEqual: methods are used by
Set; here they define two Xydbe objects to be equal when their respective object fields are
equal.

6.7.5 The Passive Event Handler Search Continues

Each View object has a list of passive handlers associated with it. The association is often implicit:
passive handlers can be associated with the view directly, or with the class of the view, or any of
the superclasses of the view’s class. For example, the GenericToolOnViewEventHandler
is directly associated with class View; it thus appears on every view’s list of passive event handlers.

= View ...�
(BOOL)event:e

�
id seq, h;

if(! [self isOver:[e loc]]) return NO;
for(seq = [self eachHandler]; h = [seq next];)

if([h event:e view:self]) return YES;
return NO;� �

eachHandler
�
id r = [OrdCltn new]; id class;

[r addContentsOf:[self passivehandlers]];
for(class = [self class];

class != Object; class = [class superClass])
[r addContentsOf:[class passivehandlers]];

return [r eachElement];�
+ passivehandlers�

return [UIprop getvalue:self propstr:"handlers"]; ��
passivehandlers�

return [UIprop getvalue:self propstr:"handlers"]; �
When a view is asked if it wishes to handle an event, it firsts asks if the event’s location is

indeed over the view. The implementation of the isOver: method in class View simply returns
YES. Non-rectangular subclasses of view (e.g. LineDrawingView, see Section 8.1) override this
method.

Assuming the event location is over the view, each passive event handler associated with the
view is sent the event:view: message, which asks if the passive handler wishes to handle the
event. The search stops as soon as one of the handlers says YES or all the handlers have been tried.

The method eachHandler returns an ordered sequence of handlers associated with a view.
The sequence is the concatenation of the handlers directly associated with the view object, those
directly associated with the view’s class, those associated with the view’s superclass, and so on,
up to and including those associated with class View. The associations themselves are stored in a
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global property list. The passive event handler is associated with a view object or class under the
"handlers" property.

Herein lies another advantage of Objective C. An object’s superclasses may be traversed at
runtime, in this case enabling the simulation of inheritance of passive event handlers. This effect
would be difficult to achieve had it not been possible to access the class hierarchy at runtime.

6.7.6 Passive Event Handlers

A passive event handler returns YES to the event:view: message if it wishes to handle the
event directed at the given view. As a side effect, the passive event handler may activate (a copy
or instance of) itself to handle additional input without incurring the cost of the search for a passive
handler again.

In Objective C, classes are themselves first class objects in the system, known as factory objects.
A factory object that is a subclass of EventHandler may play the role of a passive event handler.6
To activate such a handler, the factory would instantiate itself and place the new instance on the
active event list.

= EventHandler ...
+ (BOOL)event:e view:v�

return (BOOL)[self subclassResponsibility]; �
As an example, consider the following handler for the toggle switch discussed earlier:
= ToggleSwitchEventHandler : EventHandler

�
id view, tool; �

+ (BOOL) event:e view:v
�

if( ! [e isKindOf:PickEvent] ) return NO;
if( ! [[e tool] isKindOf:MouseTool] ) return NO;
self = [self new]; view = v; tool = [e tool];
[[view wallview] activate:self];
[view highlight];
return YES;� �

(BOOL)event:e
�

BOOL isOver;
if( ![e isKindOf:DragEvent]

���
[e tool] != tool )

return NO;
isOver = [view pointInIboxAndOver:[e loc]];
if(!isOver

���
[e isKindOf:DropEvent])

�
[view unhighlight];
[[view wallview] deactivate:self];
if(!isOver) [[view model] toggle];�

6However, using factory objects for passive event handlers is restrictive, as there is only one instance of the factory
object for a given class. This makes customization of a factory passive event handler difficult. Section 6.7.8 explains
how regular (non-factory) objects may be used as passive event handlers.
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return YES;�
Assuming this event handler is associated with a SwitchView, when the mouse is pressed over

such a view the handler’s event:view: method is called, which instantiates and then activates
this handler, and then highlights the view. Other events, such as typing a character or moving a
mouse (with the button already pressed) over the view, will be ignored by this passive handler. Most
handlers for mouse events, including this one, only respond to tools of kind MouseTool, where
MouseTool is a subclass of GenericMouseTool. The reason for this is explained in Section
6.7.7.

Once the handler is activated, it gets first priority at all incoming events. The beginning of the
event: method insures that it only responds to mouse events generated by the same mouse tool
that initially caused the handler to be activated. For valid events, the handler checks if the location
of the event (i.e. the mouse cursor) is over the view using View’s pointInIboxAndOver:
method. Note that during passive event dispatch, the more efficient isOver: method was used,
since by that point, the event location was already known to be in the bounding box of the view.
The pointInIboxAndOver does both the bounding box check and the isOver: method, since
active event handlers see events before it is determined which views they are over.

If the mouse is no longer over the switch, or the mouse button has been released, the highlighting
of the view is turned off, and the handler deactivated. In the case where the mouse is over the view
when the button was released, [[view model] toggle] is executed. The clause [view
model] returns the model associated with the switch, presumably of class Boolean, which gets
sent the toggle message. This will of course result in the switch’s picture getting changed to
reflect the model’s new state.

In any case, by returning YES the active event handler indicates it has handled the event, so
there will be no attempt to propagate it further.

Typically, the ToggleSwitchEventHandler would get associated with the SwitchView
as follows:

= SwitchView ...

+ initialize�
return [self sethandler:ToggleSwitchEventHandler]; �

The initialize factory method is invoked for every class in the program (which has
such a method) by the Objective C runtime system when the program is first started. In this
case, the sethandler factory method would create a list (OrdCltn) containing the single ele-
ment ToggleSwitchEventHandler and associate it with the class SwitchView under the
"handlers" property.

Note that some simple changes to the ToggleSwitchEventHandler could radically al-
ter the behavior of the switch. For example, if [[view model] toggle] is also executed
when the switch is first pressed (i.e. in the event:view: method), the switch becomes a mo-
mentary pushbutton rather than a toggle switch. Similarly, by changing the initial check to [e
isKindOf:DragEvent], once the mouse moves off the switch (thus deactivating the handler),
moving the mouse back on the switch with the button still pressed (or onto another instance of
the switch) would (re)activate the handler. If the handler is changed only to deactivate when a



6.7. EVENT HANDLERS 113

DropEvent is raised, the button now grabs the mouse, meaning no other objects would receive
mouse events as long as the button is pressed. It is clear that many different behaviors are possible
simply by changing the event handler.

While GRANDMA easily allows much flexibility in programming the behavior of individual
widgets, interaction techniques that control multiple widgets in tandem are more difficult to program.
For example, radio buttons (in which clicking one of a set of buttons causes it to be turned on and
the rest of the set to be turned off) might be implemented by having the individual buttons to be
subviews of a new parent view, and a new handler for the parent view could take care of the mutual
exclusion. (Alternatively, the parent view could handle the mutual exclusion by providing a method
for the individual buttons to call when pressed; in this case the parent necessarily provides the radio
button interface to the rest of the program.)

6.7.7 Semantic Feedback

Semantic feedback is a response to a user’s input which requires specialized information about the
application objects [96]. For example, in the Macintosh Finder [2], dragging a file icon over a folder
icon causes the folder icon to highlight, since dropping the file icon in the folder icon will cause the
file to be moved to the folder. Dragging a file icon over another file icon causes no such highlighting,
since dropping a file on another file has no effect. The highlighting is thus semantic feedback.

GRANDMA has a general mechanism for implementing (views of) objects which react when
(views of) other objects are dropped on them, highlighting themselves whenever such objects are
dragged over them. Such views are called buckets in GRANDMA. Any view may be made into a
bucket simply by associating it with a passive BucketEventHandler (which expects the view
to respond to the actsUpon: and actUpon:: messages discussed below). Once a view has a
BucketEventHandler, the semantic feedback described above will happen automatically.

Whereas a bucket is a view which causes an action when another view is dropped in it (e.g. the
Macintosh trash can is a bucket), a Tool is an object which causes an action when it is dropped on
a view (a “delete cursor” is thus a tool). As mentioned above, a tool corresponds to a physical input
device (e.g. GenericMouseTool), but it is also possible for a view to be a tool. In the latter case,
the view is referred to as a virtual tool.

Buckets and tools are quite similar, the main difference being that in buckets the action is
associated with stationary views, while in tools the action is associated with the view being dragged.
The implementation of tools is considered next. The similar implementation of buckets will not be
described.

= Tool : Object
� ��

(SEL)action
�
return (SEL) 0; ��

actionParameter
�
return nil; ��

(BOOL)actsUpon:v
�
return [v respondsTo:[self action]]; ��

actUpon:v event:e
�

[v perform:[self action]
with:[self actionParameter]
with:e
with:self];
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return self;�
Every tool responds to the actsUpon: and actUpon:: messages. In the default imple-

mentation above, a tool has an action (which is the runtime encoding of a message selector) and an
action parameter (an arbitrary object). For example, one way to create a tool for deleting objects is

= DeleteTool : Tool
� ��

(SEL)action
�
return @selector(delete); �

The actsUpon: method checks to see if the view passed as a parameter responds to the action
of the tool, in this case delete. The actUpon:: method actually performs the action, passing
the action parameter, the event, and the tool itself as additional parameters (which are ignored in the
delete case).

The GenericToolOnViewEventHandler is associated with every view via the View
class:

= View ...
+ initialize�

[self sethandler:GenericToolOnViewEventHandler]; �
= GenericToolOnViewEventHandler : EventHandler�

id tool, view; �
+ (BOOL) event:e view:v

�
if( ! [e isKindOf:DragEvent]) return NO;
if( ! [[e tool] actsUpon:v]) return NO;
self = [self new];
tool = [e tool]; view = v; [view highlight];

[[view wallview] activate:self];
return YES;� �

(BOOL)event:e
�

if( ! [e isKindOf:DragEvent]) return NO;

if( [e tool] != tool) return NO;
if( [view pointInIboxAndOver:[e loc]] )

�
if([e isKindOf:DropEvent])

�
[view unhighlight];

[[view wallview] deactivate:self];
[tool actUpon:view event:e];�

return YES;�
[view unhighlight]; [[view wallview] deactivate:self];
return NO;�
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Passively, GenericToolOnViewEventHandler operates by simply checking if the tool
over the view acts upon the view. If so, the view is highlighted (the semantic feedback) and the
handler activates an instantiation of itself. Subsequent events will be checked by the activated
handler to see if they are made by the same tool. If so, and if the tool is still over the view, the event
is handled, and if it is a DropEvent then the tool will act upon the view. If the tool has moved
off the view, the highlighting is turned off, and the handler deactivates itself and returns NO so that
other handlers may handle this event.

The test v != tool in the XYEventHandler (see Section 6.7.3) prevents a view that is a
virtual tool from ever attempting to operate upon itself.

6.7.8 Generic Event Handlers

If you have been following the story so far, you know that all the event handlers shown have
the passive handler implemented by a factory (class) object which responds to event:view:
messages. When necessary, such a passive handler activates an instantiation of itself. The drawback
of having factory objects as passive event handlers is that they cannot be changed at runtime. For
example, the ToggleSwitchEventHandler only passively responds to PickEvents. If one
wanted to make aToggleSwitchEventHandler that passively responded to anyDragEvent,
one could either change the implementation of ToggleSwitchEventHandler (thus affecting
the behavior of every toggle switch view), or one could subclassToggleSwitchEventHandler.
Doing the latter, it would be necessary to duplicate much of the event:view: method, or change
ToggleSwitchEventHandler by putting the event:view: method in another method, so
that it can be used by subclasses. In any case, changing a simple item (the kind of event a handler
passively responds to) is more difficult than it need be.

In order to make event handlers more parameterizable, the passive event handlers should be
regular objects (i.e. not factory objects). In response to this problem, most event handlers are
subclasses of GenericEventHandler.

= GenericEventHandler : EventHandler
�

BOOL shouldActivate;
id startp, handlep, stopp;
id view, wall, tool, env;�

+ passive
�
return [self new]; ��

shouldActivate
�
shouldActivate = YES; return self; ��

startp:_startp
�
startp = _startp; return self; ��

startp
�
return startp; ��

(BOOL)evalstart:env
�
return [[startp eval:env] asBOOL]; ��

stopp:_stopp
�
stopp = _stopp; return self; ��

stopp
�
return stopp; ��

(BOOL)evalstop:env
�
return [[stopp eval:env] asBOOL]; �
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�
handlep:_handlep

�
handlep = _handlep; return self; ��

handlep
�
return handlep; ��

(BOOL)evalhandle:env�
return [[handlep eval:env] asBOOL]; ��

(BOOL) event:e view:v
�

env = [[[Env new] str:"event" value:e]
str:"view" value:v];

if([self evalstart:env])�
[self startOnView:v]; return YES; �

return NO;� �
startOnView:v event:e

�
if(shouldActivate)

self = [self copy], [[view wallview] activate:self];

view = v; wall = [view wallview]; tool = [e tool];
[self passiveHandler:e];
return self;� �

(BOOL)event:e
�

if(tool != nil && [e tool] != tool) return NO;
env = [[[Env new] str:"event" value:e]

str:"view" value:view];

if([self evalstop:env])
[self activeTerminator:e], [wall deactivate:self];

else if([self evalhandle:env])
[self activeHandler:e];

else return NO;

return YES;� �
passiveHandler:e

�
return self; ��

activeHandler:e
�
return self; ��

activeTerminator:e
�
return self; �

A new passive handler is created by sending a kind ofGenericEventHandler thepassive
message. A generic event handler object has settable predicates startp, handlep, and stopp.
These predicates are expression objects, essentially runtime representations of almost arbitrary
Objective C expressions. (The Objective C interpreter built into GRANDMA is discussed in section
7.7.3.) By convention, these predicates are evaluated in an environment where event is bound to
the event under consideration and view is bound to a view at the location of the event. Of course,
the result of evaluating a predicate is a boolean value.
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The passive method is typically overridden by subclasses of GenericEventHandler
in order to provide default values for startp, handlep, and stopp. The predicate startp
controls what events the passive handler reacts to. The class EventExpr allows easy specification
of simple predicates, e.g. the call

[self startp:[[[EventExpr new] eventkind:PickEvent]
toolkind:MouseTool]];

sets the start predicate to check that the event is a kind of PickEvent and that the tool is a
MouseTool. This results in the same passive event check that was hard-coded into the factory
ToggleSwitchEventHandler, but now such a check may be easily modified at runtime.

The message shouldActivate tells the passive event handler to activate itself whenever
its startp predicate is satisfied. Note that it is a clone of the handler that is activated, due to
the statement self = [self copy]; it is thus possible for a single passive event handler to
activate multiple instances of itself simultaneously. The active handler responds to any message
which satisfies its handlep or donep predicates. In the latter case, the active event handler is
deactivated.

When the startp, handlep, or donep predicates are satisfied, the generic event handler
sends itself the passiveHandler:, activeHandler: or activeTerminator: message,
respectively. The main work of subclasses ofGenericEventHandler are done in these methods.

The startOnView:event: allows a passive handler to be activated externally (i.e. instead
of the typical way of having its startp satisfied in the event:view: method). In this case, the
event parameter is usually nil. For example, an application that wishes to force the user to type
some text into a dialogue box before proceeding might activate a text handler in this manner.

The purpose of generic event handlers in GRANDMA is similar to that of interactors in Garnet
[95, 91] and pluggable views in Smalltalk-80 [70]. Since GRANDMA comes with a number of
generally useful generic event handlers, application programmers often need not write their own.
Instead, they may customize one of the generic handlers by setting up the parameters to suit their
purposes. The only parameters every generic event handler has in common are the predicates, and
indeed these are the ones most often modified. GRANDMA has a subsystem which allows these
parameters to be modified at runtime by the user.7

6.7.9 The Drag Handler

As an example of a generic event handler, consider the DragHandler. When associated with
a view, the DragHandler allows the view to be moved (dragged) with the mouse. If desired,
moving the view will result in new events being raised. This allows the view to be used as tool, as
discussed in section 6.7.7. Also parameterizable are whether the view is moved using absolute or
relative coordinates, whether the view is copied and then the copy is moved, and the messages that
are sent to actually move the view. Reasonable defaults are supplied for all parameters.

= DragHandler : GenericEventHandler
�

BOOL copyview, genevents, relative;
SEL whenmoved, whendone;

7Typically, it would be the interface designer, rather than the end user, who would use this facility.
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BOOL deactivate;
int savedx, savedy;�

+ passive
�

self = [super passive];
[self shouldActivate];
[self startp:[[[EventExpr new] eventkind:DragEvent]

toolkind:MouseTool]];
[self handlep:[[EventExpr new] eventkind:DragEvent]];
[self stopp:[[EventExpr new] eventkind:DropEvent]];
copyview = NO; genevents = YES; relative = NO;
whenmoved = @selector(at::); whendone = (SEL) 0;
return self;�

/� changing default parameters: � /

/� copyviewON causes the view to be copied and then the copy to be dragged � /�
copyviewON

�
copyview = YES; return self; �

/� genEventsOFF makes the handler not raise any events � /�
genEventsOFF

�
genevents = NO; return self; �

/� relativeON makes the handler send the move:: message, passing
relative coordinates (deltas from the current position) � /�
relativeON

�
relative = YES;

whenmoved = @selector(move::); �
/� whendone: sets the message sent on the event that terminates the drag � /�

whendone:(SEL)sel
�
whendone = sel; return self; �

/� whenmoved: sets the message sent for every point in the drag � /�
whenmoved:(SEL)sel

�
whenmoved = sel; return self; ��

passiveHandler:e
�

id l = [e loc];
if(relative) savedx = [l x], savedy = [l y];
else savedx = [view xloc]

�
[l x],

savedy = [view yloc]
�
[l y];

if(copyview) view = [view viewcopy];
[view flash];
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return self;� �
activeHandler:e

�
int x, y;
if(relative)

�
x = [[e loc] x], y = [[e loc] y];
[view perform:whenmoved

with:(x
�

savedx) with:(y
�

savedy)];
savedx = x, savedy = y;�

else
�

x = [[e loc] x] + savedx, y = [[e loc] y] + savedy;
[view perform:whenmoved with:x with:y];�

if(genevents)
[wall raise:[[e class] tool:view loc:newloc

wall:wall instigator:self time:[e time]]];
return self;� �

activeTerminator:e
�

if(genevents)
[wall raise:[[e class] tool:view loc:[e loc]

wall:wall instigator:self time:[e time]]];
if(whendone) [view perform:whendone];
return self;�

The passive factory method creates a DragHandler with instance variables set to the
default parameters. Those parameters can be changed with the startp:, handlep, stopp:,
copyviewON, genEventsOFF, relativeON, whendone:, and whenmoved: messages.
(Please refer to the comments in the above code for a description of the function of these parameters.)

For example, a DragHandler might be associated with class LabelView as follows:
= LabelView ...
+ initialize

�
[self sethandler:

[[[DragHandler passive]
startp:[[[EventExpr new]

eventkind:PickEvent] toolkind:MouseTool]]
genEventsOFF]];�

Any LabelView can thus be dragged around with the mouse by clicking directly on it (since
the start predicate was changed to PickEvent). A LabelView will not generate events as it is
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dragged since genEventsOFF was sent to the handler; thus LabelViews in general would not
be used as tools or items that can be deposited in buckets. Of course, subclasses and instances of
LabelView may have their own passive event handlers to override this behavior.

When a passive DragHandler gets an event that satisfies its start predicate, the
passiveHandler: method is invoked. For a DragHandler, some location information is
saved, the view is copied if need be, and the view is flashed (rapidly highlighted and unhighlighted)
as user feedback.

Any subsequent event that satisfies the stop predicate will cause the activeTerminator:
method to be invoked. Other events that satisfy the handle predicate will cause activeHandler:
to be invoked. In DragHandler, activeHandler: first moves the view (typically by sending
it the at:: message with the new coordinates as arguments) then possibly raises a new event with
the view playing the role of tool in the event. If the view is indeed a tool, raising this event might
result in the GenericToolOnView handler being activated, as previously discussed.

Note that the event to be raised is created by first determining the class object (factory) of the
passed event (given the default predicates, in this case the class will either be MoveEvent or
DropEvent), and then asking the class to create a new event, which will thus be the same class
as the passed event. Most of the new event attributes are copied verbatim from the old attributes;
only the tool and instigator are changed. A more sophisticated DragHandler might also
change the event location to be at some designated hot spot of the view being moved, rather than
simply use the location of the passed event. For simplicity, this was not shown here.

The activeTerminator: method also possibly raises a new event, and possibly sends the
view the message stored in the whendone variable. As an example, whendone might be set to
@selector(delete) when copyview is set. When the mouse button is pressed over a view, a
copy of the view is created. Moving the mouse drags the copy, and when the mouse button is finally
released, the copy is deleted.

Creating a new drag handler and associating it with a view or view class is all that is required to
make that view “draggable” (since every view inherits the at:: message). As shown in the next
chapter, GRANDMA has a facility for creating handlers and making the association at runtime.

6.8 Summary of GRANDMA

This concludes the detailed discussion of GRANDMA. As the discussion has concentrated on the
features which distinguish GRANDMA from other MVC-like systems, much of the system has not
been discussed. It should be mentioned that the facilities described are sufficiently powerful to build
a number of useful view and controller classes. In particular, standard items such as popup views,
menus, sliders, buttons, switches, text fields, and list views have all been implemented. Chapter 8
shows how some of these are used in applications.

GRANDMA’s innovations come from its input model. Here is a summary of the main points of
the input architecture:

1. Input events are full-blown objects. TheEvent hierarchy imposes structure on events without
imposing device dependencies.
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2. Raised events are propagated down an active event list.

3. Otherwise unhandled events with screen locations are automatically routed to views at those
locations.

4. A view object may have any number of passive event handlers associated with itself, its class,
or its superclass, etc. Events are automatically routed to the appropriate handler.

5. A passive event handler may be shared by many views, and can activate a copy of itself to
deal with events aimed at any particular view.

6. Event handlers have predicates that describe the events to which they respond.

7. The generic event handler simplifies the creation of dynamically parameterizable event han-
dlers.

Because of the input architecture, GRANDMA has a number of novel features. They are listed
here, and compared to other systems when appropriate.

GRANDMA can support many different input devices simultaneously. Due to item 1 above,
GRANDMA can support many different input devices in addition to just a single keyboard
and mouse. Each device needs to integrate the set of event classes which it raises into
GRANDMA’s Event hierarchy. Much flexibility is possible; for example, a Sensor Frame
device might raise a single SensorFrameEvent describing the current set of fingers in the
plane of the frame, or separate DragEvents for each finger, the tool in this case being a
SensorFrameFingerTool. Because of item 6, it is possible to write event handlers for
any new device which comes along.

By contrast, most of the existing user interface toolkitshave hard-wired limitations in the kinds
of devices they support. For example, most systems (the NeXT AppKit [102], the Macintosh
Toolbox [1], the X library [41]) have a fixed structure which describes input events, and
cannot be easily altered. Some systems go so far as to advocate building device dependencies
into the views themselves; for example, Hypertalk event handlers [45] are labeled with event
descriptors such as mouseUp and Cox’s system [28] has views that respond to messages like
rightButtonDown. Similarly, systems with a single controller per view [70] cannot deal
with input events from different devices. On the other hand, GWUIMS [118] seems to have
a general object classification scheme for describing input events.

GRANDMA supports the emulation of one device with another. In GRANDMA, to get the most
out of each device it is necessary to have event handlers which can respond to events from that
device associated with every view that needs them. If those event handlers are not available, it
is still possible to write an event handler that emulates one device by another. For example, an
active handler might catch all SensorFrameEvents and raise DragEvents whose tool
is a Mousetool in response. The rest of the program cannot tell that it is not getting real
mouse data; it responds as if it is getting actual mouse input.
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GRANDMA can handle multiple input threads simultaneously. Because passive handlers acti-
vate copies of themselves, even views that refer to the same handler can get input simul-
taneously. The input events are simply propagated down the active event handler list, and
each active handler only handles the events it expects. In GRANDMA, a system that had
two mice [19] would simply have two MouseTool objects, which could easily interleave
events. Normally, a passive handler would only activate itself to receive input from a single
tool (mouse, in this case), allowing input from the two mice to be handled independently
(even when directed at the same view). It would also be possible to write an event handler
that explicitly dealt with events from both mice, if that was desired.
Event-based systems, such as Sassafras [54] and Squeak [23], are also able to deal with multi-
threaded dialogues. Indeed, it is GRANDMA’s similarity to those systems which gives it a
similar power. This is in contrast to systems such as Smalltalk [70] where, once a controller
is activated it loops polling for events, and thus does not allow other controllers to receive
events until it is deactivated.

GRANDMA provides virtual tools. Given the general structure of inputevents, there is no require-
ment for them only to be generated by the window manager. Event handlers can themselves
raise other events. Many events havetools associated with them; for example, mouse events
are associated with MouseTools. The tools may themselves be views or other objects. By
responding to messages such as action, a tool makes known its effect on objects which it
is dragged over. The GenericToolOnView handler, which is associated with the View
class (and thus every view in the system) will handle the interaction when a tool which has a
certain action is dragged over an object which accepts that action. The tools are virtual, in the
sense that they do not correspond directly to any input hardware, and they may send arbitrary
messages to views with which they interact.

GRANDMA supports semantic feedback. Handlers likeGenericToolOnView can test at run-
time if an arbitrary tool is able to operate upon an arbitrary view which it is dragged over, and
if so highlight the view and/or tool. No special code is required in either the tool or the view
to make this work. A tool and the views upon which it operates often make no reference to
each other. The sole connection between the two is that one is able to send a message that the
other is able to receive.
Of course, the default behavior may be easily overridden. A tool can make arbitrary enquiries
into the view and its model in order to decide if it does indeed wish to operate upon the view.

Event handling in GRANDMA is both general and efficient. The generality comes from the event
dispatch, where, if no other active handler handles an event, the XYEventHandler can
query the views at the location of the event. The views consult their own list of passive
event handlers, which potentially may handle many different kinds of events. There is space
efficiency in that a single passive event handler may be shared by many views, eliminating
the overhead of a controller object per view. There is time efficiency, in that once a passive
handler handles an event, it may activate itself, after which it receives events immediately,
without going through the elaborate dispatch of the XYEventHandler.
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Artkit [52] has a priority list of dispatch agents that is similar to GRANDMA’s active event
handler list. Such agents receive low-level events (e.g. from the window manager), and
attempt to translate them into higher level events to be received by interactor objects (which
seem to be views). Interactor agents register the high-level events in which they are interested.

Artkit’s architecture is so similar to GRANDMA’s that it is difficult to precisely characterize
the difference. The high-level events in Artkit play a role similar to both that of messages that
a view may receive and events that a view’s passive event handlers expect. In GRANDMA,
the registering is implicit; because of the Objective-C runtime implementation, the messages
understood by a given object need not be specified explicitly or limited to a small set. Instead,
one object may ask another if it recognizes a given message before sending it.

Because of the translation from low-level to high-level events, it does not seem that Artkit
can, for example, emulate one device with another. In particular, it does not seem possible to
translate low-level events from one device into those of another. GRANDMA does not make
a distinction between low-level and high-level events. Instead, GRANDMA distinguishes
between events and messages; events are propagated down the active event handler list; when
accepted by an event handler, the handler may raise new events and/or send messages to views
or their models.

GRANDMA supports gestures. GRANDMA’s general input mechanism had the major design goal
of being able to support gestural input. As will be seen in the next chapter, the gestures are
recognized by GestureEventHandlers; these collect mouse (or other) events, determine
a set of gestures which they recognize depending on the views at the initial point of the gesture,
and once recognized, can translate the gesture into messages to models or views, or into new
events.

Artkit also handles gestural input, and, somewhat like GRANDMA, has gesture event handlers
which capture low-level events and produce high-level events. The designers claim that Artkit,
because of its object-oriented structure, can use a number of different gesture recognition
algorithms, and thus tailor the recognizer to the application, or even bits of the application.
The same is true for GRANDMA, of course, though the intention was that the algorithms
described in the first half of the thesis are of sufficient generality and accuracy that other
recognition algorithms are not typically required. Artkit’s claim that many recognizers can be
used seems like an excuse not to provide any. One of the driving forces behind the present
work is the belief that gesture recognizers are sufficiently difficult to build that requiring
application programmers to hand code such recognizers for each gesture set is a major reason
that hardly any applications use gestures. Thus, it is necessary to provide a general, trainable
recognizer in order for gesture-based interfaces to be explored. How such a recognizer is
integrated into an object-oriented toolkit is the subject of the next chapter.

Of course, GRANDMA does have its disadvantages. Like other MVC systems, GRANDMA
provides a multitude of classes, and the programmer needs to be familiar with most of them before he
can decide how to best implement his particular task. The elaborate input architecture exacerbates
the problem: a large number of possible combinations of views, event handlers, and tools must be
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considered by the programmer of a new interaction technique. Also, GRANDMA does nothing
toward solving a common problem faced when using any MVC system: deciding what functionality
goes into a view and what goes into a model. Another problem is that even though the protocol
between event handlers and views is meant to be very general (the event handlers are initialized
with arbitrary message selectors to use when communicating with the view), in practice the views
are written with the intention that they will communicate with particular event handlers, so that it is
not really right to claim that specifics of input have truly been factored out of views.



Chapter 7

Gesture Recognizers in GRANDMA

This chapter discusses how gesture recognition may be incorporated into systems for building
direct manipulation interfaces. In particular, the design and implementation of gesture handlers in
GRANDMA is shown. Even though the emphasis is on the GRANDMA system, the methods are
intended to be generally applicable to any object-oriented user interface construction tool.

7.1 A Note on Terms

Before beginning the discussion, some explanation is needed to help avoid confusion between
terms. As discussed in Section 6.4, it is important not to confuse the view hierarchy, which is
the tree determined by the subview relationship, and the view class hierarchy, which is the tree
determined by the subclass relationship. In GRANDMA, the view hierarchy has a WallView
object (corresponding to an X window) at its root, while the view class hierarchy has the class View
at its root.

Another potentially ambiguous term is “class.” Usually, the term is used in the object-oriented
sense, and refers to the type (loosely speaking) of the object. However, the term “gesture class” refers
to the result of the gesture recognition process. In other words, a gesture recognizer (also known
as a gesture classifier) discriminates between gesture classes. For example, consider a handwriting
recognizer able to discriminate between the written digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. In this
example, each digit represents a class; presumably, the recognizer was trained using a number of
examples of each class.

To make matters more confusing, in GRANDMA there is a class (in the object-oriented sense)
named Gesture; an object of this class represents a particular gesture instance, i.e. the list of
points which make up a single gesture. There is also a class named GestureClass; objects of
this class refer to individual gesture classes; for example, a digit recognizer would reference 10
different GestureClass objects.

Sometimes the term “gesture” is used to refer to an entire gesture class; other times it refers
to a single instance of gesture. For example, when it is said a recognizer discriminates between a
set of gestures, what is meant is that the recognizer discriminates between a set of gesture classes.
Conversely, “the user enters a gesture” refers to a particular instance. In all cases which follow, the
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intent should be obvious from the context.

7.2 Gestures in MVC systems

As discussed in Chapters 2 and 6, object-oriented user interface systems typically consist of models
(application objects), views (responsible for displaying the state of models on the screen), and
controllers (responsible for responding to input by sending messages to views and models). Typical
Model/View/Controller systems, such as that in Smalltalk[70], have a view object and controller
object for each model object to displayed on the screen.

This section describes how gestures are integrated into GRANDMA, providing an example of
how gestures might be integrated into other MVC-based systems.

7.2.1 Gestures and the View Class Hierarchy

Central to all the variations of object-oriented user interface tools is the View class. In all such
systems, view objects handle the display of models. Since the notion of views is central to all
object-oriented user interface tools, views provide a focal point for adding gestures to such tools.

Simply stated, the idea for integrating gestures into direct manipulation interfaces is this: each
view responds to a particular set of gestures. Intuitively, it seems obvious that, for example, a
switch should be controlled by a different set of gestures than a dial. The ability to simply and easily
specify a set of gestures and their associated semantics, and to easily associate the set of gestures
with particular views, was the primary design goal in adding gestures to GRANDMA.

Of course, it is unlikely that every view will respond to a distinct set of gestures. In general, the
user will expect similar views to respond to similar sets of gestures. Fortunately, object-oriented user
interfaces already have the concept of similarity built into the view class hierarchy. In particular,
it usually makes the most sense for all view objects of the same class to respond to the same set of
gestures. Similarly, it is intuitively appealing for a view subclass to respond to all the gestures of its
parent class, while possibly responding to some new gestures specific to the subclass.

The above intuitions essentially apply the notions of class identity and inheritance[121] (in the
object-oriented sense) to gestures. It is seen that gestures are analogous to messages. All objects of
a given class respond to the same set of messages, just as they respond to the same set of gestures.
An object in a subclass inherits methods from its superclass; similarly such an object should respond
to all gestures to which its superclass responds. Continuing the analogy, a subclass may override
existing methods or add new methods not understood by its superclass; similarly, a subclass may
override (the interpretation of) existing gestures, or recognize additional gestures. Some object-
oriented languages allow a subclass to disable certain messages understood by its superclass (though
it is not common), and analogously, it is possible that a subclass may wish to disable a gesture class
recognized by its superclass.

Given the close parallel between gesture classes and messages, one possible way to implement
gesture semantics would be for each kind of view to implement a method for each gesture class it
expects. Classifying an input gesture would result in its class’s particular message to be sent to the
view, which implements it as it sees fit. A subclass inherits the methods of its superclass, and may
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override some of these methods. Thus, in this scheme a subclass understands all the gestures that
its superclass understands, but may change the interpretation of some of these gestures.

This close association of gestures and messages was not done in GRANDMA since it was felt to
be too constricting. Since in Objective C all methods have to be specified at compile time, adding
new gesture classes would require program recompilations. Since it is quite easy to add new gesture
classes at runtime, it would be unfortunate if such additions required recompilations. One of the
goals of GRANDMA is to permit the rapid exploration of different gestures sets and their semantics;
forcing recompilations would make the whole system much more tedious to use for experimentation.

Instead, the solution adopted was to have a small interpreter built into GRANDMA. A piece
of interpreted code is associated with each gesture class; this code is executed when the gesture is
recognized. Since the code is interpreted, it is straightforward to add new code at the time a new
class is specified, as well as to modify existing code, all at runtime. While at first glance building
an interpreter into GRANDMA seems quite difficult and expensive, Objective C makes the task
simple, as explained in Section 7.7.3.

7.2.2 Gestures and the View Tree

Consider a number of views being displayed in a window. In GRANDMA, as in many other systems,
pressing a mouse button while pointing at a particular view (usually) directs input at that view. In
other words, the view that gets input is usually determined at the time of the initial button press.
Due to the view tree, views may overlap on the screen, and thus the initial mouse location may point
at a number of views simultaneously. Typically the views are queried in order, from foremost to
background, to determine which one gets to handle the input.

A similar approach may be taken for gestures. The first point of the gesture determines the views
at which the gesture might be directed. However, determining which of the overlapping views is the
target of the gesture is usually impossible when just the first point has been seen. What is usually
desirable is that the entire gesture be collected before the determination is made.

Consider a simplification of GDP. The wall view, behind all other views, has a set of gestures
for creating graphic objects. A straight stroke “-” gesture creates a line, and an “L” gesture creates a
rectangle. The graphic object views respond to a different set of gestures; an “X” deletes a graphic
object, while a “C” copies a graphic object. When a gesture is made over, say, an existing rectangle,
it is not immediately clear whether it is directed at the rectangle itself or at the background. It
depends on the gesture: an “X” is directed at the existing rectangle, an “L” at the wall view. Clearly
the determination cannot be made when just the first point of the gesture has been seen.

Actually, this is not quite true. It is conceivable that the graphic object views could handle
gestures themselves that normally would be directed at the wall view. There is some practical value
in this. For example, creating a new graphic object over an existing one might include lining up
the vertices of the two objects. However, while it is nice to have the option, in general it seems a
bad idea to force each view to explicitly handle any gestures that might be directed at any views it
covers.

Chapter 3 addressed the problem of classifying a gesture as one of a given set of gesture classes.
It is seen here that this set of gestures is not necessarily the set associated with a single view, but
instead is the union of gesture sets recognized by all views under the initial point. There are some
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technical difficulties involved in doing this. It would in general be quite inefficient to have to
construct a classifier for every possible union of view gestures sets. However, it is necessary that
classifiers be constructed for the unions which do occur. The current implementation dynamically
constructs a classifier for a given set of gesture classes the first time the set appears; this classifier is
then cached for future use.

It is possible that more than one view under the initial point responds to a given gesture class.
In these cases, preference is given to the topmost view. The result is a kind of dynamic scoping.
Similarly, the way a subclass can override a gesture class recognized by its superclass may be
considered a kind of static scoping.

7.3 The GRANDMA Gesture Subsystem

In GRANDMA, gestural input is handled by objects of class GestureEventHandler. Class
GestureEventHandler, a subclass of GenericEventHandler, is easily the most complex
event handler in the GRANDMA system. In addition to the five hundred lines of code which
directly implement its various methods, GestureEventHandler is the sole user of many other
GRANDMA subsystems. These include the gesture classification subsystem, the interface which
allows the user to modify gesture handlers (by, for example, adding new gesture classes) at runtime,
the Objective C interpreter used for gesture semantics and its user interface, as well as some classes
(e.g. GestureEvent, TimeoutEvent) used solely by the gesture handler.

Before getting into details, an overview of GRANDMA’s various gesture-related components is
presented. Figure 7.1 shows the relations between objects and classes associated with gestures in
GRANDMA. The main focus is theGestureEventHandler. Like all event handlers, when acti-
vated it has aview object, which itself has a model and a wall view.1 AGestureEventHandler
uses the wall view to activate itself, raise GestureEvents, set up timeouts and their handlers, and
draw the gesture as it is being made.

Associated with a gesture event handler is a set of SemClass objects. A SemClass object
groups together a gesture class object (class GestureClass) with three expressions (subclasses
of Expr). The GestureClass objects represent the particular gesture classes recognized directly
by this event handler. The three expressions comprise the semantics associated with the gesture class
by this event handler. The first expression is evaluated when the gesture is recognized, the second
on each subsequent input event handled by the gesture handler after recognition (the manipulation
phase, see Section 1.1), and the third when the manipulation phase ends.

Associated with each GestureClass object is a set of Gesture objects. These are the
examples of gestures in the class and are used in the training of classifiers that recognize the
class. A GestureClass object contains aggregate information about its examples, such as the
estimated mean vector and covariance matrix of the examples’ features, both of which are used in
the construction of classifiers.

When a GestureEventHandler determines which gesture classes it must discriminate
among (according to the rules described in the previous section), it asks the Classifier class

1Recall that a wall view is the root of the view tree and represents a window on the screen.
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Figure 7.1: GRANDMA’s gesture subsystem
A passive GestureEventHandler is associated with a view or view class that expects gestural input.
Once gestural input begins, the handler is activated and refers directly to the view at which the gesture was
directed, as shown in the figure. The ImmediatePicture object is used for the inking of the gesture. The
handler uses a timeout mechanism to indicate when to change from the collection to manipulation state. A
SemClass object exists for each gesture expected by the handler, with each SemClass object associating a
gesture class with its semantics. Each GestureClass object is described by a set of example Gestures,
and there are view objects for each of the examples (SmallGestureView) as well as for the class as
a whole (GestureClassView, SmallGestureClassView) which allow these to be displayed and
edited. The gesture semantics are represented by Expr objects, and may be edited in the InterpView
window.
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for a classifier object capable of doing this discrimination. Normally such a classifier will already
exist; in this case, the existing classifier is simply returned. It is possible that one of the gesture
classes in the set has changed; in this case the existing classifier has to be retrained (i.e. recalculated).
Occasionally, this set of gesture classes has never been seen before; in this case a new classifier is
created for this set, returned, and cached for future use.

The components related to the gesture event handler through GestureHandlerView are all
concerned with enabling the user to see and alter various facets of the event handler. The predicates
for starting, handling, and stopping the collection of gesture input may be altered by the user. In
addition, gesture classes may be created, deleted, or copied from other gesture event handlers. The
examples of a given class may be examined, and individual examples may be added or deleted.
Finally, the semantics associated with a given gesture class may be altered through the interface to
the Objective C interpreter.

7.4 Gesture Event Handlers

The details of the class GestureEventHandler are now described, beginning with its instance
variables.

static BOOL masterSwitch = YES;
= GestureEventHandler : GenericEventHandler

�
STR name;
id gesture;
id picture;
id classes;
id env;
int timeval;
id timeouteh;
short lastx, lasty;
id sclass;
struct gassoc

�
id sclass, view; � � gassoc;

int ngassocs;
id class_set;
BOOL manip_phase;
BOOL classify;
BOOL ignoring;
id mousetool;�

ThemasterSwitch, settable via themasterSwitch: factory method, enables and disables
all gesture handlers in an application. This provides a simple method for an application to provide
two interfaces, one gesture-based, the other not. Every gesture handler will ignore all events when
masterSwitch is NO. It will be as if the application had no gesture event handlers. Typically, the
remaining event handlers would provide a more traditional click and drag interface to the application.
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A particular handler can be turned off by setting its ignoring instance variable via the
ignore: message. GRANDMA can thus be used to compare, say, two completely different ges-
tural interfaces to a given application, switching between them at runtime by turning the appropriate
handlers on and off.

The instance variable name is the name of the gesture handler. A handler is named so that it can
be saved, along with its gesture classes, their semantics and examples, in a file. This is obviously
necessary to avoid having the user enter examples of each gesture class each time an application is
started. The name is passed to the passive: method which creates a passive gesture handler:

= GestureEventHandler ...
+ passive:(STR)_name

�
FILE � f;

self = [super passive];
classes = [OrdCltn new];
[self instantiateON];
[self startp:[[[EventExpr new] eventkind:PickEvent]

toolkind:MouseTool]];
[self handlep:[[EventExpr new] eventkind:DragEvent]];
[self stopp:[[EventExpr new] eventkind:DropEvent]];
[self name:_name];
timeval = DefaultTimeval;
classify = YES;
if((f = [self openfile:"r"]) != NULL) [self read:f];
return self;�

The typical gesture handler activates itself in response to mouse PickEvents, handles all
subsequent mouse events, and deactivates itself when the mouse button is released. Of course, being
a kind of generic event handler, this default behavior can be easily overridden, as was done to the
DragEventHandler discussed in Section 6.7.9.

By default, the gesture event handler plans to classify any gestures directed at it (classify =
YES). This is changed in those gesture event handlers that collect gestures for training other gesture
event handlers.

The default timeval is 200, meaning 200 milliseconds, or two tenths of a second. This is
the duration that mouse input must cease (the mouse must remain still) for the end of a gesture to
be recognized. The user may change the default, thus affecting every gesture event handler. The
timeout interval may also be changed on a per handler basis, a feature useful mainly for comparing
the feel of different intervals.

When an event satisfies the handler’s start predicate, the handler activates itself, and its
passiveHandler is called.

= GestureEventHandler ...�
passiveHandler:e

�
gesture = [[Gesture new] newevent:e];
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picture = [ImmediatePicture create];
[view _hang:picture at:0:0];
lastx = [[e loc] x]; lasty = [[e loc] y];
env = [Env new];
[env str:"gesture" value:gesture];
[env str:"startEvent" value:[e copy]];
[env str:"currentEvent" value:[e copy]];
[env str:"handler" value:self];
manip_phase = NO;
timeouteh = [[TimeoutEventHandler active]

rec:self sel:@selector(timedout:)];
[wall activate:timeouteh];
[wall timeout:timeval];

if(classify)
�

class_set = [Set new];
gassoc = (struct gassoc � )

malloc(MAXCLASSES � sizeof(struct gassoc));
ngassocs = 0;
[[wall handlers]

raise:[GestureEvent instigator:self event:e
env:[[Env new] str:"event" value:e]]];�

return self;�
The passive handler allocates a new Gesture object which will be sent the input events as they

arrive. The initial event is sent immediately.
The picture allows the gesture handler to ink the gesture on the display as it is being made.

Class ImmediatePicture is used for pictures which are displayed as they are drawn, rather than
the normal HangingPicture class which requires pictures to be completed before they can be
drawn.

The env variable holds the environment in which the gesture semantics will be executed.
Within this environment, the interpreter variables gesture, startEvent, currentEvent,
and handler are bound appropriately (see Section 7.7.1).

The boolean manip_phase is true if and only if the entire gesture has been collected and the
handler is now in the manipulation phase (see Section 1.1).

A TimeoutEventHandler is created and activated. When a TimeoutEvent is received
by the handler, the handler will send an arbitrary message (with the timeout event as a param-
eter) to an arbitrary object. In the current case, the timedout: message is sent to the active
GestureEventHandler. In retrospect, the general functionality of the
TimeoutEventHandler is not needed here; the GestureEventHandler could itself easily
receive and processTimeoutEvents directly, without the overhead of aTimeoutEventHandler.
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The code [wall timeout:timeval] causes the wall to raise a TimeoutEvent if there
has been no input to the wall in timeval milliseconds. A timeval of zero disables the raising of
TimeoutEvents. As previously mentioned, a gesture is considered complete even if the mouse
button is held down, as long as the mouse has not been moved in timeval milliseconds. The
TimeoutEvent is used to implement this behavior.

If the gesture being collected is intended to be classified, the set of possible gesture classes must
be constructed, and a Set object is allocated for this purpose. Recall from Section 7.2.2 that there
may be multiple views at the location of the start gesture each of which accepts certain gestures. An
array of gassoc structures is allocated to associate each of the possible gesture classes expected
with its corresponding view. A GestureEvent is then raised, with the instigator being the current
gesture handler, and having the current event as an additional field.

Raising the GestureEvent initiates the search for the possible gesture classes given the initial
event. Recall from Sections 7.2.1 and 7.2.2 that each view under the initial point is considered from
top to bottom, and for each view, the gestures associated directly with the view itself, and with
its class and superclasses, are added in order. Note that this is exactly the same search sequence
as that used to find passive event handlers for events that no active handler wants (see Section
6.7). The GestureEvent, handled by the same passive event handler mechanism, will thus be
propagated to other GestureEventHandlers in the correct order. Each passive gesture handler
that would have handled the initial event sends a message to the gesture handler which raised the
GestureEvent indicating the set of gesture classes it recognizes and the view with which it is
associated.

Note that only views under the first point of the gesture are queried. The case where a gesture
is more naturally expressed by not beginning on the view at which it is targeted is not handled by
GRANDMA. For example, it would be desirable for a knob turning gesture to go around the knob,
rather than directly over it. In GRANMDA either the knob view area would have to be larger than
the actual knob graphic to insure that the starting point of the gesture is over the knob view, or a
background view that includes the knob as a subview must handle the knob-turning gesture. In the
latter case, the gesture semantics are complicated because the background view needs to explicitly
determine at which knob, if any, the gesture is directed. Henry et. al. [52] also notes the problem,
and suggests that one gesture handler might hand off a gesture in progress to another handler if it
determines that the initial point of the gesture was misleading, but exactly how such a determination
would be made is unclear.

= GestureEventHandler ...�
(BOOL)event:e view:v

�
if((classify && masterSwitch==NO)

���
ignoring==YES)

return NO;
if( [e isKindOf:GestureEvent] )

�
if(classify

&& [self evalstart:[[e env] str:"view" value:v] )
[ [e instigator] classes:classes view:v ];

return NO;�
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return [super event:e view:v];�
The GestureEventHandler overrides GenericEventHandler’s event:view:

method to check directly for GestureEvents. (A check for GestureEvents could have
been included in the default start predicate, but this would require programs which modify the
start predicate to always include such a check, an unnecessary complication.) First the state of
the masterSwitch and ignoring switches is checked, so that this handler will not operate if
explicitly turned off. (The reason classify is checked is to allow gesture handlers which do not
classify gestures, i.e. those used to collect gesture examples for training purposes, to operate even
though gestures are disabled throughout the system.)

When a GestureEvent is seen, the handler checks that it indeed classifies gestures and that it
would itself have handled the start event (see Section 6.7.8). The environment used for evaluating
the start predicate is constructed so that "event" and "view" are bound to what they would have
been had the handler actually been asked to handle the initial event. If the handler would have
handled the event, the set of gesture classes associated with the handler, as well as the view, are
passed to the handler which instigated the GestureEvent.

Note that no special case is needed for the handler which actually raised the GestureEvent.
This handler will be the first to receive and respond to the GestureEvent, which it will then
propagate to any other handlers. The propagation occurs simply because the event:view:
method returns NO, as if it did not handle the event at all.

= GestureEventHandler ...�
classes:gesture_classes view:v

�
id c, seq = [gesture_classes eachElement];
while( c = [seq next] )

�
if([class_set addNTest:c])

�
/� added new element? � /

gassoc[ngassocs].sclass = c;
gassoc[ngassocs].view = v;
ngassocs++;��

return self;�
Each gesture handler that could have handled the initial event sends the gesture handler that did

handle the initial event the classes:view: message. The latter handler then adds each gesture
class to its class_set. If the gesture class was not previously there, it is associated with the
passed view via the gassoc array. This membership test assures that when a given gesture class is
expected by more than one view (at the initial point), the topmost view will be associated with the
gesture class.

By the time the GestureEvent has finished propagating, the class_set variable of the
instigator will have as elements the gesture classes (SemClass objects, actually) that are valid
given the initial event. The gassoc variable of the instigator will associate each such gesture class
with the view that will be affected if the gesture being entered turns out to be that class.



7.4. GESTURE EVENT HANDLERS 135

The search for the set of valid gesture classes may be relatively expensive, especially if there are
a significant number of views under the initial event and each view has a number of event handlers
associated with it. The substantial fraction of a second consumed by the search had an unfortunate
interaction with the lower level window manager interface that resulted in an increase in recognition
errors. When queried, the low-level window manager software returns only the latest mouse event,
discarding any intermediate mouse events that occurred since it was last queried. The time interval
between the first and second point of the gesture was often many times larger than the interval
between subsequent pairs of points. More importantly, it was much larger than that of the first and
second points of the gesture examples used to train the classifier. Details at the beginning of gestures
would be lost, and some features, such as the initial angle, would be significantly different. The
substantial delay in sampling the second point of the gesture thus caused the classifier performance
to degrade.

There are a number of possible solutions to this problem. The window manager software could be
set to not discard intermediate mouse events, thus resulting in similar data in the actual and training
gestures. This would result in a large additional number of mouse events, and a corresponding
increase in processing costs, making the system appear sluggish to the user if events could not be
processed as fast as they arrived. Or, the search for gesture classes could be postponed until after
the gesture was collected. This would result in a substantial delay after the gesture was collected,
again making the system appear sluggish to the user. The solution finally adopted was to poll the
window manager during the raising of GestureEvents. (In the interest of clarity, the code in
XyEventHandler and EventHandlerList which did the polling was not shown.) After this
modification, running GestureEventHandlers received input events at the same rate as the
GestureEventHandlers used for training, improving recognition performance considerably.

The polling resulted in new mouse events being raised before theGestureEvent was finished
being propagated. The result was a kind of pseudo-multi-threaded operation, with many of the
typical problems which arise when concurrency is a possibility. GestureEventHandlers were
complicated somewhat, since, for example, they had to explicitly deal with the possibility that
the end of the gesture might be seen before the set of possible gesture classes was calculated.
Also, the event handling methods for GestureEventHandlers had to be made reentrant. The
complications have been omitted from the code shown here, since they tend to make the program
much more difficult to understand.

The end of a gesture is indicated either by a timeout event (resulting in a timedout: message
being sent to the GestureEventHandler), or by the stop predicate being satisfied (resulting
in the activeTerminator: message being sent to the handler). The third alternative, eager
recognition (Chapter 4), has not yet been integrated into the GRANDMA gesture handler, though it
has been tested in non-GRANDMA applications (see Section 9.2).

= GestureEventHandler ...�
timedout:e

�
if( ! [self gesture:gesture] )

[self deactivate]; return nil; �
�

activeTerminator:e
�

[env str:"currentEvent" value:[e copy]];
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if(! manip_phase) [self gesture:gesture];
return self;�

Both methods result in thegesture: message being sent when the gesture has been completely
collected. The gesture: message returns nil if the gesture has no semantics to be evaluated
during the manipulation phase. This is checked by the timedout: method, and in this case
the handler simply deactivates itself immediately. This is typically used by gesture classes whose
recognition semantics change the mouse tool (e.g. a delete gesture that changes the mouse cursor to
a delete tool); a timeout deactivates the gesture handler immediately, allowing the mouse to function
as a tool as long as the mouse button is held.

TheGenericEventHandler code arranges for thedeactivate message to be sent imme-
diately after the activeTerminator: message, so there is no need for the
activeTerminator: method to explicitly send deactivate. The environment is changed
so that the semantic expression evaluated in the deactivate method executes in the correct
environment. The gesture: method is called if the handler is still in the gesture collection phase,
e.g. if the gesture end was indicated by releasing the mouse button rather than a timeout.

= GestureEventHandler ...
� deactivate �

id r;
if(manip_phase && sclass)

eval([sclass done_expr], env, TypeId, &r);
return [super deactivate];�

The gesture: method sets the sclass field to the SemClass object of the recognized
gesture. The done expression, the last of three semantic expressions, is evaluated immediately
before the gesture handler is deactivated.

= GestureEventHandler ...
� (BOOL)event:e � return ignoring ? NO : [super event:e];

�

� activeHandler:e � /� new mouse point � /
[env str:"currentEvent" value:[e copy]];
if( manip_phase) � id r; /� in manipulation phase � /

if(sclass) eval([sclass manip_expr], env, TypeId, &r);�
else � /� still in collection phase � /

int x = [e [loc x]], y = [e [loc y]];
[gesture newevent:e]; /� update feature vector � /
[view updatePicture:

[picture line:lastx :lasty :x :y]]; /� ink � /
lastx = x; lasty = y;�

return self;
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�
Once activated, the GestureEventHandler functions just like any other

GenericEventHandler except that it will not handle any events if its ignoring flag is
set. The active event handler does different things depending on whether the gesture handler is in
the collection phase or the manipulation phase. In the former case, the current event location is
added to the gesture, and a line connecting the previous location to the current one is drawn on the
display. In the latter case, the manipulation expression associated with the gesture (the second of
the three semantic expressions) is evaluated.

= GestureEventHandler ...
� gesture:g � /� called when gesture collection phase in complete � /

double a, d;
id r;
id classifier;
register struct gassoc � ga;
id c, class;
id curevent;

manip_phase = YES;
[wall timeout:0]; [wall deactivate:timeouteh];
[view _unhang:picture]; /� erase inking � /
[picture discard]; picture = nil;

/� inform interested views (only used in a training session) � /
if([view respondsTo:@selector(gesture:)])

[view gesture:g];

if(classify) �
/� find a classifier for the set; create it if necessary � /
classifier = [Classifier lookupOrCreate:class_set];
/� run the classifier on the feature vector of the collected gesture � /
class = [classifier classify:[g fv]

ambigprob:&a distance:&d];
sclass = nil;
if(class == nil ��� a < AmbigProb ��� d > MaxDist)

return [self reject]; /� rejected � /

/� find the class of the gesture in the gassoc array � /
for(ga = gassoc; ga < &gassoc[ngassocs]; ga++)

if([ga � >sclass gclass] == class)
break;

if(ga == &gassoc[ngassocs])
return [self error:"gassocs?"];
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/� the gassoc entry gives the both the view at which the gesture � /
/� is directed and the semantic expressions of the gesture � /
sclass = ga � >sclass;
[env str:"view" value:ga � >view];
[env str:"endEvent"

value:curevent=[env atStr:"currentEvent"]];

eval([sclass recog_expr], env, TypeId, &r);

if((c = [sclass manip_expr]) != nil &&

[c val] != nil)

eval(c, env, TypeId, &r);

else � /� raise event � /
if(curevent) �

ignoring = YES;

if(mousetool) [curevent tool:mousetool];

[wall raise:curevent];�
if( (c = [sclass done_expr]) == nil

��� [c val] == nil)

return nil;�
�
return self;�

The gesture: method is called when the entire gesture has been collected. It sets the variable
manip_phase to indicate the handler is now in the manipulation phase of the gestural input cycle,
deactivates the timeout event handler, and erases the gesture from the display. If the view associated
with the handler responds to gesture: it is sent that message, with the collected gesture as
argument. This is the mechanism by which example gestures are collected during training: one
handler collects the gesture, sends its view (typically a kind of WallView devoted to training) the
example gesture, which adds it to the GestureClass being trained.

In the typical case, the gesture is to be classified. The Classifier factory method named
lookupOrCreate: is called to find a gesture classifier which discriminated between elements
of the class_set. If no such classifier is found, this method calculates one and caches it for
future use. (This lookup and creation could possibly have been done in the pseudo-thread that was
spawned during the first point of the gesture, but was not, since most of the time the lookup finds the
classifier in the cache, and it was not worth the additional complication and loss of modularity to add
polling to the classifier creation code.) The returned classifier is then used to classify the gesture.
In addition to the class, the probability that the classification was ambiguous and the distance of
the example gesture to the mean of the calculated class are returned. These are compared against
thresholds to check for possible rejection of the gesture (see Section 3.6).
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The elements of the gassoc array are searched to find the one whose gesture class is the class
returned by the classifier. This determines both the semantics of the recognized gesture and the view
at which the gesture was directed. The sclass field is set to the SemClass object associated
with the recognized gesture, and then the recognition expression, the first of the three semantic
expressions, is evaluated in an environment in which "startEvent", "currentEvent",
"endEvent" and "view" are all appropriately bound.

If it exists, the manipulation expression is evaluated immediately after evaluating the recognition
expression. If there is no manipulation expression, the current event is reraised on the assumption
that its tool may wish to operate on a view. The ignoring flag is set so that the active handler does
not attempt to handle the event it is about to raise. Furthermore, the semantics of the gesture may
have changed the current mouse tool. If so, the tool field of the current event would be incorrect, and
is changed to the new tool before the event is raised. In order for this to work, any gesture semantics
that wish to change the current mouse tool must do so by sending the mousetool: message to
the gesture handler instead of directly to the wallview.

= GestureEventHandler ...
� mousetool:_mousetool �

mousetool = _mousetool;

return [super mousetool:_mousetool];�
The gesture: method returns nil if there are no manipulation or done semantics associated

with the recognized gesture class. As seen, this is a signal for the handler to be deactivated
immediately after the gesture is recognized.

7.5 Gesture Classification and Training

In this section the implementation of classes which support the gesture classification and training
algorithms of Chapter 3 is discussed.

At the lowest level is the class Gesture. A Gesture object represents a single example
of a gesture. These objects are created and manipulated by GestureEventHandlers, both
during the normal gesture recognition that occurs when an application is being used, and during the
specification of gesture classes when training classifiers.

7.5.1 Class Gesture

Internally, a gesture object is an array of points, each consisting of an x, y, and time coordinate.
Another instance variable is the GestureClass object of this example gesture, which is non-nil
if this example was specified during training. Intermediate values used in the calculation of the
example’s feature vector, as well as the feature vector itself, are also stored. Also, an arbitrary string
of text may be associated with a Gesture object.

For brevity, detailed listing of the code for the Gesture class is avoided. The interesting part,
namely the feature vector calculation, has already been specified in detail in Chapter 3 and C code is
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shown in Appendix A. Instead of listing more code here, an explanation of each message Gesture
objects respond to is given.

A new gesture is allocated and initialized via g = [Gesture new]. Adding a point to a
Gesture objects is done by sending it the newevent message: [g newevent:e], which
simply results in the call: [g x:[[e loc] x] y:[[e loc] y] t:[e time]]. The
x:y:t: method adds the new point to the list of points, and incrementally calculates the var-
ious components of the feature vector (see Section 3.3). The call [g fv] returns the calculated
feature vector. The methods class:, class, text:, and text respectively set and get the class
and text instance variables.

AGesture object can dump itself to a file via [g save:f] (given a file stream pointerFILE
*f) and can also initialize itself from a file dump using [g read:f]. Using save:, a number
of gesture objects may dump themselves sequentially into a single file, and could then be read back
one at a time using read:. All examples of a given gesture class are stored in a single file via these
methods.

The call [g contains:x:y] returns a boolean value indicating if the gestureg, when closed
by connecting its last point to its first point, contains the point (x,y). This is useful for testing,
for example, if a given view has been encircled by the gesture, enabling the gesture to indicate the
scope of a command. (The algorithm for testing if a point is within a given gesture is described at
the end of section 7.7.3.)

7.5.2 Class GestureClass

The class GestureClass represents a gesture class. A gesture class is simply a set of example
gestures, presumably alike, that are to be considered the same for the purposes of classification.
The input to the gesture classifier training method is a set of GestureClass objects; the result of
classifying a gesture is a GestureClass object.

= GestureClass: NamedModel �
id examples;
Vector sum, average;
Matrix sumcov;

int state;
STR text;�

GestureClass is a subclass ofNamedModel, itself a subclass ofModel. GestureClass
is a model so that it can have views, enabling new gesture classes to be created and manipulated
at runtime. Please do not confuse GestureClass with GestureEventHandler objects;
a GestureClass serves only to represent a class of gestures, and itself handles no input. A
NamedModel augments the capabilities of a Model by adding functions that facilitate reading and
writing the model to a file. Also, models read this way are cached, so that a model asked to be
input more than once is only read once. This is important for gesture class objects, since a single
GestureClass object may be a constituent of many different classifiers, and it is necessary that
every classifier recognizing a particular class refer to the same GestureClass object.
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The GestureClass instance variable examples is a Set of examples which make up the
class. The field sum is the vector that the sum of all feature vectors of every example in the class;
average is sum divided by the number of examples. The covariance matrix for this class may be
found by dividing the matrix sumcov by one less than the number of examples. The calculation
of classifiers is slightly more efficient given sumcov matrices, rather than covariance matrices, as
input (see Chapter 3). C code to calculate thesumcov matrices incrementally is shown in Appendix
A.

Thestate instance variable is a set of bit fields indicating whether theaverage andsumcov
variables are up to date. The text field allows an arbitrary text string to be associated with a gesture
class.

The addExample: method adds a Gesture to the set of examples in the gesture class, incre-
mentally updating the sum field. The removeExample: method deletes the passed Gesture
from the class, updating sum accordingly. The examples method returns the set of examples
of this class, average returns the estimated mean of the feature vector of all the examples in
this class, nexamples returns the number of examples, and sumcov returns the unnormalized
estimated covariance matrix.

7.5.3 Class GestureSemClass

= GestureSemClass: NamedModel �
id gclass;

id recog, manip, done;�
GestureSemClass objects are named models, enabling them to be referred to by name

for reading or writing to disk, and for being automatically cached when read. The purpose of
GestureSemClass objects is to associate a given gesture class with a set of semantics. It is
necessary to have a separate class for this because a given GestureClass may have more than
one set of semantics associated with it.

In addition to methods for setting and getting each field, there are methods for reading and
writing GestureSemClass objects to disk. GestureSemClass uses Objective C’s Filer
class to read and write each of the three semantic expressions (recog, manip, and done). The
availability of the Filer is another advantage of using Objective C [28]. In a typical interpreter,
a substantial amount of coding would be required to read and write the intermediate tree form of
the program to and from disk files. The Filer, which allows the writing to and from disk of any
object (at least those having no C pointers besides strings and ids as instance variables), made it
trivial to save interpreter expressions to disk.

Along with the semantics, the disk file of a GestureSemClass contains only the name
of gestureClass object referred to by gclass. When reading in a GestureSemClass,
the name is used to read in the associated GestureClass. Since GestureClass is a
NamedModel, there will be only one GestureClass object for each distinct gesture class.
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7.5.4 Class Classifier

The Classifier class encapsulates the basic gesture recognition capabilities in GRANDMA.
Each Classifier object has a set (actually an OrdCltn) of gesture classes between which it
discriminates. Each Classifier object contains the linear evaluation function for each class (as
described in Chapter 3), and the inverse of the average covariance matrix, which is used to calculate
the discrimination functions, as well as to calculate the Mahalanobis distance between two of the
component gesture classes, or a given gesture example and one of the gesture classes.

= Classifier : Object �
id gestureclasses;
int nclasses, nfeatures;
Vector cnst, � w; /� discrimination functions � /
Matrix invavgcov;
int hashvalue;�

[Classifier lookupOrCreate:classes] returns a classifier which discriminates be-
tween the gesture classes in the passed collectionclasses. The method for lookupOrCreate:
caches all classifier objects which it creates; thus, if it is subsequently passed a set of gesture classes
which it has seen before, it returns the classifier for that set without having to recompute it. The
search for an existing classifier for a given set of gestures is facilitated by the hashvalue instance
variable, which is calculated by “XORing” together the object ids of the particularGestureClass
objects in the set.

When necessary, the lookupOrCreate: method creates a new classifier object, initializes
its gestureclasses instance variable and then sends itself the train message. The train
method implements the training algorithm of chapter 3.

� train �
register int i, j;
int denom = 0;
id c, seq;
register Matrix s, avgcov;
Vector avg;
double det;

/� eliminate any gesture classes with no examples � /
[self eliminateEmptyClasses];

/� calculate the average covariance matrix from the (unnormalized)
covariance matrices of the gesture classes. � /

avgcov = NewMatrix(nfeatures, nfeatures);
ZeroMatrix(avgcov);
for(seq = [gestureclasses eachElement];

c = [[seq next] gclass]; ) �
denom += [c nexamples] � 1;
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s = [c sumcov];
for(i = 0; i < nfeatures; i++)

for(j = i; j < nfeatures; j++)
avgcov[i][j] += s[i][j];�

if(denom == 0) [self error:"no examples"];
for(i = 0; i < nfeatures; i++)

for(j = i; j < nfeatures; j++)
avgcov[j][i] = (avgcov[i][j] /= denom);

/� invert the average covariance matrix � /
invavgcov = NewMatrix(nfeatures, nfeatures);
det = InvertMatrix(avgcov, invavgcov);
if(det == 0.0)

[self fixClassifier:avgcov];

/� calculate the discrimination functions:
w[i][j] is the weight on the jth feature of the ith class.

cnst[i] is the constant term for the ith class. � /

w = allocate(nclasses, Vector);
cnst = NewVector(nclasses);
for(i = 0; i < nclasses; i++) �

avg = [[[gestureclasses at:i] gclass] average];
/� w[i] = avg � invavgcov � /

w[i] = NewVector(nfeatures);
VectorTimesMatrix(avg, invavgcov, w[i]);
cnst[i] = � 0.5 � InnerProduct(w[i], avg);�

�
The eliminateEmptyClasses method removes any gesture classes from the set which

have no examples. The (estimated) average covariance matrix is then computed, and an attempt is
made to invert it. If it is singular, the fixClassifier: method is called, which creates a usable
inverse covariance matrix as described in Section 3.5.2. (C code for fixing the classifier is shown in
Appendix A.)

Given the inverse covariance matrix, the discrimination functions for each class are calculated as
specified in Section 3.5.2. The weights on the features for a given class are computed by multiplying
the inverse average covariance matrix by the average feature vector of the class, while the constant
term is computed as negative one-half of the weights applied to the class average. This constant
computation gives optimal classifiers under the assumptions of that all classes are equally likely and
the misclassifications between classes have equal cost (also assumed is multivariate normality and a
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common covariance matrix). The Classifier class provides a class:incrconst: method
which allows the constant terms for a given class to be adjusted if the application so desires.

The call [Classifier trainall:classes] causes all Classifier objects whose
set of gestures includes all the gestures in the set classes to be retrained (by sending them the
train: message). This is useful whenever training examples are added or deleted, since all the
classifiers depending on this class can then be recalculated at once. Generally a classifier may be
retrained in less than a quarter second; Section 9.1.7 presents training times in detail.

Classifying a given example gesture is done by the classify:ambigprob:distance:
method. This method is passed the feature vector of the example gesture, and evaluates the
discrimination function for each class, choosing the maximum. If desired, the probability that the
gesture is unambiguous, as well as the Mahalanobis distance of the example gesture from the its
calculated class are also computed; this allow the callers of the classification method to implement
rejection options if they so choose.

� classify:(Vector)fv

ambigprob:(double � )ap distance:(double � )dp
�

double maxdisc, disc[MAXCLASSES];

register int i, maxclass;
double denom, exp();

id class;

for(i = 0; i < nclasses; i++)

disc[i] = InnerProduct(w[i], fv) + cnst[i];

maxclass = 0;

for(i = 1; i < nclasses; i++)

if(disc[i] > disc[maxclass])
maxclass = i;

class = [[gestureclasses at:maxclass] gclass];

if(ap) � /� calculate probability of non � ambiguity � /
for(denom = 0, i = 0; i < nclasses; i++)

denom += exp(disc[i] � disc[maxclass]);
� ap = 1.0 / denom;�

if(dp) /� calculate distance to mean of chosen class � /
� dp = [class d2fv:fv sigmainv:invavgcov];

return class;�
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Classifier objects respond to numerous messages not yet mentioned. The evaluate
message causes the example gestures of each class to be classified, so that the recognition rate of the
classifier may be estimated. Of course, the procedure of testing the classifier on the very examples it
was trained upon results in an overoptimistic evaluation, but it nonetheless is useful. By sending the
particular gesture classes and examples text: messages, the result of the evaluation is fed back
to the user, who can then see which examples of each class were classified incorrectly. A high rate
of misclassification usually points to an ambiguity, indicating a poor design of the set of gestures to
be recognized. The ambiguity is typically fixed by modifying the gesture examples of one or more
of the gesture classes. The incorrectly classified examples indicate to the gesture designer which
gesture classes need to be revised.

Classifier objects also respond to messages which save and restore classifiers to files, as
well as messages which cause the internal state of a classifier to be printed on the terminal for
debugging purposes, and a matrix of the Mahalanobis distances between class pairs to be printed
(so that the gesture designer can get a measure of how confusable the set of gestures is).

7.6 Manipulating Gesture Event Handlers at Runtime

One goal of this work was to provide a platform that allows experimentation with different gestural
interfaces to a given application. To this end, GRANDMA was designed to allow gesture recognizers
to be manipulated at runtime. Gesture classes may be added or deleted, training examples for each
class may also be added or deleted, and the semantics of a gesture class (with respect to a particular
handler) may all be specified at runtime. In addition, gestures as a whole, or particular gesture event
handlers, may be turned on and off at runtime, allowing, for example, easy comparison between
gesture-based and click-drag interfaces to the same application program. This section discusses the
interface GRANDMA presents to the user that facilitates the manipulation of gesture handlers at
runtime.

The View class implements the editHandlers method. When sent editHandlers, a
view creates a new window (if one does not already exist) as shown in figure 7.2. The top row is a
set of pull down menus. Each subsequent row lists the passive event handlers for the view, its class,
its superclass, and so on up the class hierarchy until the View class. The event handlers are listed
in the order that they are queried for events, from top to bottom, and within a row, from left to right.

The “Mouse mode” menu item controls which mouse cursor is currently active in the window.
With the normal mouse (indicated by an arrow), the user is able to drag the individual event handler
boxes so as to rearrange the order. (The other mode, “edit handler,” will be discussed shortly.) A
handler may also be dragged into the trash box, in which case it is removed from the list of handler
associated with a view or view class. A handler may be dragged into the dock; anything in the dock
will remain visible when the handler lists for a different view are accessed. A handler dragged into
the dock reappears on its original list as well; thus the dock allows the same event handlers to be
shared between different objects and between different classes.

The “create handler” menu item results in a pull-down menu of all classes which respond to the
passive message. Thus, at runtime new handlers may be created and associated with any view
object or class. For example, a drag handler may be created and attached to an object, which can
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Figure 7.2: Passive Event Handler Lists

then be dragged around with the mouse. New gesture handlers may also be created this way.
The other mouse cursor, “edit handler”, may be clicked upon any passive event handler. It

results in a new window being created which shows the details of a particular edit handler. Figure
7.3 shows the window for a typical gesture handler.

At the top left of the window is the “Mouse mode” pull down menu, used in the unlikely event
that one wishes to examine the handlers of any of the views in this window. To the right is the name
of this event handler, constructed by concatenating the class of the handler with its internal address.

The next three rows show three EventExpr objects; these are the starting predicate, handling
predicate and stopping predicate of the gesture handler. Each item in the predicate display is a
button that shows a pop-up menu; it is thus a simple matter to change the predicates at runtime.
For example, the start predicate may be changed from matching only PickEvents to matching all
DragEvents. The kind of tool expected may also be changed at runtime, as well as attributes of
the tool (e.g. a particular mouse button may be specified). If desired, the entire predicate expression
may be replaced by a completely new expression. In all cases, the changes take effect immediately.

The window contents thus far discussed are common to all GenericEventHandlers. The
following ones are particular to GestureEventHandlers. First there are a set of buttons (“new
class”, “train”, “evaluate”, “save”). Below this are some squares, each representing a gesture class
recognized by this handler. In each square is a miniaturized example gesture, some text associated
with the class, and a small rectangle which names the class. The text typically shows the result of
the evaluation of the particular gesture recognizer for this set of classes when run on the examples
used to train it. The small rectangles may be dragged (copied) into the dock. Each such rectangle
represents a particular gesture class. Any rectangles in the dock will remain there when another
gesture handler is edited. Each then may be dragged into any gesture class square, where it replaces
the existing class. Typically, a rectangle from the dock is dragged into empty class square (created
by the “new class” button); this is the way multiple gesture handlers can recognize the same class.

Clicking on one of the gesture class squares (but not in the class name rectangle) brings up the
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window of example gestures, as shown in Figure 7.4. Each square in this window contains a single,
miniaturized example of a gesture in this class. These examples are used for training the classifier.
A new example may be added simply by gesturing in this window. An example may be deleted by
clicking the delete button on the left (which changes the mouse cursor to a delete cursor) and then
clicking on the example. A user wishing to change a gesture to something more to his liking simply
has to delete all the examples of the class (easily done using the “Delete ALL” button) and then enter
new example gestures. The “train” button will cause a new classifier to be built, and the “evaluate”
button will cause the examples to be run through the newly built classifier. Any incorrectly classified
examples will be indicated by displaying the mistaken class name in the example square; the user
can then examine the example to see if it was malformed or otherwise ambiguous.

The “semantics” button in the window of examples causes the semantics of the gesture class to
be displayed. This is the subject of the next section.

7.7 Gesture Semantics

GRANDMA contains a simple Objective-C interpreter that allows the semantics of gestures to be
specified at runtime. In GRANDMA, the semantics of a gesture are determined by three program
fragments per gesture class (per handler). The first program fragment, labeled recog, is executed
when the gesture is first recognized to be in a particular class. The second fragment, manip, is
executed on every input event handled by the activated gesture handler after the gesture has been
recognized. The third fragment, done, is executed just before the handler deactivates itself. The
exact sequence of executions was described in detail in section 7.4; this section is concerned with
the contents and specification of the program fragments themselves.

7.7.1 Gesture Semantics Code

As mentioned, the semantics of a gesture are defined by three expressions, recog, manip, and
done. The kinds of expressions found in practice may be loosely grouped according to the level of
the GRANDMA system that they access.

Some semantic expressions deal directly with models, i.e. directly with application objects.
These are typically the easiest to code and understand. An example from the GSCORE application
discussed in section 8.2 is the sharp gesture. GSCORE is an editor for musical scores. In GSCORE,
making an “S” gesture over a note in the score causes the note to be “sharped”, which is indicated
in musical notation by placing the sharp sign “#” before the note. The class Note is a model in the
GSCORE application, and one of its methods is acc: which sets the accidental of a note to one of
DOUBLEFLAT, FLAT, NATURAL, SHARP, DOUBLESHARP, or NOACCIDENTAL.

The sharp gesture, performed by making an “S” over a NoteView, has the semantics:
recog = [ [view model] acc:SHARP ];
manip = nil;
done = nil;

In these semantics, the Note object (the model of the NoteView object) is directly sent the
acc: message when the sharp gesture is recognized. The model then changes its internal state to
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reflect the new accidental, and then calls [self modified] which will eventually result in the
display updated to add a sharp on the note.

Note that the semantic expressions are evaluated in a context in which certain names are assumed
to be bound. In the above example, obviously view and SHARP must be bound to their correct
values for the code to work. Section 7.4 described how the GestureEventHandler creates an
environment where view is bound to the view at which the gesture is directed, startEvent is
bound to the initial event of the gesture, endEvent is bound to the last event of the gesture (i.e. the
event just before the gesture was classified), andcurrentEvent is bound to the most recent event,
typically a MoveEvent during the manipulation phase. A particular application may globally bind
application-specific symbols (such as SHARP in the above example) in order to facilitate the writing
of semantic expressions.

Instead of dealing directly with the model, the semantics of a gesture may send messages directly
to the view object. In the score editor, for example, the delete gesture (in the handler associated
with a ScoreEvent) might have the semantics

recog = [view delete];

manip = nil;

done = nil;

(The actual semantics are slightly more complicated since they also change the mouse cursor;
see Section 8.2 for details.) The delete method for the typical view just sends delete to its
model, perhaps after doing some housekeeping.

The semantic expressions of a gesture are invoked from a GestureEventHandler, and the
sending of messages to models and views seen so far is typical of many different kinds of event
handlers. Another thing that event handlers often do (see in particular section 6.7.9 for a discussion
of the DragHandler) is raise events of their own. There are many reasons a handler might wish
to do this. A DragHandler raises events in order to make the view being dragged be considered a
virtual tool. As mentioned previously, a handler might also raise events in order to simulate one input
device with another. (For example, imagine a SensorFrameMouseEmulator which responds
toSensorFrameEvents, raisingDragEvents whose tool is the currentGenericMouseTool
so as to simulate a mouse with a Sensor Frame.) One of the main purposes of having an active
event handler list and a list of passive events handlers associated with each view is to allow this kind
of flexibility. In the Smalltalk MVC system, the pairing of a single controller with a view really
constrains the view to deal only with a single kind of input, namely mouse input. In GRANDMA,
a view can have a number of different event handlers, and thus may be able to deal with many
different input devices and methods.

In GRANDMA, gesture-based applications are typically first written and debugged with a more
traditional menu driven, click-and-drag, direct manipulation interface. Given that gestures are added
on top of this existing structure, there is another level at which gesture semantics may be written.
At this level, the gesture semantics emulate, for example, the mouse input that would give the
appropriate behavior. In other words, the gesture is translated into a click-and-drag interaction
which gives the desired result.

An example of this from the score editor is the placement of a note into a score. In the click-
and-drag interface, adding a note to the score involves dragging a note of appropriate duration from
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a palette of notes to its desired location in a musical staff. This is implemented by having the
NoteView be a virtual tool which sends a message to which StaffView objects respond. While
the note is being dragged, a DragHandler raises an event whose tool is a NoteView which will
be processed by the GenericToolOnView handler when the note is over the StaffView.

In the gesture-based interface, there is a gesture class for each possible note duration recognized
by handler associated with the StaffView class. The semantics for the gesture which gives rise
to an eighth note are

recog = [[[noteview8up viewcopy] at:startLoc]
reraise:currentEvent];

manip = nil;
done = nil;

The symbol noteview8up is bound to the view of one of the notes in the palette; it is copied
and moved to the starting location of the gesture. The currentEvent (either a MoveEvent or
DropEvent which ended the gesture) is copied, its tool field is set to the copy of the note view, and
the resulting event is raised. The moving of the note and the raising of a new event is exactly what a
DragHandler does; the effect is to simulate the dragging of a note to a particular location. Note
that the note is moved to startLoc, the starting point of the gesture, which necessarily is over a
StaffView (otherwise this gesture handler would never have been invoked). Thus, the handlers
for StaffView will handle the event, and use the location of the note view to determine the new
note’s pitch and location in the score.

It would have been possible in the semantics to simulate the mouse being clicked on the
appropriate note in the palette and then being dragged onto the appropriate place in the staff. In this
case, that was not done as it would be needlessly complex. The point is that, due to the flexibility
of GRANDMA’s input architecture, the writer of gesture semantics can address the system at many
levels of abstraction, from simulated input to directly dealing with application objects.

The example semantics seen thus far have only had recog expressions, which are evaluated
at recognition time. The following example, which implements the semantics of a gesture which
creates a line and then allows the line to be rubberbanded, illustrates the use of manip:

recog = [[view createLine] endpoint0at:startLoc];
manip = [recog endpoint1at:currentLoc];
done = nil;

In this example, view is assumed to be a background view, typically a WallView of a
drawing editor program (Section 8.1 discusses GDP, a gesture-based drawing editor). Sending it the
createLine message results in a new line being created in the window, whose first endpoint is
the start of the gesture. The other endpoint of the line moves with the mouse after the gesture has
been recognized; this is the effect of the manip expression. Note the use of recog as a variable
to hold the newly created line object. If desired, the semantics programmer may create other local
variables to communicate between different (or even the same) semantic expressions.

7.7.2 The User Interface

GRANDMA allows the specification of gesture semantics to be done at runtime. In the current
implementation, the semantics must be specified at runtime; there is no facility for hardwiring the
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semantic expressions of a given gesture into an application. Currently, the semantics of a gesture
class are read in from a file (as are examples of the gesture class) each time an application is started.
The semantics of a gesture may only be created or modified using the user interface facilities
discussed in this section.

Gesture semantics are currently specified using a limited set of expressions. An expression may
be a constant expression (integer or string), a variable reference, an assignment, or a message send.
Each expression has its obvious effect: a constant evaluates to itself, a variable evaluates to its
value in the current environment, an assignment evaluates to the evaluation of its right hand side
(with the side effect of setting the variable on the left hand side), and a message send first evaluates
the receiver expression and each argument expression, and then sends the specified message and
resulting arguments to the receiver. The value of a message expression is the value that the receiver’s
method returns. For programming convenience, integer, string, and objects are converted as needed
so that the types of the arguments and receiver of a message send match what is expected by the
message selector.

Figure 7.5 shows the window activated when the “Semantics” button of a gesture class is pressed.
At the top of the window are a row of buttons used in the creation of various kinds of expressions.
They work as follows:

new message The new message button creates a template of a message send, with a slot for the
receiver and the message selector. Any expression may then be dragged into the receiver
(“REC?”) slot. Clicking on the “SELECTOR?” box causes a dialogue box to be displayed
(figure 7.6). Users can then browse through the class hierarchy until they find the message
selector they desire, which can then be selected. The “+” and “-” buttons may be used to
switch between factory and instance methods. The starting point in the browsing is set to the
class of the receiver, when it can be determined. Once the selector has be okayed, the template
changes to have a slot for each argument expected by the selector, as shown into figure 7.7.
Any expression may then be dragged into the argument slots. In particular, gesture attributes
(see below) are often used.

new int This button creates a box into which an integer may be typed.

new string This button creates a box into which a string may be typed.

new variable This button creates a template ( | = VALUE? ) for assigning a variable into which
the name of a variable may be typed. Any expression may then be dragged into the “VALUE?”
slot. The entire assignment expression may be dragged around by the “=” sign. Attempting to
drag the variable name on the left hand side actually copies the variable name before allowing
it to be dragged; this resulting expression (simply the name of the variable) may be used
anywhere the value of the variable is needed.

factory This button generates a constant expression which is the object identifier of an Objective
C class (also known as a “factory”). Pressing the button pops up a browser which allows the
user to walk through the class hierarchy to select the desired class.
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attribute Clicking this button generates a menu of useful subexpressions that are often used in
gesture semantics. (Figure 7.7 shows both pages of attributes). The expressions are either
variable names, or named messages. As expressions, named messages are distinguishable
from variable names by the angle brackets and the small box before the name. Clicking in the
box reveals the underlying expression to which the name refers. (Note the angle brackets and
box are not shown in the list of attributes but appear once an attribute is selected. Figure 7.5
contains some examples of such attributes.)
Most attributes in the list refer to characteristics of the current gesture (i.e. the gesture which
causes the semantics to be evaluated). Other attributes refer to the current view, wall, event
handler, events, and set of objects enclosed by the gesture. Many examples of using attributes
in gesture semantics are covered in the next chapter.
Having the attributes of a gesture available when writing the semantics of the gesture is the
embodiment of one central idea of idea of this thesis. The idea is that the meaning of a gesture
may depend not only upon its classification, but also on the features of the particular instance
of the gesture. For example, in the drawing program it is a simple matter to tie the length of
the line gesture to the thickness of the resulting line. This is in addition to using the starting
point of the gesture as one endpoint of the line, another example of how gesture attributes are
useful in gesture semantics.

cursor This button displays a menu of the available cursors. The cursors are almost always a kind
of GenericMouseTool, and consists of an icon that has been read in from a file, and the
message that the tool sends. The cursors are useful, for example, in semantic expressions that
wish to provide some feedback to the user by changing the cursor after the gesture has been
recognized.

Trace On This button turns on tracing of the interpreter evaluation loop, which prints the values
of all expressions and subexpressions as they are evaluated. This helps the writer of gesture
semantics to debug his code.

The middle mouse button brings up a menu of useful operations. “Normal” restores the cursor
to the default cursor which drags expressions. “Copy” changes the cursor to the copy cursor, which
when used to drag expressions causes them to be copied first. “Hide” hides the semantics window,
which is so large that it typically obscures the application window. The various remaining editing
commands are useful for examining the event handlers associated with various objects in the user
interface, and are not really of general interest to the writer of gesture semantics. They would be of
interest if one attempted to add a gestural interface to the interpreter itself.

An expression dragged into a “DOCK” slot remains there even when the gesture class is changed.
The dock provides a useful mechanism for sharing code between different gesture classes, or between
the same gesture class in different handlers. Any expression dragged into the trash is, of course,
deleted.

The above-described interface to the semantics is usually slower to use than a more straight-
forward textual interface. A straightforward textual interface would require a parser but would
still be simpler and better that the current click-and-drag interface. On the other hand, with the
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click-and-drag interface it is not possible to make a syntax error. The main reason such an interface
was built was to exercise the facilities of the GRANDMA system. Before the project began the
author suspected that a click-and-drag interface to a programming language would be awkward, and
he was not surprised. He did, however, consider the possibility of building a gesture-based interface
to the interpreter, one which might have been significantly more efficient to use than the current
click-and drag interface. It should be possible at the present time to add a gesture-based interface to
the interpreter without even recompiling, though to date the author has not made the attempt.

7.7.3 Interpreter Implementation

The interpreter internalsare implemented in a most straightforwardmanner. The classExpression
is a subclass of Model and has a subclass for each type of expression: VarExpr, AssignExpr,
MessageExpr, andConstantExpr (and some not discussed: CharEventExpr, EventExpr,
and FunctionExpr). AssignExpr and MessageExpr objects have fields which hold their
respective subexpressions, while ConstantExpr and VarExpr objects have fields which hold
the constant object and name of the variable, respectively.

Expression Evaluation

All expressions are evaluated in an environment, which is simply an association of names with
values (which are objects). Evaluating VarExpr objects is done by looking up the variable in an
environment and returning its value; AssignExpr objects are evaluated by adding or modifying
an environment so as to associate the named variable with its value. In addition to the environment
that is passed whenever an expression is evaluated, there is a global environment. If a name is not
found in the passed environment, it is then looked up in the global environment.

The interpreter has a number of types with which it can deal. Each type is represented by
a subclass of class Type. An instance of one of these subclasses is a value of that type. The
commonly used type classes are TypeChar, TypeId, TypeInt, TypeShort, TypeSTR,
TypeUnsigned, and TypeVoid. The TypeId represents an arbitrary Objective-C object;
the others represent their corresponding C type.

Consider the implementation of TypeInt:
= TypeInt : Type � int _int;

�
+ initialize � [super register:"int"];

[super register:"long"];
�

+ set_int:(int)v � return [[super new] set_int:v];
�

+ (void � )fromObject:o result:(void � )r
� � (int � )r = [o asInt]; return r;

�
+ toObject:(void � )r � return [self set_int: � (int � )r]; �

� set_int:(int)v � _int = v; return self;
�

� (int)asInt � return _int;
�

� (short)asShort � return (short)_int;
�

� (char)asChar � return (char)_int;
�

� (unsigned)asUnsigned � return (unsigned)_int;
�
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� (STR)asString:(STR)s � sprintf(s, "%d", _int); return s;
�

� (int)Plus:(int)b � return _int + b;
�

� (int)Minus:(int)b � return _int � b;
�

� (int)Times:(int)b � return _int � b;
�

� (int)DividedBy:(int)b � return b == 0 ?
[self error:"division by zero"], 0 : _int / b;

�
� (int)Mod:(int)b � return b == 0 ?

[self error:"mod by zero"], 0 : _int % b;
�

� (int)Clip:(int)b :(int)c
� return _int < b ? b : _int > c ? c : _int;

�
� (int)Times:(int)b Plus:(int)c � return _int � b + c;

�
The initialize method declares that this type represents the C types “int” and “long.” This

information is used when reading in the files that the Objective-C compiler writes to describe the
arguments and return types of message selectors. A sample line from one of these files is:

(id)at::,int,int;
This line says that the at:: method (as implemented by View, for example) takes two integers

as arguments, and returns an id, i.e. an object. (In Objective C, the type or signature of a selector
such as at:: must be the same in all classes that provide corresponding methods.) The interpreter
reads this line and creates a Selector object which records the fact that at:: expects its first
argument to be TypeInt, its second argument to be TypeInt, and returns a TypeId. This
Selector object is used when a MessageExpr whose selector is at:: is evaluated; it assures
that the arguments are converted to machine integers before the at:: method is invoked.

The knowledge of how to do conversions is embodied in the fromObject:result: and
toObject: methods. The intent is to freely convert between the values represented as machine
integers, or characters, etc., and the values represented as objects. Given int r; id anInt =
TypeInt set_int:3];, the call [TypeInt fromObject:anInt result:&r] sets r
to 3. Conversely, r = 4; anInt = [TypeInt toObject:&r]; sets anInt to a newly
created object of class TypeInt whose _int field is 4.

Note that the ability to do arithmetic is embodied in TypeInt, as is the ability to convert
between TypeInts and the other integer types (and string type).

Evaluating an expression node in a given environment is done by calling eval:
eval(expr, env, type, resultp)
id expr, env, type; void � resultp;

The eval function takes as argument an expression object, an environment object, a type
object, and a pointer to a place to put the result. The eval function takes care of printing out
tracing information, if necessary, and then simply sendsexpr theeval:resultType:result:
message. Each expression class is responsible for knowing how to evaluate itself, and is able to
convert its return value into the appropriate type.

The most interesting case is the evaluation of a MessageExpr:
= MessageExpr: Expression �

id sel; /� Selector object � /
id rec; /� (unevaluated) receiver object � /
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id arg[MAXARGS]; /� unevaluated arguments � /�

� (void � )eval:env resultType:rt result:(void � )r �
id v;
id _rec, _arg[5];
int i;
int nargs = [sel nargs];
SEL _sel = [sel sel];
id rettype = [sel rettype];

eval(rec, env, TypeId, &_rec);
for(i = 0; i < nargs; i++)

eval(arg[i], env, [sel argtype:i], &_arg[i]);
v = _msg(_rec, _sel, _arg[0], _arg[1],

_arg[2], _arg[3], _arg[4]);
if(rt == rettype) � /� no need to convert � /

� (id � )r = v; /� hack, assumes id or equal size � /
return r;�

return [rt fromObject:[rettype toObject:&v] result:r];�
There is some pointer cheating going on here, as the arguments which are to be sent to the receiver

object are stored in an array of ids, even though they are not necessarily objects. This relies on the
fact that, at least on the hardware this code runs upon (a MicroVax II), pointers, long integers, short
integers, and characters are all represented as four-byte values when passed to functions.

The sel variable is the Selector object, and is used to get the number and types of the
arguments and the return value of this selector. First eval is called recursively to evaluate the
receiver of the message; the result type is necessarily TypeId since a receiver of a message must
be an Objective C object. Each of the argument expressions is evaluated, the result being stored in
the _arg array. The type of the returned result is that which is expected for this argument in the
message about to be sent. The function _msg is the low-level message sending function that lies at
the heart of Objective C; it is passed a receiver, a selector, and any arguments, and returns the result
of sending the message specified by the selector and the arguments to the specified receiver. This
result is then converted to the correct type. If this message selector is already known to return the
same type as desired, then no conversion is necessary, and the value is simply copied into the correct
place. Otherwise, the returned value is first converted to an object (by invoking the toObject:
method of the known return type) and then converted from an object to the desired return type (via
the fromObject:result: method). In the typical case, either rt or rettype is TypeId, so
one of the conversions to or from an object does no significant work.

The reason for passing the return type toeval, rather than havingeval always return an object,
and then converting returned objects to machine integers, characters, and strings when needed, is
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efficiency. In the current scheme, nested message expressions, where the inner expression returns,
say, an integer which is the expected argument type of the outer expression, there is no overhead
converting the intermediate result to an object and then immediately back to an integer.

Note that the automatic conversion to objects allows arithmetic to be done relatively painlessly.
For example, to add 10 to the x coordinate of a view, use:

[[view xloc] Plus:10]
The [view xloc] returns a machine integer; since this is the intended receiver of the Plus:

message it must be converted to a TypeId, i.e. an object, which in this case will be an instance of
TypeInt. The Plus: method expects its argument to be a machine integer; since the interpreter
will represent the constant 10 by a TypeInt object, it is converted to a machine integer (by calling
eval with a result type argument of TypeInt). The Plus: method is then invoked, and it
returns a machine integer, which may or may not be converted to a TypeInt object depending on
the context in which the above program fragment is used.

The above example could be specified more efficiently in the gesture semantics as [10
Plus:[view xloc]]. In this case, all the conversions are avoided, since 10 is already rep-
resented as an object of TypeInt, and Plus: expects a machine integer as argument, which is
exactly what is returned by [view xloc].

One thing not shown in the above implementation is garbage collection. During expression
evaluation, objects are freely being created and discarded, and it is important that the memory
associated with them be released when they are discarded. The current implementation of the
interpreter does not do this very well, since there is not much point given the lax attitude toward
memory management throughout GRANDMA.

Interface Implementation

All the expression nodes are subclasses of Model, and each one has a corresponding subclass of
View to display it on the screen. The expression views act as virtual tools; these tools act on
empty argument and receiver slots, as well as the docks and the trash. Implementing the interpreter
interface in GRANDMA was a good exercise of the GRANDMA facilities, but is not especially
interesting so will not be covered in detail here.

Control Constructs

The only control construct currently implemented is Seq, which allows a list of expressions to
be evaluated in order. Seq, it turns out, was implemented without any extra mechanism in the
interpreter; all that was required was the creation of a Seq class, whose class methods simply
returned their last argument:

= Seq: Object (GRANDMA, Primitive) � �
+ :a1 � return a1;

�
+ :a1:a2 � return a2;

�
+ :a1:a2:a3 � return a3;

�
+ :a1:a2:a3:a4 � return a4;

�
+ :a1:a2:a3:a4:a5 � return a5;

�
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Since arguments are evaluated in order, this has the desired effect.
Other control constructs, such asWhile andIf, have not been implemented, but could easily be

implemented if the need arose. One simple implementation technique would to make WhileExpr
and IfExpr both subclasses of MessageExpr, and then make While and If classes which have
methods that have the right number of arguments. For simplicity, the normal message expression
display code could be used to display If and While expressions; the only new code to be added
would be new eval:resultType:result: methods in WhileExpr and IfExpr which
have the desired effect.

Attributes and Cursors

An important consideration in allowing gesture semantics to be specified at runtime is exactly what
the application programmer makes visible to the gesture semantics programmer. There are a number
of means by which the application programmer can make a feature available to the semantics
programmer; all of these hinge on making visible objects which can be the receivers of relevant
messages.

The “Attributes” lists provides a way of giving the semantics writer easy access to application
objects and features. This is done by creating expressions for each attribute. GRANDMA already
supplies entries for all accessible gesture attributes and features.

As an illustrative example of how attributes are specified and implemented, consider the two
attributes handler and enclosed. The handler attribute simply refers to the gesture handler
that is currently executing. The enclosed attribute refers to the list of View objects enclosed
by the current gesture. Selecting enclosed from the attribute list results in a named message;
clicking on its box reveals that the message is [handler enclosed].

Internally,
handlerVar = [[VarExpr str:"handler"]

vclass:GestureEventHandler];
/� The above statement adds "handler" to the list of attributes to be displayed

in the interpreter window, and declared that its value is of type GestureEventHandler.
Its value is actually set by the GestureEventHandler before any gesture
semantics are evaluated. � /

enclosedExpr = [[[[MessageExpr sel:@selector(enclosed)]
rec:handlerVar]
str:"enclosed"]
vclass:OrdCltn];

/� The above statement adds "enclosed" to the attribute list. When evaluated
in gesture semantics, the "enclosed" attribute will result in
[handler enclosed] being executed. � /

Both handlerVar and enclosedExpr are added to the list of interpreter attributes, and
show up in the list as “handler” and “enclosed” respectively. Each of these expressions evaluates
to an Objective C object; the vclass: message records the expected class of the object. The
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recorded class is used by the selector browser as a starting point when choosing a message to send
to an attribute.

The “handler” attribute, being a VarExpr, is evaluated by looking up the string “handler” in the
current environment. Section 7.4 described how the environment in which semantic expressions are
evaluated is initialized so as the bindhandler to the current event handler. Evaluatingenclosed
thus results in the enclosed message being sent to the current handler:

= GestureEventHandler ...
� enclosed � id o, e, seq; int xmin, ymin, xmax, ymax;

[gesture xmin:&xmin ymin:&ymin xmax:&xmax ymax:&ymax];
o = [[wall viewdatabase]

partiallyInRect:xmin:ymin:xmax:ymax];
for(seq = [o eachElement]; e = [seq next]; )

if(! [e isContainedIn:gesture] ) [o remove:e];
return o;�

The interpreter’s evaluation of theenclosed attribute thus results in a call to the above method.
This method determines the bounding box of the current gesture, and consults the view database
for a list of views contained within this bound. Each object is polled to see if it is enclosed by the
gesture, and is removed from the list if it is not. The list is then returned.

The default implementation of isContainedIn:, in the View class, simply tests if each
corner of the bounding box is enclosed within the gesture. This test may be overridden by non-
rectangular views, or rectangular views that wish to ensure its each edge is entirely contained within
the gesture.

= View ...
� (BOOL)isContainedIn:g �

int x1, y1, x2, y2; [self _calc_new_box];
x1 = [box left]; y1 = [box top];
x2 = [box right]; y2 = [box bottom];
return [g contains:x1:y1] && [g contains:x1:y2] &&

[g contains:x2:y1] && [g contains:x2:y2];�
The Gesture class implements the contains:: message, which tests if a point is enclosed

within the gesture. The current implementation first closes the gesture by conceptually connecting
the ending point to the starting point, and then counts the number of times a line from the point to a
known point outside the gesture crosses the gesture. An odd number of crossings indicates that the
point is indeed enclosed by the gesture.

Other attributes work similarly, although their code tends to be much simpler than that of
enclosed. In particular, there are attributes for each feature discussed in Section 3.3; the at-
tributes are named messages implemented as [[handler gesture] ifvi:N], where N is the
corresponding index into the feature vector.

Cursors are added to the list of cursors available for use in semantic expressions simply by
sending them the public message. The application programmer should create and make available



162 CHAPTER 7. GESTURE RECOGNIZERS IN GRANDMA

any cursor that might prove useful to the semantics writer.

7.8 Conclusion

The gesture subsystem of GRANDMA consists of the gesture event handler, the low level gesture
recognition modules, the user interface which allows the modification of gesture handlers, gesture
examples, and gesture classes, and the interpreter for evaluating the semantics of gestures. Each of
these parts has been discussed in detail. The next chapter demonstrates how GRANDMA is used to
build gesture-based applications.



Chapter 8

Applications

This chapter discusses three gesture-based applications built by the author. The first, GDP, is a
simple drawing editor based on the drawing program DP [42]. The second, GSCORE, is an editor
for musical scores. The third, MDP, is an implementation of the GDP drawing editor that uses
multi-finger gestures.

GDP and GSCORE are both written in Objective C, and run on a DEC MicroVAX II. They are
both gesture-based applications built using the GRANDMA system, discussed in Chapters 6 and 7.
As such, the gestures used are all single-path gestures drawn with a mouse. GRANDMA interfaces
to the X10 window system [113] through the GDEV interface written by the author. GDEV runs
on several different processors (MicroVAX II, SUN-2, IBM PC-RT), and several different window
managers (X10, X11, Andrew). GRANDMA, however, only runs on the MicroVax, which for
years was the only system available to the author that ran Objective C. It should be relatively
straightforward to port GRANDMA to any UNIX-based environment that ran Objective-C, though
to date this has not been done.

MDP is written in C (not Objective C), and runs on a Silicon Graphics IRIS 4D Personal
Workstation. MDP responds to multiple-finger gestures input via the Sensor Frame. Unlike GDP
and GSCORE, MDP is not built on top of GRANDMA. The reason for this is that the only functioning
Sensor Frame is attached to the above-mentioned IRIS, for which no Objective C compiler exists. It
would be desirable and interesting to integrate Sensor Frame input and multi-path gesture recognition
into GRANDMA (see Section 10.2).

8.1 GDP

GDP, a gesture-based drawing program, is based on DP [42]. In DP there is always a current mode,
which determines the meaning of mouse clicks in the drawing window. Single letter keyboard
commands or a popup menu may be used to change the current mode. The current mode is
displayed at the bottom of the drawing window, as are the actions of the three mouse buttons. For
example, when the current mode is “line”, the left mouse button is used for drawing horizontal
and vertical lines, the middle button for arbitrary lines, and the right button for lines which have
no gravity. Some DP commands cause dialogue boxes to be displayed; this is useful for changing
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parameters such as the current thickness to use for lines, the current font to use for text, and so on.
With the gesture handlers turned off, GDP (loosely) emulates DP. The current mode is indicated

by the cursor. For example, when the “line” cursor is displayed, clicking a mouse button in the
drawing window causes a new line to be created and one endpoint to be fixed at the position of the
mouse. As long as the mouse button is held down, the other end of the line follows any subsequent
motion of the mouse, in a “rubberband” fashion. The user releases the mouse button when the
second endpoint of the line is at the desired location.

Both DP and GDP support sets, whereby multiple graphic objects may be grouped together
and subsequently function as a single object. Once created, a set is translated, rotated, copied, and
deleted as a unit. A set may include one or more sets as components, allowing the hierarchical
construction of drawings. In DP, there is the “pack” command, which creates a new set from a
group of objects selected by the user, and the “unpack” command, whereby a selected set object is
transformed back into its components. GDP functions similarly, though the selection method differs
from DP.

GDP makes no attempt to emulate every aspect of DP. In particular, the various treatments of
the different mouse buttons are not supported. These and other features were not implemented since
doing so would be tangential to the purpose of the author, which was to demonstrate the use of
gestures. As the unimplemented features present no conceptual problems for implementation in
GRANDMA, the author chose not to expend the effort.

8.1.1 GDP’s gestural interface

GDP’s gesture-based operation has already been briefly described in Section 1.1. That description
will be expanded upon, but not repeated, here.

Figures 1.2a, b, c, and d show the rectangle, ellipse, line, and pack gestures, all of which are
directed at the GDP window, rather than at graphic objects. Also in this class is the text gesture, a
cursive “t”, and the dot gesture, entered by pressing the mouse button with no subsequent mouse
motion. The text gesture causes a text cursor to be displayed at the initial point of the gesture. The
user may then enter text via the keyboard. The dot gesture causes the last command (as indicated by
the current mode) to be repeated. For example, after a delete gesture, a dot gesture over an existing
object will cause that object to be deleted.

Figures 1.2e, f, and g show the copy, rotate, and delete gestures, all of which act directly on
graphic objects. The move gesture, a simple arrow (figure 8.1), is similar. All of these gestures act
upon the graphic object at the initial point of the gesture. These gestures are also recognized by the
GDP window when not begun over a graphic object. In this case, the cursor is changed to indicate
the corresponding mode, and the underlying DP interface takes over. In particular, dragging one of
these cursors over a graphic object causes the corresponding operation to occur.

8.1.2 GDP Implementation

Since GDP was built on top of GRANDMA, the implementation followed the MVC paradigm.
Figure 8.2 shows the position in the class hierarchy for the new classes defined in GDP.
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8.1.3 Models

The implementation of GDP centers on the class GraphicObject, a subclass of Model. Each
component of the drawing is a GraphicObject. The entire drawing is also implemented as
a graphic object. GraphicObjects are either Text objects, LineDrawing objects (lines,
rectangles, and ellipses), or GobjSet objects, which implement the set concept.

A GraphicObject has two instance variables: parent, the GobjSet object of which this
object is a member, and trans, a transformation matrix [101] for mapping the object into the
drawing. Every GraphicObject is a member of exactly one set, be it the set which represents the
entire drawing (these are top level objects), or a member of a set which is itself part of the drawing.

LineDrawing objects have a single instance variable, thickness, that controls the thick-
ness of the lines used in the line drawing. The three subclasses of LineDrawing, namely
Line, Rectangle, and Ellipse, represent all graphics in the drawing. Associated with each
LineDrawing subclass is a list of points which specify a sequence of line segments for drawing
the object. The points in the list are normalized so that one significant point of the object lies on the
origin and another significant point is at point (1,1). For Lines, one endpoint is at (0,0) and the other
at (1,1). The point list for Rectangles specifies a square with corners at (0,0), (0,1), (1,1), and
(1,0). The Ellipse is represented by 16 line segments that approximate a circle with center (0,0)
and that passes through the point (1,1). The transformation matrix in each LineDrawing object
is used to map the list of points in each LineDrawing object into drawing (window) coordinates.

A GobjSet object contains a Set of objects that make up the set. In order to display a set,
the transformation matrix of the set is composed with (multiplied by) that of each of the constituent
objects. This composition happens recursively, so that deeply nested objects are displayed correctly.

Text objects contain a font reference and text string to be displayed.

8.1.4 Views

Each of the immediate subclasses ofGraphicObject has a corresponding subclass ofGobjView
associated with it. Each LineDrawingView object is responsible for displaying the
LineDrawing object which is its model on the screen. Similarly, GobjTextViews display
Text objects, and GobjSetViews display GobjSets.

All GobjViews respond to the updatePicture message in order to redraw their picture
appropriately. A LineDrawingView simply asks its model for the lists of points (suitably
transformed) which it proceeds to connect via lines. The model also provides the appropriate
thickness of the lines as well. (Note that it is not necessary to provide view classes for the three
subclasses of LineDrawing since all three classes are taken care of by LineDrawingView.)

GobjTextViews draw their models one character at a time in order to accommodate the
transformation of the model. Transformations which have a unit scale factor (no shrinking or
dilation) and no rotation component cause the text to be drawn horizontally, with the characters
spacing determined by their widths in the current font. In the current implementation, scaling or
rotation does not effect the character size or orientations (as X10 will not rotate or scale characters),
but does effect the character positions.

GobjSetViews have the views of their model’s component objects as subviews. Since
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the update method for View will automatically propagate update messages to subviews, no
updatePicture method is required for GobjSetView.

The GobjView class overrides the move:: method (of View). Recall from Section 6.6 that
this method simply changes the location of the view, thus translating the view in two dimensions.
This method is used, for example, by the drag handler (section 6.7.9) to cause views to move with
the mouse cursor. The purpose of overriding the default method is so that dragging any GobjView
causes its model to be changed so as to reflect the new coordinates of the object in the drawing.
The model is changed by first sending it the message getLocalTrans, which returns the model’s
transformation matrix, then calling a function which modifies the matrix to reflect the additional
translation, and then sending the model a setLocalTrans: message, which causes the new
transformation matrix to be recorded in the model. Of course the model then sends itself the
modified message which causes the model’s view to redraw the model at its new location.

GobjView also implements the delete message, by first sending itself the free mes-
sage (which, among other things, removes it from its parent’s subview list), and then send-
ing its model the delete message. GobjView also overrides the default isOver: and
isContainedIn: methods (Sections 6.7.5 and 7.7.3) so that they always return NO for objects
not at the top-level of the drawing. Each subclass of GobjView implements isReallyOver:
and isReallyContainedIn:, which are invoked when the object is indeed top-level.

The outermost window is itself a view. It is an instance of GdpTopView, which is a subclass
of GdpSetView. The GdpTopView representing the entire drawing.

8.1.5 Event Handlers

GDP required the addition of one new event handler, TwoPointEventHandler, which is of
sufficient utilityand generality to be incorporated into the standard set of GRANDMA event handlers.
The purpose of the TwoPointEventHandler is to implement the typical “rubberbanding”
interaction. For example, clicking the “line” cursor in the drawing window causes a new line to be
created, one endpoint of which is constrained to be at the location of the click, the other endpoint of
which stays attached to the cursor until the mouse buttonis released. ATwoPointEventHandler
can be used to produce this behavior.

As a GenericEventHandler, a TwoPointEventHandler has a parameterizable start-
ing predicate, handling predicate, and stopping predicate (Section 6.7.8). In order for a passive
TwoPointEventHandler to be activated, the tool of the activating event must operate on the
view to which the handler is attached (like a GenericToolOnViewHandler, section 6.7.7). If
the tool operates on the view and the event satisfies the starting predicate, the handler is activated.
When activated, the tool is allowed to operate on the view, and the operation is expected to return
an object which is to be the receiver of subsequent messages. In the above example, the “line” tool
operates upon the drawing window view (a GdpTopView) the result of which is a newly created
Line object. The handler then sends the new object a message whose parameters are the starting
event location coordinates. The actual message sent is a parameter to the passive event handler; in
the example the message is setEndpoint0::. Each subsequent event handled results in the new
object being sent another message containing the coordinates of the event (setEndpoint1:: in
the example).
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8.1.6 Gestures in GDP

This section describes the addition of gestures to the implementation described above. The gesture
handlers, gesture classes, example gestures, and gesture semantics were all added at runtime,
allowing them to be tested immediately. I should admit that in several cases it was necessary to
add some features directly to the existing C code and recompile. This was partly due to the fact
that GRANDMA’s gesture subsystem was being developed at the same time as this application, and
partly due to the gesture semantics wanting to access models and views through methods other than
ones already provided, for reasons such as readability and efficiency.

Figure 8.1 shows the gesture classes recognized by each of the two GDP gesture handlers.
Note that the gestures expected by a GobjView are a subset of those expected by a GdpTopView.
Allowing one gesture class to be recognized by multiple handlers allows the semantics of the gesture
to depend upon the view at which it is directed.

Several gestures (line, rect, ellipse, and text) cause graphic objects to be created. These gestures
are only recognized by the top level view, which covers the entire window, a GdpTopView. When,
for example, a line gesture (a straight stroke) is made, a line is created, the first endpoint of which
is at the gesture start, while the second endpoint tracks the mouse in a rubberband fashion.

The semantics for the line gesture are:
recog = [Seq :[handler mousetool:createLine_MouseTool]

:[[topview createLine] translateEndpoint:0
x:<startX> y:<startY>] ];

manip = [recog scaleXYEndpoint:1 x:<currentX> y:<currentY>
cx:<startX> cy:<startY>];

(The done expression is assumed to be nil.) When the line gesture is recognized, the
gesture handler is sent the mousetool: message, passing the createLine_MouseTool as a
parameter. The handler sends a message to its view’s wall, and the cursor shape changes. (Internally,
the handler changes its tool instance variable to the new tool, as well.) Then, a line is created (via
the createLine message sent to the top view), and the new line is sent a message which translates
one endpoint to the starting point of the gesture. (The identifiers enclosed in angle brackets are
gestural attributes, as discussed in Section 7.7.3.) The :: message to Seq, which is used evaluate
two expressions sequentially, returns its last parameter, in this case the newly created line, which is
assigned to recog.

Upon each subsequent mouse input the manip expression is evaluated. It sends the new
line (referred to through recog) a message to scale itself, keeping the “center” point (startX,
startY) in the same location, mapping the other endpoint to (currentX, currentY).

The semantics for the rect and ellipse gestures are similar to those of line, the only difference
being the resultant cursor shape and the creation message sent to topview. The start of the
rectangle gesture controls one corner of the rectangle and subsequent mouse events control the
other corner. The start of the ellipse gesture determines the center of the ellipse, and the scaling
guarantees that the mouse manipulates a point on the ellipse. The rectangle is created so that its
sides are parallel to the window. Similarly, the ellipse is created so that its axes are horizontal and
vertical. Manipulations after any of the creation gestures is recognized never effect the orientation
of the created object. With only a single mouse position for continuous control (two degrees of
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freedom) it is impossible to independently alter the orientation angle, size, and aspect ratio of the
graphic object. The design choice was made to modify only the size and aspect ratio in the creation
gesture; a rotate gesture may subsequently be used to modify the orientation angle.

It is still possible, however, to use other features of the gesture to control additional attributes of
the graphic object. Changing the recog semantics of a line gesture to

recog = [Seq :[handler mousetool:<createLine>]
:[[[topview createLine] translateEndpoint:0

x:<startX> y:<startY>]
thickness:[[pathLength DividedBy:40]

Clip:1 :9] ] ];
causes the thickness of the line to be the length of the gesture divided by 40 and constrained

to be between 1 and 9 (pixels) inclusive. The length of the gesture determines the thickness of the
newly created line, which can subsequently be continuously manipulated into any length.

The dot gesture (where the user simply presses the mouse without moving it) has the null
semantics. When it is recognized, the gesture handler turns itself off immediately, enabling events
to propagate past it, and thus allowing whatever cursor is being displayed to be used as a tool. Thus
GDP, like DP, has the notion of a current mode, accessible via the dot gesture.

The pack gesture has semantics:
recog = [Seq :[handler mousetool:pack_MouseTool]

:[topview pack_list:<enclosed>]];
The attribute <enclosed> is an alias for [handler enclosed]. Recall from Section

7.7.3 that this message returns a list of objects enclosed by the gesture. This list is passed to the
topview, which creates the set. As long as the mouse button is held down, the pack tool will
cause the pack message to be sent to any object it touches; those objects will execute [parent
pack:self] (the implementation of the pack method) to add themselves to the current set.

The copy, move, rotate, edit, and delete gestures simply bring up their corresponding cursors
when aimed at the background (GdpTopView) view. They have more interesting semantics when
associated with a GobjView. The copy gesture, for example, causes:

recog = [Seq :[handler mousetool:viewcopy_MouseTool]
:copy = [[view viewcopy]

move:<endX> :<endY>]
:lastX = <endX>
:lastY = <endY>]

manip = [Seq :[copy move:[<currentX> Minus:lastX]
:[<currentY> Minus:lastY]]

:lastX = <endX>
:lastY = <endY>]

This illustrates that the gesture semantics can mimic the essential features of theDragHandler
(Section 6.7.9). The semantics of the move gesture are almost identical, except that no copy is
made. A simpler way to do this kind of thing (by reraising events) is shown when the semantics of
the GSCORE program are discussed.

The delete gesture has semantics
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Figure 8.3: GSCORE’s cursor menu

recog = [Seq :[handler mousetool:delete_Mousetool]
:[view delete]];

The edit gesture semantics are similar.
The rotate gesture has semantics:
recog = nil;
manip = [Seq :[handler mousetool:rotate_MouseTool]

:[view rotateAndScaleEndpoint:0
x:<currentX>
y:<currentY>
cx:<startX>
cy:<startY>]];

The rotateAndScaleEndpoint: message causes one point of the view to be mapped
to the coordinate indicated by x: and y: which keeping the point indicated by cx: and cy:
constant. This gesture always drags endpoint 0 of a graphic object. It would be better to be able to
drag an arbitrary point, as is done by MDP, discussed later.

8.2 GSCORE

GSCORE is a gesture-based musical score editor. Its design is not based on any particular program,
but its gesture set was influenced by the SSSP score-editing tools [18] and the Notewriter II score
editor.

8.2.1 A brief description of the interface

GSCORE has two interfaces, one gesture-based, the other not. Figure 8.3 shows the non-gesture-
based interface in action. Initially, a staff (the five lines) is presented to the user. The user may call
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Figure 8.4: GSCORE’s palette menu

up additional staves by accessing the staff tool in the “Cursors” menu (which is shown in the figure).
In figure 8.4, the user has displayed a number of palettes from which he can drag musical symbols
onto the staff. As can be seen, the user has already placed a number of symbols on the staff. The
user has also used the down-tie tool to indicate two phrases and the beam tool to add beams so as to
connect some notes.1 Both tools work by clicking the mouse on a starting note, then touching other
notes. The tie tool adds a tie between the initial note and the last one touched, while the beam tool
beams together all the notes touched during the interaction.

Dragging a note onto the staff determines its starting time as follows: If a note is dragged to
approximately the same x location as another note, the two are made to start at the same time (and
are made into a chord). Otherwise, the note begins at the ending time of the note (or rest or barline)
just before it. Other score objects are positioned like notes.

The palettes are accessed via the palette menu, shown in figure 8.4. The palettes themselves
may be dragged around so as to be convenient for the user. The “H” button hides the palette; once
hidden it must be retrieved from the menu.

The delete cursor deletes score events. When the mouse button is pressed, dragging the delete
button over objects which may be deleted causes them to be highlighted. Releasing the button over
such a highlighted object causes it to be deleted. Individual chord notes may be deleted by clicking
on their note heads; an entire chord by clicking on its stem. When a beam is deleted, the notes revert
to their unbeamed state.

The gestural interface provides an alternative to the palette interface. Figure 8.5 shows the three
sets of gestures recognized by GSCORE objects. The largest set, associated with the staff, all result

1Note to readers unfamiliar with common music notation: A tie is a curved line connecting two adjacent notes of the
same pitch. A tie indicates that the two connected notes are to be performed as a single note whose duration equals the
sum of those of the connected notes. A curved line between adjacent differently pitched notes is a slur, performed by
connecting the second note to the first with no intermediate breath or break. Between nonadjacent notes, the curved line
is a phrase mark, which indicates a group of notes that makes up a musical phrase, as shown in figure 8.4. In GSCORE,
the tie tool can be used to enter ties, slurs, and phrase marks. A beam is a thick line that connects the stems of adjacent
notes (again see figure 8.4). By grouping multiple short notes together, beams serve to emphasize the metrical (rhythmic)
structure of the music.
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in staff events being created. There are two gestures, move and delete, that operate upon existing
score events. Seven additional gestures are for manipulating notes.

A gesture at a staff creates either a note, rest, clef, bar line, time signature, or key signature
object. The object created will be placed on the staff at (or near) the initial point of the gesture.
For notes, the x coordinate determines the starting time while the y coordinate determines the pitch
class. The gesture class determines the actual note duration (whole note, half note, quarter note,
eight note, sixteenth note, or thirtysecond note) and the direction of the stem.

Like note gestures, the remaining staff gestures use the initial x coordinate to determine the staff
position of the created object. The five rest gestures generate rests of various durations. The two
clef gestures generate the F and G clefs (C clefs may only be dragged from the palette). The timesig
gesture generates a time signature. After the gesture is recognized, the user controls the numerator
of the time signature by changes in the x coordinate of the mouse, and the denominator by changes
in y. Similarly, after the key gesture is recognized, the user controls the number of sharps or flats by
moving the mouse up or down. When a bar gesture is recognized, a bar line is placed in the staff,
and the cursor changes to the bar cursor. While the mouse button is held, the newly created bar line
extends to any staff touched by the mouse cursor.

The note-specific gestures all manipulate notes. Accidentals are placed on the note using the
sharp, flat, and natural gestures. The beam gesture causes the notes to be beamed together. The
note on which the beam gesture begins is one of the beamed notes; the beam is extended to other
notes as they are touched after the gesture is recognized. The uptie and downtie gestures operate
similarly. The dot gesture causes the duration of the note to be multipled by 3

2 , typically resulting
in a dot being added to a note.

Since a note is a score event, and always exists on a staff, a gesture which begins on a note may
either be note specific (e.g. sharp), score-event specific (e.g. delete), or directed at the staff (e.g.
one of the note gestures). The first time a gesture is made at a note, the three gesture sets are unioned
and a classifier created that can discriminate between each of them, as described in Section 7.2.

Figure 8.6 shows an example session with GSCORE.

8.2.2 Design and implementation

Figure 8.7 shows where the classes defined by GSCORE fit into GRANDMA’s class hierarchy. In
general, each model class created has a corresponding view class for displaying it. No new event
handlers needed to be created for GSCORE; GRANDMA’s existing ones proved adequate.

Generally useful views

Two new views of general utility, PullDownRowView and PaletteView, were implemented
during the development of GSCORE. APullDownRowView is a row of buttons, each of which acti-
vates a popup menu. It provides functionality similar to the Macintosh menu bar. APaletteView
implements a palette of objects, each of which is copied when dragged. PaletteView instantiates
a single DragHandler (Section 6.7.9) that it associates with every object on a palette. The drag
handler has been sent the message copyviewON, which gives the palette its functionality.
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Figure 8.6: A GSCORE session
Panel (a) shows a blank staff upon which the Gclef gesture has been entered. Panel (b) show the created treble
clef, and a key (key signature) gesture. After recognition, the number of flats or sharps can be manipulated by
the distance the mouse moves above the staff or below the staff, respectively. Panel (c) shows the created key
signature (one flat), and a timesig (time signature) gesture. After recognition, the horizontal distance from
the recognition point determines the numerator of the time signature, and the vertical distance determines
the denominator. Panel (d) shows the resulting time signature, and the 4u (quarter note) gesture, a single
vertical stroke. Since this is an upstroke, the note will have an upward stem. The initial point of the gesture
determines both the pitch of the note (via vertical position) and the starting time of the note (via horizontal
position). Panel (e) shows the created note, and the 8u (eighth note) gesture. Like the quarter note gesture,
the gesture class determines the note’s duration, and gestural attributes determines the note’s stem direction,
start time and pitch. Panel (f) shows two 16u (sixteenth note) gestures (combining two steps into one). Panel
(g) shows a beam gesture. This gesture begins on a note, rather than the gestures mentioned thus far, which
begin on a staff. After the gesture is recognized, the user touches other notes in order to beam them together.
Panel (h) shows the beamed notes, and a flat gesture drawn on a note. Panel (i) shows the resulting flat
sign added before the note, and an 8r (eighth rest) gesture drawn on the staff. Panel (j) shows the resulting
rest, and a delete gesture beginning on the rest. Panel (k) shows a 4u (quarter note) gesture drawn over an
existing quarter note (all symbols in GSCORE have rectangular input regions), the result being a chord, as
shown in panel (l).



8.2. GSCORE 175

Object

PullDownRowView

View

StaffView

PalletteViewScoreEventView

ScoreView

BeamView

ScoreTopView

ChordView DurModView

BarLineView StaffEventView TieView

RestViewKeySigView

TimeSigView

AccidentalView

ClefView NoteView

Dll

ClefObject

Accidental
Note Rest

KeySigObject TimeSigObject

BarLine

Model

DurationModifier

Score ScoreEvent

Beam

Chord Tie

StaffEvent

Staff
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Each palette can implement an arbitrary action when one of the dragged objects is dropped. For
most palettes of score events (notes, rests, clefs, and so on), no special action is taken. The copied
view becomes a subview of a StaffView when dragged onto a staff. However, accidentals and
duration modifiers (dots and triplets) are tools which send messages to NoteView objects when
dragged over them; the NoteView takes care of updating its state and creating any accidentals or
duration modifiers it needs. The copies that are dragged from the palette thus never become part of
the score, and so are automatically deleted when dropped.

GSCORE Models

With the exception of PullDownRowView and PaletteView, the new classes created during
the implementation of GSCORE are specific to score editing. A Score object represents a musical
score. It contains a list of Staff objects and a doubly-linked list (class Dll) of ScoreEvent
objects. Each ScoreEvent has a time field indicating where in the score it begins; the doubly-
linked list is maintained in time order.

The subclass StaffEvent includes all classes that can only be associated with a single staff.
A BarLine is not a StaffEvent since it may connect more than one staff, and thus maintains a
Set of staves in an instance variable. Similarly, a Chord may contain notes from different staves,
as may a Tie and Beam. A DurationModifier is not attached directly to a Staff, but instead
with a Note or Beam, so it is not a StaffEvent either.

The responsibility of mapping time to x coordinate in a staff rests mainly with the Score object.
It has two methods timeOf: and xposOf: which map x coordinates to times, and times to x
coordinates, respectively. Score has the method addEvent: for adding events to the list and
delete: and erase: for deleting and erasing events. Erase is a kind of “soft” delete; the object
is removed from the list of score events, but it is not deallocated or in any other way disturbed. A
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typical use would be to erase an object, change its time field, and then add it to the score, thus
moving it in time.

Each ScoreEvent subclass implements the tiebreaker message; this orders score events
that occur simultaneously. This is important for determining the position of score events; bar lines
must come before clefs, which must come before key signatures, and so on. Besides determining
the order events will appear on the staff, tiebreakers are important because they maintain a canonical
ordering of score events which can be relied upon throughout the code.

Particular ScoreEvent classes have straightforward implementations. Note has instance
variables that contain its pitch, raw duration (excluding duration modifiers), actual duration, stem
direction, back pointers to any Chord or Beam that contain it, and pointers to Accidental and
DurationModifier objects that apply to it. It has messages for setting most of those, and
maintains consistency between dependent variables. Notes are able to delete themselves gracefully,
first by removing themselves from any beams or chords in which they participate, and deleting any
accidentals or duration modifiers attached to them, then finally deleting themselves from the score.
Other score events behave similarly.

Sending a ScoreEvent thetime: message, which changes its start time, results in itsScore
being informed. The score takes care to move the ScoreEvent to the correct place in its list of
events. This is accomplished by first erasing the event from the score, and then adding it again.

While the internal representation of scores for use in editing is quite an interesting topic in its
own right [20, 83, 88, 29] it is tangential to the main topic, gesture-based systems. The representation
has now been described in enough detail so that the implementation of the user interface, as well as
the gesture semantics, can be appreciated. These are now described.

GSCORE Views

As expected from the MVC paradigm, there is aView subclass corresponding to each of theModels
discussed above. ScoreView provides a backdrop. Not surprisingly, instances of StaffView
are subviews of ScoreView. Perhaps more surprisingly, all ScoreEventView objects are
also subviews of ScoreView. For simplicity, the various StaffEventView classes are not
subviews of the StaffView upon which they are drawn. This simplifies screen update, since the
ScoreView need not traverse a nested structure to search for objects that need updating.

It is often necessary for a view to access related views; for example a BeamView needs to
communicate with the NoteView or ChordView objects being beamed together. One alternative
is for the views to keeps pointers to the related views in instance variables. This is very common in
MVC-based systems: pointers between views explicitly mimic relations between the corresponding
models. It is the task of the programmer to keep these pointers consistent as the model objects are
added, deleted, or modified.

In one sense, this is one of the costs associated with the MVC paradigm. For reasons of
modularity, MVC dictates that views and models be separate, and that models make no reference
to their views (except indirectly, through a model’s list of dependents). The benefit is that models
may be written cleanly, and each may have multiple views. Unfortunately, the separation results in
redundancy at best (since the structure is maintained as both pointers between models and pointers
between views), and inconsistency at worse (since the two structures can get “out of sync”). Also,



8.2. GSCORE 177

any changes to a model’s relationship to other models requires parallel changes in the corresponding
views. This duplication, noticed during the initial construction of GSCORE, seemed to be contrary
to the ideals of object-oriented programming, where techniques such as inheritance are utilized to
avoid duplication of effort.

GRANDMA attempts to address this problem of MVC in a general way. The problem is caused
by the taboo which prevents a model from explicitly referencing its view(s). GRANDMA maintains
this taboo, but provides a mechanism for inquiring as to the view of a given model. In order to
retain the possibility of multiple views of a single model, the query is sent to a context object; within
the context, a model has at most one view. The implementation requires that a context be a kind of
View object:

View ...
� setModelOfView:v � /� associates v with [v model] � / �
� getViewOfModel:m � /� returns view associated with m � / �

The implementation is done using an association list per context: given a context, the message
setModelOfView: associates a view with its model in the context. Objective C’s association
list object uses hashing internally, so getViewOfModel: typically operates in constant time
independent of the number of associations. The result is a kind of inverted index, mapping models
to views.

In GSCORE, only a single context is used (since there is only one view per model), which,
for convenience, is the parent of all ScoreEventView objects, a ScoreView. The various
subclasses of ScoreEventView no longer have to keep consistent a set of pointers to related ob-
jects. For example, a BeamView needs only to query its model for the list of Note and/or Chord
models that it is to beam together; it can then ask each of those models m for its view via [parent
getViewOfModel:m]. The instance variable parent here refers to the ScoreView of which
the BeamView is a subview. Thus, the problem of keeping parallel structures consistent is elimi-
nated. One drawback, however, is that it is now necessary to maintain the inverted index as views
are created and deleted.

Now that the problem of how views access their related views has been solved, redisplay-
ing a view is straightforward. Recall (Section 6.5) that when a model is modified, it sends
itself the modified message, which results in all its dependents (in particular its view) get-
ting the message modelModified. The default implementation of modelModified results
in updatePicture being sent to the view and all of its subviews (Section 6.6). Normally,
updatePicture is the method that is directly responsible for querying the model and updating
the graphics. ScoreEventView overridesupdatePicture, and the task of actually producing
the graphics for a score event is relegated to a new method, createPicture, implemented by
each of ScoreEventView’s subclasses. ScoreEventView’s updatePicture sends itself
createPicture, but also does some additional work to be discussed shortly.

As an example, consider what happens when the pitch of a note is changed. When a Note
is sent the abspitch: message, which changes its pitch, it updates its internal state and sends
itself the modified message. (Changing the pitch might result in Accidental objects being
added or deleted from the score, a possibility ignored for now.) This Note’s NoteView will get
sent createPicture, and query its model (and the Score and Staff objects of the model) to
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determine the kind and position of the note head, as well as the stem direction, if needed. The proper
note head is selected from the music font, and drawn on the staff (with ledger lines if necessary) at
the determined location.

One reason for ScoreEvent’s updatePicture sending createPicture is to test in
a single place the possibility that the view may have moved since the last time it was drawn. In
particular, if the x coordinate of the right edge of the view’s bounding box has changed, this is an
indication that the score events after the this might have to be repositioned. If so, the Score object
is sent a message to this effect, and takes care of changing the x position of any affected models.
Another reason for the extra step in creating pictures is to stop a recursive message that attempts to
create a picture currently being created, a possibility in certain cases.

Adding or deleting a ScoreEvent causes the Score object to send itself the modified
message. Before doing so, it creates a record indicatingexactly what was changed. When notified, its
ScoreView object will request that record, creating or deleting ScoreEventViews as required.
ScoreView uses an association list to associate view classes with model classes; it can thus send
the createViewOf: message to the appropriate factory.

ScoreEventViews function as virtual tools, performing the action scoreeventview:.
(This default is overridden by AccView, DurModView, BarLineView, and TieView, as these
do not operate on StaffViews.) The only class that handles scoreeventview: messages
is StaffView. A version of GenericToolOnViewEventHandler different than the one
discussed in Section 6.7.7 is associated with class ScoreEventView. This version is a kind of
GenericEventHandler, and thus more parameterizable than the one discussed earlier. The
instance associated with StaffViews has its parameters set so that it performs its operation
immediately (as soon as a tool is dragged over a view which accepts its action), rather than the
normal behavior of providing immediate semantic feedback and performing the action when the
tool is dropped on the view.

Thus, when a ScoreEventView whose action is scoreeventview: is dragged over a
StaffView, the StaffView immediately gets sent the message scoreeventview:, with
the tool (i.e. the ScoreEventView) as a parameter. The first step is to erase: the model
of the ScoreEventView from the score, if possible. The StaffView then sends its model’s
Score the timeOf: message, with parameter the x coordinate of the StaffEventView being
dragged. The time returned is made the time of the ScoreEventView’s model, which is then
added to the score. When a subsequent drag event of the ScoreEventView results in the
scoreeventview: message to be sent to the StaffView, the process is repeated again. Thus
as the user drags around the ScoreEventView, the score is continuously updated, and the effect
of the drag immediately reflected on the display.

Though they have different actions,AccView, TieView, DurModView, andBarLineView
tools operate similarly to the other ScoreEventViews. Rather than explain their functionality in
the non-gesture-based interface, the next section discusses the semantics of the gestural interface to
GSCORE.
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GSCORE’s gesture semantics

The gesture semantics rely heavily on the palette interface described above. When the palettes are
first created, every view placed in the palette is named and made accessible via the “Attributes”
button in the gesture semantics window (see Sections 7.7.2 and 7.7.3). It is then a simple matter in
the gesture semantics to simulate dragging a copy of the view onto the staff (see Section 7.7.1). For
example, consider the semantics of the 8u gesture, which creates an eighth note with an up stem:

recog = [[[noteview8up viewcopy] at:<startLoc>]
reRaise:<currentEvent>];

The name noteview8up refers to the view of the eighth note with the up stem placed in the
palette during program initialization. That view is copied (which results in the model being copied as
well), moved to the starting location of the gesture (another “Attribute”), and the currentEvent
(another “Attribute”) is reraised using this view as the tool and its location as the event location.
This simulates the actions of the DragHandler, and since startLoc is guaranteed to be over
the staff (otherwise these semantics would never have been executed) the effect is to place an eighth
note into the score. Similar semantics (the only difference is the view being copied) are used for all
other note gestures, as well as all rest gestures and clef gestures.

The semantics of the bar gesture is similar to that of the note gestures, the difference being that
a mouse tool is used rather than a virtual (view) tool.

recog = [handler mousetool:
[barlineEvent_MouseTool

reRaise:<currentEvent>
at:<startLoc>]];

The timesig gesture for creating time signatures is more interesting. After it is recognized, x
and y of the mouse control the numerator and the denominator of the time signature, respectively:

recog = [Seq :sx = <currentX>
:sy = <currentY>

:[[[timesigview4_4 viewcopy] at:<startLoc>]
reRaise:<currentEvent>]]

manip = [[recog model]
timesig:[[[<currentX> Minus:sx]

DividedBy:10] Clip :1 :100]

:[[[<currentY> Minus:sy]
DividedBy:10] Clip :1 :100]]

Note that the recog expression is similar to the others; a view from the palette is copied, moved
to the staff, and used as a tool in the reraising of an event. The manip expression, in contrast,
does not operate on the level of simulated drags. Instead, it accesses the model of the newly
created TimeSigView directly, sending it the timesig:: message which sets its numerator and
denominator. The division by 10 means that the mouse has to move 10 pixels in order to change one
unit. The Clip:: message ensures the result will be between 1 and 100, inclusive. For musical
purposes, it is probably better to only use powers of two for the denominator, but unfortunately no
toThe: message has been implemented in TypeInt (though it would be simple to do).
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The key signature gesture (key) works similarly, except that only the y coordinate of the mouse
is used (to control the number of accidentals in the key signature):

recog = [Seq :sy = <currentY>
:[[[keysigview1sharps viewcopy]

at:<startLoc>]
reRaise:<currentEvent>]]

manip = [[recog model]
keysig:[[[sy Minus:<currentY>]

DividedBy:10] Clip:[0 Minus:6] :6]]
A positive value for key signature indicates the number of sharps, a negative one the (negation

of the) number of flats. The awkward [0 Minus:6] is used because the author failed to allow the
creation of negative numbers with the “new int” button.

The above gestures are recognized when made on the staff. The delete and move gestures are
only recognized when they begin on ScoreEventViews. The semantics of the delete gesture
are:

recog = [Seq :[handler mousetool:delete_MouseTool]
:[view delete]];

This changes the cursor, and deletes the view that the gesture began on. The latter effect could
also have been achieved using reRaise:, but the above code is simpler.

The move gesture simply restores the normal cursor and reraises it at the starting location of
the gesture, relying on the fact that in the non-gesture-based interface, score events may be dragged
with the mouse:

recog = [[handler mousetool:normal_MouseTool]
reRaise:startEvent];

In addition to the gestures that apply to any ScoreEventView, NoteView recognizes a few
of its own. The three gestures for adding accidentals to notes (sharp, flat, and natural) access the
Note object directly. For example, the semantics of the sharp gesture are:

recog = [[view model] acc:SHARP];
The beam gesture changes the cursor to the beam cursor and simulates clicking the beam cursor

on the NoteView at the initial point:
recog = [[handler mousetool:beamtool_MouseTool]

reRaise:startEvent];
The tie gestures (uptie and downtie) could have been implemented similarly. Instead, a variation

of the above semantics causes the mouse cursor to revert to the normal cursor when the mouse button
is released after the gesture is over:

recog = [Seq :[handler mousetool:tieUpEvent_MouseTool]
:[tieUpEvent_MouseTool reRaise:startEvent]]];

manip = :[tieUpEvent_MouseTool reRaise:currentEvent]]];

done = [Seq :[tieUpEvent_MouseTool reRaise:currentEvent]
:[handler mousetool:normal_MouseTool]];
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The dot gesture accesses the Note’s raw duration, multiplies it by 3
2 and changes the duration

to the result. The note will add the appropriate dot in the score when it receives its new duration
recog = [Seq :m = [view model]

:[m dur:[[[m rawdur] Times:3] DividedBy:2]]];
manip = recog;

The manip = recog statement itself does nothing of itself, but by virtue of it being non-nil,
the gesture handler does not relinquish control until the mouse button is released. Without this
statement, the mouse cursor tool (whatever it happens to be) would operate on any view it was
dragged across after the dot gesture was recognized.

8.3 MDP

MDP is gesture-based drawing program that takes multi-finger Sensor Frame gestures as input.
Though primarily a demonstration of multi-path gesture recognition, MDP also shows how gestures
can be incorporated cheaply and quickly into a non-object-oriented system. This is in contrast to
GRANDMA, which, whatever its merits, requires a great deal of mechanism (an object=oriented
user interface toolkit with appropriate hooks) before gestures can be incorporated.

The user interface to MDP is similar to that of GDP. The user makes gestures, which results
in various geometric objects being created and manipulated. The main differences are due to the
different input devices. In addition to classifying multiple finger gestures, MDP uses multiple fingers
in the manipulation phase. This allows, for example, a graphic object to be rotated, translated, and
scaled simultaneously.

Figure 8.8 shows an example MDP session. Note that how, once a gesture has been recognized,
additional fingers may be brought in and out of the picture to manipulate various parameters.
Multiple finger tracking imbues the two-phase interaction with even more power than the single-
path two-phase interaction.

8.3.1 Internals

Figure 8.9 shows the internal architecture of MDP. The lines indicate the main data flow paths
through the various modules.

Like the gesture-based systems built using GRANDMA, when MDP is first started, a set of
gesture training examples is read from a file. These are used to train the multi-path classifier as
described in Chapter 5. MDP itself provides no facility for creating or modifying the training
examples. Instead, a separate program is used for this purpose.

The Sensor Frame is not integrated with the window manager on the IRIS, making the handling
of its input more difficult than the handling of mouse input. In particular, coordinates returned by
the Sensor Frame are absolute screen coordinates in an arbitrary scale, while the window manager
generally expects window-relative coordinates to be used. Fortunately, the IRIS windowing system
supports general coordinate transformations on a per-window basis, which MDP uses as follows.

When started, MDP creates a window on the screen, and reads an alignment file to determine
the coordinate transformation for mapping window coordinates to screen coordinates that makes the



182 CHAPTER 8. APPLICATIONS
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Figure 8.8: An example MDP session
This figure consists of snapshots of a video of an MDP session. Some panels have been retouched to make
the inking more apparent. Panel (a) shows the single finger line gesture, which is essentially the same
as GDP’s line gesture. As in GDP, the start of the gesture gives one endpoint of the line, while the other
endpoint is dragged by the gesturing finger after the gesture is recognized. Additional fingers may be used
to control the line’s color and thickness. Panel (b) shows the created line, and the rectangle gesture, again
the same as GDP’s. After the gesture is recognized, additional fingers may be brought into the sensing plane
to control the rectangle’s color, thickness, and filled property, as shown in panel (c). Panel (d) shows the
circle gesture, which works analogously. Panel (e) shows the two finger parallelogram gesture. After the
gesture is recognized, the two gesturing fingers control two corners of the parallegram. An additional finger
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(m) (n) (o)

(j) (k) (l)

Fig 8.8 (continued)

in the sensing plane will then control a third corner, allowing an arbitrary parallelogram to be entered.
Panel (f) shows the edit color gesture being made at the newly created parallelogram. After this gesture is
recognized, the parallelogram’s color and filled property may be dynamically manipulated. Panel (g) shows
the three finger pack (group) gesture. During the pack interaction, all object touched by any of the fingers
are grouped into a single set. Here, the line, rectangle, and circle are grouped together to make a cart. Panel
(h) shows the copy gesture. After the gesture is recognized, the object indicated by the first point of the
gesture (in this case, the cart) is dragged by the gesturing finger, as shown in panel (i). Additional fingers
allow the color, edge thicknesses, and filled property of the copy to be manipulated, as shown in panel (j).
Circle and rectangle gestures (both not shown) were then used to create some additional shapes. Panel (k)
shows the two finger rotate gesture. After it is recognized, each of the two fingers become attached to their
respective points where they first touched the designated object. By moving the fingers apart or together,
rotating the hand, and moving the hand, the object may be simultaneously scaled, rotated, and translated as
shown in panel (l). (The fingers are not touching the object due to the delay in getting the input data and
refreshing the screen.) Panel (m) shows the delete gesture being used to delete a rectangle. Not shown are
more deletion and creation gestures, leaving the drawing in the state shown in panel (n). Panel (n) showns
the three finger undo gesture. Upon recognition, the most recent creation or deletion is undone. Moving
the fingers up causes more and more operations to be undone, while moving the fingers down allows undone
operations to be redone, interactively. Panel (o) shows a state during the interaction where many operations
have been undone. In this implementation, creations and deletions are undoable, but position changes are
not. This explains why, in panel (o), only the cart items remain (undo back to panel (e)), but those items are
in the position they assumed in panel (m).
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Figure 8.9: MDP internal structure
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window coordinate system identical with the Sensor Frame coordinate system. If the given window
size and position has not been seen before (as indicated by the alignment file) the user is forced
to go through an alignment dialogue before proceeding (this also occurs when the window occurs
moved or resized). Two dots are displayed, one in each corner of the window, and the user is asked
to touch each dot. The data read are used to make window coordinates exactly match Sensor Frame
coordinates. The transformation for window coordinates to screen coordinates is done by the IRIS
software, and does not have to be considered by the rest of the program. The parameters are saved
in the alignment file to avoid having to repeat the procedure each time MDP is started.2

Once initialized, the MDP begins to read data from the Sensor Frame. The current Sensor Frame
software works by polling, and typically returns data at the rate of approximately 30 snapshots
per second. The “Receive Data” module performs the path tracking (see section 5.1) and returns
snapshot records consisting of the current time, number of fingers seen by the frame, and tuples
(x � y � i) for each finger, (x � y) being the finger’s location in the frame. The i is the path identifier, as
determined by the path tracker. The intent is that a given value of i represents the same finger in
successive snapshots.

Normally, MDP is in its WAIT state, where the polling indicates that there are no fingers in the
plane of the frame. Once one or more fingers enter the field of view of the frame, the COLLECT state
is entered. Each successive snapshot is passed to the “calculate features” module, which performs
the incremental feature calculation. The COLLECT state ends when the user removes all fingers from
the frame viewfield or stops moving for 150 milliseconds. (The timeout interval is settable by the
user, but 150 milliseconds has been found to work well.) Unlike a mouse user, it is difficult for
Sensor Frame users to hold their fingers perfectly still, so a threshold is used to decide when the
user has not moved. In other words, the threshold determines the amount of movement allowable
between successive snapshots that is to count as “not moving.” This is done by comparing the
threshold to the error metric calculated during the path tracking (sum of squared distances between
corresponding points in successive snapshots).

Once the gesture has been collected, its feature vectors are passed to the multi-path classifier,
which returns the gesture’s class. Then the recognition action associated with the class is looked
up in the action table and executed. As long as at least one finger remains in the field of view, the
manipulation action of the class is executed.

Many of GRANDMA’s ideas for specifying gesture semantics are used in MDP. Although
MDP does not have a full-blown interpreter, there is a table specifying the recognition action and
manipulation action for each class. While it would be possible for the tables to be constructed at
runtime, currently the table is compiled into MDP. Each row in the entry for a class consists of a
finger specification, the name of a C function to call to execute the row, and a constant argument
to pass to the function. The finger specification determines which finger coordinates to pass as
additional arguments to the function.

Consider the table entries for the MDP line gesture, similar to the GDP line gesture:
ACTION(_LINErecog)�

ALWAYS, BltnCreate, (int)Line, � ,
2Moving or resizing the window often requires the alignment procedure to be repeated, a problem that would of course

have to be fixed in a production version of the program.
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�
START(0), BltnSetPoint, 0, � ,

END_ACTION

ACTION(_LINEmanip)�
CURRENT(0), BltnSetPoint, 1, � ,�
CURRENT(1), BltnThickness, 0, � ,�
CURRENT(2), BltnColorFill, 0, � ,

END_ACTION
When a line gesture is recognized, the _LINErecog action is executed. Its first line results in

the call BltnCreate(Line) being executed. The ALWAYS means that this row is not associated
with any particular finger, thus no finger coordinates are passed to BltnCreate. The next line
results in BltnSetPoint(0, x0s, y0s) being called, where (x0s � y0s) is the initial point of the first
finger (finger 0) in the gesture.

For each snapshot after the line gesture has been recognized, the _LINEmanip action is
executed. The first line causes BltnSetPoint(1, x0c � y0c) to be called, where (x0c � y0c) is the
current location of the first finger (finger 0). The next line causes BltnThickness(0, x1c � y1c)
to be called, (x1c � y1c) being the current location of the second finger. Similarly, the third line causes
BltnColorFill(0, x2c � y2c) to be called.

If any of the fingers named in a line of the action are not actually in the field of view of the
frame, that line is ignored. For example, the line gesture in MDP, as in GDP, is a single straight
stroke. Immediately after recognition there will only be one finger seen by the frame, namely finger
zero, so the lines beginning CURRENT(1) and CURRENT(2) will not be executed. If a second
finger is now inserted into the viewfield, both the CURRENT(0) and CURRENT(1) lines will be
executed every snapshot. If the initial finger is now removed, the CURRENT(0) line will no longer
be executed, until another finger is placed in the viewfield.

The assignment of finger numbers is done as follows: when the gesture is first recognized, each
finger is assigned its index in the path sorting (see Section 5.2). During the manipulation phase,
when a finger is removed, its number is freed, but the numbers of the remaining fingers stay the
same. When a finger enters, it is assigned the smallest free number.

The semantic routines (e.g. BltnColorFill) communicate with each other (and successive
calls to themselves) via shared variables. All these functionsare defined in a single file with the shared
variables declared at the top. When there are no fingers in the viewfield, the call BltnReset() is
made; its function is to initialize the shared variables. In MDP, all shared variables are initialized
by BltnReset(); from this it follows that the interface is modeless. Another system might have
some state retained across calls to BltnReset(); for example, the current selection might be
maintained this way.

The Bltn... functions manipulate the drawing elements through a package of routines. The
actual implementation of those routines is similar to the implementation of the GDP objects. Rather
than go into detail, the underlying routines are summarized. MDP declares the following types:

typedef enum
�
Nothing, Line, Rect,
Circle, SetOfObjects � Type;
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typedef struct
�
/� ... � / ��� Element;

typedef struct
�
/� ... � / ��� Trans;

Assume the following declarations for expositional purposes:
Element e; /� a graphic object � /
Type type; /� the type of a graphic object � /
int x, y; /� coordinates � /
int p; /� a point number: 0, 1, or 2, 3 � /
int thickness, color;
BOOL b;
Trans tr; /� a transformation matrix � /

The Element is a pointer to a structure representing an element of a drawing, which is either a
Line, Rect, Circle or SetOfObjects. The Element structure includes an array of points
for those element types which need them. A Line has two points (the endpoints), a Rect has three
points (representing three corners, thus a Rect is actually a parallelogram), and a Circle has
two points (the center and a point on the circle). A SetOfObjects contains a list of component
elements which make up a single composite element.

Element StNewObj(type) adds a new element of the passed type to the drawing, and
returns a handle. Initially, all the points in the element are marked uninitialized. Any element
with uninitialized points will not be drawn, with the exception of Rect objects, which will
be drawn parallel to the axes if point 1 is uninitialized.

StUpdatePoint(e, p, x, y) changes point p of element e to be (x,y). Returns FALSE
iff e has no point p.

StGetPoint(e, p, &x, &y) sets x and y to point p of element e. Returns FALSE iff e has
no point p or point p is uninitialized.

StDelete(e) deletes object e from the drawing.

StFill(e, b) makes object e filled if b is TRUE, otherwise makes e unfilled. This only applies
to circles and rectangles, which will be only have their borders drawn if unfilled, otherwise
will be “colored in.”

StThickness(e, t) sets the thickness of e’s borders to t. Only applies to circles, rectangles,
and lines.

StColor(e, color) changes the color of e to color, which is an index into a standard color
map. If e is a set, all members of e are changed.

StTransform(e, tr) applies the transformation tr to e. In general, tr can cause transla-
tions, rotations, and scalings in any combination.

void StMove(e, x, y) is a special case of StTransform which translates e by the vector
(x,y).
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StCopyElement(e) adds an identical copy of e to the drawing, which is also returned. If e is
a set, its elements will be recursively copied.

StPick(x, y) returns the element in the drawing at point(x,y), orNULL if there is no element
there. The topmost element at (x,y) is returned, where elements created later are considered
to be on top of elements created earlier. The thickness and “filled-ness” of an element are
considered when determining if an element is at (x,y).

StHighlight(e, b) turns on highlighting of e if b is TRUE, off otherwise. Highlighting is
currently implemented by blinking the object.

StUnHighlightAll() turns off highlighting on all objects in the drawing.

void StRedraw() draws the entire picture on the display. Double buffering is used to ensure
smooth changes.

StCheckpoint() saves the current state of the drawing, which can be later restored via
StUndoMore.

StUndoMore(b) changes the drawing to its previously checkpointed state (if b is TRUE). Each
successive call to StUndoMore(TRUE) returns to a previous state of the picture until the
state of the picture when the program was started in reached. StUndoMore(FALSE)
performs a redo, undoing the effect of the last StUndoMore(TRUE). Successive calls to
StUndoMore(FALSE) will eventually restore a drawing to its latest checkpointed state.

Trans AllocTran() allocates a transformation, which is initialized to the identity transforma-
tion.

SegmentTran(tr, x0,y0, x1,y1, X0,Y0, X1,Y1) sets tr to a transformation con-
sisting of a rotation, followed by a scaling, followed by translation, the net effect of which
would be to map a line segment with endpoints (x0,y0) and (x1,y1) to one with end-
points(X0,Y0) and (X1,Y1). Other transformation creation functions exist, but this is the
only one used directly by the gesture semantics.

JotC(color, x, y, text) draws the passed text string on the screen in the passed color, at
the point (x,y). The text will be erased at the next call to StRedraw.

8.3.2 MDP gestures and their semantics

Now that the basic primitives used by MDP have been described, the actual gestures used, and their
effect and implementation are discussed. Figure 8.10 shows typical examples of the MDP gestures
used. Each is described in turn.

Line The line gesture creates a line with one endpoint being the start of the gesture, the other
tracking finger 0 after the gesture has been recognized. Finger 1 (which must be brought in
after the gesture has been recognized) controls the thickness of the line as follows: the point
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Figure 8.10: MDP gestures

where finger 1 first enters is displayed on the screen; the thickness of the line is proportional
to the difference in y coordinate of finger 1’s current point and initial point. Finger 2 controls
the color of the line in a similar manner. (Here a color is represented simply by an index into
a color map.)

The action table entry for line has already been listed in the previous section. The C routines
called are listed here:

BltnCreate(arg)
�

E = StNewObj(arg);
shouldCheckpoint = TRUE;

�
BltnSetPoint(arg, gx, gy)

�
if(E) StUpdatePoint(E, arg, gx, gy);

�
BltnThickness(arg, gx, gy)

�
int x, t;

if(tx == � 1) tx = gx, ty = gy;
if(!E) return;
x = arg==0 ? abs(tx � gx) : abs(ty � gy);
t = Scale(x, 1, 2, 1, 100);
StThickness(E, t);
JotC(RED, tx, ty, arg==0 ? "TX%d" : "TY%d", t);
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JotC(RED, gx, gy+10, "t");
�
BltnColorFill(arg, gx, gy)

�
int color, fill;

if(!E) return;
if(cfx == � 1) cfx = gx, cfy = gy;
fill = Scale(cfx � gx, 1, 10, � 1, 1);
StFill(E, fill >= 0);
color = Scale(cfy � gy, 1, 25, � 15, 15);
if(color < 0) color = � color;
else if(color == 0) color = 1;
StColor(E, color);
JotC(GREEN, cfx, cfy, "CF%d/%d", color, fill);
JotC(GREEN, gx, gy+10, "cf");

�
Scale(i, num, den, low, high)

�
int j = i � num;
int k = j >= 0 ? j/den : � (( � j)/den);
return k < low ? low : k > high ? high : k;

�
The BltnReset() function sets E to NULL, and sets tx, ty, cfx, and cfy all to -1.
BltnReset() calls StCheckpoint() if shouldCheckpoint is TRUE and then sets
shouldCheckpoint to FALSE.
The functions BltnThickness and BltnColorFill provide feedback to the user by
jotting some text (“TX” and “CF”, respectively) that indicates the location that the finger first
entered the viewfield. Lower case text (“t” and “cf”) is drawn at the appropriate fingers,
indicating to the user which finger is controlling which parameter.

Rectangle The rectangle gesture works similarly to the line gesture. After the gesture is recog-
nized, a rectangle is created, one corner at the starting point of the gesture, the opposite corner
tracking finger 0. Fingers 1 and 2 control the thickness and color as with the line gesture.
Finger 2 also controls whether or not the rectangle is filled; if it is to the left of where it
initially entered, the rectangle is filled, otherwise not.

ACTION(_RECTrecog)�
ALWAYS, BltnCreate, (int)Rect, � ,�
START(0), BltnSetPoint, 0, � ,

END_ACTION

ACTION(_RECTmanip)�
CURRENT(0), BltnSetPoint, 2, � ,�
CURRENT(1), BltnThickness, 0, � ,�
CURRENT(2), BltnColorFill, 0, � ,

END_ACTION
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Circle The circle gesture causes a circle to be created, the starting point of the gesture being the
center, and a point on the circle controlled by finger 0. Fingers 1 and 2 operate as they do in
the rectangle gesture. Its semantics of the circle gesture are almost identical that of the line
gesture, and are thus not shown here.

Edit color This gesture lets the user edit the color and “filled-ness” of an existing object. Beginning
the gesture on an object edits that object. Otherwise, the user moves finger 0 until he touches
an object to edit. Once selected, finger 0 determines the color and fill properties of the object
as finger 2 did in the previous gestures.

ACTION(_COLORrecog)�
START(0), BltnPick, 0, � ,

END_ACTION

ACTION(_COLORmanip)�
CURRENT(0), BltnPickIfNull, 0, � ,�
CURRENT(0), BltnColorFill, 0, � ,

END_ACTION

BltnPick(arg, gx, gy)
�

E = StPick(gx, gy);

if(E) px = gx, py = gy;

�
BltnPickIfNull(arg, gx, gy)

�
if(!E) BltnPick(arg, gx, gy);

�

Copy The copy gesture picks an element to be copied in the same manner as the edit-color gesture
above. Once copied, finger 0 drags the new copy around, while finger 1 can be used to adjust
the color and thickness of the copy.

ACTION(_COPYrecog)�
START(0), BltnPick, 0, � ,

END_ACTION

ACTION(_COPYmanip)�
CURRENT(0), BltnPickIfNull, 0, � ,�
CURRENT(0), BltnCopy, 0, � ,�
CURRENT(0), BltnMove, 0, � ,�
CURRENT(1), BltnColorFill, 0, � ,

END_ACTION

In the interest of brevity the C routines will no longer be listed, since they are very similar to
those already seen.
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Move Move is a two-finger “pinching” gesture. An object is picked as in the previous gestures,
and then tracks finger 0.

ACTION(_MOVErecog)�
START(0), BltnPick, 0, � ,

END_ACTION

ACTION(_MOVEmanip)�
CURRENT(0), BltnPickIfNull, 0, � ,�
CURRENT(0), BltnMove, 0, � ,

END_ACTION

Delete The delete gesture picks an object just like the previous gestures, and then deletes it.
ACTION(_DELETErecog)�

START(0), BltnPick, 0, � ,
END_ACTION

ACTION(_DELETEmanip)�
CURRENT(0), BltnPickIfNull, 0, � ,�
CURRENT(0), BltnDelete, 0, � ,

END_ACTION

Parallelogram The parallelogram gesture is a two-finger gesture. One corner of the parallelogram
is determined by the initial location of fingers 0; an adjacent corner tracks finger 0, and the
opposite corner tracks finger 1. Adding a third finger (finger 2) moves the initial point of the
parallelogram.

ACTION(_PARArecog)�
ALWAYS, BltnCreate, (int)Rect, � ,�
START(0), BltnSetPoint, 0, � ,

END_ACTION

ACTION(_PARAmanip)�
CURRENT(0), BltnSetPoint, 1, � ,�
CURRENT(1), BltnSetPoint, 2, � ,�
CURRENT(2), BltnSetPoint, 0, � ,

END_ACTION

Rotate Rotate is a two-finger gesture. An object is picked with either finger. At the time of the
pick, each finger becomes attached to a point on the picked object. Each finger then drags its
respective point; the object can thus be rotated by rotating the fingers, scaled by moving the
fingers apart or together, or translated by moving the fingers in parallel.

ACTION(_ROTATErecog)�
START(0), BltnPick, 0, � ,�
START(1), BltnPickIfNull, 0, � ,

END_ACTION
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ACTION(_ROTATEmanip)�
CURRENT(0), BltnPickIfNull, 0, � ,�
CURRENT(1), BltnPickIfNull, 0, � ,�
CURRENT(0), BltnRotate, 0, � ,�
CURRENT(1), BltnRotate, 1, � ,

END_ACTION

Pack The pack gesture is a three-finger gesture. Any objects touched by the any of the fingers are
added to a newly created SetOfObjects.

ACTION(_PACKrecog)
END_ACTION

ACTION(_PACKmanip)�
CURRENT(0), BltnPick, 0, � ,�
ALWAYS, BltnAddToSet, 0, � ,�
CURRENT(1), BltnPick, 0, � ,�
ALWAYS, BltnAddToSet, 0, � ,�
CURRENT(2), BltnPick, 0, � ,�
ALWAYS, BltnAddToSet, 0, � ,

END_ACTION

Undo The undo gesture is also a three-finger gesture, basically a “Z” made with three fingers
moving in parallel. After it is recognized, moving finger 0 up causes more and more of the
edits to be undone, and moving finger 0 down causes those edits to be redone.

ACTION(_UNDOrecog)�
CURRENT(0), BltnUndo, 0, � ,

END_ACTION

ACTION(_UNDOmanip)�
CURRENT(0), BltnUndo, 0, � ,

END_ACTION

8.3.3 Discussion

MDP is the only system known to the author which uses non-DataGlove multiple finger gestures.
Thus, a brief discussion of the gestures themselves is warranted.

MDP’s single finger gestures are taken directly from GDP. After recognition, additional fingers
may be brought into the sensing plane to control additional parameters. Wherever an additional
finger is first brought into the sensing plane becomes the position that gives the current value of
the parameter which that finger controls; the position of the finger relative to this initial position
determines the new value of the parameter. This relative control was felt by the author to be less
awkward than other possible schemes, though this of course needs to be studied more thoroughly.
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The multiple finger gestures are designed to be intuitive. The parallelogram gesture is, for
example, two fingers making the rectangle gesture in parallel. The move gesture is meant to be
a pinch, whereby the object touched is grabbed and then dragged around. The two finger rotate
gesture allows two distinct points on an object to be selected carefully. During the manipulation
phase, each of these points tracks a finger, allowing for very intuitive translation, rotation, and
scaling of the object. The three finger undo gesture is intended to simulate the use of an eraser on a
blackboard.

The Sensor Frame is not a perfect device for gestural input. One problem with the Sensor Frame
is that the sensing plane is slightly above the surface of the screen. It is difficult to precisely pull a
finger out without changing its position. This often results in parameters that were carefully adjusted
during the manipulation phase of the interaction being changed accidentally as the interaction ends.
This problem happens more often in multiple finger gestures, where, due to problems with the Sensor
Frame, removing one finger may change the reported position of other fingers even though those
fingers have not moved. Also, it is more difficult to pull out one finger carefully when other fingers
must be kept still in the sensing plane. Finally, it does not take very long for a gesturer’s arm to get
tired when using a Sensor Frame attached to a vertically mounted display.

In MDP, the two-phase interaction technique is applied in the context of multiple fingers. As
each finger’s position represents two degrees of freedom, multi-path interactions allow many more
parameters to be manipulated than do single-path interactions. Also, since people are used to
gesturing with more than one finger, multiple fingers potentially allows for more natural gestures.
Even though sometimes only one or two fingers are used to enter the recognized part of the gesture,
additional fingers can then be utilized in the manipulation phase. The result is a new interaction
technique that needs to be studied further.

8.4 Conclusion

This chapter described the major applications which were built to demonstrate the ideas of this
thesis. Two, GDP and GSCORE, were built on top of GRANDMA, and show how single-path
gestures may be integrated into MVC-based applications. The third, MDP, demonstrates the use of
multi-path gestures, and shows how gestures may be integrated in a quick and dirty fashion in a
non-objected-oriented context.



Chapter 9

Evaluation

The previous chapters report on some algorithms and systems used in the construction of gesture-
based applications. This chapter attempts to evaluate how well those algorithms and systems work.
When possible, quantitative evaluations are made. When not, subjective or anecdotal evidence is
presented.

9.1 Basic single-path recognition

Chapter 3 presents an algorithm for classifying single-path gestures. In this section the performance
of the algorithm is measured in a variety of ways. First, the recognition rate of the classifier
is measured, as a function of the number of classes and the number of training examples. By
examining the gestures that were misclassified, various sources of errors are uncovered. Next, the
effect of the rejection parameters on classifier performance is studied. Then, the classifier is tested
on a number of different gesture sets. Finally, tests are made to determine how well a classifier
trained by one person recognizes the gestures of another.

9.1.1 Recognition Rate

The recognition rate of a classifier is the fraction of example inputs that it correctly classifies. In this
section, the recognition rates of a number of classifiers trained using the algorithm of Chapter 3 are
measured. The gesture classes used are drawn from those used in GSCORE (Section 8.2). There are
two reasons for testing on this set of gestures rather than others discussed in this dissertation. First,
it consists of a fairly large set of gestures (30) used in a real application. Second, the GSCORE set
was not used in the development or the debugging of the classification software, and so is unbiased
in this respect.

GRANDMA providesa facility throughwhich the examples used to train a classifier are classified
by the classifier. While running the training examples through the classifier is useful for discovering
ambiguous gestures and determining approximately how well the classifier can be expected to
perform, it is not a good way to measure recognition rates. Any trainable classifier will be biased
toward recognizing its training examples correctly. Thus in all the tests described below, one set of
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Figure 9.1: GSCORE gesture classes used for evaluation

example gestures is used to train the classifier, while another, entirely distinct, set of examples is
used to evaluate its performance.

Figure 9.1 shows examples of the gesture classes used in the first test. All were entered by the
author, using the mouse and computer system described in Chapter 3. First, 100 examples of each
class were entered; these formed the training set. Then, the author entered 100 more examples of
each class; these formed the testing set. For both sets, no special attempt to was made to gesture
carefully, and obviously poor examples were not eliminated.

There was no classification of the test examples as they were entered; in other words, no feedback
was provided as to the correctness of each example immediately after it was entered. Given such
feedback, a user would tend to adapt to the system and improve the recognition of future input. The
test was designed to eliminate the effect of this adaptation on the recognition rate.

The performance of the statistical gesture recognizer depends on a number of factors. Chief
among these are the number of classes to be discriminated between, and the number of training
examples per class. The effect of the number of classes is studied by building recognizers that use
only a subset of classes. In the experiment, a class size of C refers to a classifier that attempts to
discriminate between the first C classes in figure 9.1. Similarly, the effect of the training set size is
studied by varying E, the number of examples per class. A given value of E means the classifier
was trained on examples 1 through E of the training data for each of C classes.

Figure 9.2 plots the recognition rate against the number of classes C for various training set sizes
E. Each point is the result of classifying 100 examples of each of the first C classes in the testing
set. The number of correct classifications is divided by the total number of classifications attempted
(100C) to give the recognition rate. (Rejection has been turned off for this experiment.) Figure 9.3
shows the results of the same experiment plotted as recognition rate versus E for various values of
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C.
In general, the data are not too surprising. As expected, recognition rate increases as the training

set size increases, and decreases as the number of classes increases. For C = 30 classes, and E = 40
examples per class, the recognition rate is 96.9%. For C = 30 and E = 10 the rate is 95.6%. C = 10
and E = 40 gives a rate of 99.3%, while for C = 10 and E = 10 the rate is 97.8%.

Of practical significance for GRANDMA users is the number of training examples needed to
give good results. Using E = 15 examples per class gives good results, even for a large number of
classes. Recognition rate can be marginally improved by using E = 40 examples per class, above
which no significant improvement occurs. E = 10 results in poor performance for more than C = 10
classes. It is comforting to know that GRANDMA, a system designed to allow experimentation
with gesture-based interfaces, performs well given only 15 examples per class. This is in marked
contrast to many trainable classifiers, which often require hundreds or thousands of examples per
class, precluding their use for casual experimentation [125, 47].

Analysis of errors

It is enlightening to examine the test examples that were misclassified in the above experiments.
Figure 9.4 shows examples of all the kinds of misclassifications by the C = 30, E = 40 classifier.
Not every misclassification is shown in the figure, but there is a representative of every A classified
as B, for all A �= B. The label “A as B (x n)” indicates that the example was labeled as class A in the
test set, but classified as B by the classifier. The n indicates the number of times an A was classified
as a B, when it is more than once.

The following types of errors can be observed in the figure. Many of the misclassifications are
the result of a combination of two of the types.

Poorly drawn gestures. Some of the mistakes are simply the result of bad drawing on the part of
the user. This may be due to carelessness, or to the awkwardness of using a mouse to draw.
Examples include “8u as uptie,” “2r as sharp,” “8r as 2r,” and “delete as 16d.” “Fclef as dot”
was due to an accidental mouse click, and in “delete as 8d” the mouse button was released
prematurely. The example “key as delete” was likely an error caused by the mouse ball not
rolling properly on the table. “4u as 8u” and “16d as delete” each have extraneous points at
the end of the gesture that are outside the range normally eliminated by the preprocessing.
“4r as 16r” is drawn so that the first corner in the stroke is looped (figure 9.5); this causes the
accumulated-angle features f9, f10, and f11 to be far from their expected value (see Section
3.3).

Poor mouse tracking. Many of the errors are due to poor tracking of the mouse. Typically, the
problem is a long time between the first mouse point of a gesture and the second. This occurs
when the first mouse point causes the system to page in the process collecting the gesture; this
may take a substantial amount of time. The underlying window manager interface queues up
every mouse event involving the press or release of a button, but does not queue successive
mouse-movement events, choosing instead to keep only the most recent. Because of this,
mouse movements are missed while the process is paged in.
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Figure 9.5: A looped corner
The left figure is a magnification of a misclassified “4r as 16r” shown in the previous figure. The portion of the
gesture enclosed in the rectangle has been copied and its aspect ratio changed, resulting in the figure on the
right. As can been seen, the corner, which should be a simple angle, is looped. This resulted in the angle-based
features having values significantly different from the average 4r gesture, thus the misclassification.

In “2u as 4u,” “2d as 4d,” “8r as 4d,” “8r as 8d,” and “timesig as 2d” there is no point between
the initial point and the first corner, probably due to the paging. This interacts badly with
the features f1 and f2, the cosine and sine of initial angle. Features f1 and f2 are computed
from the first and third point; this usually results in a better measurement than using the first
and second point. In these cases, however, this results in a poor measurement, since the third
point is after the corner.

“8r as nat” was the result of a very long page in, during which the author got impatient and
jiggled the mouse.

Ambiguous classes. Some classes are very similar to each other, and are thus likely to be mistaken
for each other. The 14 misclassifications of “Fclef as 8r” are an example. Actually, these
may also be considered examples of poor mouse tracking, since points lost from the normally
rounded top of the Fclef gesture caused the confusion. The mistakes “uptie as 8u,” and “uptie
as Fclef” are also examples of ambiguity.

Ideally, the gesture classes of an application should be designed so as to be as unambiguous
as possible. Given nearly ambiguous classes, it is essential that the input device be as reliable
and as ergonomically sound as possible, that the features be able to express the differences,
and that the decider be able to discriminate between them. Without all of these properties, it
is inevitable that there will be substantial confusion between the classes.

Inadequacy of the feature set. The examples where the second mouse point is the first corner show
one way in which the features inadequately represent the classes. For example, the “2r as
sharp” examples appear to the system as simple left strokes. Sometimes, a small error in the
drawing results in a large error in a feature. This occurs most often when a stroke doubles
back on itself; a small change results in a large difference in the angle features f9, f10, and
f11 (see figure 9.5). The mistakes “4r as 16r” and “16d as delete” are in this category. “16u
as 8u” and “16u as 32u” point to other places where the features may be improved.
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The mapping from gestures to features is certainly not invertible; many different gestures
might have the same feature vector in the current scheme. This results in ambiguities not
due entirely to similarities between classes, but due to a feature set unable to represent the
difference. Example “key as 16d” is an illustration of this, albeit not a great one.

Inadequacy of linear, statistical classification. Given that the differences between classes can be
expressed in the feature vector, it still may be possible that the classes cannot be separated
well by linear discrimination functions. This typically comes about when a class has a feature
vector with a severely non-multivariate-normal distribution. In the current feature set, this
most often happens in a class where the gesture folds back on itself (as discussed earlier),
causing f9, and thus the entire feature vector, to have a bimodal distribution.
The averaging of the covariance matrix in essence implies that a given feature is equally
important in all classes. In the above class, the initial angle features are deemed important by
the classifier. When compounded with errors in the tracking, this leads to bad performance
on examples such as “uptie as beam” and “uptie as move.” It is possible for a linear classifier
to express the per-class importance of features in a linear classifier; in essence this is what
is done by the neural-network-like training procedures (a.k.a back propagation, stochastic
gradient, proportional increment, or perceptron training).

Inadequate training data. Drawing and tracking errors occur in the training set as well as the
testing set. Given enough good examples, the effect of bad examples on the estimates of the
average covariance matrix and the mean feature vectors is negligible. This is not the case
when the number of examples per class is very small. Bad or insufficient training data causes
bad estimates for the classifier parameters, which in turn causes classification errors. The
gestures classified correctly by the C = 30, E = 40 classifier, but incorrectly by the C = 30,
E = 10 classifier are examples of this.

Analyzing errors in this fashion leads to a number of suggestions for easy improvements to the
classifier. Timing or distance information can be used to decide whether to compute f1 and f2 using
the first two points or the first and third points of the gesture. Mouse events could be queued up
to improve performance in the presence of paging. Some new features can be added to improve
recognition even in the face of other errors; in particular, the cosine and sine of the final angle of
the gesture stroke would help avoid a number of errors. These modification are left for future work,
as the author, at the present time, has no desire to redo the above evaluation using 6000 examples
from a different gesture set.

One error not revealed in these tests, but seen in practice, is misclassification due to a premature
timeout in the two-phase interaction. This results in a gesture being classified before it is completely
entered.

9.1.2 Rejection parameters

Section 3.6 considered the possibility of rejecting a gesture, i.e. choosing not to classify it. Two
parameters potentially useful for rejection were developed. An estimate of the probability that
a gesture is classified unambiguously, �P, is derived from the values of the per-class evaluation



202 CHAPTER 9. EVALUATION

0

20

40

60

80

100

120

0.5 0.6 0.7 0.8 0.9 1

M
a
h
a
l
a
n
o
b
i
s
 
d
i
s
t
a
n
c
e
 
f
r
o
m
 
c
l
a
s
s
 
m
e
a
n

Estimated probability of unambiguous classification

correct
incorrect

Figure 9.6: Rejection parameters

functions. An estimate of the Mahalanobis distance, d2, is used to determine how close a gesture is
to the norm of its chosen class.

It would be nice if thresholdson the rejection parameters could be used to neatly separate correctly
classified example from incorrectly classified examples. It is clear that it would be impossible to
do a perfect job; as “delete as 8d” illustrates, the system would need to read the user’s mind. The
hope is that most of the incorrectly classified gestures can be rejected, without rejecting too many
correctly classified gestures.

A little thought shows that any rejection rule based solely on the ambiguity metric �P will on the
average reject at least as many correctly classified gestures as incorrectly classified gestures. This
follows from the reasonable conjecture that the average ambiguous gesture is at least as likely to
be classified correctly as not. (This assumes that the gesture is not equally close to three or more
classes. In practice, this assumption is almost always true.)

Figure 9.6 is a scatter plot that shows the value for both rejection parameters for all the gestures
in the GSCORE test set. A plus sign indicates a gesture classified correctly; a triangle indicates each
gesture classified incorrectly, i.e. those represented in figure 9.4. Most of the correctly classified
examples have an estimated unambiguity probability of very close to one, thus accounting for
the dark mass of points at the right of the graph. 96.3% of the correctly classified examples had
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�P
� 0 � 99. However, the same interval contained 33.7% of the incorrectly classified examples.

Figure 9.7 shows how many correctly classified and how many incorrectly classified gestures would
be rejected as a function of the threshold on �P.

Examining exactly which of the incorrect examples have �P
� 0 � 99 is interesting. The garbled

“8r as nat” and the left stroke “2r as sharp” have �P = 1 � 0 within six decimal places. In retrospect this
is not surprising; those gestures are far from every class, but happen to be unambiguously closest to
a single class. This is borne out in the d2 for those gestures, which is 380 (off the graph) for “8r as
nat” and at least 70 for each “2r as sharp” gesture. Other mistakes have �P ��� 999 but d2 � 20. In
this category are “Fclef as 8r,” “uptie as Fclef,” “delete as 8d,” and “4u as 8u”; these gestures go
beyond ambiguity to look like their chosen classes so could not be expected to be rejected.

Also interesting are those correctly classified test examples that are candidates for rejection based
on their �P and d2 values. Figure 9.8 shows some GSCORE gestures whose �P = 1 and d2 � 90.
Examples “move12” and “beam63” are abnormal only by virtue of the fact that they are larger than
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normal. The two bar examples have their endpoints in funny places, among other things, while
the three Gclef examples are fairly unrecognizable. The algorithm does however classify all of
these correctly; and it would be too bad to reject them. Figure 9.9 shows gestures whose ambiguity
probability is less that � 95. In many of the examples this is caused by at least one corner being made
by two mouse points rather than one. In “delete33” one corner is looped. These gestures look so
much like their prototypes it would be too bad to reject them.

The Mahalanobis estimate is mainly useful for rejecting gestures that were deliberately entered
poorly. This is not as silly as it sounds; a user may decide during the course of a gesture not to
go through with the operation, and at that time extend the gesture into gibberish so that it will be
rejected.

One possible improvement would be to use the per-class covariance matrix of the chosen class
in the Mahalanobis distance calculation. Compared to using the average covariance matrix, this
would presumably result in a more accurate measurement of how much the input gesture differs for
the norm of its chosen class.

9.1.3 Coverage

Figure 9.10 shows the performance of the single-path gesture recognition algorithm on five different
gesture sets. The classifier for each set was trained on fifteen examples per class and tested on an
additional fifteen examples per class. The first set, based on Coleman’s editor [25], had a substantial
amount of variation within each class, both in the training and the testing examples. The remaining
sets had much less variation with each class. As the rates demonstrate, the single-path gesture
recognition algorithm performs quite satisfactorily on a number of different gesture sets.

9.1.4 Varying orientation and size

One feature that distinguishes gesture from handwriting is that the orientation or size of a gesture in a
given class may be used as an application parameter. For this to work, gestures of such classes must
be recognized as such independent of their orientation or size. However, the recognition algorithm
should not be made completely orientation and size independent, as some other classes may depend
on orientation and size to distinguish themselves.

It is straightforward to indicate those classes whose gestures will vary in size or orientation:
simply vary the size or orientation of the training examples. The goal of the gesture recognizer is to
make irrelevant those features in classes for which they do not matter, while using those feature in
classes for which they do.

Theoretically, having some classes that vary in size and orientation, while other that depend on
size or orientation for correct classification should be a problem for any statistical classifier based on
the assumptions of a multivariate normal distribution of features per class, with the classes having
a common covariance matrix. A class whose size is variable is sure to have a different covariance
matrix than one whose size remains relatively constant; the same may be said of orientation. Thus,
we would suspect the classifier of Chapter 3 to perform poorly in this situation. Surprisingly, this
does not seem to be the case.
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Each set was trained with 15 examples per class and tested on an additional 15 examples per class.
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Figure 9.11 shows 16 classes, some of which vary in size, some of which vary in orientation,
others of which depend on size or orientation to be distinguishable. The training set consists of thirty
examples of each class; variations in size or orientation were reflected in the training examples, as
shown in the figure. A testing set with thirty or so examples per class was similarly prepared.

Figure 9.12 shows the recognition rate plotted against the number of classes for various numbers
of examples per class in the training set. As can be seen, the performance is good; 96.9% correct
on 16 classes trained with 30 examples per class. Using only 15 examples per class results in a
recognition rate of 96.7%.

Figure 9.13 shows all the mistakes made by the classifier. None of the mistakes appear to be a
result of the size or orientation of a gesture being confused. Rather, the mistakes are quite similar to
those seen previously. The conclusion in that the gesture classifier does surprisingly well on gesture
sets in which some classes have variable size or orientation, while others are discriminated on the
basis of their size or orientation.

9.1.5 Interuser variability
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smallUp27  smallUp as smallRight

bigX20  bigX as BigC

.

bigX26  bigX as BigC
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X10  X as BackCX6  X as BackC
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.

Figure 9.13: Mistakes in the variable class test

 26 right    1 wrong

      WRONG (mistaken for 16d)
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delete3

Figure 9.14: Testing program (user’s gesture not shown)
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All the gestures shown thus far have been those of the author. It was deemed necessary to show
validity of the current work by demonstrating that the gestures of at least one other person could
be recognized. Two questions come to mind: what recognition rate can be achieved when a person
other than the author gestures at a classifier trained with the author’s gestures, and can this rate be
improved by allowing the person to train the classifier using his or her own gestures?

Setup

As preparation for someone besides the author actually using the GSCORE application (see Section
9.4.2 below), the GSCORE gesture set (figure 9.1) was used in the evaluation. The hardware used
was the same hardware used in the majority of this work, a DEC MicroVAX II running UNIX and
X10.

A simple testing program was prepared for training and evaluation (Figure 9.14). In a trial, a
prototype gesture of a given class is randomly chosen and displayed on the screen, with the start point
indicated. The user attempts to enter a gesture of the same class. That gesture is then classified, and
the results fed back to the user. In training mode, if the system makes an error, the trial is repeated.
In evaluation mode, each trial is independent.

Subject PV is a music professor, a professional musician, and an experienced music copyist. He
is also an experienced computer user, familiar with Macintosh and NeXT computers, among others.

Procedure

The subject was given one half hour of practice with the testing program in training mode. He was
also given a copy of figure 9.1 and instructed to take notes at his own discretion. After the half hour,
the tester was put in evaluation mode, and two hundred trials run. The test was repeated one week
later, without any warmup. The subject was then instructed to create his own gesture set, borrowing
from the set he knew as much as he liked. Thirty examples of each gesture class were recorded, and
two hundred evaluation trials run on the new set.

Results

During the initial training there was some confusion on the subject’s part regarding which hand to
use. The subject normally uses his right hand for mousing, but, being left handed, always writes
music with his left. After about ten minutes, the subject opted to use his left hand for gesturing.

In the initial evaluation trial the system classified correctly 188 out of 200 gestures. The subject
felt he could do better and was allowed a second run, during which 179 out of 200 gestures were
correctly classified. By his own admission, he was more “cocky” during the second run, generally
making the gestures faster than during the first. The average recognition rate is 91.8%.

After the test, the subject commented that he felt much of his difficulty was due to the fact
that he was not used to using the mouse with his left hand, and that the particular mouse felt very
different than the one he was used to (NeXT’s). He felt his performance would further improve with
additional practice.
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16..8d-as-flat

104..whole-as-Cclef

97..16d-as-8d
88..sharp-as-2d

183..32u-as-Gclef
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.

.
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.

.
.
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.
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.
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.
150..1r-as-beam

.
154..whole-as-Cclef

.

.

.

185..delete-as-nat2

201..whole-as-4d

.

Figure 9.15: PV’s misclassified gestures (author’s set)

His notes are interesting. Although the subject had no particular knowledge of the recognition
algorithm being used, in many cases his notes refer to the particular features used in the algorithm.
For gestures whole and sharp he wrote “start up” and “don’t begin too vertically” respectively,
noting the importance of the correct initial angle. For 1r he wrote “make short,” for bar he wrote
“make large,” and for delete he wrote “make quickly.” For 2u and 2d he wrote “sharp angle.”

The subject commented on places where the gesture classes used did not conform to standard
copyist strokes. For example, he stated the loop in flat goes the wrong way. He explained that
many music symbols are written with two strokes, and said that he might prefer a system that could
recognize multiple-stroke symbols.

When the test was repeated a week later, the subject, without any warmup, achieved a score of
183 out of 200, 91.5%. Figure 9.15 shows the misclassified gestures. The subject was again unsure
of which hand to use, but used his left hand at the urging of the author.

The subject then created his own gesture set, examples of which are shown in figure 9.16. A
training set consisting of 30 examples of each class was entered. Running the training set through
the resulting classifier resulted in the rather low recognition rate of 94.7% (by comparison, running
the author’s training set through the classifier it was used to train yielded 97.7%.) The low rate was
due to the some ambiguity in the classes (e.g. “flat” and “16d” were frequently confused) as well
as many classes where the corners were looped (as seen before in section 9.1.1), causing a bimodal
distributions for f9, f10, and f11

The problems in the new gesture set nonwithstanding, PV ran two hundred trials of the tester on
the new set. He was able to get a score of 186 out of 200, 93%.

At the time of this writing, PV has not yet made the attempt to remove the ambiguities from the
new gesture set and to be more careful on the sharp corners.
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Figure 9.16: PV’s gesture set

Conclusion

It is difficult to draw a conclusion given data from only one subject. The author expected the
recognition rate to be higher when PV trained the system on his own gestures than when he used
the author’s set. The actual rate was slightly higher, but not enough to make a convincing argument
that people do better on their own gestures (some slightly more convincing evidence is presented in
section 9.4.2 below). In retrospect, PV should have created a training set that copied the author’s
gestures before attempting to significantly modify that gesture set. The author’s gesture set turned
out to be better designed than PV’s, in the sense of having less inherent ambiguities; this tended to
compensate for any advantage PV gained from using his own gestures.

However, PV’s new gesture set is not withoutmerit; on the contrary, it has a number of interesting
gestures. The new delete gesture, a quick, long, leftward stroke, gives the user the impression of
throwing objects off the side of the screen. The new move gesture is like a delete followed by a
last minute change of mind. The flat gesture is much closer to the way PV writes the symbol, as are
the leftward whole and half rests gestures 1r and 2r. The stylized “4” for timesig is clever, as is the
way it relates to key. PV’s bar gesture is much more economical that the author’s.

The experiments indicate that a person can use a classifier trained on another person’s gesture
with moderately good results. Also indicated is that people can create interesting gesture sets on
their own. Some modification to the feature set also seems desirable, mainly to make the features
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less sensitive to “looped” corners. It would be useful to give more feedback to the gesture design as
to which classes are confusable. This should be simple to do simply by examining the Mahalanobis
distance between every pair of classes.

9.1.6 Recognition Speed

It is well known that a user interface must respond quickly in order to satisfy users; thus for gesture-
based systems the speed of recognition is an important factor in the usability of the system. This
section reports on measurements of the speed of the components of the recognition process.

The statistical gesture recognizer described in Chapter 3 was designed with speed in mind. Each
feature is incrementally calculated in constant time; thus O(F) work must be done per mouse point,
where F is the number of features. Given a gesture of P mouse points, it thus takes O(PF) time to
compute its feature vector. The classification computes a linear evaluation function over the features
for each of C classes; thus classification take O(CF) time.

Feature calculation

The abstract datatype FV is used to encapsulate the feature calculation as follows:

FV FvAlloc() allocates an object of type FV. A classifier will generally call FvAlloc() only
once, during program initialization.

FvInit(fv) initializesfv, an object of typeFV. FvInit(fv) is called once per gesture, before
any points are added.

FvAddPoint(fv, x, y, t) adds the point (x � y) which occurs at time t to the gesture.
FvAddPoint performs the incremental feature calculation. It is called for every mouse
point the program receives. There are thirteen features calculated (F = 13).

Vector FvCalc(fv) returns the feature vector as an array of double precision floating point
numbers. It performs any necessary calculations needed to transform the incrementally
calculated auxiliary features into the feature set used for classification. It is called once per
gesture.

The function CalcFeatures(g) represents the entire work of computing the feature vector
for a gesture that is in memory:

Fv fv; /� allocated via FvAlloc() elsewhere � /
Vector
CalcFeatures(g)
register Gesture g;�

register Point p;
FvInit(fv);
for(p = g � >point; p < &g � >point[g � >npoints]; p++)

FvAddPoint(fv, p � >x, p � >y, p � >t);
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Processor Time(sec) Relative Speed
MicroVAX II 227.95 0.76
VAX 11/780 172.20 1.0
MicroVAX III 60.97 2.8
PMAX-3100 11.30 15

Table 9.1: Speed of various computers used for testing

Processor milliseconds per call
FvAddPoint FvCalc CalcFeatures

MicroVAX II 0.22 0.34 3.9
MicroVAX III 0.074 0.13 1.3
PMAX-3100 0.029 0.040 0.44

Table 9.2: Speed of feature calculation

return FvCalc(fv);
�

To obtain the timings, the testing set of Section 9.1.1 was read into memory, and then each
gesture was passed to CalcFeatures. Three processors were used: the DEC MicroVAX II that
was used for the majority of the work reported in this dissertation, a DEC MicroVAX III, and a DEC
PMAX-3100 (to get an idea of the performance on a more modern system). The UNIX profiling tool
was used to obtain the times. In all cases, the times are virtual times, i.e. the time spent executing
the program by the processor. All tests were run on unloaded systems, and the real times were never
more than 10% more than the virtual times.

Before timing any code related to gesture recognition, the following code fragment (compiled
with “cc -O”) was timed on a number of processors, MicroVAX II, VAX 11/780, MicroVAX III,
and PMAX-3100, in order to compare the speed of the processors used in the following tests to that
of a VAX 11/780:

register int i, n = 1000000;
double s, a[15], b[15];
for(i = 0; i < 15; i++) a[i] = i, b[i] = i � i;
do

�

s = 0.0;
for(i = 0; i < 15; i++) s += a[i] � b[i];

�
while( � � n);

The times for the above fragment shown in table 9.1.
Note that on this code fragment the PMAX-3100 runs about 20 times faster than the MicroVAX

II. On more typical code, it usually runs only 10-15 times faster.
The testing set averaged 13.4 points per gesture. The timings for the routines that calculate

features are shown in table 9.2.
The cost per mouse point to incrementally process a mouse point is a small fraction of a

millisecond, even on the slowest processor. Since mouse points typically come no faster than 40
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Processor Computation time (milliseconds)
v �c max v �c �P d2 total

(one class) (30 classes)
MicroVAX II 0.27 8.0 0.8 3.7 12.6
MicroVAX III 0.074 2.2 0.3 1.1 3.6
PMAX-3100 0.022 0.66 0.01 0.26 0.99

Table 9.3: Speed of Classification

per second, only a small fraction of the processor is consumed incrementally calculating the feature
vector. Indeed, substantially more of the processor is consumed communicating with the window
manager to receive the mouse point and perform the inking.

Classification

Once the feature vector is calculated it must be classified. This involves computing a linear
evaluation function v �c on F features (F = 13) for each of C classes. If the rejection parameters are
desired, it takes an additional O(C) work to estimate the ambiguity �P and O(F2) work to estimate
the Mahalanobis distance d2. The computation times for each of these is shown in table 9.3.

To get these times, four runs were made. Every gesture in the testing set was classified in every
run. The first run did not calculate either rejection parameter. The average time to classify a gesture
as one of thirty classes is reported the maxv �c column; the v �c column is computed as 1

30 of that time.
(The v �c column thus gives the time to compute the evaluation function for a single class; multiply
this by the number of classes to estimate the classification time of a particular classifier.) The second
run computed �P after each classification; the difference between that time and the max v �c time is
reported in the �P column. The third run computed d2 and is reported similarly. The fourth run
computed both �P and d2; the average time per gesture is reported in the “total” column.

For a 30-class discrimination with both rejection parameters being used, after the last mouse
point of a gesture is entered it takes a MicroVAX II 13 milliseconds to finish calculating the feature
vector (FvCalc) and then classify it. This is acceptable, albeit not fantastic, performance. If the
end of the gesture is indicated by no mouse motion for a timeout interval, the classification can begin
before the timeout interval expires, and the result be ignored if the user moves the mouse before the
interval is up.

Currently, all arithmetic is done using double precision floating point numbers. There is no
conceptual reason that the evaluation functions could not be computed using integer arithmetic,
after suitably rescaling the features so as not too lose much precision. The resulting classifier would
then run much faster (on most processors). This has not been tried in the present work.

If eager recognition is running, classification must occur at every mouse point, and the number
of classes is 2C. This puts a ceiling on the number of the classes that the eager recognizer
can discriminate between in real-time. On a MicroVAX II, the cost per mouse point includes
FvAddPoint (0.22 msec) plus FvCalc (0.34 msec) plus the per class evaluation of 2C classes,
0 � 54C. If mouse points come at a maximum rate of one every 25 milliseconds, C = 45 classes would
consume the entire processor. Practically, since there is other work to do (e.g. inking), C = 20 is
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probably the maximum that can be reasonably expected from an eager recognizer on a MicroVAX II.
On today’s processors, instead of computation time, the limiting factor will be the lower recognition
rate when given a large number of classes.

One approach tried to increase the number of classes in eager recognizers was to use only a subset
of the features. While this improved the response time of the system, the performance degraded
significantly, so the idea was abandoned. There is no point getting the wrong answer quickly.

9.1.7 Training Time

The stated goal of the thesis work is to provide tools that allow user interface designers to experiment
with gesture-based systems. One factor impacting on the usability of such tools is the amount of
time it takes for gesture recognizers to retrain themselves after changes have been made to the
training examples. In almost all trainable character recognizers, deleting even a single training
example requires that the training be redone from scratch. For some technologies, notably neural
networks, this retraining may take minutes or even hours. Such a system would not be conducive to
experimenting with different gesture sets.

By contrast, statistical classifiers of the kind described in Chapter 3 can be trained very rapidly.
Training the classifier from scratch requires O(EF) to compute the mean feature vectors, O(EF2) time
to calculate the per-class covariance matrices, O(CF2) to average them, O(F3) to invert the average,
and O(CF2) to compute the weights used in the evaluation functions. If the average covariance
matrix is singular, an O(F4) algorithm is run to deal with the problem.

Often, a fair amount of work can be reused in retraining after a change to some training examples.
Adding or deleting an example of a class requires O(F) work to incrementally update its per-class
class mean vector, and O(F2) work to incrementally update its per-class covariance matrix [137].
Retraining then involves repeating the steps starting from computing the average covariance matrix.
Thus, for retraining, the dependency on E, the total number of examples, is eliminated. The retraining
time is instead a function of the number of examples added or deleted.

The Objective C implementation does not attempt to incrementally update the per-class covari-
ance matrix when an example is added. Instead, only the averages are kept incrementally, and the
per-class covariance matrix is recomputed from scratch. This involves O(E �cF2) work for each class
c changed, where E �c is the number of training examples for class c. This results in worse perfor-
mance when a small number of examples are changed, but better performance when all the examples
of a class are deleted and a new set entered. The latter operation is common when experimenting
with gesture-based systems.

The author has implemented both C and Objective C versions of the single path classifier.
Besides maintaining the per-class covariance matrices incrementally, the C version differs in that it
does not store the list of examples that have been used to train it. (It is not necessary to store the list to
add and remove examples, since the mean vector and covariance matrix are updated incrementally.)
It is thus more efficient since it does not need to maintain the lists of examples. (Objective C’s Set
class, implemented via hashing, is used to maintain the lists in that version.) It also does not have
the overhead of separate objects for examples, classes and classifiers that the Objective C version
has (see Section 7.5).
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Processor Time (milliseconds per call)
sAddExample sRemoveExample sDoneAdding sDoneAdding

(10 classes) (30 classes)
MicroVAX II 3.7 3.8 130 234
MicroVAX III 0.90 0.90 43 78
PMAX-3100 0.024 0.026 14 22

Table 9.4: Speed of classifier training

Since only the C version could be ported to the PMAX-3100, it was used for the timings. (C
versions of the feature computation and gesture recognition were used for the timings above; however
in these cases the Objective C methods are straightforward translations of their corresponding C
functions. In some cases, the methods merely call the corresponding C function.) The following C
functions encapsulate the process of training a classifier:

sClassifier sNewClassifier() allocates and returns a handle to a new classifier. Initially
it has no classes and no examples. The “s” at the beginning of the type and function
names refers to “single-path”; there are corresponding types and functions for the multi-path
classifiers.

sAddExample(sClassifier sc, char *classname, Vector e) adds the training
example (feature vector e) to the named class classname in the passed classifier. The
class is created if it has not been seen before. Linear search is used to find the class name;
however, it is optimized for successive calls with the same name. The sAddExample
function incrementally maintains the per-class mean vectors and covariance matrices.

sRemoveExample(sClassifier sc, char *classname, Vector e) removes ex-
ample e, assumed to have been added earlier, from the named class. The per-class mean
vector and covariance matrix are incrementally updated.

sDoneAdding(sClassifier sc) trains the classifier on its current set of examples. It
computes the average covariance matrix, inverts it (fixing it if singular), and computes the
weights.

sClass sClassify(sClassifier sc, Vector e, double *p, *d2) actually
performs the classification of e. If p is non-NULL the probability of ambiguity is esti-
mated; if d2 is non-NULL the estimated Mahalanobis distance of e to its computed class is
returned. This is the function timed in the previous section.

The functions were exercised first by adding every example in the training set, training the
classifier, and then looping, removing and then re-adding 10 consecutive examples before retraining.
No singular covariance matrix was encounted, due to the large number of examples. Table 9.4 shows
the performance of the various routines.

Even on a MicroVAX II, training a 30 class classifier once all the examples have been entered
takes less than a quarter second. Thus GRANDMA is able to produce a classifier immediately the
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first time a gesture is made over a set of views whose combined gesture set has not been encountered
before (see Sections 7.2.2 and 7.4). The user has to wait, but does not have to wait long.

9.2 Eager recognition

This section evaluates the effectiveness of the eager recognition algorithm on several single-stroke
gesture sets. Recall that eager recognition is the recognition of a gesture while it is being made,
without any explicit indication of the end of the gesture. Ideally, the eager recognizer classifies a
gesture as soon as enough of it has been seen to do so unambiguously (see Chapter 4).

In order to determine how well the eager recognition algorithm works, an eager recognizer was
created to classify the eight gestures classes shown in 9.17. Each class named for the direction of
its two segments, e.g. ur means “up, right.” Each of these gestures is ambiguous along its initial
segment, and becomes unambiguous once the corner is turned and the second segment begun.

The eager recognizer was trained with ten examples of each of the eight classes, and tested on
thirty examples of each class. The figure shows ten of the thirty test examples for each class, and
includes all the examples that were misclassified.

Two comparisons are of interest for the gesture set: the eager recognition rate versus the
recognition rate of the full classifier, and the eagerness of the recognizer versus the maximum
possible eagerness. The eager recognizer classified 97.0% of the gestures correctly, compared to
99.2% correct for the full classifier. Most of the eager recognizer’s errors were due to a corner
looping 270 degrees rather than being a sharp 90 degrees, so it appeared to the eager recognizer the
second stroke was going in the opposite direction than intended. In the figure, “E” indicates a gesture
misclassified by the eager recognizer, and “F” indicates a misclassification by the full classifier.

On the average, the eager recognizer examined 67.9% of the mouse points of each gesture before
deciding the gesture was unambiguous. By hand, the author determined for each gesture the number
of mouse points from the start through the corner turn, and concluded that on the average 59.4%
of the mouse points of each gesture needed to be seen before the gesture could be unambiguously
classified. The parts of each gesture at which unambiguous classification could have occurred but
did not are indicated in the figure by thick lines.

Figure 9.18 shows the performance of the eager recognizer on GDP gestures. The eager
recognizer was trained with 10 examples of each of 11 gesture classes, and tested on 30 examples
of each class, five of which are shown in the figure. The GDP gesture set was slightly altered to
increase eagerness: the group gesture was trained clockwise because when it was counterclockwise
it prevented the copy gesture from ever being eagerly recognized. For the GDP gestures, the full
classifier had a 99.7% correct recognition rate as compared with 93.5% for the eager recognizer.
On the average 60.5% of each gesture was examined by the eager recognizer before classification
occurred. For this set no attempt was made to determine the minimum average gesture percentage
that needed to be seen for unambiguous classification.

From these tests we can conclude that the trainable eager recognition algorithm performs ac-
ceptably but there is plenty of room for improvement, both in the recognition rate and the amount
of eagerness.

Computationally, eager recognition is quite tractable on modest hardware. A fixed amount of
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Figure 9.17: The performance of the eager recognizer on easily understood data
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Figure 9.18: The performance of the eager recognizer on GDP gestures
The transitions from thin to thick lines indicate where eager recognition occurred.
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computation needs to occur on each mouse point: first the feature vector must be updated (taking
0.5 msec on a DEC MicroVAX II), and then the vector must be classified by the AUC (taking 0.27
msec per class, or 6 msec in the case of GDP).

9.3 Multi-finger recognition

Multi-finger gestural input is a significant innovation of this work. Unfortunately, circumstances
have conspired to make the evaluation of multi-finger recognition both impossible and irrelevant.
The Sensor Frame is the only input device upon which the multi-finger recognition algorithm
was tested. Unfortunately, there is only one functioning Sensor Frame in existence, and that was
damaged sometime after the multi-finger recognition was running, but before formal testing could
begin. (Fortunately, a videotape of MDP in action was made while the Sensor Frame was working.)
No progress was made in repairing the Sensor Frame for over a year; testing was thus impossible.
Eventually the Sensor Frame was repaired, but Sensor Frame, Inc. went out of business shortly
afterward, making any detailed evaluation irrelevant. The owner of the Sensor Frame has left the
country, taking the device with him.

An informal estimate of the multi-finger recognition accuracy may be estimated from ten minutes
of videotape of the author using MDP. This version of MDP uses the path sorting multi-finger
recognition algorithm (Section 5.2). As shown in figure 8.10, MDP recognizes 11 gestures (6 one
finger gestures, 3 two finger gestures, and 2 three finger gestures). In the videotape, the author made
30 gestures, 2 of which appear to have been misclassified, and one of which was rejected, resulting
in a correct recognition rate of 90%. The processing time appears to be negligible.

All three misclassifications are the result of the Sensor Frame seeing more fingers in the gesture
than were intended. This was due to knuckles of fingers curled up (so as not to be used in the
gesture) accidentally penetrating the sensing plane and being counted as additional fingers. As there
are distinct classifiers for single finger, two finger, and three finger gestures, an incorrect number of
fingers inevitably leads to a misclassification. While it is possible to imagine methods for dealing
with such errors during recognition, the main cause of this problem is the ergonomics of the Sensor
Frame.

For the small gesture set examined, the recognition rate is 100% once the errors due to “extra
fingers” are eliminated. This is to be expected, given the small number of gestures for each number
of fingers. It is expected that the multi-path classifier operating on one finger gestures would perform
about as well as the single-path classifier, as the algorithms are essentially identical. The single-path
classifier, when given only six classes to discriminate among, has been shown (on mouse data) to
perform at 100% in almost all cases. When operating on two finger gestures, it is expected that
the performance of the recognition algorithm would be similar to that of the single-path classifier
on twice the number of classes. Actually, it is possible that some of the paths in the two-finger
gestures will be similar to other paths in the set, and be merged into a single class by the training
algorithm (Section 5.4). Thus, when the number of unique paths will be less than twice the number
of two-finger gesture classes, performance may be expected to improve accordingly. Similarly, the
three finger gesture classifier may be expected to perform as well as a single-path classifier the
recognizes between one and three times the number of three finger gesture classes, depending on
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the number of unique paths in the class set.
One more factor to consider is that mouse data tends to be much less noisy than Sensor Frame

data. The triangulation by the Sensor Frame is erratic, especially when multiple fingers are being
tracked. For example, both horizontal segments of the Parallelogram gesture of figure 8.10 should
be straight lines. Until this problem can be solved, it is expected that recognition rates for Sensor
Frame gesture sets will suffer.

9.4 GRANDMA

Evaluating GRANDMA is much more subjective than evaluating the low-level recognition rates.
GRANDMA may be evaluated on several levels: the effort required to build new interaction
techniques, to build new applications, to add gestures to an application, to change an application’s
gestures, or to use an application to perform a task.

No attempt was made to formally evaluate any of these. In order to get statistically valid results,
it would have been necessary to run carefully designed experiments on a number of users, something
the author had neither the time, space, inclination, or qualifications to do. Furthermore, the author
does not wish to claim that GRANDMA is superior to existing object-oriented toolkits for any
particular task. GRANDMA is simply the platform through which some ideas for input processing
in object-oriented toolkits were explored. GRANDMA’s significance, if any, will be its influence on
future toolkits, rather than any more direct results.

Nonetheless, this section informally reports on the author’s experience building gesture-based
systems with GRANDMA. (No one besides the author tried to program with GRANMDA.) Also,
in order to confirm that GRANDMA can be used by someone other than the author, this section also
reports on observations of a subject trying to use GSCORE and GRANDMA to due some tasks.

9.4.1 The author’s experience with GRANDMA

GRANDMA took approximately seven months to design and develop. It consists of approximately
12000 lines of Objective C code. There are an additional 5000 lines of C code which implement
a graphics layer as well as the feature vector calculation. GDP took an additional 2000 lines of
Objective C code to implement. GDP was developed at the same time as GRANDMA, as it was the
primary application used to test GRANDMA.

Initially, only two GDP gestures were used to test GRANDMA’s gesture handler and associated
utilities. Once these were working well, it took four days to add the remaining gestures to GDP.
Most of this time was spent writing Objective C methods to use in semantic expressions. These
were methods that were not needed for the existing direct manipulation interface.

GSCORE consists of 6000 lines of Objective C code. It took six weeks to design and implement
GSCORE, including its palette-based interface. Much of this time was spent on the details of
representing common music notation, mechanisms for displaying music notation, and producing
usable music fonts. The palette, an interaction technique that did not as yet exist in GRANDMA,
took about eight hours to implement. It took two weeks to add the gestural interface to GSCORE,
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Figure 9.19: PV’s task

Figure 9.20: PV’s result

including writing some additional methods. Much of this time was spent experimenting with
different semantics for the gestures.

Section 10.1.3 lists features of GRANDMA that will be important to incorporate into future
toolkits that support gestures.

9.4.2 A user uses GSCORE and GRANDMA

This sections informally reports on subject PV’s (see Section 9.1.5) attempts to use the GSCORE
program.

The task was to enter the music shown in figure 9.19. The music was chosen to exercise many
of the GSCORE gestures. PV is an experienced music copyist, and it took him 100 seconds to write
out the music as shown, copying it from an earlier attempt.

Using gestures, the author was able to enter the above score in 280 seconds (almost five minutes).
He made a total of 53 gestures, four of which did not give the desired results and were immediately
undone. Only two of those were misclassifications; the other two were notes gestures where the note
was created having the wrong pitch, due to misplacement of the cursor at the start of the gesture.
Turning off gestures and using only the palette interface, it took the author 670 seconds (eleven
minutes). No mistakes needed to be undone in the latter trial.

PV’s first attempt was at using the GSCORE program trained with the author’s gestures. PV
had already gained experienced with this set of gestures during the study of interuser variation.
PV practiced for one half hour with the GSCORE program before attempting the task. The author
coached PV during this time, as no other documentation or help was available.

PV took 600 seconds (10 minutes) to complete the task. He made a total of 73 gestures, 16 of
which were immediately undone. It appeared to the author, who was silently observing, that each
undo was used to recover from a misclassification. Figure 9.20 shows the product of his labor. PV
then turned off gestures, and used the palette interface to enter the example. He completed the task
in 680 seconds (11 minutes).
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PV then entered his own gestures in place of some of the author’s. In particular, he substituted
his own gestures for the nine classes: delete, move, beam, 1r, 2r, 8r, 16r, keysig, and bar,
entering 15 or more examples of each. The total time to do this, including incremental testing of the
new gestures and periodic saves to disk, was 25 minutes. PV did not attempt to emulate the author’s
gestures; instead, he used the forms he had created earlier (see Section 9.1.5).

Once done, PV repeated the experiment. It took him 310 seconds (5 minutes) to enter the music.
He made 58 gestures, 4 of which were undone.

PV was interviewed after the tests, and made the following comments: The biggest problem,
he stated, was that mouse tracking in the GSCORE program was much more sluggish than in
the recorder and tester. (This is accurate, as the time required for GSCORE events to be created
and consumed adds significant overhead to the mouse tracking. Much of this is overhead due to
GRANDMA.) PV characterized the system as “sluggish.” Bad tracking, especially at the start of
the gesture, contributed significantly to the number of misclassifications.

PV stated that he thought the system “intuitive” for entering notes. He described the gesture-
based interface as “excellent” compared to the palette-based system, but when asked how the
gesture-based interface compared to writing on paper, he replied “it sucks.” He did not like using
the mouse for gesturing, and believed that a stylus and tablet would be much better.

It is again difficult to draw conclusionsfrom an informal study of one user. Did PV’s performance
improve because he tailored the gestures to his liking, or because he had been practicing? This is
unknown. Some things are clear: GRANDMA makes it easy to experiment with new gesture sets,
and, in GSCORE, with moderate practice the gesture-based interface improved task performance by
a factor of two over the palette-based interface. Whether gesture-based interfaces generally improve
task performance over non-gesture-based interfaces is a question that requires much further study.



Chapter 10

Conclusion and Future Directions

This chapter summarizes the contributions of this thesis and indicates some directions for future
work.

10.1 Contributions

This thesis makes contributions in four areas:
� New interaction techniques

� New recognition-related algorithms
� Integrating gestures into interfaces

� Input in object-oriented toolkits

Each of these will be discussed in turn.

10.1.1 New interactions techniques

A major contributions of this work has been the invention and exploration of three new interaction
techniques.

The two-phase single-stroke interaction The two-phase interaction enables gesture and direct ma-
nipulation to be integrated in a single interaction that combines the power of each. The first
phase is collection, during which the points that make up the gesture are collected. In the
simplest case, the end of the collection phase is indicated by a motion timeout, classification
occurs, and the second phase, manipulation, is entered. In the manipulation phase, the user
moves the mouse to manipulate some parameters in the application. The particular parameters
manipulated depend on the classification of the collected gesture. The collection phase is like
character entry in handwriting interfaces; the manipulation phase is like a drag interaction in
direct-manipulation interfaces. Generally, the operation, operands, and some parameters are
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determined at the phase transition (when the gesture is recognized), and then the manipulation
phase allows additional parameters to be set in the presence of application feedback.

Eager recognition Eager recognition is a modification of the two-phase single-stroke interaction
in which the phase transition from gesturing to manipulation occurs as soon as enough of the
gesture has been seen so that it may be classified unambiguously. The result is an interaction
that combines gesturing and direct manipulation in a single, smooth interaction.

The two-phase multiple-finger interaction Gesture and direct manipulation may be combined for
multiple path inputs in a way similar to the two-phase single-stroke interaction. With multiple
finger input, opportunities exist for expanding the power of each phase of the interaction.
By allowing multiple fingers in the collection phase, the repertoire of possible gestures is
greatly increased, and a multiple finger gesture allows many parameters to be specified
simultaneously when the gesture is recognized. Similarly, even when only one finger is used
for the gesture, additional fingers may be brought in during the manipulation phase. Thus,
the two-phase multiple-finger interaction allows a large number of parameters to be specified
and interactively manipulated.

10.1.2 Recognition Technology

This thesis discloses five new algorithms of general utility in the construction and use of gesture
recognizers.

Automatic generation of single-stroke gesture recognizers from training examples A practical
and efficient algorithm for generating gesture recognizers has been developed and tested. In it,
a gesture is represented as a vector of real-valued features, and a standard pattern recognition
technique is used to generate a linear classifier that discriminates between the vectors of
different gesture classes. The training algorithm depends on aggregate statistics of each
gesture class, and empirically it has been shown that usually only fifteen examples of each
class are needed to produce accurate recognizers. It is simple to incorporate dynamic attributes,
such as the average speed of the gesture, into the feature set. The algorithm has been shown
to work even when some classes vary in size and orientation while others depend on size or
orientation to be recognized. The recognizer size is independent of the number of training
examples, and both the recognition and training times have been shown to be small. A features
set that is both meaningful and extensible potentially allows the algorithm to be adapted to
future input devices and requirements.

Incremental feature calculation The calculation used to generate features from the input points of
a gesture is incremental, meaning that it takes constant time to update the features given a new
input point. This allows arbitrarily large gestures to be processed with no delay in processing.

Rejection algorithms Two algorithms for rejecting ill-formed gestures have been developed and
tested. One estimates the probability of correct classification, enabling input gestures that are
ambiguous with respect to a set of gesture classes to be rejected. The other uses a normalized
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distance metric to determine how close an input gesture is to the typical gesture of the its
computed class, allowing outliers to be rejected.

Automatic generation of eager recognizers from training examples An eager recognizer classi-
fies a gesture as soon as it is unambiguous, alleviating the need for the end of the gesture to be
explicitly indicated. An algorithm for generating eager recognizers from training examples
has been developed and tested. The algorithm produces a two-class classifier which is run on
every input point and used to determine if the gesture being entered is unambiguous.

Automatic generation of multi-path gesture recognizers The single-stroke recognition work has
been extended so that a number of single-stroke recognizers may be combined into a multi-
finger gesture recognizer. The described algorithm produces a multi-path recognizer given
training examples. Relative path timing information is considered during the recognition,
and global classification is attempted when the individual path classifications do not uniquely
determine the class of the multi-path gesture. For dealing with the problems that arise
from multi-path input devices that do not a priori determine “which path is which,” two
approaches, path sorting and path clustering, have been explored. The resulting algorithm has
been demonstrated using the Sensor Frame as a multi-finger input device.

10.1.3 Integrating gestures into interfaces

A paradigm for integrating gestures into object-oriented interfaces has been developed and demon-
strated. The key points are:

A gesture set is associated with a view or view class. Each class of object in the user interface
potentially responds to a different set of gestures. Thus, for example, notes respond to a
different set of gestures than staves in the GSCORE music editor.

The gesture set is dynamically determined. From the first point of a gesture, the system dynam-
ically determines the set of gestures possible. The first point determines the possible views
at which the gesture is directed. For each of these views, inheritance up the class hierarchy
determines the set of gestures it handles. These sets are combined, and if need be, a classifier
for the resulting union is dynamically created.

The gesture class and attributes map to an application operation, operands, and parameters.
Gestures are powerful because they contain additional information beyond the class of the
gesture. The attributes of a gesture, such as size, orientation, length, speed, first point, and
enclosed area, can all be mapped to parameters (including operands) of application routines.
In the two-phase interaction, after the gesture is recognized there is an opportunity to map
subsequent input to application parameters in the presence of application feedback.

Gesture handlers may be manipulated at runtime. In order to encourage exploration of gesture-
based systems, all aspects of the gestural interface can be specified while the application is
running. A new gesture handler may be created at runtime and associated with one or more
views or view classes. Gesture classes may be added, deleted, or copied from other handlers.



228 CHAPTER 10. CONCLUSION AND FUTURE DIRECTIONS

Examples of each gesture class can be entered and modified at runtime. Finally, the semantics
of the gesture class can be entered and modified at runtime. Three semantic expressions
are specifiable: one evaluated when the gesture is first recognized, one evaluated on each
subsequent mouse point, and one evaluated when the interaction completes.

10.1.4 Input in Object-Oriented User Interface Toolkits

A number of new ideas in the area of input in object-oriented user interface toolkits arose in the
course of this work.

Passive and active event handlers A single passive event handler may be associated with multiple
views. When input occurs on one such view, the handler usually activates a copy of itself.
Thus, the active/passive dichotomy eliminates the need to have a controller object instantiated
for each view that expects input, a major expense in many MVC systems.

Event handlers may be associated with view classes Instead of having to associate a handler with
every instance of a view, the handler may be associated with one or more view classes. A
view may have multiple handlers associated with it, and handlers are queried in a specific
order to determine which handler will handle particular input.

Unified mouse input and virtual tools All input devices are tools, but when desired a single input
device may at times be different tools, one way to implement modes in the interface. Tools
may also be software objects, and some views are indeed such virtual tools. Tools often have
an action, which allows them to operate on any views that respond to that action. The test of
whether a given view responds to a given tool is made by an event handler associated with
every view; this allows semantic feedback to occur automatically without any explicit action
on the part of the view or the tool.

Automatic semantic feedback As just mentioned, the feedback as to whether a given tool operates
upon a view over which it is has been dragged happens automatically. For example, objects
that respond to the delete message will automatically highlight when a delete tool is dragged
over them. If desired, an object can do more elaborate processing to determine if it truly
responds to a given tool, e.g. an object may check that the user has permission to delete it
before indicating it responds to the delete tool.

Runtime creation and manipulation of event handlers Event handlers may be created and asso-
ciated with views or view classes at runtime. For example, a drag handler may be associated
with an object, allowing that object to be dragged (i.e. have its position changed). In addition,
such handlers may be modified at runtime, for example, to change the predicate that activates
the handler.

10.2 Future Directions

In this section, directions for future work are discussed. These directions include remedies for
deficiencies of the current work as well as extensions.
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The single-stroke training and recognition algorithm is the most robust and well-tested part of
the current work, and even in its current form it is probably suitable for commercial applications.
However, a number of simple modifications should improve performance. Sections 9.1.1 and 9.1.5
contain suggestions for additional features as well as modifications to existing features; these should
be implemented. Tracking the mouse in the presence of paging has proved to be a problem, and a
significant improvement in recognition rate would be achieved if real-time response to mouse events
could be guaranteed.

It should be simple to extend the algorithm to three dimensional gestures. All that would be
required would be to add several more features to capture motion in the extra dimension. The
training algorithm and linear classifier would be untouched by this extension.

Alternatives for rejection should be explored further. The estimated probability of ambiguity
is useful, though using it will always result in rejections of about as many gestures that would
have been correctly classified as not. The estimated Mahalanobis distance based on the common
covariance matrix is really only useful for rejecting deliberately garbled gestures. The Mahalanobis
distance based on the per-class covariance matrix fares somewhat better, but requires significantly
more training examples to work well.

Given the obvious false assumption of equal per-class covariance matrices, it seems that the
statistical classifier should not perform well on gesture sets, some classes of which vary in size and
orientation, others of which do not. In practice, when the gesture classes are unambiguous, the
classifiers have tended to perform admirably. Presumably this would not be the case for all such
gesture sets. One area for exploration is a method for calculating the common covariance matrix
differently, in particular, by not weighing the per class contributions by the number of examples of
that class.

Another challenge would be to handle such gesture sets without giving up linear classification
with a closed form training formula. There seems to be only one candidate, which relies on the
multiclass minimum squared error and the pseudoinverse of the matrix of examples [30]. It should
be explored as a potential alternative to classifiers that rely on estimates of a common covariance
matrix.

It would be interesting to explore the possibility of allowing the user to indicate declaratively
that a given gesture classes will vary in size and/or orientation. This might be handled simply
by generating additional training examples by varying the user-supplied examples accordingly.
Alternatively, it may be possible to augment the training algorithm so that the evaluation functions
for certain classes are constrained to ignore certain features.

Relaxing the requirement that a closed form exist for the per-class feature weights allows
iterative training methods to be considered. They have been ignored in this dissertation since they
are expensive in training time and tend to require many training examples. However, as processor
speed increases, iterative methods become more practical for use in a tool for experimenting with
gesture-based interfaces.

Similarly, relaxing the requirement that the classifier be a linear discriminator opens the door
for many other possibilities. Quadratic discrimination, and various non-parametric discrimination
algorithms are but a few. These too are expensive and require many training examples.

Perhaps recognition technologies that require expensive training may be used in a production
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system while the cheaper technology developed here used for prototyping. This is analogous to
using a fast compiler for development and an optimizing compiler for production. At the time of this
writing it seems likely that neural networks will soon be in common use, and gesture recognition is
but one application.

Additional attention should be given to the problem of detecting ambiguous sets of gesture
classes and useless features. The triangular matrix of Mahalanobis distance between each pair of
gesture classes is a useful starting point for determining similar gesture classes. Multivariate analysis
of variance techniques [74] can determine which features contribute to the classification and which
features are irrelevant. These techniques can be used to support the design of new features.

Eager recognition needs to be explored further. The classifiers generated by the algorithm of
Chapter 4 are less eager than they could possibly be, due to the conservative choices being made.
Hand labeling of ambiguous and unambiguous subgestures should be explored more fully; it is not
difficult to imagine an interface that makes such labeling relatively painless, and it is likely to give
better results than the current automatic labeling. Another possible improvement comes from the
observation that, during eager recognition, the full classifier is being used to classify subgestures,
upon which it was not trained. It might be worth trying to retrain the full classifier on the complete
subgestures. Even better, perhaps a new classifier, trained on the newly complete subgestures (i.e.
those made complete by their last point), should be substituted for the full classifier. Also, eager
recognition needs to be extended to multi-path gestures.

Algorithms for automatically determining the start of a gesture would also be useful, especially
for devices without any discrete signaling capability (most notably the DataGlove). In the current
work, gestures are considered atomic, essentially having no discernible structure. It is easy to
imagine separate gestures such as select, copy, move, and delete that are concatenated to make
single interactions: select and move, select and delete. This raises the segmentation question: when
does one gesture end and the next begin? Specifying allowable combinations of gestures opens up
the possibility of gesture grammars, an interesting area for future study.

This dissertation has concentrated on single-path gestures that are restricted to be single strokes,
for reasons explained previously. The utility of multiple-stroke gestures needs to be examined more
thoroughly. In a multiple-stroke gesture, does the relaxation between strokes ruin the correspon-
dence between mental and physical tension that makes for good interaction? Does the need for
segmentation make the system less responsive than it otherwise might be? Can a manipulation
phase and eager recognition be incorporated into a system based on multiple-stroke gestures? These
questions require further research.

Due to the interest in multiple stroke recognition, the question arises as to whether the single-
stroke algorithm can be extended to handle multiple stroke gestures. First, the segmentation problem
(grouping strokes into gestures) needs to be addressed. One way this might be done is to add a large
timeout to determine the end of a gesture. The distance of a stroke from the previous stroke might
also be used. A sequence of strokes determined to be a single gesture might then be treated as a
single stroke, with the exception of an additional feature which records the number of strokes in the
gesture. The single-stroke recognition algorithm may then be applied.

Multi-path recognition is really still in its infancy. While the recognition algorithms of Chapter 5
seem to work well, there is not much to compare them against. Many others methods for multi-path
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recognition need to be explored. That said, the author is somewhat wary that multiple finger input
devices are so seductive that gesture research will concentrate on such devices to the exclusion of
single-path devices. This would be unfortunate, as it seems likely that single-path devices will be
much more prevalent for the foreseeable future, and thus more users will potentially benefit from
the availability of single-path gesturing. Also, a thorough understanding of the issues involved in
single-path gesturing will likely be of use in solving the more difficult problems encountered in the
multi-path case.

The advent of pen-based computers leads to the question of how the single-stroke recognition
described here may be combined with handwriting recognition. One approach is to pass input to the
gesture recognizer after it has been rejected by the handwriting recognizer. The context in which the
stroke has been made (e.g. drawing window or text window) can also be used to determine whether
to invoke handwriting recognition or stroke recognition first.

The start of a single-stroke gesture is used to determine the set of possible gestures by looking
at possible objects at which the gesture is directed. It may be desirable to explore the possibility
that the gesture is directed at an object other than one indicated by the first point, e.g. an object
may be indicated by a hot point of the gesture (e.g. the intersection point of the delete gesture). A
similar ambiguity occurs when the input is a multiple-finger gesture; which of the fingers should be
used to determine the object(s) at which the gesture is directed? In this case, a union of the gestures
recognized by objects indicated by each finger could be used, but the possibility of conflict remains.

One problem with gesture-based systems is that there is usually no indication of the possible
gestures accepted by the system.1 This is a difficulty that will potentially prevent novices from using
the system. One approach would be to use animation[6] to indicate the possible gestures and their
effects, although how the user asks to see the animation remains an open question.

Also daunting to beginners is the timeout interval, where “stillness” is used to indicate that
collection is over and manipulation is to begin. Typically, a beginner presses a mouse button and
then thinks about what to do next; by that time the system has already classified the gesture as a dot.
The timeout cannot be totally disabled, since it is the only way to enter the manipulation phase for
some gestures. Perhaps some scheme where the timeouts are long (0.75 seconds) for novices and
decrease with use is desirable. Another possibility is eliminating the timeout totally at the beginning
of the gestures, thus disallowing dot gestures.

The current work suffers from a lack of formal user evaluation. Additional studies are needed
to determine classifier performance as a function of training examples, and whether one user can
use a classifier trained by another. In general, the costs and the benefits of fixed verses trainable
recognition strategies need to be studied. The usability of eager recognizers is also of interest.

Recognizers that gradually adapt to users need to be studied as well. Such a recognizer requires
the user to somehow indicate when a gesture is misclassified by the system. Lerner [78] demonstrated
a potentially applicable scheme in which the system monitored subsequent actions to see if the user
was satisfied with the result of an applied heuristic. There are dangers inherent in doubly-adaptive
systems–if the system adapts to the user and the user to the system, both are aiming at moving
targets, and thrashing is possible. The current approach requires the user explicitly to replace the

1Kurtenbach et. al. [75] say that gesture-based interfaces are “non-revealing,” and present an interesting solution that
unifies gesturing and pie-menu selection.
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existing training examples with his own–a workable, if not glamorous, solution.
The low-level recognition work in this thesis is quite usable in its current state, and may be

directly incorporated into systems as warranted. GRANDMA, however, is not useful as a base for
future development. It is purely a research system, built as a platform for experimenting with input in
user interface toolkits. Its output facilities are totally inadequate for real applications. GRANDMA
was built solely by and for the author, who has no plans to maintain it. Nonetheless, GRANDMA
embodies some important concepts of how gestures are to be integrated into object-oriented user
interface tools.

The obvious next step is to integrate gestures into some existing user interface construction tools.
Issues of technical suitabilityare important, but not paramount, in deciding which system to work on.
Any chosen system must be well supported and maintained, so that there is a reasonable assurance
that the system will survive. Furthermore, any chosen system must be widely distributed, in order
to make the technology of gesture recognition available to as many experimenters as possible.

A number of existing systems are candidates for the incorporation of gestures. The NeXT Ap-
plication Kit is technically the ideal platform–it is even programmed in Objective C. The appropriate
hooks seem to be there to capture input at the right level in order to associate gestures with view
classes. It is probably not worth the effort to implement an entire interpreter for entering gesture
semantics at runtime, as this is not something a user will typically manipulate. A graphical interface
to control semantics, based on constraints, would be an interesting addition. In general, a simpler
way for mapping gestural attributes to application parameters needs to be determined.

The Andrew Toolkit (ATK) is another system into which gestures may be incorporated. ATK
uses its own object-oriented programming language on top of C, so runtime representation of the
class hierarchy, if not already present, should be straightforward to add. ATK has implemented
dynamic loading of objects into running programs–this should make it possible to compile gesture
semantics and load them into a running program without restarting the program. Unfortunately, due
to their overhead, views tend to be large objects in ATK (e.g. individual notes in a score editor
would not be separate views in ATK) making it difficult to associate different gestures with the
smaller objects of interest in the interface. Scott Hassan, in a different approach, has added the
author’s gesture recognizer to the ATK text object, creating an interface that allows text editing via
proofreader’s marks.

Integrating gestures into Garnet is another possibility. What would be required is a gesture in-
teractor, analogous to the gesture event handler in GRANDMA. Garnet interactors routinely specify
their semantics via constraints, with an escape into Lisp available for unusual cases. Specifying ges-
ture semantics should therefore be no problem in Garnet. James Landay has begun work integrating
the author’s recognizer into Garnet.

Gestures could also be added to MacApp. Besides being widely used, MacApp has the advantage
that it runs on a Macintosh, which historically has run only one process at a time and has no virtual
memory (this has changed with a recent system software release). While these points sound like
disadvantages, the real-time operation needed to track the mouse reliably should be easy to achieve
because of them. Because MacApp is implemented in Object Pascal, minimal meta-information
about objects is available at runtime. In particular, message selectors are not first class objects in
Object Pascal, it is not possible to ask if a given object responds to a message at runtime, and there
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is no runtime representation of the class hierarchy. Many things that happen automatically because
GRANDMA is written in Objective C will need to be explicitly coded in MacApp.

It would be desirable to have additional attributes of the gesture available for use in gesture
semantics. Notably missing from the current set are locations where the path intersects itself and
locations of sharp corners of the stroke. Both kinds of attributes can be used for pointing with a
gesture, and allow for multiple points to be indicated with one single-path gesture. Also, having the
numerical attributes also available in a scaled form (e.g. between zero and one) would simplify their
use as parameters to application functions.

10.3 Final Remarks

The utility of gesture-based interfaces derives from the ability to communicate an entire primitive
application transaction with a single gesture. For this to be possible, the gesture needs to be classified
to determine the operation to be performed, and attributes of the gesture must be mapped to the
parameters of the operation. Some parameters may be culled at the time the gesture is recognized,
while others are best manipulated in the presence of feedback from the application. This is the
justification for the two-phase approach, where gesture recognition is followed by a manipulation
phase, which allows for the continuous adjustment of parameters in the presence of application
feedback.

From the outset, the goal of this work was to provide tools to allow the easy creation of gesture-
based applications. This research has led to prototypes of such tools, and has thus laid much of the
groundwork for building such tools in the future. However, the goal will not have been achieved until
gestures are integrated into existing user interface construction tools that are both well maintained
and highly available. This involves more development and marketing than it does research, but it is
vitally important to the future of gesture-based systems.
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Appendix A

Code for Single-Stroke Gesture
Recognition and Training

This appendix contains the actual C code used to recognize single-stroke gestures. The feature vector
calculation, classifier training algorithm, and the linear classifier are all presented. The code may
be obtained free of charge via anonymous ftp to emsworth.andrew.cmu.edu (subdirectory gestures)
and is also available as part of the Andrew contribution to the X11R5 distribution.

A.1 Feature Calculation

The lowest level of the code deals with computing a feature vector from a sequence of mouse points
that make up a gesture. Type FV is a pointer to a structure that holds a feature vector as well as
intermediate results used in the calculation of the features. The function FvAlloc allocates an FV,
which is initialized before processing the points of a gesture via FvInit. FvAddPoint is called
for each input point of the gesture, and FvCalc returns the feature vector for the gesture once all
the points have been entered.

The following is a sample code fragment demonstrating the use of these functions:

#include "matrix.h"
#include "fv.h"

Vector
InputAGesture()�

static FV fv;
int x, y; long t; Vector v;

/� FvAlloc() is typically called only once per program invocation. � /
if(fv == NULL) fv = FvAlloc();

235
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/� A prototypical loop to compute a feature vector from a gesture
being read from a window manager: � /

FvInit(fv);
while(GetNextPoint(&x, &y, &t) != END_OF_GESTURE)

FvAddPoint(fv, x, y, t);
v = FvCalc(fv);
return v;

�

The returned vector v might now be passed to sClassify to classify the gesture.
The remainder of this section shows the header file, fv.h, which defines the FV type and the

feature vector interface. This interface is implemented in fv.c, shown next.

/� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
fv.h � Create a feature vector, useful for gesture classification,

from a sequence of points (e.g. mouse points).
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � /

/��������������������� compile time settable parameters ������������������� � /
/� some of these can also be set at runtime, see fv.c � /

#undef USE_TIME
/� Define USE_TIME to enable the duration and maximum � /
/� velocity features. When not defined, 0 may be passed � /
/� as the time to FvAddPoint. � /

#define DIST_SQ_THRESHOLD (3 � 3)
/� points within sqrt(DIST_SQ_THRESHOLD) � /
/� will be ignored to eliminate mouse jitter � /

#define SE_TH_ROLLOFF (4 � 4)
/� The SE_THETA features (cos and sin of � /
/� angle between first and last point) will � /
/� be scaled down if the distance between the � /
/� points is less than sqrt(SE_TH_ROLLOFF) � /

/��������������������� Interface ������������������� � /

typedef struct fv � FV;
/� During gesture collection, an FV holds � /
/� all intermediate results used in the � /
/� calculation of a single feature vector � /
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FV FvAlloc(); /� � /
void FvFree(); /� Fv fv � /
void FvInit(); /� FV fv � /
void FvAddPoint(); /� FV fv; int x, y; long time; � /
Vector FvCalc(); /� FV fv; � /

/� ����������� internal data structure ����������� � /
#define MAXFEATURES 32

/� maximum number of features, occasionally useful as an array bound � /

/� indices into the feature Vector returned by FvCalc � /

#define PF_INIT_COS 0 /� initial angle (cos) � /
#define PF_INIT_SIN 1 /� initial angle (sin) � /
#define PF_BB_LEN 2 /� length of bounding box diagonal � /
#define PF_BB_TH 3 /� angle of bounding box diagonal � /
#define PF_SE_LEN 4 /� length between start and end points � /
#define PF_SE_COS 5 /� cos of angle between start and end points � /
#define PF_SE_SIN 6 /� sin of angle between start and end points � /
#define PF_LEN 7 /� arc length of path � /
#define PF_TH 8 /� total angle traversed � /
#define PF_ATH 9 /� sum of abs vals of angles traversed � /
#define PF_SQTH 10 /� sum of squares of angles traversed � /

#ifndef USE_TIME
# define NFEATURES 11
#else
# define PF_DUR 11 /� duration of path � /
# define PF_MAXV 12 /� maximum speed � /
# define NFEATURES 13
#endif

/� structure which holds intermediate results during feature vector calculation � /

struct fv
�

/� the following are used in calculating the features � /
double startx, starty; /� starting point � /
long starttime; /� starting time � /

/� these are set after a few points and then left alone � /
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double initial_sin, initial_cos; /� initial angle to x axis � /

/� these are updated incrementally upon every point � /
int npoints; /� number of points in path � /

double dx2, dy2; /� differences: endx � prevx, endy � prevy � /
double magsq2; /� dx2 � dx2 + dy2 � dy2 � /

double endx, endy; /� last point added � /
long endtime;

double minx, maxx, miny, maxy; /� bounding box � /

double path_r, path_th; /� total length and rotation (in radians) � /
double abs_th; /� sum of absolute values of path angles � /
double sharpness; /� sum of squares of path angles � /
double maxv; /� maximum velocity � /

Vector y; /� Actual feature vector � /
�
;

/� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
fv.c � Creates a feature vector, useful for gesture classification,

from a sequence of points (e.g. mouse points).
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � /

#include <stdio.h>
#include <math.h>
#include "matrix.h" /� contains Vector and associated functions � /
#include "fv.h"

/� runtime settable parameters � /
double dist_sq_threshold = DIST_SQ_THRESHOLD;
double se_th_rolloff = SE_TH_ROLLOFF;

#define EPS (1.0e � 4)

/� allocate an FV struct including feature vector � /

FV
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FvAlloc()�

register FV fv = (FV) mallocOrDie(sizeof(struct fv));
fv � >y = NewVector(NFEATURES);
FvInit(fv);
return fv;

�

/� free memory associated with an FV struct � /
void
FvFree(fv)
FV fv;�

FreeVector(fv � >y);
free((char � ) fv);

�

/� initialize an FV struct to prepare for incoming gesture points � /
void
FvInit(fv)
register FV fv;�

register int i;

fv � >npoints = 0;
fv � >initial_sin = fv � >initial_cos = 0.0;
fv � >maxv = 0;
fv � >path_r = 0;
fv � >path_th = 0;
fv � >abs_th = 0;
fv � >sharpness = 0;
fv � >maxv = 0;
for(i = 0; i < NFEATURES; i++)

fv � >y[i] = 0.0;
�

/� update an FV struct to reflect a new input point � /
void
FvAddPoint(fv, x, y, t)
register FV fv; int x, y; long t;�

double dx1, dy1, magsq1;
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double th, absth, d;
#ifdef PF_MAXV

long lasttime;
#endif

++fv � >npoints;
if(fv � >npoints == 1)

�
/� first point, initialize some vars � /

fv � >starttime = fv � >endtime = t;
fv � >startx = fv � >endx = fv � >minx = fv � >maxx = x;
fv � >starty = fv � >endy = fv � >miny = fv � >maxy = y;
fv � >endx = x; fv � >endy = y;
return;

�

dx1 = x � fv � >endx; dy1 = y � fv � >endy;
magsq1 = dx1 � dx1 + dy1 � dy1;

if(magsq1 <= dist_sq_threshold)
�

fv � >npoints � � ;
return; /� ignore a point close to the last point � /

�

if(x < fv � >minx) fv � >minx = x;
if(x > fv � >maxx) fv � >maxx = x;
if(y < fv � >miny) fv � >miny = y;
if(y > fv � >maxy) fv � >maxy = y;

#ifdef PF_MAXV
lasttime = fv � >endtime;

#endif
fv � >endtime = t;

d = sqrt(magsq1);
fv � >path_r += d; /� update path length feature � /

/� calculate initial theta when the third point is seen � /
if(fv � >npoints == 3)

�

double magsq, dx, dy, recip;
dx = x � fv � >startx; dy = y � fv � >starty;
magsq = dx � dx + dy � dy;
if(magsq > dist_sq_threshold)

�

/� find angle w.r.t. positive x axis e.g. (1,0) � /
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recip = 1 / sqrt(magsq);
fv � >initial_cos = dx � recip;
fv � >initial_sin = dy � recip;

�

�

if(fv � >npoints >= 3)
�

/� update angle � based features � /
th = absth = atan2(dx1 � fv � >dy2 � fv � >dx2 � dy1,

dx1 � fv � >dx2 + dy1 � fv � >dy2);
if(absth < 0) absth = � absth;
fv � >path_th += th;
fv � >abs_th += absth;
fv � >sharpness += th � th;

#ifdef PF_MAXV /� compute max velocity � /
if(fv � >endtime > lasttime &&

(v = d / (fv � >endtime � lasttime)) > fv � >maxv)
fv � >maxv = v;

#endif
�

/� prepare for next iteration � /
fv � >endx = x; fv � >endy = y;
fv � >dx2 = dx1; fv � >dy2 = dy1;
fv � >magsq2 = magsq1;

return;
�

/� calculate and return a feature vector � /
Vector
FvCalc(fv)
register FV fv;�

double bblen, selen, factor;

if(fv � >npoints <= 1)
return fv � >y; /� a feature vector of all zeros � /

fv � >y[PF_INIT_COS] = fv � >initial_cos;
fv � >y[PF_INIT_SIN] = fv � >initial_sin;
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/� compute the length of the bounding box diagonal � /
bblen = hypot(fv � >maxx � fv � >minx, fv � >maxy � fv � >miny);

fv � >y[PF_BB_LEN] = bblen;

/� the bounding box angle defaults to 0 for small gestures � /
if(bblen � bblen > dist_sq_threshold)

fv � >y[PF_BB_TH] = atan2(fv � >maxy � fv � >miny,

fv � >maxx � fv � >minx);

/� compute the length and angle between the first and last points � /
selen = hypot(fv � >endx � fv � >startx,

fv � >endy � fv � >starty);

fv � >y[PF_SE_LEN] = selen;

/� when the first and last points are very close, the angle features
are muted so that they satisfy the stability criterion � /

factor = selen � selen / se_th_rolloff;

if(factor > 1.0) factor = 1.0;

factor = selen > EPS ? factor/selen : 0.0;

fv � >y[PF_SE_COS] = (fv � >endx � fv � >startx) � factor;

fv � >y[PF_SE_SIN] = (fv � >endy � fv � >starty) � factor;

/� the remaining features have already been computed � /
fv � >y[PF_LEN] = fv � >path_r;

fv � >y[PF_TH] = fv � >path_th;

fv � >y[PF_ATH] = fv � >abs_th;

fv � >y[PF_SQTH] = fv � >sharpness;

#ifdef PF_DUR

fv � >y[PF_DUR] = (fv � >endtime � fv � >starttime) � .01;
#endif

#ifdef PF_MAXV

fv � >y[PF_MAXV] = fv � >maxv � 10000;

#endif

return fv � >y;
�
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A.2 Deriving and Using the Linear Classifier

Type sClassifier points at an object that represents a classifier able to discriminate between a
set of gesture classes. Each gesture class is represented by an sClassDope type. The functions
sRead and sWrite read and write a classifier to a file. The function sNewClassifer creates
a new (empty) classifier. A training example is added using sAddExample. There is no function
to explicitly add a new class to a classifier. When an example of a new class is added, the new class
is created automatically. To train the classifier based on the added examples, call sDoneAdding.
Once trained, sClassify and sClassifyAD are used to classify a feature vector as one of the
classes; sClassifyAD optionally computes the rejection information.

Here is an example fragment for creating a new classifier, entering new training examples, and
writing the resulting classifier out to a file. Some of these functions are timed (and further described)
in section 9.1.7.

#include <stdio.h>
#include <math.h>
#include "bitvector.h"
#include "matrix.h"
#include "sc.h"

#define NEXAMPLES 15

sClassifier
MakeAClassifier()�

sClassifier sc = sNewClassifier();
Vector InputAGesture();
char name[100];
int i;

for(;;)
�

printf("Enter class name, newline to exit: ");
if(gets(name) == NULL

���
name[0] == ’\0’)

break;
for(i = 1; i <= NEXAMPLES; i++)

�

printf("Enter %s example %d\n", name, i);
sAddExample(sc, name, InputAGesture());

�

�

sDoneAdding(sc);
sWrite(fopen("classifier.out", "w"), sc);
return sc;
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�

Once a classifier has been created it can be used to classifier gestures as follows:

TestAClassifier(sc)
sClassifier sc;�

Vector v;
sClassDope scd;
double punambig, distance;

for(;;)
�

printf("Enter a gesture\n");
v = InputAGesture();
scd = sClassifyAD(sc, v, &punambig, &distance);
printf("Gesture classified as %s ", scd � >name);
printf("Probability of unambiguous classification: %g\n",

punambig);
printf("Distance from class mean: %g\n", distance);

�

�

What follows is the header file and code to implement the statistical classifier.

/� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
sc.h � create single path classifiers from feature vectors of examples,

as well as classifying example feature vectors.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � /

#define MAXSCLASSES 100 /� maximum number of classes � /

typedef struct sclassifier � sClassifier; /� classifier � /
typedef int sClassIndex; /� per � class index � /
typedef struct sclassdope � sClassDope; /� per � class information � /

struct sclassdope
�
/� per gesture class information within a classifier � /

char � name; /� name of a class � /
sClassIndex number; /� unique index (small integer) of a class � /
int nexamples; /� number of training examples � /
Vector average; /� average of training examples � /
Matrix sumcov; /� covariance matrix of examples � /

�
;
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struct sclassifier
�
/� a classifier � /

int nfeatures; /� number of features in feature vector � /
int nclasses; /� number of classes known by this classifier � /
sClassDope � classdope;/� array of pointers to per class data � /

Vector cnst; /� constant term of discrimination function � /
Vector � w; /� array of coefficient weights � /
Matrix invavgcov; /� inverse covariance matrix � /

�
;

sClassifier sNewClassifier(); /� � /
sClassifier sRead(); /� FILE � f � /
void sWrite(); /� FILE � f; sClassifier sc; � /
void sFreeClassifier(); /� sc � /
void sAddExample(); /� sc, char � classname; Vector y � /
void sDoneAdding(); /� sc � /
sClassDope sClassify(); /� sc, y � /
sClassDope sClassifyAD(); /� sc, y, double � ap; double � dp � /
sClassDope sClassNameLookup(); /� sc, classname � /
double MahalanobisDistance();/� Vector v, u; Matrix sigma � /

/� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
sc.c � creates classifiers from feature vectors of examples, as well as

classifying example feature vectors.
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � /

#include <stdio.h>
#include <math.h>
#include "bitvector.h"
#include "matrix.h"
#include "sc.h"

#define EPS (1.0e � 6) /� for singular matrix check � /

/� allocate memory associated with a new classifier � /

sClassifier
sNewClassifier()�

register sClassifier sc =
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(sClassifier) mallocOrDie(sizeof(struct sclassifier));
sc � >nfeatures = � 1;
sc � >nclasses = 0;
sc � >classdope = (sClassDope � )

mallocOrDie(MAXSCLASSES � sizeof(sClassDope));
sc � >w = NULL;
return sc;

�

/� free memory associated with a new classifier � /
void
sFreeClassifier(sc)
register sClassifier sc;�

register int i;
register sClassDope scd;

for(i = 0; i < sc � >nclasses; i++)
�

scd = sc � >classdope[i];
if(scd � >name) free(scd � >name);
free(scd);
if(sc � >w && sc � >w[i]) FreeVector(sc � >w[i]);
if(scd � >sumcov) FreeMatrix(scd � >sumcov);
if(scd � >average) FreeVector(scd � >average);

�

free(sc � >classdope);
if(sc � >w) free(sc � >w);
if(sc � >cnst) FreeVector(sc � >cnst);
if(sc � >invavgcov) FreeMatrix(sc � >invavgcov);
free(sc);

�

/� given a string name of a class, return its per � class information � /
sClassDope
sClassNameLookup(sc, classname)
register sClassifier sc;
register char � classname;�

register int i;
register sClassDope scd;
static sClassifier lastsc;
static sClassDope lastscd;
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/� quick check for last class name � /
if(lastsc == sc && STREQ(lastscd � >name, classname))

return lastscd;

/� linear search through all classes for name � /
for(i = 0; i < sc � >nclasses; i++)

�

scd = sc � >classdope[i];
if(STREQ(scd � >name, classname))

return lastsc = sc, lastscd = scd;
�

return NULL;
�

/� add a new gesture class to a classifier � /
static sClassDope
sAddClass(sc, classname)
register sClassifier sc;
char � classname;�

register sClassDope scd;

sc � >classdope[sc � >nclasses] = scd = (sClassDope)
mallocOrDie(sizeof(struct sclassdope));

scd � >name = scopy(classname);
scd � >number = sc � >nclasses;
scd � >nexamples = 0;
scd � >sumcov = NULL;
++sc � >nclasses;
return scd;

�

/� add a new training example to a classifier � /
void
sAddExample(sc, classname, y)
register sClassifier sc;
char � classname;
Vector y;�

register sClassDope scd;
register int i, j;
double nfv[50];
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double nm1on, recipn;

scd = sClassNameLookup(sc, classname);
if(scd == NULL)

scd = sAddClass(sc, classname);

if(sc � >nfeatures == � 1)
sc � >nfeatures = NROWS(y);

if(scd � >nexamples == 0)
�

scd � >average = NewVector(sc � >nfeatures);
ZeroVector(scd � >average);
scd � >sumcov = NewMatrix(sc � >nfeatures,sc � >nfeatures);
ZeroMatrix(scd � >sumcov);

�

if(sc � >nfeatures != NROWS(y))
�

PrintVector(y, "sAddExample: funny vector nrows!=%d",
sc � >nfeatures);

return;
�

scd � >nexamples++;
nm1on = ((double) scd � >nexamples � 1)/scd � >nexamples;
recipn = 1.0/scd � >nexamples;

/� incrementally update covariance matrix � /
for(i = 0; i < sc � >nfeatures; i++)
nfv[i] = y[i] � scd � >average[i];

/� only upper triangular part computed � /
for(i = 0; i < sc � >nfeatures; i++)

for(j = i; j < sc � >nfeatures; j++)
scd � >sumcov[i][j] += nm1on � nfv[i] � nfv[j];

/� incrementally update mean vector � /
for(i = 0; i < sc � >nfeatures; i++)

scd � >average[i] =
nm1on � scd � >average[i] + recipn � y[i];

�
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/� run the training algorithm on the classifier � /
void
sDoneAdding(sc)
register sClassifier sc;�

register int i, j;
int c;
int ne, denom;
double oneoverdenom;
register Matrix s;
register Matrix avgcov;
double det;
register sClassDope scd;

if(sc � >nclasses == 0)
error("sDoneAdding: No classes\n");

/� Given covariance matrices for each class ( � number of examples � 1)
compute the average (common) covariance matrix � /

avgcov = NewMatrix(sc � >nfeatures, sc � >nfeatures);
ZeroMatrix(avgcov);
ne = 0;
for(c = 0; c < sc � >nclasses; c++)

�

scd = sc � >classdope[c];
ne += scd � >nexamples;
s = scd � >sumcov;
for(i = 0; i < sc � >nfeatures; i++)

for(j = i; j < sc � >nfeatures; j++)
avgcov[i][j] += s[i][j];

�

denom = ne � sc � >nclasses;
if(denom <= 0)

�

printf("no examples, denom=%d\n", denom);
return;

�

oneoverdenom = 1.0 / denom;
for(i = 0; i < sc � >nfeatures; i++)

for(j = i; j < sc � >nfeatures; j++)



250 APPENDIX A. CODE FOR SINGLE-STROKE GESTURE RECOGNITION AND TRAINING

avgcov[j][i] = avgcov[i][j] � = oneoverdenom;

/� invert the avg covariance matrix � /

sc � >invavgcov = NewMatrix(sc � >nfeatures, sc � >nfeatures);
det = InvertMatrix(avgcov, sc � >invavgcov);
if(fabs(det) <= EPS)

FixClassifier(sc, avgcov);

/� now compute discrimination functions � /
sc � >w = (Vector � )

mallocOrDie(sc � >nclasses � sizeof(Vector));
sc � >cnst = NewVector(sc � >nclasses);
for(c = 0; c < sc � >nclasses; c++)

�

scd = sc � >classdope[c];
sc � >w[c] = NewVector(sc � >nfeatures);
VectorTimesMatrix(scd � >average, sc � >invavgcov,

/� product = � / sc � >w[c]);
sc � >cnst[c] = � 0.5 �

InnerProduct(sc � >w[c], scd � >average);
/� could add log(priorprob class c) to cnst[c] � /

�

FreeMatrix(avgcov);
return;

�

/� classify a feature vector � /
sClassDope
sClassify(sc, fv)

�

return sClassifyAD(sc, fv, NULL, NULL);
�

/� classify a feature vector, possibly computing rejection metrics � /
sClassDope
sClassifyAD(sc, fv, ap, dp)
sClassifier sc;
Vector fv;
double � ap;
double � dp;�

double disc[MAXSCLASSES];
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register int i, maxclass;
double denom, exp();
register sClassDope scd;
double d;

if(sc � >w == NULL)
error("sClassifyAD: %x no trained classifier", sc);

for(i = 0; i < sc � >nclasses; i++)
disc[i] = InnerProduct(sc � >w[i], fv) + sc � >cnst[i];

maxclass = 0;
for(i = 1; i < sc � >nclasses; i++)

if(disc[i] > disc[maxclass])
maxclass = i;

scd = sc � >classdope[maxclass];

if(ap)
�

/� calculate probability of non � ambiguity � /
for(denom = 0, i = 0; i < sc � >nclasses; i++)

/� quick check to avoid computing negligible term � /
if((d = disc[i] � disc[maxclass]) > � 7.0)

denom += exp(d);
� ap = 1.0 / denom;

�

if(dp) /� calculate distance to mean of chosen class � /
� dp = MahalanobisDistance(fv, scd � >average,

sc � >invavgcov);

return scd;
�

/� Compute the Mahalanobis distance between two vectors v and u � /
double
MahalanobisDistance(v, u, sigma)
register Vector v, u;
register Matrix sigma;�

register i;
static Vector space;
double result;
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if(space == NULL
���
NROWS(space) != NROWS(v))

�

if(space) FreeVector(space);
space = NewVector(NROWS(v));

�

for(i = 0; i < NROWS(v); i++)
space[i] = v[i] � u[i];

result = QuadraticForm(space, sigma);
return result;

�

/� handle the case of a singular average covariance matrix by removing features � /
FixClassifier(sc, avgcov)
register sClassifier sc;
Matrix avgcov;�

int i;
double det;
BitVector bv;
Matrix m, r;

/� just add the features one by one, discarding any that cause
the matrix to be non � invertible � /

CLEAR_BIT_VECTOR(bv);
for(i = 0; i < sc � >nfeatures; i++)

�

BIT_SET(i, bv);
m = SliceMatrix(avgcov, bv, bv);
r = NewMatrix(NROWS(m), NCOLS(m));
det = InvertMatrix(m, r);
if(fabs(det) <= EPS)

BIT_CLEAR(i, bv);
FreeMatrix(m);
FreeMatrix(r);

�

m = SliceMatrix(avgcov, bv, bv);
r = NewMatrix(NROWS(m), NCOLS(m));
det = InvertMatrix(m, r);
if(fabs(det) <= EPS)

error("Can't fix classifier!");
DeSliceMatrix(r, 0.0, bv, bv, sc � >invavgcov);
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FreeMatrix(m);
FreeMatrix(r);

�

/� write a classifier to a file � /
void
sWrite(outfile, sc)
FILE � outfile;
sClassifier sc;�

int i;
register sClassDope scd;

fprintf(outfile, "%d classes\n", sc � >nclasses);
for(i = 0; i < sc � >nclasses; i++)

�

scd = sc � >classdope[i];
fprintf(outfile, "%s\n", scd � >name);

�

for(i = 0; i < sc � >nclasses; i++)
�

scd = sc � >classdope[i];
OutputVector(outfile, scd � >average);
OutputVector(outfile, sc � >w[i]);

�

OutputVector(outfile, sc � >cnst);
OutputMatrix(outfile, sc � >invavgcov);

�

/� read a classifier from a file � /
sClassifier
sRead(infile)
FILE � infile;�

int i, n;
register sClassifier sc;
register sClassDope scd;
char buf[100];

printf("Reading classifier "), fflush(stdout);
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sc = sNewClassifier();
fgets(buf, 100, infile);
if(sscanf(buf, "%d", &n) != 1) error("sRead 1");
printf("%d classes ", n), fflush(stdout);
for(i = 0; i < n; i++)

�

fscanf(infile, "%s", buf);
scd = sAddClass(sc, buf);
scd � >name = scopy(buf);
printf("%s ", scd � >name), fflush(stdout);

�

sc � >w = allocate(sc � >nclasses, Vector);
for(i = 0; i < sc � >nclasses; i++)

�

scd = sc � >classdope[i];
scd � >average = InputVector(infile);
sc � >w[i] = InputVector(infile);

�

sc � >cnst = InputVector(infile);
sc � >invavgcov = InputMatrix(infile);
printf("\n");
return sc;

�

/� compute pairwise distances between classes, and print the closest ones,
as a clue as to which gesture classes are confusable � /

sDistances(sc, nclosest)
register sClassifier sc;�

register Matrix d = NewMatrix(sc � >nclasses, sc � >nclasses);
register int i, j;
double min, max = 0;
int n, mi, mj;

printf(" ������� ������������� \n");
printf("%d closest pairs of classes\n", nclosest);
for(i = 0; i < NROWS(d); i++)

�

for(j = i+1; j < NCOLS(d); j++)
�

d[i][j] = MahalanobisDistance(
sc � >classdope[i] � >average,
sc � >classdope[j] � >average,
sc � >invavgcov);

if(d[i][j] > max) max = d[i][j];
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�

�

for(n = 1; n <= nclosest; n++)
�

min = max;
mi = mj = � 1;
for(i = 0; i < NROWS(d); i++)

�

for(j = i+1; j < NCOLS(d); j++)
�

if(d[i][j] < min)
min = d[mi=i][mj=j];

�
�

if(mi == � 1)
break;

printf("%2d) %10.10s to %10.10s d=%g nstd=%g\n",
n,
sc � >classdope[mi] � >name,
sc � >classdope[mj] � >name,
d[mi][mj],
sqrt(d[mi][mj]));

d[mi][mj] = max+1;
�

printf(" ������� ������������� \n");
FreeMatrix(d);

�

A.3 Undefined functions

The above code uses some functions whose definitions are not included in this appendix. These fall
into four classes: standard library functions (including the math library), utility functions, bitvector
functions, and vector/matrix functions, The standard library calls will not be discussed.

The utility functions used are

STREQ(s1, s2) returns FALSE iff strings s1 and s2 are equal.

scopy(s) returns a copy of the string s.

error(format, arg1...) prints a message and causes the program to exit.

mallocOrDie(nbytes) calls malloc, dying with an error message if the memory cannot be
obtained.
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The bit vector operations are an efficient set of functions for accessing an array of bits.

CLEAR BIT VECTOR(bv) resets an entire bit vector bv to all zeros,

BIT SET(i, bv) sets the ith bit of bv to one, and

BIT CLEAR(i, bv) sets the ith bit of bv to zero.

The vector/matrix functions are declared in matrix.h. Objects of typeVector andMatrix may
be accessed like one and two dimensional arrays, respectively, but also contain additional information
as to the size and dimensionality of the object (accessible via macros NROWS, NCOLS, and NDIM. It
should be obvious from the names and the use of most of the functions (NewVector, NewMatrix,
FreeVector, FreeMatrix, ZeroVector, ZeroMatrix, PrintVector, PrintMatrix,
InvertMatrix, InputVector, InputMatrix, OutputVector, OutputMatrix,
VectorTimesMatrix, and InnerProduct) what they do. As for the remaining functions,

double QuadraticForm(Vector V, Matrix M) computes the quantity V � MV, where
the prime denotes the transpose operation.

Matrix SliceMatrix(Matrix m, BitVector rowmask, BitVector colmask)
creates a new matrix, consisting only of those rows and columns in m whose corresponding
bits are set it rowmask and colmask, respectively.

Matrix DeSliceMatrix(Matrix m, double fill, BitVector rowmask;
BitVector colmask; Matrix result) first sets every element inresult tofill,
and then, every element in result whose row number is on in rowmask and whose column
number is on incolmask, is set from the correspondingelement in the inputmatrixm, which is
smaller thanr. The result ofSliceMatrix(DeSliceMatrix(m, fill, rowmask,
colmask, result), rowmask, colmask) is a copy of m, given legal values for all
parameters.

These auxiliary functions, as well as a C-based X11R5 version of GDP, are all available as part
of the ftp distribution mentioned above.
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